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ABSTRACT

Ongoing brain function is largely determined by the underlying wiring of the brain, but the specific rules
governing  this  relationship  remain  unknown.  Emerging  literature  has  suggested  that  functional
interactions  between brain regions emerge from the structural  connections through mono-  as  well  as
polysynaptic mechanisms. Here, we propose a novel approach based on diffusion maps and Riemannian
optimization  to  emulate  this  dynamic  mechanism  in  the  form  of  random  walks  on  the  structural
connectome and predict functional interactions as a weighted combination of these random walks. Our
proposed approach was evaluated in two different cohorts of healthy adults (Human Connectome Project,
HCP; Microstructure-Informed Connectomics, MICs). Our approach outperformed existing approaches
and showed that performance plateaus approximately around the third random walk. At macroscale, we
found that the largest number of walks was required in nodes of the default  mode and frontoparietal
networks,  underscoring  an  increasing  relevance  of  polysynaptic  communication  mechanisms  in
transmodal cortical networks compared to primary and unimodal systems.
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INTRODUCTION

Neuroscience has increasingly embraced a paradigm shift, away from focusing on single regions towards
conceptualizations that emphasize the analysis of the brain as a complex, interconnected network (Avena-
Koenigsberger et al., 2018; Bassett et al., 2017; Bullmore & Sporns, 2009; Fornito et al., 2013; Sporns et
al., 2005). With progress in multimodal imaging and modelling, in particular advances in diffusion MRI
acquisition and tractographic reconstructions, it is now possible to visualize the structural connectome
(SC), as a representation of structural wiring with increasing biological validity (Hagmann et al., 2007).
Mapping the SC has critical appeal to network neuroscience, as it is generally considered to provide the
physical wiring diagram of the brain that shapes and constrains ongoing brain function and dynamics,
which in turn are thought to underlie the emergence of cognitive functions and behavior (Bressler &
Menon, 2010).

Although a fundamental goal of systems neuroscience is to identify how structure gives rise to ongoing
brain  function,  establishing  a  direct  link  between  the  SC  and  the  functional  connectome  (FC)  as  a
representation  of  ongoing signal  interactions  remains  an open problem.  While  neural  signals  can be
immediately transmitted between anatomically connected locations in the SC, the principles governing
the  flow of  information  between  different  unconnected  regions  of  the  brain  remain  elusive.  In  both
humans and non-human primates, the strength of a structural connection linking two brain regions has
shown to be a relatively robust predictor of the strength of their functional interaction (Honey et al., 2009;
Shen et al., 2012; Skudlarski et al., 2008). Nonetheless, the predictive accuracy of the SC is far from
perfect, especially when aiming to explain the functional connectivity between anatomically unconnected
regions, which may be mediated by polysynaptic communication paths (Damoiseaux & Greicius, 2009;
Goñi et al., 2014; Honey et al., 2009). Moreover, the strength of the structure-function relationship has
generally been recognized to vary across the brain, with a tight coupling of structural and functional
connectivity profiles in unimodal sensory regions that is gradually relaxed in higher-order transmodal
association areas, notably regions of the default mode and frontoparietal networks (Baum et al., 2020;
Vázquez-Rodríguez et al., 2019).

Several  approaches  have  been  proposed  to  explain  the  mapping  between  structural  and  functional
networks,  including  statistical  associative  techniques  (Mišić  et  al.,  2016),  biophysical  models
(Breakspear, 2017; Deco et al., 2013; Honey et al., 2009; Robinson, 2012; Wang et al., 2019), structural
connectome  harmonics  (Abdelnour  et  al.,  2014,  2018;  Becker  et  al.,  2018;  Rosenthal  et  al.,  2018),
network communication models (Avena-Koenigsberger et  al.,  2018;  Bazinet  et al.,  2021;  Goñi et al.,
2014; Mišić et al., 2015), and deep learning methods (Rosenthal et al., 2018; Sarwar et al., 2021). Among
these approaches, those based on the eigenvectors on the SC and network communication have attracted
mounting interest recently (Abdelnour et al., 2018; Atasoy et al., 2016; Becker et al., 2018; Gabay et al.,
2018; Surampudi et al., 2018; Tewarie et al., 2020; Wang et al., 2017). These approaches incorporate
polysynaptic communication mechanisms through more than one structural connection to account for the
flow of information between not only directly connected regions but also intermediary pathways (Atasoy
et al., 2016; Seguin et al., 2020; Suárez et al., 2020). By working on the structural embeddings, network
communication can be modelled in a straightforward manner based on random walks on the SC ( i.e.,
signal diffusion through the entire SC) or as combinations of the structural eigenvectors (Tewarie et al.,
2020).  As  such,  these  techniques  allow  for  the  modelling  of  both  mono-  as  well  as  polysynaptic
communication mechanisms to incorporate  increasingly high-order  structural  interactions,  which may
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ultimately reconstruct a dense FC from a relatively sparse SC representation (Honey et al., 2009; Suárez
et al., 2020).

Here,  we propose a  novel  approach to  predict  FC from SC and better  understand structure-function
coupling in the human brain. The proposed approach is formulated as a kernel fusion method, where each
kernel can be depicted as a putative intermediate state while the brain is propagating information through
the static white matter fibers. These multi-scale diffusion kernels are implemented as random walks on
the  structural  eigenspace,  by  leveraging  a  diffusion  maps  framework  to  identify  low  dimensional
components  describing  variance  in  SC  (Coifman  et  al.,  2005;  Coifman  & Lafon,  2006).  Since  the
functional  diffusion coordinates  we attempt to synthesize may have a different  orientation than their
analogous structural coordinates, we need a transformation to align their low-dimensional representations
in manifold space.  To do so,  we formulate our task as a Riemannian optimization problem over the
product manifold of rotations (Absil et al., 2009; Hu et al., 2020), where each rotation is used to identify
the optimal paths of a specific length, and subsequently build the corresponding intermediate diffusion
kernels. The proposed approach is illustrated in Figure 1. The workflow was evaluated on the prediction
of FC from SC at the individual  level rather than group level.  Results  are reported for two different
datasets, namely: 326 unrelated subjects from the Human Connectome project (Van Essen et al., 2013)
and 50 unrelated subjects from the Microstructure-Informed Connectomics dataset (Royer et al., 2021).
We used the proposed approach to: i) study the relationship between the length of the random walks (i.e.,
length  of  indirect  paths  between  brain  regions)  and  prediction  accuracy  (quantified  via  Pearson’s
correlation coefficient), ii) test the contribution and identify the weighting schemes to define the SC that
best  explain  the  observed  brain  function,  iii) perform  region-  and  network-specific  analyses  of  FC
prediction as a function of path length,  and  iv)  compare the prediction performance of the proposed
approach with several state-of-the-art methods.
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MATERIALS AND METHODS

Datasets
We evaluated our proposed approach on diffusion magnetic resonance imaging (dMRI) and resting-state
functional MRI (rs-fMRI) data provided by the Human Connectome Project (HCP) repository (Van Essen
et al., 2013), and on the Microstructure-Informed Connectomics (MICs) dataset (Royer et al., 2021). 

All MRI data used in this study were publicly available and anonymized. For HCP, we used data from the
minimally processed S900 release. Participants who did not complete full  imaging data and who had
family relationships were excluded, resulting in a total of 326 participants (mean ± SD age = 28.56 ± 3.73
years; 55% females). Participant recruitment procedures and informed consent forms, including consent
to share de-identified data, were previously approved by the Washington University Institutional Review
Board as part of the HCP. For MICs, the data consist of 50 healthy volunteers (29.82 ± 5.73 years; 21
females)  scanned  between  April  2018  and  September  2020.  All  participants  denied  a  history  of
neurological  illness.  The  MICs  dataset  was  approved  by  the  Ethics  Committee  of  the  Montreal
Neurological Institute and Hospital. Written informed consent, including a statement for openly sharing
all data in anonymized form, was obtained from all participants.

MRI acquisition
HCP participants were scanned using a Siemens Skyra 3T at Washington University. The T1-weighted
(T1w) images were acquired using a magnetization-prepared rapid gradient echo (MPRAGE) sequence
(repetition time (TR) = 2,400 ms; echo time (TE) = 2.14 ms; field of view (FOV) = 224 × 224 mm 2; voxel
size = 0.7 mm3; and number of slices = 256). The T2-weighted (T2w) structural data were obtained with
the T2-SPACE sequence, with an identical geometry as the T1w data but different TR (3,200 ms) and TE
(565 ms). The dMRI data were acquired with the spin-echo echo-planar imaging (EPI) sequence (TR =
5,520 ms; TE = 89.5 ms; FOV = 210 × 180 mm2; voxel size = 1.25 mm3; b-value = three different shells
i.e., 1,000, 2,000, and 3,000 s/mm2; number of diffusion directions = 270; and number of b0 images =
18). The rs-fMRI data were collected using a gradient-echo EPI sequence (TR = 720 ms; TE = 33.1 ms;
FOV = 208 × 180 mm2; voxel size = 2 mm3; number of slices = 72; and number of volumes = 1,200).
During the rs-fMRI scan, participants were instructed to keep their eyes open looking at a fixation cross.
Two sessions of rs-fMRI data were acquired; each of them contained data of left-to-right and right-to-left
phase-encoded directions, providing up to four time series per participant.

For  MICs,  participants  were  scanned  at  the  McConnell  Brain  Imaging  Centre  of  the  Montreal
Neurological Institute and Hospital on a 3T Siemens Magnetom Prisma-Fit equipped with a 64-channel
head coil. Participants underwent a T1w structural scan, followed by multi-shell dMRI and rs-fMRI. In
addition, a pair of spin-echo images was acquired for distortion correction of individual rs-fMRI scans.
Two T1w scans with identical parameters were acquired with a 3D-MPRAGE sequence (TR = 2300 ms,
TE = 3.14 ms, TI = 900 ms, flip angle = 9°, iPAT = 2, partial Fourier = 6/8, voxel size = 0.8 mm 3, matrix
= 320×320, and number of slices = 224). Both T1w scans were visually inspected to ensure minimal head
motion before they were submitted to further processing. A spin-echo EPI sequence with multi-band
acceleration  was  used  to  obtain  dMRI  data,  consisting  of  three  shells  with  b-values  300,  700,  and
2000s/mm2 and 10, 40, and 90 diffusion weighting directions per shell, respectively (TR = 3500 ms, TE =
64.40 ms, voxel size = 1.6 mm3, flip angle = 90°, refocusing flip angle = 180°, FOV = 224×224 mm2,
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slice thickness = 1.6 mm, mb factor = 3, echo spacing = 0.76 ms, number of b0 images = 3). One rs-fMRI
scan was acquired using multiband accelerated 2D-BOLD EPI (TR = 600 ms, TE = 30 ms, voxel size =
3mm3, flip angle = 52°, FOV = 240×240 mm2, slice thickness = 3 mm, mb factor = 6, echo spacing = 0.54
ms). Participants were instructed to keep their eyes open, look at a fixation cross, and not fall asleep. A
complete list of acquisition parameters can be found in the detailed imaging protocol provided by (Royer
et al., 2021).

Data preprocessing
HCP data  underwent  the  initiative's  minimal  preprocessing  pipelines  (Glasser  et  al.,  2013).  In  brief,
structural  MRI  data  underwent  gradient  nonlinearity  and  b0  distortion  correction,  followed  by  co-
registration between the T1w and T2w data using a rigid-body transformation. Bias field correction was
performed by capitalizing on the inverse intensities from the T1- and T2-weighting. Processed data were
nonlinearly registered to MNI152 space and the white and pial surfaces were generated by following the
boundaries between different tissues (Dale et al., 1999; Fischl, 2012; Fischl et al., 1999a, 1999b). The
white and pial surfaces were averaged to generate a mid-thickness surface, which was used to generate
the inflated surface. The spherical surface was registered to the Conte69 template with 164k vertices (Van
Essen et al., 2012) using MSMAll (Glasser et al., 2016; Robinson et al., 2014) and downsampled to a 32k
vertex mesh. The dMRI data underwent b0 intensity normalization, and EPI distortions were corrected by
leveraging  reversed  phase-encoded  directions.  The  dMRI  data  was  also  corrected  for  eddy  current
distortions and head motion. The rs-fMRI data preprocessing involved corrections for EPI distortions and
head  motion,  and  fMRI  data  were  registered  to  the  T1w data  and  subsequently  to  MNI152  space.
Magnetic  field  bias  correction,  skull  removal,  and  intensity  normalization  were  performed.  Noise
components attributed to head movement, white matter, cardiac pulsation, arterial, and large vein related
contributions  were  automatically  removed  using  FIX  (Salimi-Khorshidi  et  al.,  2014).  The  minimal
preprocessing with FIX-denoising pipeline of the HCP performs a high-pass filtering with a cutoff of
2,000 s  full  width at  half  maximum (FWHM) (Glasser  et  al.,  2013).  Preprocessed time series  were
mapped to standard grayordinate space, with a cortical ribbon-constrained volume-to-surface mapping
algorithm. The total mean of the time series of each left-to-right/right-to-left phase-encoded data was
subtracted to adjust the discontinuity between the two datasets and they were concatenated to form a
single time series data.

For the MICs dataset, T1w images were anonymized and de-identified by defacing all structural volumes.
Each T1w scan was deobliqued and reoriented. T1w scans were then linearly co-registered and averaged,
automatically  corrected  for  intensity  nonuniformity (Tustison  et  al.,  2010),  and intensity  normalized.
Resulting  images  were  skull-stripped,  and  subcortical  structures  were  segmented  using  FSL  FIRST
(Jenkinson et al.,  2012). Cortical surface segmentations were generated from native T1w scans using
FreeSurfer 6.0 (Dale et al., 1999; Fischl, 2012; Fischl et al., 1999a, 1999b). The dMRI data were pre-
processed  using  MRtrix  (Tournier  et  al.,  2012,  2019).  The  dMRI  data  underwent  b0  intensity
normalization, and were corrected for susceptibility distortion, head motion, and eddy currents. Required
anatomical features for tractography processing were co-registered to native dMRI space using affine
transformation tools implemented in Advanced Neuroimaging Tools (ANTs) (Tustison & Avants, 2013).
Diffusion processing and tractography were performed in native dMRI space. For rs-fMRI, images were
pre-processed using AFNI (Cox, 1996) and FSL (Jenkinson et al., 2012). The first five volumes were
discarded to ensure magnetic field saturation. Images were reoriented, and motion as well as distortion
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corrected. Nuisance variable signal was removed using ICA-FIX (Salimi-Khorshidi et al., 2014) and by
performing spike regression. Volume timeseries were averaged for registration to native FreeSurfer space
using boundary-based registration (Greve & Fischl, 2009). Native timeseries were mapped to individual
surface  models  using  a  boundary-based  registration  and  smoothed  using  a  Gaussian  kernel
(FWHM=10mm, smoothing performed on native midsurface mesh) using workbench. The preprocessing
of the MICs dataset was performed with micapipe (https://micapipe.readthedocs.io).

Functional and structural connectome generation
To  estimate  FC  matrices,  individual  rs-fMRI  timeseries  mapped  to  individual  surface  models  were
averaged within parcels defined by the cortical parcellation scheme. Cortical timeseries were sampled
from each vertex  of  the  native  FreeSurfer  space  cortical  surface  segmentation,  and  averaged within
surface  parcels.  Individual  functional  connectomes  were  generated  by  cross-correlating  all  nodal
timeseries.

SC representations were generated from preprocessed dMRI data using MRtrix (Tournier et al., 2012,
2019). Different tissue types of cortical and subcortical grey matter, white matter, and cerebrospinal fluid
were segmented using T1-weighted image for anatomical constrained tractography (Smith et al., 2012).
Multi-shell and multi-tissue response functions were estimated (Christiaens et al., 2015) and constrained
spherical-deconvolution and intensity normalization were performed (Jeurissen et al., 2014). The initial
tractogram  was  generated  with  40  million  streamlines,  with  a  maximum tract  length  of  250  and  a
fractional anisotropy cutoff of 0.06. Spherical-deconvolution informed filtering of tractograms (SIFT2)
was applied to reconstruct whole brain streamlines weighted by cross-section multipliers (Smith et al.,
2015).  To build a structural  connectome, the reconstructed cross-section streamlines were mapped to
selected cortical parcellation schemes.

Proposed framework

Let  be the connectivity matrix representing a given SC, where each entry S(i , j) is the weight

of the edge connecting the i-th and j-th cortical locations, computed as the total number of streamlines

connecting both locations, such that  S(i , j)=S ( j , i) and  S(i , j)≥0,∀ i , j=1,. .. ,n . Our purpose is to

predict the FC, the correlations of resting-state functional signals, from its corresponding SC (i.e., S). To
do so, we leverage diffusion maps (Coifman & Lafon, 2006). We first proceed by normalizing the SC
matrix to define the diffusion operator P:

(1)

where q (i )=∑
k

S ( i , k ) denotes the degree in the connectome, such that  ∑
k

P (i , k )=1. Now Pij can be

viewed as the probability for a random walker on the SC S to make a step from the i-th to j-th cortical
locations. As P is not symmetric, we can further define a symmetric operator ∆:

(2)
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Figure 1. Schematic of the proposed approach. Given a pair of structural (SC) and functional (FC) connectivity
matrices,  first  we use diffusion maps to obtain the structural  embedding of the SC. The functional  embedding
(dashed) is only shown for visualization purposes, to illustrate the differences that might exist between the structural
and functional spectra and also their eigenvectors. By increasing the diffusion time t (see Walking on the SC), we
can see that the structural eigenvalues approximate the functional eigenvalues shown in red. For each diffusion time,
we can obtain a different representation of the structural diffusion coordinates. The larger the diffusion time is, the
closer the brain regions are to each other in the structural  embedding, and hence their pairwise connectivity is
increased. Then, a rotation matrix is used for each diffusion time to obtain a kernel that represents the predicted FC
at time t. This can be seen as finding a rotation matrix to align to structural embedding to the functional one, see
dashed line. The kernels are then fused to obtain the final predicted FC matrix.

In matrix notation, we have that Δ=Q−1 /2S Q−1/2, where Q denotes the degree matrix of S (a diagonal

matrix  such  that  Q (i , i )=q (i )=∑
k

S (i , k ).  Using  spectral  theory,  it  can  be  shown  that  Δ has  the

following eigendecomposition:

(3)

where  1= λ0≥∨λ1∨≥∨λ2∨≥⋯ is the eigenspectrum and  {ψk } the corresponding eigenvectors of  Δ.

This operator shares the same spectrum with  P and its eigenvectors are orthogonal, unlike those of  P
(Coifman & Hirn, 2014). Now, a walk of length t  in the SC can be represented by the diffusion maps Ψ t

as follows:

(4)
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where T  stands for transpose. A desirable property of the diffusion map Ψ t is that it embeds the data into

a Euclidean space in which the Euclidean distance is equal to the diffusion distance Dt:

(5)

where ‖⋅ ‖ denotes the l2-norm. With this metric, we can capture the connectivity of two cortical locations

for each length of the walks t  in the SC. Note that as t  grows, the diffusion distance between the cortical
locations will decrease and will be mainly driven by the first diffusion coordinates, i.e., those coordinates
corresponding to the largest eigenvalues. This will allow us to approximate the distances based solely on
the dominant eigenvectors and reduce the dimensionality of the diffusion maps.

Let   be the FC matrix, built using time-series correlation analysis of an fMRI scan from the
same subject. Since diffusion maps define a Euclidean space, we propose to predict the FC using a kernel
fusion approach:

(6)

where  K t (i , j)=exp (−γ ‖Ψ t(i)−Ψ t ( j)‖
2
)=exp(−γ Dt

2
(i , j)) is a radial basis function (RBF) kernel

built from the diffusion maps Ψ t for each diffusion time t , and γ is the kernel bandwidth; m is the total

number of walks considered, α t≥0 is the coefficient corresponding to the RBF kernel K t, μ1 is a trade-

off parameter, and ‖⋅ ‖F is the Frobenius norm. Given that K t (i , j)∈[0,1] and F (i , j)∈[−1,1], in our

setting we scale the FC matrices to the range [0,1] for training and undo this operation after prediction.
Since  we  will  assess  performance  using  Pearson's  correlation  coefficient,  which  is  invariant  under
positive linear transformations, this scaling has no effect on the results.

Although we can approximate the functional  eigenvalues with an increasing number of walks in the
structural embedding, as shown in  Figure 1, the structural and functional embeddings do not share the
same diffusion coordinates. We therefore propose to find a transformation of the structural embedding to

more faithfully reconstruct the FC. Let  be a matrix representing the diffusion coordinates of
the SC at  time  t  and  p≤n,  we aim to find a rotation matrix   to  transform the diffusion
coordinates as follows:

(7)

where I n is an n×n identity matrix, det (⋅) stands for matrix determinant, and ¿ and Γ t=ΩΥ t, with Γ t

denoting the rotated structural diffusion map, and  Γ t (i) the  i-th row of  Γ t . It is worth noting that the
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scaling of the eigenvectors is different for each diffusion time t , and because of the spectrum decay, we
will be having fewer and fewer diffusion coordinates contributing to the computation of the RBF kernels.

This will be producing a different kernel  K t for each diffusion time  t . Based on this observation, we

extend our approach to include a rotation for each diffusion time:

(8)

where we include a  third term and its  trade-off  parameter  μ2 to  avoid overfitting,  with  d (Ωt ,Ωt+1)

denoting  the  distance  between  two  consecutive  rotation  matrices.  When  μ2=0,  no  restrictions  are

imposed on the rotation matrices, whereas when  μ2>0, this term enforces the rotations of consecutive

diffusion times to be similar to each other. In the extreme case where μ2 tends to infinity, the problem

amounts to finding one single rotation shared by all diffusion times (as shown in Eq. (7)). Biologically,
one can think of these rotation matrices as identifying the optimal paths through which to propagate
information between different regions of the brain. Since we have one rotation matrix for each diffusion
time, each rotation will identify paths of a specific length. That is, the rotation corresponding to diffusion
time t  will attempt to find the optimal paths of length t that connect a pair of brain regions.

To  infer  the  latent  variables  in  our  problem,  we  employ  an  alternating  optimization  technique.  We
minimize the cost function in Eq. (8) for each output variable, while holding the estimates of the other
unknowns constant. Note that, for brevity, in our formulation we only considered a single subject, but the
optimization is performed for multiple subjects.  To determine the set of rotations, we recast our cost
function to a Riemannian manifold optimization problem (Absil et al., 2009; Hu et al., 2020). Riemannian
optimization translates a constrained optimization problem into an unconstrained optimization problem
where the constraints are implicitly defined by the search space. Particularly, for our problem, the target

manifold is the Special Orthogonal group . For more than one rotation, we can define the target

manifold as the product manifold of rotations, :

(9)

where the distance between rotation matrices d (Ωt ,Ωt+1)=‖ log (Ωt
T Ωt+1)‖F is suitably chosen to be the

geodesic distance on  and log (⋅) denotes the matrix logarithm (Boumal et al., 2014). Given that
kernels corresponding to consecutive numbers of walks are similar, this term imposes that their rotation
matrices must lie close to each other on the rotation manifold. The problem in Eq. (9) can be solved using
Riemannian optimization algorithms. In our case, we use the Riemannian conjugate gradient algorithm
(Absil et al., 2009) as implemented in Pymanopt (Townsend et al., 2016).

Once we have estimated the rotation matrices, the next step is solving for  α , which amounts to ridge
regression  with  non-negativity  constraints  on  the  coefficients.  Let

X=(uvec (K1) ,uvec (K2) ,⋯ , uvec (Km)) and  y=uvec (F ),  where  uvec (⋅) returns  the  upper
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triangular  part  of  a  symmetric  matrix,  without  the  elements  in  the  main diagonal.  This  optimization
problem amounts to:

(10)

where the third term does not affect the optimization. This problem can be solved with conventional
quadratic  programming.  The  proposed  approach  is  implemented  in  Python  and the  code  is  publicly
available at (https://github.com/MICA-MNI/micaopen/sf_prediction).

Experimental settings
The performance of the proposed approach in predicting FC from SC was assessed in the HCP and MICs
datasets. For MICs, prediction accuracy was based on a 3-fold cross-validation (CV) strategy based on all
50 individuals in the dataset. For HCP (n=326), the data was randomly split in 3 subsets: 50 individuals
were selected for CV, 250 for holdout, and the remaining 26 individuals were used for parameter tuning.
Following  previous  studies,  prediction  performance  was  reported  in  terms  of  Pearson's  correlation
coefficient  based  on  the  upper  triangular  parts  (excluding  the  main  diagonal)  of  both  empirical  and
predicted FC matrices. Regarding parameter tuning, we used an independent subset (26 subjects) from the

HCP dataset to find the optimal values for the hyperparameters (i.e., μ1, μ2, and γ of the RBF kernels) of

our proposed approach. Note that this subset was not used to report any results. The best values for both
μ1and μ2 were chosen from a grid of 9 equidistant points in logarithmic scale in the interval [1e-4, 1e4].

The  optimal  value  for  μ1 was  found  to  be  100.  For  the  Riemannian  regularization,  our  initial

benchmarking showed a negligible improvement for  μ2≤0.001,  and we therefore chose to report our

results for μ2=0. For the RBF kernel, γ was chosen to be the standard deviation of the diffusion distances

for each random walk. These optimal hyperparameter values were then used to assess performance in
both the HCP and MICs datasets. 

Our proposed approach was tested using SC and FC matrices built based on two different cortical atlases:
i) a parcellation derived using functional MRI data (Schaefer et al., 2018), and ii) a structurally-defined
parcellation based on a more fine-grained clustering of the well-established Desikan Killiany parcellation
(Desikan et al., 2006; Vos de Wael et al., 2020). To assess the robustness of the proposed approach across
different spatial scales, our experiments were repeated for two different parcellation granularities, using
parcellations with 100 and 200 cortical regions. We also explored different weighting schemes to define
the SC matrices in explaining ongoing brain function. We analyzed three versions of the SC: i) binary SC,
where each entry in the SC matrix is set to 1 only if there is  at  least  one streamline connecting the
corresponding regions of the brain, ii) length-based SC, which is built using an RBF kernel based on the
mean length of  the  streamlines  connecting pairs  of  brain regions,  and  iii) count-based SC,  which is
defined based in the number of streamlines connecting each pairs of brain regions.  Unless otherwise
stated, our experiments are based on SC matrices defined using the latter weighting scheme ( i.e., count-
based). We also investigated the contribution of diffusion time at network level, and the role it plays in
strengthening the structure-function coupling and its relationship with the principal functional gradient
(Margulies et al., 2016). The principal functional gradient was estimated using BrainSpace (Vos de Wael
et al., 2020).
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We compared the performance of the proposed approach with state-of-the-art  methods. Among those
based on the structural eigenvectors, we compared our approach to the Multiple Kernel Learning (MKL)
(Surampudi et al., 2018) and Spectral (Becker et al., 2018) approaches. Briefly, in the MKL approach,
multiple diffusion kernels on the SC are linearly combined using LASSO (Tibshirani, 1996) to predict
FC. The Spectral approach, on the other hand, learns a shared functional embedding and a mapping from
the functional to the structural eigenvalues for each individual, which are then used to build the predicted
FC matrices. Note that, in the Spectral approach, the individual structural eigenvectors are not taken into
consideration to predict FC. Outside the eigenvector-based category, we included results using the single
Laplacian-based diffusion kernel (SDK) proposed in (Abdelnour et al., 2014), and the series expansion
approach (NLSA) in (Meier et al., 2016). SDK defines a single diffusion kernel at a specific scale (or
diffusion time) from the symmetric normalized Laplacian matrix of the SC. In our work, the optimal scale
was chosen so that  it  provided the best  performance in the training data.  NLSA, on the other hand,
predicts  FC as  a  truncated Taylor series  expansion of  the  SC (Tewarie et  al.,  2020).  We used code
provided by the authors for both MKL (https://github.com/govindasurampudi/MKL) and Spectral (https://
brainopt.github.io/spectral-mapping).  Finally,  our  approach  used  multiple  kernels  along  with  their
corresponding rotation matrices. To elucidate the contribution of each of these components, we included
two additional versions of our method to the comparison table: 1) "SingleLength" only used one single
kernel or random walk for prediction, and 2) "SharedRot" used a single rotation matrix shared by all the
random walks.
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RESULTS

Walking on the structural connectome increases prediction accuracy
To faithfully reconstruct the FC from the sparse SC, we first investigated the role of diffusion time (or path
length) in the prediction accuracy of our proposed approach. We explored the contribution of random walks
of different lengths, ranging from 1 to 10, such that for a given maximum length of 5 for example, we
considered random walks of any length below or equal to 5. In this way, we are not only including the static
direct connections present in the SC, but also allow our method to incorporate information about the SC at
multiple scales, i.e., after propagating information between indirectly connected brain regions.    

The prediction accuracy of our proposed approach was assessed in two different datasets, namely: HCP and
MICs. For HCP,  Figure 2a shows boxplots with the correlation between the empirical and predicted FC
matrices using structural random walks with maximum lengths ranging from 1 to 10. Results are reported in
both cross-validation (using a 3-fold CV based on 50 randomly chosen subjects) and holdout data (250
subjects) subsets, and using different cortical parcellation atlases (defined using structural and functional
information)  and  number  of  regions  (100  and  200  parcels).  These  results  showed  that  the  highest
performance (in terms of Pearson's correlation coefficient) was achieved with approximately a maximum
path  length  of  3-4.  After  that,  performance  plateaued and the  change  in  prediction  accuracy,  although
positive, was in most scenarios negligible. Overall, these trends were consistent in both cross-validation and
holdout datasets, and across the different parcellations and numbers of regions. In the holdout set of HCP,
for example, prediction accuracy improved substantially when considering random walks of length up to 3
(0.174/0.165 increase in mean Pearson’s correlation coefficient for 100/200 regions functional parcellations,
and 0.085/0.112 for the analogous structural parcellations),  whereas with the incorporation of additional
walks (those with path lengths from 4 to 10), we only found very small  improvements in performance
(0.017/0.007 and 0.013/0.002 average increase for the 100/200-node functional and structural parcellations,
respectively). Moreover, when comparing the type and size of the parcellations, prediction accuracy was
consistently lower in structural than in functional parcellations, and dropped when increasing the number of
parcels  used to  build the  connectivity  matrices.  Results  on the MICs dataset,  based on a  3-fold cross-
validation, are shown in  Figure S1 of the supplementary materials. Similar to HCP, highest performance
was achieved with random walks of length 3 or shorter, with prediction accuracy decaying when the number
of cortical parcels increased. However, no clear trend was found when comparing performance based on the
structural and functional parcellation (see Comparison with state-of-the-art methods section).

To further illustrate how brain function emanates from the SC as the length of the random walks increases
(i.e.,  as we increasingly incorporate indirect connections between cortical regions),  Figure 2b displays the
original  SC matrices  and the predicted  FC matrices  corresponding to  the  individuals  that  achieved the
median  Pearson’s  correlation  coefficient  in  the  holdout  subset  of  the  HCP  dataset.  The  predicted  FC
matrices corresponding to random walks of length 1, 3 and 10 are displayed in the lower triangular parts,
with their respective empirical FC shown in the upper triangular parts. Results shown in  Figure 2b are
based on both the structural and functional parcellations with 100 regions. For the 200-node parcellations,
results are shown in Figure S2. With both parcellation types and sizes, we found some similarities emerge
with random walks  of  length 1,  but  these considerably increased as  larger  walks  (indirect  paths)  were
incorporated.  This points to communication between different  cortical  regions through indirect  paths of
lengths larger than one, which highlights the importance of polysynaptic mechanisms in the emergence of
the brain’s function and, at the same time, shows that only a small number of hops (path lengths ≤3) in the
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SC may be required to accurately predict FC, as shown by the results in Figure 1a. Furthermore, we also
found that functionally-defined cortical parcellations were more suitable than structurally-derived ones in
the prediction of FC from SC.

Figure 2. Functional connectivity prediction accuracy using random walks of different lengths in the structural
connectome.  a)  Boxplots of  Pearson’s  correlation  coefficient  between empirical  and estimated FC matrices  using
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random walks of maximum length ranging from 1 to 10. Results are reported in cross-validation (3-fold CV based on
50  subjects)  and  holdout  (250  subjects)  data  of  HCP  using  functionally-  (left)  and  structurally-derived  cortical
parcellations (right) with 100 and 200 regions. Boxes denote the interquartile range (IQR) between the first and third
quartiles, and the line inside denotes the median. Whiskers extend to points that lie within 1.5 IQRs of the lower and
upper quartiles, and the black diamonds denote outliers. b) Estimated functional connectivity matrices corresponding to
the subjects that achieved the median Pearson’s correlation coefficient based on functional (top) and structural (bottom)
parcellations with 100 parcels. From left to right: structural connectome and estimated FC matrices for random walks
of length 1, 3 and 10. Empirical and estimated functional connectivity matrices are shown in upper and lower triangular

parts, respectively.

Comparison of structural connectome characteristics
The  structural  connectivity  matrices  used  so  far  in  our  experiments  were  derived  from  fiber  density
estimates, such that each entry in the matrix denotes the number of streamlines connecting the specific pair
of brain regions. Here, we sought to investigate the contribution of different weighting schemes to define
SC. First, we used different versions of the structural connectivity matrices:  i) the original SC matrices,
where edges carried information about the streamline count,  ii) binary SC, where we preserved the same
edges but ignored edge information (with the weights of all edges set to 1), and iii) length-based SC, with
the same edges but the weights were based on the inverse of the average length of the streamlines. We
repeated the experiments to learn the set of rotations and kernel coefficients for each version of the structural
connectome.

As shown in  Figure 3a, based on results on the holdout data of HCP and 200-node parcellations, when
using SC based on streamline count we achieved the best accuracy in predicting FC, with a considerable
improvement over binary SC, which in turn outperformed length-based SC. More importantly, diffusion
time  did  not  seem to  have  the  same  contribution  when  using  binary  or  length-based  SC matrices  for
prediction.  With the functional  parcellation,  a  path length of  1  with the  binary SC provided better  FC
predictions  than  the  count-based  SC,  however,  as  the  lengths  of  the  paths  increased,  the  boost  in
performance  only  occurred  with  count-based  SC.  With  the  structural  parcellation,  this  was  even more
evident, with prediction accuracy remaining almost constant as diffusion time increased when using binary
and length-based SC. Following the diffusion maps framework, with increasing diffusion time, pairs of brain
regions will increase the strengths of their connections according to the strengths of their immediate direct
connections and those of their neighbors. For the purposes of brain function, this may suggest that the more
important the ‘structural’ connection between a pair of regions is, the more fibers the brain invests in its
construction. Examples of predicted FC matrices using binary and length-based SC are displayed in Figure
3b. These examples correspond to the subjects that achieved the mean Pearson’s correlation coefficient in
the holdout set of HCP for the 200-node functional and structural parcellations. As we can see, the proposed
approach produced the least accurate FC matrices when using length-based SC matrices. The fact that better
prediction accuracies were achieved by binary SC matrices, which may be an oversimplified representation
of the connectome, indicates that the length of a given connection (quantified as the mean length along all
interconnecting streamlines) may not be as informative as its density.  
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Figure 3.  Comparison of prediction performance and model parameters based on binary, length- and count-
based SC matrices. a) Mean Pearson correlation (and 95% confidence interval) between empirical and estimated FC
matrices based on SC matrices built using streamline length, streamline count, and the binarized connectome. Results
are reported for random walks of length 1 to 10 on the SC for both the 200-node functional (left) and structural (right)
parcellations.  b) Estimated FC matrices corresponding to the subjects that achieved the median Pearson’s correlation
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coefficient based on functional (top) and structural (bottom) parcellations with 200 parcels. From left to right: count-
based SC matrices, and empirical and estimated FC matrices based on streamline length, binary SC, and streamline
count. The displayed estimated connectivity matrices correspond to using random walks of length ≤10.  c) Optimal
kernel coefficients (normalized), α, and rotations matrices obtained when trained with binary, length- and count-based
SC matrices using random walks of length ≤10 and the 200-node functional  parcellation. Rotation scatterplots are
based on the two first dimensions of multidimensional scaling (using the geodesic distance between rotation matrices).
Results are reported in the holdout data of the HCP dataset.

Finally,  in  Figure 3c we  can  find the optimal  kernel  coefficients  and  rotations  matrices  learnt  by  our
proposed approach when trained with each of the three different versions of the SC matrices. When using
count-based SC, the kernels that most contributed to the final prediction corresponded to diffusion times 2-5,
followed by 6 and 1. Kernels with higher diffusion times (t>6) had the least contribution. On the other hand,
with both binary and length-based SC, kernel contributions decayed monotonically with increasing diffusion
time. The most relevant differences, however, were found when comparing the rotation matrices learnt from
the different SC versions. The rotation matrices, displayed using multidimensional scaling (based on the
geodesic distance between rotations, as defined in Eq. (9)), were clustered in two groups of very similar
rotations when using binary and length-based SC. On the other hand, with count-based SC matrices, we
found different rotations for each diffusion time until 5, while rotations were very similar for diffusion times
of 6 and greater. These results indicate that diffusion time (i.e., considering increasingly larger paths) is of
substantial  added value to  the  prediction of  FC when using count-based SC,  as opposed to binary and
length-based SC data.

Region- and network-wise analysis of predicted functional connectivity
In this section, we scrutinized our results to further investigate the role of diffusion time at the regional and
network-level. Figure 4a shows spatial maps of prediction error (measured as log(1-Pearson)) for different
diffusion times (i.e., 1, 2, 3 and 10). Here we display the average prediction error in the holdout data of HCP
for each cortical parcel (i.e., derived from row-wise correlations). There were clear improvements across the
whole cortex in the quality of the predictions as increasingly longer paths were considered, although they
became subtler with higher diffusion times. The cortical regions where our approach produced the largest
prediction errors (irrespective of diffusion time) were confined bilaterally to the lateral temporal lobe and
frontal cortices. At the network level, derived using a previous cortical decomposition into seven intrinsic
functional networks (Yeo et al., 2011), prediction error decreased substantially from walk lengths of 1 to 3
(see Figure 4b). With higher walk lengths, we can only observe minor changes in prediction error across all
networks. These findings were consistent across different parcellation granularities. Moreover, from these
results we could identify two different groups of networks according to their prediction errors. FC prediction
was  more  accurate  in  visual,  somatomotor  and  both  attention  networks  than  in  the  default  mode,
frontoparietal and limbic networks. The latter were the networks that most benefited from incorporating
indirect paths to the prediction, indicating that polysynaptic connections may have an important contribution
to functional connectivity patterns, especially in these transmodal i.e., heteromodal and paralimbic systems.
This was further confirmed when analyzing the relationships between the principal functional gradient (see
Figure 4c) and the spatial maps of prediction error. As shown in Figure 4d, these maps showed very high
correlations with the principal functional gradient when using short paths (Spearman’s r=0.843/0.835 in
100/200-node functional parcellation when diffusion time=1), but considerably decrease as diffusion time
increased (Spearman’s r=0.250/0.338 when diffusion time=4).
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Figure 4.  Prediction accuracy at  the network level. a) Lateral  and medial  views of  left  and right hemispheres
showing spatial cortical maps of average FC prediction error in terms of log Pearson distance (defined as 1-Pearson)
based on the 200-node functional parcellation and the 250 subjects in the holdout data from HCP. Prediction error
maps are shown for random walks of length 1, 2, 3 and 10. Each parcel depicts the mean prediction errors across all its
edges,  with darker  colors  denoting  higher  prediction  errors.  b)  Network-wise  average  prediction  errors  estimated
between empirical functional connectivity profiles and the predicted profiles for walks of lengths ranging from 1 to 10.
Results are shown for each of the 7 functional Yeo networks based on the 100- and 200-node functional parcellations.
c) Principal functional gradient derived from the empirical FC in the holdout set of HCP. d) Spearman’s correlation of
the prediction error maps produced from each walk length and the principal functional gradient. Results are shown for
both 100- and 200-node functional parcellations. Abbreviations: dorsal attention (DAN), frontoparietal (FPN), default
mode (DMN), visual (VN), limbic (LSN), somatomotor (SMN), and ventral attention (VAN) networks.

Comparison with state-of-the-art methods
We compared the prediction accuracy (average Pearson’s correlation coefficient) of our proposed approach
to  several  state-of-the-art  methods  and  to  other  2  “reduced”  versions  of  our  approach  (SingleLength,
SharedRot). Benchmarking results are reported in  Table 1 for the experiments in the HCP dataset,  and
Table S1 for MICs. These results correspond to using random walks of length 10. In both tables, we found a
clear dichotomy in performance between approaches based on the eigenvectors of the SC and the rest ( i.e.,
SDK and NLSA). The latter achieved the lowest prediction accuracies, with SDK slightly outperforming
NLSA in  most  experimental  settings.  It  is  worth  noting  that  the  SDK approach  only  uses  one  single
diffusion kernel.  Table 1 further reports the performances of the MKL and Spectral approaches, which
achieved higher performances than SDK and NLSA, with the Spectral approach producing better predictions
than MKL in most  scenarios (except  when using the 100-node structural  parcellation in MICS and the
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holdout dataset in HCP). Nonetheless, all these approaches were considerably outperformed by our proposed
approach in all experimental scenarios, and in both HCP and MICs datasets.

We further assessed the contribution of the different components of our proposed method. As shown in
Table 1 and  Table S1 for HCP and MICs, respectively, the reduced versions of our approach achieved
lower prediction accuracies than the original version. When only considering random walks with a single
length (SingleLength),  predictions  were more accurate  than when using  a  single  rotation  shared  by  all
random  walks  (SharedRot).  These  results  underscore  the  importance  of  considering  random  walks  of
multiple lengths and emphasizes the role of using a different rotation for each length.

Regarding the experimental settings, the functionally-derived parcellation showed to be more beneficial for
the prediction of FC than the structural parcellation used in our work. Although the structural parcellation
consistently outperformed the functional one with SDK and NLSA, there was a substantial improvement
with the functional parcellation over the structural one when considering the best performing approaches
(Spectral, SingleLength, SharedRot, Proposed). Finally, we found a clear drop in prediction accuracy across
all the methods we evaluated as the number of parcels increased from 100 to 200, regardless of parcellation
type (functional or structural) and dataset. 

Functional Structural

CV Holdout CV Holdout

100

SDK 0.238±0.029 0.234±0.027 0.343±0.057 0.347±0.069

NLSA 0.210±0.037 0.216±0.036 0.351±0.050 0.348±0.061

MKL 0.713±0.101 0.726±0.106 0.664±0.110 0.705±0.121

Spectral 0.779±0.059 0.761±0.082 0.703±0.090 0.669±0.105

SingleLength 0.757±0.050 0.767±0.051 0.731±0.052 0.748±0.050

SharedRot 0.733±0.050 0.751±0.048 0.701±0.068 0.728±0.056

Proposed 0.802±0.054 0.804±0.060 0.751±0.065 0.764±0.054

200

SDK 0.241±0.027 0.237±0.025 0.245±0.043 0.243±0.035

NLSA 0.211±0.039 0.213±0.030 0.241±0.039 0.240±0.043

MKL 0.702±0.105 0.701±0.099 0.612±0.124 0.627±0.132

Spectral 0.741±0.073 0.725±0.081 0.681±0.083 0.650±0.145

SingleLength 0.727±0.048 0.738±0.044 0.692±0.063 0.700±0.054

SharedRot 0.701±0.056 0.720±0.047 0.539±0.112 0.571±0.102

Proposed 0.775±0.049 0.776±0.052 0.715±0.071 0.726±0.055

Table 1.  Comparison of functional connectivity prediction accuracy with state-of-the-art methods. Performance
is reported using the average Pearson’s correlation coefficient (and standard deviation) between the upper triangular

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.465906doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.465906
http://creativecommons.org/licenses/by-nc-nd/4.0/


Benkarim et al. | Predicting brain function from the structural connectome

parts of empirical and predicted FC matrices (excluding the main diagonal) using SDK, NLSA, MKL, Spectral and the
3 versions of our proposed approach:  i) consider random walks of a specific length (SingleLength),  ii) one single
rotation shared by all random walks (SharedRot), and iii) one rotation for each length of the random walks (Proposed).
Comparisons of prediction accuracy were carried out for 100- and 200-node functional and structural parcellations.
Results are reported for a 3-fold cross validation (CV) and in the holdout data in HCP. For NLSA, Spectral and all the
versions of our proposed approach, reported performances correspond to using random walks of length 10, and 16 for
MKL. For SDK, the diffusion time was chosen to be the one that achieved the best performance in the training set. For
findings in the MICs dataset, see Table S1.
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DISCUSSION

This work presented a Riemannian approach to predict functional connectivity (FC) from the underlying
structural  connectome (SC) at  the  individual  participant  level.  The proposed approach leveraged the
diffusion maps framework to model the exchange of information through the fibers between different
brain regions and learn intermediate kernels capturing this information flow. By capitalizing on manifold
optimization, we did not only consider the relationships between structural and functional spectra, but
also incorporated a mapping (rotation matrices)  between the eigenvectors of both domains.  With the
proposed  approach,  we  were  able  to  find  a  robust  mapping  between  the  structural  and  functional
embeddings,  as  shown  by  our  results  across  different  datasets,  cortical  parcellation  atlases  and
parcellation granularities. Furthermore, our approach allowed us to investigate and understand how brain
function gradually emanates from structure as information is propagated through increasingly longer ( i.e.,
multiple hops) paths across the structural backbone.  

FC does  not  simply  reflect  the  static  and  direct  wiring  of  the  SC,  but  it  also  captures  higher-order
interactions between potentially only indirectly connected areas (Honey et al., 2009). We hypothesized
that by accounting for polysynaptic communication mechanisms, we could explain, to a large extent, the
FC  observed  between  pairs  of  brain  regions  that  lack  a  direct  structural  connection.  Polysynaptic
signaling was modelled by controlling the diffusion time parameter of the diffusion maps framework
(Coifman et al., 2005; Coifman & Lafon, 2006). By increasing the diffusion time for a given structural
embedding, we were able to generate diffusion coordinates that increasingly captured the interactions
between brain regions that were only indirectly connected by structural links. In other words, we were
gradually incorporating indirect paths of longer and longer lengths (paths of length 2, 3, 4, and so forth),
hence allowing information to flow through increasingly higher-order connections. These interactions
were then represented using a radial basis function kernel for each diffusion time. Furthermore, these
kernels can be interpreted as  intermediate  states of  the brain while  neural  information is  propagated
through the structural fibers. Finally, the different kernels were then fused to provide the predicted FC.
Our results showed that, although prediction accuracy increased almost monotonically with increasing
diffusion time,  there  was a  clear  leveling off  around random walks of lengths  3-4,  after  which only
negligible improvements were found. Prior work in the prediction of FC from SC also highlighted shorter
structural walks as the strongest contributors to the resulting FC (Becker et al., 2018). This is in line with
the  economically-optimized  configuration  of  the  brain  (Bullmore  &  Sporns,  2012).  In  addition  to
minimizing the axonal wiring costs to build the connectome, the expensive metabolic costs spent on
information  processing  also  encourage  the  transfer  of  information  through more  economic  pathways
(Achard & Bullmore, 2007; Avena-Koenigsberger et al., 2014; Bullmore & Sporns, 2012; Laughlin et al.,
1998), and hence might be favouring shorter polysynaptic paths.

With diffusion maps, information flow is driven by the transition probabilities of the diffusion operator,
which are in turn derived from the edge weights of the original SC matrices. In the current work, we
sought to explore the role of different weighting schemes in explaining ongoing brain function: i) binary
weights only indicating presence or absence of connections, ii) weights based on mean streamline length,
and  iii) weights  denoting  fiber  density  (conventional  scheme).  Note  that  we  did  not  change  the
connections of the structural graph (i.e., add and/or remove edges), only their weights. These weights play
a crucial role in guiding the random walker-based information propagation process through the SC. In the
binary weighting scheme, the probability of transitioning from one brain region to another is  evenly
distributed among all its adjacent regions (i.e., those with a direct structural connection), whereas in the
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other weighting schemes, the likelihood of following a particular (direct) connection depends on its length
or fiber density. With inadequate weight assignments, we might be misleading the diffusion process and
deviating from the true putative flow of information, which can be especially harmful for neural function
synchronization of brain regions relying on polysynaptic  communication mechanisms.  Indeed,  this  is
what  we  observed  with  the  binary  and  length-based  weighting  schemes,  which  were  substantially
outperformed when using weights based on fiber density. More importantly, increasing diffusion time
showed no consistent contribution to prediction accuracy, and only minor changes were found from one
diffusion time to another. Moreover, the length-based weighting scheme attained the lowest prediction
accuracy, suggesting that the length of the streamlines might not be the most important indicator of their
degree of participation in polysynaptic communication. According to our results, this role appears to be
better explained by the density of the streamlines. Regardless of the weighting scheme, our approach
relies  on  diffusion-based  communication  processes  (Coifman  et  al.,  2005;  Coifman  & Lafon,  2006;
Masuda  et  al.,  2017),  in  which  the  random  walker  is  only  driven  by  local  information.  This
communication strategy lies  on a  continuous spectrum of communication processes that  ranges from
unbiased random walks (such as our proposed approach) at one extreme, through biased random walks
that incorporate both local properties and information about the global topology of the structural network,
to  shortest  paths  walkers  that  only  consider  global  information  at  the  other  extreme  (Avena-
Koenigsberger et al., 2014, 2019). Network communication models incorporating both local and global
network properties may therefore provide additional information for understanding the correspondence of
brain structure and function and hence enhance the predictive power of the proposed approach. Given that
signal propagation is strongly influenced by the number of streamlines and also (to a lesser extent) by
their  lengths  (Hermundstad et  al.,  2013),  future  work may consider  incorporating global  information
about these properties into the diffusion process to favor transmission of neural signals through shorter
and more reliable pathways (Fornito et al., 2016; Goñi et al., 2014). 

With  the  purpose  of  supporting  the  dynamic  emergence  of  coherent  neural  activity  patterns,  the
anatomical  substrate  of  the  brain  establishes  the  routing  network  architecture  that  facilitates
communication between disparate cerebral regions. These structural communication channels have an
important say in how brain function is shaped. It is well known that the structure-function relationship is
spatially-varying across the cortex, with strong coupling in primary sensory areas that gradually weakens
as we move in the sensory-fugal direction (Baum et al., 2020; Suárez et al., 2020; Sydnor et al., 2021;
Vázquez-Rodríguez et al., 2019), following a cortical hierarchy of functional and structural organization
(Margulies  et  al.,  2016;  Paquola  et  al.,  2019;  Park  et  al.,  2020).  In  addition  to  corroborating  these
observations, our results showed a tightening of the structure-function coupling in transmodal cortices as
diffusion  time increased,  which,  in  turn,  also translated  into  a  divergence of  this  coupling from the
principal functional gradient. As mentioned above, most of these changes occurred during the first 3 or 4
diffusion  timesteps.  Although  we  found  some  improvements  in  prediction  accuracy  with  increasing
diffusion time in unimodal areas, diffusion time had disproportionately more impact in explaining brain
function in transmodal regions. These findings suggest that brain function emerges through polysynaptic
communication  mechanisms  in  transmodal  cortices,  while  shorter  communication  pathways  (e.g.,
monosynaptic)  are  needed in unimodal  regions.  In  a  recent  study characterizing the directionality  of
neural  information  propagation  from  undirected  structural  connectome  data  (Seguin  et  al.,  2019),
unimodal and transmodal cortices were found to be at extremes of the send-receive asymmetry spectrum,
with  unimodal  cortices  being  more  likely  to  be  senders  and  transmodal  cortices  more  likely  to  be
receivers. This communication asymmetry may therefore account for the larger diffusion times required
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by transmodal cortices, which are thought to integrate multiple streams of information originating from
the unimodal sensory areas that require fewer diffusion timesteps.

Most work studying structure-function coupling in the brain investigated this relationship based on group-
level SC and FC matrices (Goñi et al., 2014; Seguin et al., 2020; Suárez et al., 2020). Predictions at the
group level,  however,  do  not  take  into  account  inter-subject  variability,  e.g., using  group consensus
structural matrices that only consider connections when they are present in at least one-fourth of the
participants (Avena-Koenigsberger et al., 2014; Rosenthal et al., 2018). At the individual level, this may
translate into less accurate predictions. For example, (Sarwar et al., 2021) using deep learning achieved
very high prediction accuracies at the group level (r=0.900) that substantially dropped when considering
individual predictions (r=0.550). In this work, our proposed approach was able to accurately predict brain
function at the individual level in both HCP and MICs datasets. Across the different parcellation schemes
considered, we observed a consistent increase in prediction accuracy when reducing the spatial scale of
the parcellations. The type of information used to create the parcellations also had an important impact on
out-of-sample  performance,  with  the  functionally-derived  parcellations  typically  producing  better
predictions than the structurally-defined parcellations. In cross-validation, the highest prediction accuracy
(r=0.802)  was  achieved when  using  the  coarsest  functional  parcellation  scheme,  whereas  the  lowest
performance (r=0.715) was obtained with the most granular (i.e., 200 regions) structural parcellation, both
in HCP and MICs. In comparison with the state of the art,  our approach attained the best prediction
accuracies,  regardless  of  the  type  of  parcellation  and  dataset.  The  proposed  approach  showed  solid
improvements  over  the  currently  best  performing  method  (i.e.,  Spectral),  with  percentage  increases
ranging from 2.95% to 14.20% in HCP (across both cross-validation and holdout datasets), and from
11.77% to 18.15% in the MICs dataset. In addition, the ablation analysis of our method highlighted the
importance  of  including  different  walk  lengths  and  considering  multiple  rotations  (one  rotation  per
length) for providing accurate prediction. In the MICs dataset, for the 200-node structural parcellation, for
example, the mean Pearson’s correlation coefficient dropped by 4.63% when only considering a single
diffusion time (and hence a single kernel), with an even more substantial drop of 7.30% when using one
single rotation shared by all diffusion times. In HCP, prediction accuracy decreased even further with
these two reduced versions of our proposed approach. On the other hand, according to our results, the
Riemannian regularization (encouraging consecutive diffusion times to use similar rotation matrices) that
we initially included in our approach did not show an important contribution to the prediction of FC. This
regularization  was  used  to  encourage  consecutive  diffusion  times  to  use  similar  rotation  matrices,
however, our results showed that the kernels that contributed the most to the prediction of brain function
had very dissimilar rotation matrices, whereas the remaining kernels that barely improved the quality of
our  predictions  had  similar  rotations.  This  dichotomy  may  explain  the  little  contribution  of  the
Riemannian regularization term to the final predictions.

In conclusion, our results show that only a few kernels are necessary to reliably reconstruct functional
connectivity from a model of the structural connectome. Moreover, our results underscored that visual,
somatomotor  and  attention  networks  require  generally  shorter  communication  paths  than  transmodal
systems such as the default mode, frontoparietal and limbic networks. The requirement of larger diffusion
times in these networks highlights the reliance on more polysynaptic communication mechanisms as we
go  up  the  putative  cortical  hierarchy.  Finally,  the  proposed  approach  produced  highly  competitive
predictions vis-a-vis current state-of-the-art methods, and this performance improvement was observed
across  different  experimental  settings  (i.e., across  different  datasets,  parcellation  schemes,  and
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parcellation granularities). Overall, our findings support a likely contribution of polysynaptic signaling in
macroscale  brain  function,  especially  in  transmodal  cortices  and  thus  outline  potential  mechanisms
underlying gradients of structure-function coupling in human cortical networks.
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Figure S1.  MICs dataset.  Boxplots  of  correlation between empirical  and estimated FC matrices  using 1 to  10
random walks.  Results are reported in cross-validation (top) and holdout (bottom) using functionally- (left) and
structurally-derived cortical parcellation (right) with 100 and 200 parcels.
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Figure S2. Functional connectivity prediction using random walks of different lengths in the structural connectome
in  the  HCP dataset.  Estimated  functional  connectivity  matrices  corresponding  to  the  subject  that  achieved  the
median Pearson’s correlation coefficient based on functional (top) and structural (bottom) parcellations with 200
parcels. From left to right: structural connectome and estimated FC matrices for random walks of length 1, 3 and 10.
Empirical  and  estimated  functional  connectivity  matrices  are  shown  in  upper  and  lower  triangular  parts,
respectively.
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Functional Structural

100

SDK 0.320±0.045 0.427±0.067

NLSA 0.299±0.043 0.416±0.065

MKL 0.632±0.088 0.678±0.090

Spectral 0.671±0.085 0.650±0.081

SingleLength 0.723±0.073 0.741±0.075

SharedRot 0.711±0.070 0.734±0.070

Proposed 0.750±0.075 0.768±0.072

200

SDK 0.317±0.042 0.338±0.048

NLSA 0.303±0.042 0.326±0.059

MKL 0.601±0.081 0.614±0.090

Spectral 0.655±0.076 0.624±0.079

SingleLength 0.727±0.067 0.706±0.065

SharedRot 0.693±0.069 0.685±0.075

Proposed 0.742±0.069 0.735±0.067

Table S1. Mean correlation and standard deviation using SDK, NLSA, MKL, Spectral and the 3 versions of our
proposed approach. Performance is reported for 100 and 200 parcels using 3-fold cross validation (CV) in HCP and
MICS datasets, and holdout in HCP. For Spectral and our approach, the performance reported corresponds to using
10 random walks, and 16 for MKL.
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