1 A spatial fingerprint of land-water linkage of biodiversity uncovered by

2 remote sensing and environmental DNA

- 3
- 4 Heng Zhang^{1,2,*}, Elvira Mächler^{1,2}, Felix Morsdorf³, Pascal A. Niklaus¹, Michael E.
- 5 Schaepman³, Florian Altermatt^{1,2,*}
- 6

7 Author affiliation:

- ¹ Department of Evolutionary Biology and Environmental Studies, University of Zurich,
- 9 Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
- ² Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of
- 11 Aquatic Ecology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland.
- ³ Remote Sensing Laboratories, Department of Geography, University of Zurich,
- 13 Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.

14

15 * **Corresponding authors:**

16 Florian.Altermatt@ieu.uzh.ch and Heng.Zhang@eawag.ch

Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity
	A spatial ingerprint of land water initiage of biodiversity

17 Abstract

18	Aquatic and terrestrial ecosystems are tightly connected via spatial flows of
19	organisms and resources. Such land-water linkages integrate biodiversity across
20	ecosystems and suggest a spatial association of aquatic and terrestrial biodiversity.
21	However, knowledge about this spatial extent is limited. By combining satellite remote
22	sensing (RS) and environmental DNA (eDNA) extraction from river water across a 740-
23	km ² mountainous catchment, we identify a characteristic spatial land-water fingerprint.
24	Specifically, we find a spatial association of riverine eDNA diversity with RS spectral
25	diversity of terrestrial ecosystems upstream, peaking at a 400 m distance yet still
26	detectable up to a 3.3 km radius. Our findings testify that biodiversity patterns in rivers
27	can be linked to the functional diversity of surrounding terrestrial ecosystems and
28	provide a dominant scale at which these linkages are strongest. Such spatially explicit
29	information is necessary for a functional understanding of land-water linkages and
30	provides a reference scale for adequate conservation and landscape management
31	decisions.

32

33 **1. Introduction**

47

48

49

50

51

34	Understanding the spatial distribution of biodiversity and its linkage across
35	ecosystem types is essential, especially in an era of increasing human modifications of
36	natural landscapes ^{1,2} . It is well-established that species and ecosystem functional
37	diversity are unevenly distributed across landscapes, with pronounced diversity hot and
38	cold spots ^{3,4} . Extensive work has also demonstrated how ecosystems more diverse in
39	species are more productive and stable ⁵⁻⁷ . Intriguingly, however, most past work has
40	focused on individual ecosystem types, such as forests, grasslands, or aquatic
41	ecosystems, thereby neglecting a possible co-variation of biodiversity across different
42	ecosystems ⁸ . Indeed, only very recently the relevance of spatial scaling of biodiversity
43	and ecosystem functioning research and the dependence on the spatial extent has been
44	postulated ^{9,10}
45	Natural ecosystems, and the biodiversity therein, are often linked to each other
46	through flows of organisms and resources ^{11,12} . One of the most prominent examples is

the coupling of aquatic to terrestrial ecosystems ^{13,14}. Aquatic ecosystems are not only

highly biodiverse yet threatened by anthropogenic activities ^{15,16}, but also strongly

interlinked with surrounding terrestrial ecosystems through the characteristic fractal

structure of riverine networks across most landscapes worldwide ^{17,18}. Consequently, in

these systems, the interaction of one ecosystem resulting in an imprint on the diversity

52 of the other ecosystem is expected, with implications for land management and

53 conservation. Nevertheless, little is known about the occurrence and extent of such

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.27.466050; this version posted October 28, 2021. The copyright holder for this preprint

	Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity
54	imprints, particularly regarding th	ne spatial range at which such an interaction modulates
55	local biodiversity.	
56	To assess possible spatial	linkages of diversity across ecosystem types,
57	biodiversity must be quantified in	scalable manners. Classically, biodiversity is directly
58	quantified by counting individual	species, for example, through inventories conducted
59	along transects or in plots of define	ned size. This approach, however, is inherently limited
50	for spatial upscaling and cross-eco	osystem comparisons ⁹ . Currently, two recent
51	technological advances are revolu	utionizing biodiversity sciences, overcoming limitations
52	with taxonomic and functional co	verage, and the possibility to be spatially scaled. The
53	first advancement is through rem	ote sensing (RS) methods, which use portable,
54	airborne, or satellite devices to ch	naracterize the ecosystem structurally, taxonomically,
55	or physiologically by measuring re	eflected or emitted radiation at a distance ¹⁹⁻²¹ . RS is
56	particularly capable of characteriz	zing terrestrial plant communities and a prime method
67	for measuring essential biodivers	ity variables (EBVs) ¹⁹⁻²¹ . Particularly, RS can map
58	terrestrial ecosystem functional t	raits and diversity at regional to global scales with
59	resolutions down to a meter, ena	bling the upscaling of biodiversity from local
0	composition to ecosystem levels	²²⁻²⁵ . The second advancement is through
1	environmental DNA (eDNA) meta	barcoding, which uses DNA extracted from
2	environmental samples to quanti	fy biodiversity across the tree of life ²⁶⁻³⁰ . eDNA
73	metabarcoding is widely used in a	aquatic ecosystem studies, where it is becoming a
'4	standard for biodiversity assessm	ents ³¹⁻³⁶ . The passive transport of DNA in water makes
5	it a particularly efficient method i	n riverine systems, as the flow along the riverine

Zhang et al. A spatial fingerprint of land-water linkage of biodiv	ersity
network carries and integrates biodiversity information over the catchment ³⁷⁻⁴⁰ , and	ł
can be used for estimating spatial patterns of biodiversity at the landscape level 41,42	
Essentially, RS and eDNA metabarcoding complement each other in biodivers	ity
detection. eDNA can detect bacteria, invertebrates, and vertebrates that are largely	
inaccessible for RS, while RS can monitor ecosystem physiological and structural	
diversity impossible to draw from eDNA data. Therefore, a combination of RS and eI	NA
can provide a holistic view of biodiversity for isolated and mosaicked ecosystems ^{43,4}	4
and allows to uncover land-water linkages of biodiversity at the landscape level ^{45,46} .	
Here, we quantified the spatial extent of a linkage of biodiversity between	
aquatic and terrestrial ecosystems by combining eDNA sampling and RS in a 740-km	2
river drainage basin. We assessed aquatic biodiversity along the river network using	
eDNA and matched it to terrestrial ecosystem functional diversity in the catchment	
based on Sentinel-2 Multi-Spectral Instrument (MSI) satellite data. Specifically, we	
identified the spatial range within which the functional diversity of the terrestrial	
vegetation was associated with the taxonomic diversity in the riverine ecosystems a	۱d
determined at what spatial scale this linkage was the highest. Thereby, combining el	ONA
and RS, we provide a first spatially explicit integration of land-water linkage of	
biodiversity, and identify a characteristic spatial fingerprint across aquatic-terrestria	
ecosystem boundaries at the landscape level.	
	Zhang et al. A spatial fingerprint of land-water linkage of biodive network carries and integrates biodiversity information over the catchment ³⁷⁻⁴⁰ , and can be used for estimating spatial patterns of biodiversity at the landscape level ^{41,42} . Essentially, RS and eDNA metabarcoding complement each other in biodiversi detection. eDNA can detect bacteria, invertebrates, and vertebrates that are largely inaccessible for RS, while RS can monitor ecosystem physiological and structural diversity impossible to draw from eDNA data. Therefore, a combination of RS and eD can provide a holistic view of biodiversity for isolated and mosaicked ecosystems ^{43,4} and allows to uncover land-water linkages of biodiversity at the landscape level ^{45,46} . Here, we quantified the spatial extent of a linkage of biodiversity between aquatic and terrestrial ecosystems by combining eDNA sampling and RS in a 740-km ³ river drainage basin. We assessed aquatic biodiversity along the river network using eDNA and matched it to terrestrial ecosystem functional diversity in the catchment based on Sentinel-2 Multi-Spectral Instrument (MSI) satellite data. Specifically, we idetermined at what spatial scale this linkage was the highest. Thereby, combining eD and RS, we provide a first spatially explicit integration of land-water linkage of biodiversity, and identify a characteristic spatial fingerprint across aquatic-terrestrial <t< td=""></t<>

97

Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity
	A spatial ingerprint of land watch inkage of bloatersity

98 2. Results

- We combined assessments of aquatic biodiversity using eDNA and terrestrial diversity
 based on Sentinel-2 Multi-Spectral Instrument (MSI) satellite data in the 740 km² river
 Thur catchment (Fig. 1). The river Thur catchment is located in the northeastern part of
 Switzerland. It covers a mountainous landscape with an elevation gradient ranging from
 460 m to 2423 m a.s.l. and contains a mosaicked landscape of urban, agricultural and
 forested terrestrial ecosystem types.
- 105

106

107 Fig. 1 Location of the Thur river catchment in Switzerland and eDNA sampling sites.

- 108 Pink dots are 61 eDNA sampling sites. The blue lines represent river channels draining in
- a Northward direction. White lines indicate the boundaries of the main catchment and
- 110 its three subcatchments (Thur, Glatt, and Necker).

Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity

1	1	1
-		. 1

112	eDNA-derived biodiversity in aquatic ecosystem. We conducted eDNA water sampling
113	at 61 sites along the river network, representatively covering the whole 740 km ²
114	catchment (Fig. 1). All water samples were filtered, the DNA extracted, and sequenced
115	using generic COI-specific primers targeting a broad range of pro- and eukaryotic
116	organisms. Detailed procedures are described in the Methods section and in Mächler et
117	al., 2019 and 2021 ^{47,48} . We received a total of 26,519,031 reads that were clustered into
118	10,962 zero-radius operational taxonomic units (ZOTUs) with 2404 \pm 216 (mean \pm
119	standard error) number of reads per ZOTU as a proxy of taxonomic diversity.
120	To describe different aspects of biodiversity across all eDNA samples, we used
121	Hill numbers, which are a compatible statistical framework considering both occurrence
122	and abundance information ⁴⁸⁻⁵¹ . In this framework, the evenness of biodiversity
123	patterns gets more weight with increasing Hill number q orders. Here, we calculated Hill
124	numbers with order q = 0, 1, and 2, which correspond to species richness, the
125	exponential of Shannon diversity, and the inverse of the Simpson index, respectively
126	(see Methods, Fig. 2), after removing very rare ZOTUs (occurrence < 0.005% in total, see
127	details in Methods section). We observed strong and highly uneven biodiversity patterns
128	across the catchment, with a strong and significant positive correlation between
129	biodiversity and Strahler order (Fig. S1 a-c; p-value < 0.05), and a decreasing trend of
130	biodiversity at increasing elevation (Fig. S1 d-f).

Fig. 2 Distribution of biodiversity in Thur river catchment. Hill numbers were used to
describe biodiversity of eDNA samples in the river network. Spatial patterns and
histograms on distribution of diversity using Hill numbers with order a q = 0, b q = 1, and
c q = 2 are given. They correspond to species richness (order q = 0), the exponential of
Shannon diversity (order q = 1), and the Simpson index (order q = 2), respectively.

Zhang et al. A spatial fingerprint of land-water linkage of	biodiversity
---	--------------

- 145 different components of terrestrial ecosystem functions, and thus functional diversity,
- related to the presence and conditions of vegetation ^{52,54}.

147

Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity

- value of FDiv (± standard deviation (SD)) across distance is 0.665 (± 0.025). As the
- distance increased, the range of FDiv dropped from 0.216 (distance = 50 m) to 0.049
- 163 (distance = 20 km).

164

165

Fig. 4 Spatial distribution of terrestrial ecosystem functional diversity based on 166 catchment and distance buffers of the eDNA sampling site. a Catchment map with 167 distance buffers of site No. 28 as an example. The spatial interval is 0.05 km for 0–10 km 168 169 and 0.1 km for 10–20 km. **b** Functional divergence (FDiv) with upstream distance given for 61 eDNA sampling sites (grey lines; the example site No. 28 is highlighted as red 170 171 line). We calculated FDiv by collecting four-dimensional trait value vectors from pixels 172 covered by the distance buffer (for details and equations, see Methods section). Nonvegetated pixels were masked out before computation. 173

174

	Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity
175	The land-water linkage	of biodiversity. We employed a model II simple linear
176	regression to assess the	association between eDNA-derived biodiversity (Hill numbers)
177	and the RS-derived terre	estrial ecosystem functional diversity (FDiv) across distance,
178	using R ² as the goodness	s of fit. Uncertainties were estimated by a bootstrap framework
179	(see Methods for details).
180	The linear regress	sion analysis reveals a unimodal association between the eDNA-
181	based (aquatic) Hill num	bers and the RS-based (terrestrial) FDiv as the upstream
182	distance to sampling site	es increases, with a linkage signal of up to 3.3 km radius
183	upstream (Fig. 5). The di	stances with the highest R ² (distance with maximal land-water
184	imprint) vary across orde	ers of q. For q = 0, this distance with the strongest imprint is 400
185	m; for q = 1, it is 350 and	800 m, respectively; for $q = 2$, it is 350 and 850 m, respectively.
186	The strong effect of ZOT	U-level richness decreases with increasing Hill number (Fig. 5),
187	suggesting that the rare	taxa contribute most to the observed land-water linkage.
188	Possibly, this could be as	scribed to the decreasing contributions from the less abundant
189	taxonomic groups after i	ncreasing the weight of abundance (increasing Hill number
190	order q), as an abundant	t taxonomic group may swamp the effect of the less abundant
191	ones. In addition, it high	lights the importance of rare taxa contributing to overall beta-
192	diversity ⁵⁵ and the nega	tive effect of large-scale homogenization of biodiversity ⁵⁶ ,
193	which results not only in	an erosion of beta-diversity within one ecosystem but has also
194	a cascading negative effe	ect on other ecosystems.

195

Fig. 5 Association between eDNA-derived biodiversity assessed in the river water and
RS-derived terrestrial ecosystem functional diversity across increasing upstream
distance in the Thur river catchment. The R² of the linear regression (± standard
deviation, blue lines) between eDNA-based Hill numbers with order a q = 0, b q = 1, and
c q = 2, and RS-based functional divergence (FDiv) across distance are given. The R² of
the null models is shown in grey lines.

202

203 We developed null models to corroborate the robustness of the observed spatial 204 extent of the land-water linkage, by randomly shuffling the locations of all pixels within the river catchment. Then, we assessed whether and at what spatial extent such a land-205 206 water linkage of biodiversity exists in a null-model scenario (see Methods). We found 207 that the R^2 of our sampling was always greater than the null model for distances < 3.3 km for q = 0, < 1.5 km for both q = 1 and 2, respectively (Fig. 5). These results testify that 208 209 biodiversity in riverine ecosystems can be linked to the functional diversity of surrounding terrestrial ecosystems, with the strongest association occurring at a spatial 210 211 extent of several hundred meters.

	Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity
212	To disentangle	the observed land-water linkage of biodiversity, we mapped the
213	ZOTUs against a custo	mized MIDORI Reference 2 database for taxonomic information,
214	which allowed us to id	entify the taxonomic affiliation of the most prominent ZOTUs and
215	read numbers at phylu	um and class level, respectively (Fig. 6). Abundant affiliations both
216	with respect to ZOTU	richness and read numbers were found for Arthropods (especially
217	Insecta), Ascomycota	(a fungi phylum), and Bacillariophyta (i.e., diatoms), and ZOTUs
218	across all groups origin	nated from organisms inhabiting both aquatic and terrestrial
219	environments (Fig. 6).	We subsampled the eDNA data based on the taxonomic
220	information to evaluat	te individual contributions across major taxonomic groups.
221	Specifically, we calcula	ated the relative abundances at the phylum level and assessed
222	their associations with	FDiv across distance. Among all the major taxonomic groups, we
223	detected strong assoc	iations in Bacillariophyta, Chordata, Ascomycota, Cnidaria,
224	Rotifera, Amoebozoa,	Chlorophyta, Cryptophyta, and Porifera, although the spatial
225	extents were varying (Fig. S2). Importantly, these results show that the land-water
226	linkage of biodiversity	included contributions of aquatic and terrestrial origins, thus
227	reflecting both an inte	grated signal of biodiversity across ecosystems and a signal of
228	local ecosystem biodiv	versity.
229		

230

231 Fig. 6 Number of ZOTUs and reads in the eDNA data. a Number of ZOTUs at the phylum

232 level. **b** Number of ZOTUs at the class level. **c** Number of reads at the phylum level. **d**

- 233 Number of reads at the class level. ZOTUs with occurrences less than three at the
- 234 phylum level were removed to avoid spurious effects. All numbers were log₁₀-
- 235 transformed before plotting. The taxonomic information of eDNA data indicates a
- 236 combination of aquatic and terrestrial origins.

237

- 238
- 239
- 240

Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity

241 3. Discussion

242	Combining eDNA sampling and multispectral remote sensing imagery (Fig. 1), we
243	demonstrated a spatial association of biodiversity between aquatic and terrestrial
244	ecosystems and gave a spatially explicit quantification of its peak strength, peaking
245	across a catchment section at a 400 m radius upstream around the aquatic sampling site
246	(Fig. 5). Overall, the unimodal signal of the land-water linkage of biodiversity covers a
247	range of up to 3.3 km upstream, indicating that a place in a river and surrounding
248	terrestrial ecosystems are closely interlinked, with a tight connection in terms of
249	biodiversity. Furthermore, for the first time, we provide a specific and scalable approach
250	to quantify the spatial extent of such linkages across ecosystems types and identify a
251	characteristic spatial land-water fingerprint.
252	The characterization of the terrestrial ecosystems from a biodiversity perspective
253	was based on multiple physiological trait dimensions (Fig. 3), capturing major
254	components of the dominant vegetation cover. Contrary to traditional biodiversity
255	surveys and estimates, which are often limited to small scales and numbers of sites and
256	depend on specific taxonomic knowledge, our approach using high-resolution satellite
257	RS data is not only capable of depicting regional and spatially continuous characteristics
258	of biodiversity, but can be directly applied and scaled to map terrestrial biodiversity
259	across all river catchments worldwide. Additionally, the characterization of aquatic
260	biodiversity using eDNA allows a scaling across space and time, and most importantly,
261	does not depend on prior knowledge on the occurrence of specific taxa. Thereby, this
262	eDNA and RS combination approach could contribute to a global understanding of

	Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity
263	biodiversity patterns. Our	method can, in principle, be applied and transferred to all
264	land-water ecosystems w	orldwide, and may be especially useful to uncover biodiversity
265	patterns in understudied	regions, such as regions beyond Europe and North America.
266	In this study, we in	dentified a strong fingerprint of land-water linkage of
267	biodiversity, with a metri	c of terrestrial ecosystem functional diversity developed on a
268	combination of four phys	iological trait components of vegetation. These four
269	physiological traits are pr	oved to be able to capture major ecosystem functions of
270	vegetation ⁵² . To evaluate	the relative individual importance of these components,
271	namely CHL, CAR, ANT, a	nd WAT, we removed one dimension at each time and
272	repeated the calculation	process. We found that the maximum values of R ² dropped
273	remarkably when CHL or	WAT was removed (Fig. S3 & Tab. S1). Moreover, the unimodal
274	shape was flatter after bo	oth CHL and WAT were removed (Fig. S4 & Tab. S1). These
275	indicate that CHL and WA	T, inherently representing the photosynthesis activity of
276	vegetation and thus a pro	exy of productivity, mainly characterize the spatial fingerprint
277	of land-water linkage of b	viodiversity.
278	For the characteri	zation of the aquatic biodiversity (Fig. 2), we used a generic COI
279	marker amplifying eDNA	signals across a wide range of taxa, yet predominantly used to
280	target invertebrates. Alth	ough a large proportion of retrieved sequences aligned with
281	macro-and micro-inverte	brates, we covered a wider breadth of taxa regarding ZOTUs,
282	including microbes and ve	ertebrates. Because the coverage of these organisms is highly
283	variable in the respective	reference databases ⁵⁷ , we applied a taxonomy-free approach
284	using ZOTUs only to not a	lepend on such databases. This approach covers a broader

	Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity
285	taxonomic breadth yet does not	address the contribution of individual taxonomic
286	groups. Still, according to the tax	conomic information of our eDNA data (Fig. 6), we
287	observed that ZOTUs originated	from aquatic and terrestrial environments both
288	contributed to the land-water lin	nkage of biodiversity. Then, we also evaluated the
289	relative contribution of each of t	he major taxonomic groups at the phylum level to the
290	spatial land-water fingerprint by	omitting one of these major taxonomic groups at a
291	time and repeating the calculation	ons. Intriguingly, the association pattern was almost the
292	same regardless of which taxon	omic group was omitted (Fig. S5), suggesting that the
293	land-water fingerprint of biodive	ersity is highly robust and thus does not depend on a
294	single major organismal group.	
295	Importantly, the unimod	al shape of the linkage of biodiversity was not caused by
296	variations of vegetation product	ivity, suggesting that the heterogeneity and not the
297	productivity of terrestrial ecosys	tems contributes to local aquatic biodiversity. We
298	tested this by firstly calculating t	he enhanced vegetation index (EVI) to represent
299	vegetation productivity ⁵⁸ . Then,	we adopted type I ANOVA tests to evaluate the relative
300	contributions of EVI and FDiv to	the Hill numbers across distance (see Methods; Fig. S6).
301	In addition, we also found that E	VI and FDiv were not correlated at distances < 8.0 km
302	(Fig. S7). Together, this evidence	es that the unimodal signal of land-water linkage of
303	biodiversity cannot be ascribed	to variations of vegetation productivity.
304	The methodology to asse	ess the spatial fingerprint of land-water linkage of
305	biodiversity proved to be an effi	cient way to uncover an underlying picture of
306	biodiversity in spatially coupled	ecosystems, by combining in situ measures of eDNA and

	Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity
307	regional data of RS. Both e	DNA metabarcoding and RS are capable of assessing
308	biodiversity across scales b	ecause of easy access to vast quantities of information with
309	high robustness and accura	acy, non-invasive and standardized procedures, and relatively
310	low costs ⁵⁹⁻⁶³ . Therefore, t	he methods applied here can contribute to next-generation
311	biodiversity monitoring at	regional to global scales ⁶⁴ .
312	The spatial fingerpr	int of land-water linkage of biodiversity detected is robust
313	and may be even more res	olved when the spatio-temporal matching of the two
314	approaches is increased. O	ur study adopted Sentinel-2 MSI Level-2A bottom of
315	atmosphere reflectance fo	r RS measurements. It was generated on Level-1C top of
316	atmosphere reflectance an	d is less affected by clouds or aerosols. Therefore, it is more
317	accurate in mapping the pl	nysiological traits of vegetation. Due to the lack of Level-2A
318	reflectance in 2016, we use	ed Level-2A reflectance in 2017 for calculation in order to
319	match the eDNA sampling	at the respective seasonal time point. While there is likely
320	seasonality in both RS and	eDNA data ^{65,66} , the inter-annual variation in RS between
321	2016 and 2017 is relatively	minor, being testified by a very high correlation of
322	corresponding bands and p	physiological trait indices on Level-1C data between 2016 and
323	2017 (Tab. S2 & S3). Additi	onally, the meteorological conditions were very similar
324	between 2016 and 2017, a	nd both years were close to the normal condition in terms of
325	temperature and precipita	tion (Tab. S4). Thus, the spatial fingerprint is robust across
326	years, at least when the lar	nd cover and meteorological conditions are not changing. In
327	reverse, the method may b	e directly applicable to detecting land-use changes, as a
328	change in the magnitude a	nd extent of the spatial fingerprint may be expected.

	Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity
329	In conclusion, we uncovered a s	patially explicit land-water linkage of biodiversity
330	in a large mountainous catchment by u	sing eDNA sampling and satellite remote sensing
331	imagery. The linkage of biodiversity be	tween rivers and surrounding terrestrial
332	landscapes covers a section in the catc	hment with a radius of around 3 km, with a
333	maximum at 400 m, identifying a chara	cteristic fingerprint of land-water linkage of
334	biodiversity in spatially coupled ecosys	tems. While developed in a mountainous region
335	with different major land cover types, i	ncluding forest, grassland, agriculture, and urban
336	areas, our method does not depend or	specific organismal groups, thus can be used for
337	all regions with mosaicked land cover t	ypes, providing a globally applicable basis for
338	biodiversity conservation and land man	nagement.
339		
340		

341 **4. Methods**

eDNA sampling in the Thur river network. The Thur catchment covers an area of 740 342 km² with three main river branches (Thur, Glatt, and Necker) and the main land covers 343 including forest (29.0%), arable and grassland (56.0%), urban area (10.2%), unproductive 344 345 land (3.6%), and water (1.2%) land types (data from Swiss Federal Statistical Office, 346 2015. website: https://www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federalstatistics-geodata/land-use-cover-suitability/swiss-land-use-statistics/land-use.html). A 347 systematic eDNA sampling was conducted in June 2016 under base-flow conditions. The 348 detailed sampling, laboratory work, and subsequent bioinformatic analyses are 349 described in Mächler et al., 2019 and 2021 47,48, who mostly analyzed the dataset with 350

	Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity
351	respect to the diversity of a small subset of a	Ill organisms and methodological details of
352	the eDNA sampling, respectively. In total, we	e collected 183 water samples at 61 sites
353	(three individual replicates per site) in the de	endritic river network. For each replicate,
354	250 ml of river water was filtered on site usi	ng GF/F filters (pore size 0.7 um Whatman
355	International Ltd.), and the filters were then	immediately stored at -20 °C. Subsequently,
356	DNA was extracted in a specifically dedicated	d clean lab, using the DNeasy Blood and
357	Tissue Kit (Qiagen GmbH). Handling and extr	action of all replicates were done in a
358	randomized order. We performed two PCR r	uns with the Illumina MiSeq dual-barcoded
359	two-step PCR amplicon sequencing protocol	by targeting a short barcode region of the
360	cytochrome c oxidase I (COI) ⁶⁷ . We used pri	mers containing an Illumina adaptor-specific
361	tail, a heterogeneity spacer, and the amplico	on target site in the first run, and the
362	Nextera XT Index Kit v2 for indexing in the se	econd run. Filter controls (FC), extraction
363	controls (EC), positive and negative PCR cont	trols (PC, NC) were run alongside. The
364	sequence data were subsequently demultipl	exed, and the quality of the reads was
365	checked with FastQC ⁶⁸ . Then, we end-trimm	ned (usearch, version 10.0.240), merged the
366	raw reads (Flash, version 1.2.11), removed p	rimer sites (cutadapt, version 1.12), and
367	quality-filtered the data (prinseq-lite, version	n 0.20.4). Next, we used UNOISE3 (usearch,
368	version 10.0.240) to determine ZOTUs, and p	performed an additional clustering at 99%
369	sequence identity to reduce sequence divers	sity. Before final use, the resulting ZOTUs
370	were checked for stop codons with inverteb	rate mitochondrial code, and to only contain
371	an intact open reading frame.	

	Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity
372	We merged the ZOTU abundances o	f the three replicates at each site and got
373	26,519,031 reads clustered into 10,962 ZOT	Us. Then, we calculated the relative
374	abundance for each ZOTU at all sampling sit	es. To alleviate uncertainties, we filtered out
375	the ZOTUs with less than 0.005% occurrence	e in total (i.e., <1326 total reads) and finally
376	used 24,471,930 reads clustered into 1,394	ZOTUs for all analyses. Taxonomic
377	information at the phylum and the class leve	el for all ZOTUs was acquired by mapping
378	against a customized MIDORI Reference 2 (I	JNIQ/GB242) database. After that, we
379	computed relative abundance for each ZOT	J at each site, subsequently referred to as
380	our eDNA data.	
381		
382	Hill numbers as metrics of eDNA-derived bi	odiversity. We used Hill numbers as a
383	scalable metric to describe eDNA-derived bi	odiversity estimates. Hill numbers are a
384	compatible statistical framework that integr	ates diversity concepts by considering
385	incidence and abundance data. They have b	een widely used as metrics for eDNA-based
386	biodiversity calculation because biodiversity	measurements between diversity levels or
387	studies can be directly compared to each ot	her ⁴⁸⁻⁵¹ . Based on the acquired eDNA data
388	set, we calculated Hill numbers at each sam	pling site with order q = 0, 1, and 2
389	according to equations (1–2), which are ana	logue to species richness, the exponential of
390	Shannon diversity, and the inverse of the Sir	mpson index, respectively 48 . For q = 1, there
391	is a singularity problem for the equation; the	erefore, equation (2) was used instead.

392
$${}^{q}D = \left(\sum_{i=1}^{s} p_i^q\right)^{1/(1-q)}$$
, $(q \neq 1)$. (1)

A spatial fingerprint of land-water linkage of biodiversity

Zhang et al.

$${}^{1}D = \exp\left(-\sum_{i=1}^{s} p_{i} \cdot \ln p_{i}\right), \qquad (q = 1).$$
 (2)

Here, *s* is the number of ZOTUs at each site, p_i is the relative abundance of ZOTU *i*.

395

396 Physiological traits in terrestrial ecosystems by Sentinel-2. We used Sentinel-2 derived 397 measures to describe the functional diversity of the terrestrial ecosystems. We adapted a method developed by Helfenstein, 2018⁵², which successfully applied the terrestrial 398 ecosystem functional diversity mapping ²² to Sentinel-2 MSI data, to map physiological 399 traits at a 20-m resolution and then calculate terrestrial ecosystem functional diversity 400 ⁵³. Specifically, we used chlorophyll content (CHL), anthocyanin content (ANT), 401 402 carotenoid content (CAR), and water content (WAT) to construct a four-dimensional 403 functional space. Chlorophyll (green pigment) helps plants capture energy from light in the photosynthesis reaction; anthocyanin (blue, red, and purple pigment) replaces 404 405 chlorophyll during leaf senescence process; carotenoid (orange and yellow pigment) prevents possible damage in stress conditions; water content reflects dry weight and 406 drought stress among the plants ²⁵. Hence, these traits can integrally capture the 407 presence and conditions of vegetation ⁵². 408 All physiological traits were computed on Google Earth Engine (GEE), a cloud-409 based platform for spatial analysis ⁶⁹. We selected Sentinel-2 MSI Level-2A calibrated 410

- surface reflectance (SR) image collections between June and August in 2017, as no SR
- 412 images were produced at the time of eDNA sampling. Based on a cloud-free image

	Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity
413	acquired by employing a median filter to the	selected image collections, we calculated
414	ten indices of CHL, ANT, CAR, and WAT.	
415	1) CHL : the red-edge chlorophyll index (CI_{re} ,	equation 3), the green chlorophyll index
416	(CI_g , equation 4), the Medium Resolution Im	aging Spectrometer (MERIS) terrestrial
417	chlorophyll index (MTCI, equation 5), and th	e normalized difference red-edge 1 and 2
418	(NDRE1 and NDRE2, equations 6–7).	

419
$$CI_{re} = \frac{\rho_{773-793}}{\rho_{698-713}} - 1 = \frac{B7}{B5} - 1.$$
(3)

420
$$CI_g = \frac{\rho_{773-793}}{\rho_{543-578}} - 1 = \frac{B7}{B3} - 1.$$
(4)

421
$$MTCI = \frac{\rho_{733-748} - \rho_{698-713}}{\rho_{698-713} + \rho_{650-680}} = \frac{B7 - B5}{B5 - B4}.$$
 (5)

422
$$NDRE1 = \frac{\rho_{733-748} - \rho_{698-713}}{\rho_{733-748} + \rho_{698-713}} = \frac{B6 - B5}{B6 + B5}.$$
 (6)

423
$$NDRE2 = \frac{\rho_{773-793} - \rho_{698-713}}{\rho_{773-793} + \rho_{698-713}} = \frac{B7 - B5}{B7 + B5}.$$
 (7)

424 2) **ANT**: the anthocyanin reflectance index 1 and 2 (*ARI*1 and *ARI*2, equations 8–9), and

425 the red-green ratio (*RGR*, equation 10).

426
$$ARI1 = \frac{1}{\rho_{543-578}} - \frac{1}{\rho_{698-713}} = \frac{1}{B3} - \frac{1}{B5}.$$
 (8)

427
$$ARI2 = \frac{\rho_{785-900}}{\rho_{458-523}} - \frac{\rho_{785-900}}{\rho_{543-578}} = \frac{B8}{B2} - \frac{B8}{B3}.$$
 (9)

428
$$RGR = \frac{\rho_{650-680}}{\rho_{543-578}} = \frac{B4}{B3}.$$
 (10)

429 3) **CAR**: the carotenoid reflectance index 1 (*CRI*1, 11), and the plant senescence

430 reflectance index (*PSRI*, equation 12).

Zhang et al. A spatial fingerprint of land-water linkage of biodiversity

$$CRI1 = \frac{1}{\rho_{458-523}} - \frac{1}{\rho_{543-578}} = \frac{1}{B2} - \frac{1}{B3}.$$
 (11)

432
$$PSRI = \frac{\rho_{650-680} - \rho_{543-578}}{\rho_{733-748}} \cdot (-1) = \frac{B4 - B3}{B6} \cdot (-1).$$
(12)

433 4) **WAT**: the normalized difference infrared index (*NDII*, equation 13).

434
$$NDII = \frac{\rho_{785-900} - \rho_{1565-1655}}{\rho_{785-900} + \rho_{1565-1655}} = \frac{B8 - B11}{B8 + B11}.$$
 (13)

435 $\rho_{XXX-XXX}$ and BX represent the band of Sentinel-2 MSI.

To remove urban and water areas, we calculated the normalized difference vegetation index (*NDVI*, equation 14), and then masked out the non-vegetated pixels by setting a criterion of NDVI < 0.4.

439
$$NDVI = \frac{\rho_{785-900} - \rho_{650-680}}{\rho_{785-900} + \rho_{650-680}} = \frac{B8 - B4}{B8 + B4}.$$
 (14)

440 All the calculated indices were re-projected to the CH1903 projection.

441

431

Selection of physiological traits. To reduce collinearity, we chose one trait in each physiological trait dimension. We computed a correlation matrix of all the normalized physiological traits (Fig. S8a) and enumerated all possible four-trait subsets. For each subset, we calculated the Frobenius norm ($||A||_F$) of the correlation matrix (A), according to equation (15).

447
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix},$$

448
$$\|A\|_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}}.$$
 (15)

	Zhang et al. A spatial fin	gerprint of land-water linkage of biodiversity
449	9 Next, we found the optimal subset with the least Frobe	nius norm (Fig. S8b). The
450	selected traits were CI_{re} (CHL), $ARI1$ (ANT), $PSRI$ (CAR	R), and <i>NDII</i> (WAT). We
451	observed less collinearity among the selected traits exc	ept for CHL against WAT, where
452	2 positive correlations are unavoidable because the proc	ess of photosynthesis is tightly
453	3 linked to chlorophyll and water availability (Fig S9).	
454	4	
455	5 Catchment data and distance buffers. We used the dig	ital elevation model (DEM) of the
456	5 study area provided by the Swiss Federal Institute of To	ppography (Swisstopo) to extract
457	7 the catchment of each eDNA sampling site. ArcGIS soft	ware (version 10.3) was used to
458	generate a flow direction map based on the DEM. We p	produced a catchment map with
459	9 flow distance for each site by tracing the water flow dir	rection of each pixel and
460	recording its flow distance to the site. Distance buffers	of each sampling site were
461	1 created by setting the spatial interval to 0.05 km for 0–	10 km and 0.1 km for 10–20 km.
462	2	
463	3 Terrestrial ecosystem functional diversity across dista	nce. We chose functional
464	divergence (FDiv) among three types of functional dive	rsity (functional richness,
465	5 functional divergence, and functional evenness) becaus	se FDiv best captured the
466	5 variation of terrestrial ecosystem functions and was the	e most robust to noises and
467	outliers ²² . For each sampling site with a distance buffe	r, based on the normalized
468	selected traits, we extracted four-dimensional trait valu	we vectors (V_i) from vegetated
469	pixels (i = 1,2,, s) that covered by the distance buffe	r and calculated FDiv by following
470	D equations (16–19).	

Zhang et al. A spatial finger	rint o	of land-w	ater linkage	of biodiversity
-------------------------------	--------	-----------	--------------	-----------------

471
$$C = \frac{1}{s} \sum_{i=1}^{s} V_i.$$
 (16)

472
$$dG_i = \|V_i - C\|_2.$$
(17)

473
$$\Delta|d| = \frac{1}{s} \sum_{i=1}^{s} \left| dG_i - \overline{dG} \right|.$$
(18)

475 *s* is the number of vegetated pixels in the distance buffer; *C* is the center of gravity of all 476 vectors; dG_i is the Euclidean distance between the vector of i^{th} pixel (V_i) and the center 477 of gravity (*C*). \overline{dG} is the mean Euclidean distance of all vectors to the center of gravity 478 (*C*).

479

Linear regression model and uncertainty estimation. Due to uncertainties in both eDNA 480 and RS measurements, we used a model II simple linear regression model to evaluate 481 the correlation between Hill numbers and FDiv of surrounding terrestrial ecosystems 482 across distance, using R² as a metric. As distance increased, sampling sites were 483 removed from the regression model if their catchments were already entirely covered 484 485 by distance buffer (Fig. S10). To estimate uncertainties, we adopted a bootstrap framework by subsampling 70% of the available sampling sites 1,000 times, and then 486 calculated the standard deviation of the bootstrapped R² results. 487 488 489 Null models for comparison. We developed null models to ensure that the spatial association between aquatic and terrestrial ecosystems was not a measurement artifact. 490

	Zhang et al. A spati	al fingerprint of land-water linkage of biodiversity
491	Specifically, the spatial location of pixels (with their	respective functional diversity
492	measurement) within the river catchment were ran	domly shuffled in space 1,000 times,
493	followed by calculating FDiv for each sampling site	according to the same distance
494	buffers generated before. Then, model II simple line	ear regression was performed to
495	evaluate the correlation between the eDNA data ar	d the shuffled RS data. We observed
496	gradually increasing curves across Hill number orde	rs without peaking signals (Fig. 5 and
497	S11). These evidenced that the spatial fingerprint o	f biodiversity was a true signal from
498	the spatial layout of the terrestrial ecosystem funct	ional diversity, and was not an
499	artifact.	
500		
501	Evaluation of contributions of vegetation producti	vity and terrestrial ecosystem
502	functional diversity. We calculated the enhanced v	egetation index (EVI, equation 20),
503	which can be used to estimate vegetation productive	vity ^{58,70} . The EVI values were
504	averaged across the distance buffers after excluding	g non-vegetated pixels.
505	$EVI = 2.5 \cdot \frac{\rho_{785-900} - \rho_{785-900}}{\rho_{785-900} + 6 \cdot \rho_{650-680}}$	$\frac{\rho_{650-680}}{-7.5 \cdot \rho_{458-523} + 1}$
506	$= 2.5 \cdot \frac{B8 - B4}{B8 + 6 \cdot B4 - 7.5 \cdot B2}$	- 1 (20)
507	Then, we used linear models summarized in	ANOVA tables with sequential (type

I) tests to evaluate the relative contributions of EVI and FDiv to the Hill numbers (Hill)
across distance, by equations (21–22).

510 Test 1:
$$ANOVA(Hill \sim EVI + FDiv + EVI \times FDiv)$$
. (21)

511 Test 2:
$$ANOVA(Hill \sim FDiv + EVI + FDiv \times EVI)$$
. (22)

	Zhang et al.	A spatial fingerprint of land-water linkage of biodiversity
512	$EVI \times FDiv$ and $FDiv \times EVI$ were interact	ion terms. The relative contributions of EVI
513	and FDiv are shown in Fig. S5.	
514		
515		
516	Acknowledgements	
517	We thank Chelsea Little for support during f	ieldwork, Luca Carraro for help extracting
518	catchment information, and Isabelle Helfens	stein and Enrico Bertuzzo for their help with
519	functional divergence computation. F.A. is f	unded by the Swiss National Science
520	Foundation Grants No 31003A_173074 and	PP00P3_179089, and F.A, F.M., and M.S. by
521	the University of Zurich Research Priority Pr	ogramme on Global Change and Biodiversity
522	(URPP GCB).	

|--|

523 **References**

1	Pimm, S. L. <i>et al.</i> The biodiversity of species and their rates of extinction, distribution, and protection. <i>Science</i> 344 , 1246752 (2014).
2	Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. <i>Global Change Biology</i> 25 , 811-826 (2019).
3	Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in <i>Biodiversity Hotspots Ch.</i> 1, 3-22 (Springer, Berlin, Heidelberg, 2011).
4	Hughes, A. C., Orr, M. C., Yang, Q. & Qiao, H. Effectively and accurately mapping global biodiversity patterns for different regions and taxa. <i>Global Ecology and Biogeography</i> (2021).
5	Oliver, T. H. <i>et al.</i> Biodiversity and resilience of ecosystem functions. <i>Trends in Ecology & Evolution</i> 30 , 673-684 (2015).
6	Isbell, F. <i>et al.</i> High plant diversity is needed to maintain ecosystem services. <i>Nature</i> 477 , 199-202 (2011).
7	Huang, Y. <i>et al.</i> Impacts of species richness on productivity in a large-scale subtropical forest experiment. <i>Science</i> 362 , 80-83 (2018).
8	Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Terrestrial land-cover type richness is positively linked to landscape-level functioning. <i>Nature Communications</i> 11 , 154 (2020).
9	Gonzalez, A. <i>et al.</i> Scaling-up biodiversity-ecosystem functioning research. <i>Ecology Letters</i> 23 , 757-776 (2020).
10	Thompson, P. L. <i>et al.</i> Scaling up biodiversity–ecosystem functioning relationships: the role of environmental heterogeneity in space and time. <i>Proceedings of the Royal Society B</i> 288 , 20202779 (2021).
11	Guichard, F. & Marleau, J. Meta-Ecosystem Dynamics. (Springer, Cham, 2021).
12	Gounand, I., Harvey, E., Little, C. J. & Altermatt, F. Meta-ecosystems 2.0: rooting the theory into the field. <i>Trends in Ecology & Evolution</i> 33 , 36-46 (2018).
13	Gounand, I., Little, C. J., Harvey, E. & Altermatt, F. Cross-ecosystem carbon flows connecting ecosystems worldwide. <i>Nature Communications</i> 9 , 4825 (2018).
14	Grimm, N. B. <i>et al.</i> Merging aquatic and terrestrial perspectives of nutrient biogeochemistry. <i>Oecologia</i> 137 , 485-501 (2003).
15	Vörösmarty, C. J. <i>et al.</i> Global threats to human water security and river biodiversity. <i>Nature</i> 467 , 555-561 (2010).
16	Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. <i>Current Biology</i> 29 , R960-R967 (2019).
17	Rodriguez-Iturbe, I. & Rinaldo, A. <i>Fractal River Basins: Chance and Self-Organization</i> . (Cambridge University Press, Cambridge, 2001).
18	Carraro, L. <i>et al.</i> Generation and application of river network analogues for use in ecology and evolution. <i>Ecology and Evolution</i> 10 , 7537-7550 (2020).
19	Pereira, H. M. et al. Essential biodiversity variables. Science 339 , 277-278 (2013).
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

	Zhang et	al. A spatial fingerprint of land-water linkage of biodiversity
564 565	20	Skidmore, A. K. <i>et al.</i> Priority list of biodiversity metrics to observe from space. <i>Nature Ecology & Evolution</i> 5 , 896-906 (2021).
566 567 568	21	O'Connor, B., Bojinski, S., Röösli, C. & Schaepman, M. E. Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies. <i>Ecological Informatics</i> 55 , 101033 (2020).
569 570	22	Schneider, F. D. <i>et al.</i> Mapping functional diversity from remotely sensed morphological and physiological forest traits. <i>Nature Communications</i> 8 , 1441 (2017).
571 572 573	23	Zheng, Z. <i>et al.</i> Mapping functional diversity using individual tree-based morphological and physiological traits in a subtropical forest. <i>Remote Sensing of Environment</i> 252 , 112170 (2020).
574 575	24	Guillén-Escribà, C. <i>et al.</i> Remotely sensed between-individual functional trait variation in a temperate forest. <i>Ecology and Evolution</i> 11 , 10834-10867 (2021).
576 577	25	Jetz, W. <i>et al</i> . Monitoring plant functional diversity from space. <i>Nature Plants</i> 2 , 16024 (2016).
578 579 580	26	Lodge, D. M. <i>et al.</i> Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. <i>Molecular Ecology</i> 21 , 2555-2558 (2012).
581 582	27	Thomsen, P. F. & Willerslev, E. Environmental DNA–An emerging tool in conservation for monitoring past and present biodiversity. <i>Biological Conservation</i> 183 , 4-18 (2015).
583 584 585	28	Pawlowski, J., Apothéloz-Perret-Gentil, L. & Altermatt, F. Environmental DNA: What's behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. <i>Molecular Ecology</i> 29 , 4258-4264 (2020).
586 587 588	29	Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next- generation biodiversity assessment using DNA metabarcoding. <i>Molecular Ecology</i> 21 , 2045-2050 (2012).
589 590 591	30	Cilleros, K. <i>et al.</i> Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes. <i>Molecular Ecology Resources</i> 19 , 27-46 (2019).
592 593	31	Turak, E. <i>et al.</i> Essential Biodiversity Variables for measuring change in global freshwater biodiversity. <i>Biological Conservation</i> 213 , 272-279 (2017).
594 595	32	Deiner, K. <i>et al.</i> Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. <i>Molecular Ecology</i> 26 , 5872-5895 (2017).
596 597	33	Bohmann, K. <i>et al.</i> Environmental DNA for wildlife biology and biodiversity monitoring. <i>Trends in Ecology & Evolution</i> 29 , 358-367 (2014).
598 599	34	Djurhuus, A. <i>et al.</i> Environmental DNA reveals seasonal shifts and potential interactions in a marine community. <i>Nature Communications</i> 11 , 254 (2020).
600 601	35	Bista, I. <i>et al.</i> Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. <i>Nature Communications</i> 8 , 14087 (2017).
602 603	36	Cantera, I. <i>et al.</i> Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. <i>Scientific Reports</i> 9 , 3085 (2019).
604 605 606	37	Deiner, K., Fronhofer, E. A., Mächler, E., Walser, JC. & Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. <i>Nature Communications</i> 7 , 12544 (2016).

	Zhang et	al. A spatial fingerprint of land-water linkage of biodiversity
607 608	38	Deiner, K. & Altermatt, F. Transport distance of invertebrate environmental DNA in a natural river. <i>PLoS ONE</i> 9 , e88786 (2014).
609 610	39	Shogren, A. J. <i>et al.</i> Controls on eDNA movement in streams: Transport, Retention, and Resuspension. <i>Scientific Reports</i> 7 , 5065 (2017).
611 612	40	Pont, D. <i>et al.</i> Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. <i>Scientific Reports</i> 8 , 10361 (2018).
613 614 615	41	Carraro, L., Mächler, E., Wüthrich, R. & Altermatt, F. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. <i>Nature Communications</i> 11 , 3585 (2020).
616 617 618	42	Shackleton, M., Rees, G. N., Watson, G., Campbell, C. & Nielsen, D. Environmental DNA reveals landscape mosaic of wetland plant communities. <i>Global Ecology and Conservation</i> 19 , e00689 (2019).
619 620 621	43	Yamasaki, E. <i>et al.</i> Genomics meets remote sensing in global change studies: monitoring and predicting phenology, evolution and biodiversity. <i>Current Opinion in Environmental Sustainability</i> 29 , 177-186 (2017).
622 623	44	Lausch, A. <i>et al.</i> Understanding and assessing vegetation health by in situ species and remote-sensing approaches. <i>Methods in Ecology and Evolution</i> 9 , 1799-1809 (2018).
624 625	45	Lin, M. <i>et al.</i> Landscape analyses using eDNA metabarcoding and Earth observation predict community biodiversity in California. <i>Ecological Applications</i> 31 , e02379 (2021).
626 627	46	Bush, A. <i>et al.</i> Connecting Earth observation to high-throughput biodiversity data. <i>Nature Ecology & Evolution</i> 1 , 0176 (2017).
628 629	47	Mächler, E. <i>et al.</i> Assessing different components of diversity across a river network using eDNA. <i>Environmental DNA</i> 1 , 290-301 (2019).
630 631 632	48	Mächler, E., Walser, JC. & Altermatt, F. Decision-making and best practices for taxonomy-free environmental DNA metabarcoding in biomonitoring using Hill numbers. <i>Molecular Ecology</i> 30 , 3326-3339 (2021).
633 634	49	Jost, L. Partitioning diversity into independent alpha and beta components. <i>Ecology</i> 88, 2427-2439 (2007).
635 636	50	Alberdi, A. & Gilbert, M. T. P. A guide to the application of Hill numbers to DNA-based diversity analyses. <i>Molecular Ecology Resources</i> 19 , 804-817 (2019).
637 638	51	Hill, M. O. Diversity and evenness: a unifying notation and its consequences. <i>Ecology</i> 54 , 427-432 (1973).
639 640 641	52	Helfenstein, I. Functional Diversity from Physiological Forest Traits Across Different Spatial Scales and Optical Sensors: Attempts of Mapping Biodiversity from Space Master thesis, University of Zurich, (2018).
642 643	53	Drusch, M. <i>et al.</i> Sentinel-2: ESA's optical high-resolution mission for GMES operational services. <i>Remote Sensing of Environment</i> 120 , 25-36 (2012).
644 645	54	Fahey, R. T. <i>et al.</i> Defining a spectrum of integrative trait-based vegetation canopy structural types. <i>Ecology Letters</i> 22 , 2049-2059 (2019).
646 647	55	Kraft, N. J. <i>et al</i> . Disentangling the drivers of β diversity along latitudinal and elevational gradients. <i>Science</i> 333 , 1755-1758 (2011).
648 649	56	Blowes, S. A. <i>et al.</i> The geography of biodiversity change in marine and terrestrial assemblages. <i>Science</i> 366 , 339-345 (2019).

	Zhang et	al. A spatial fingerprint of land-water linkage of biodiversity
650 651 652	57	Weigand, H. <i>et al.</i> DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. <i>Science of the Total Environment</i> 678 , 499-524 (2019).
653 654 655	58	Jiang, Z., Huete, A. R., Didan, K. & Miura, T. Development of a two-band enhanced vegetation index without a blue band. <i>Remote Sensing of Environment</i> 112 , 3833-3845 (2008).
656 657	59	Skidmore, A. K. <i>et al.</i> Agree on biodiversity metrics to track from space: Ecologists and space agencies must forge a global monitoring strategy. <i>Nature</i> 523 , 403-406 (2015).
658 659	60	Kissling, W. D. <i>et al.</i> Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. <i>Biological Reviews</i> 93 , 600-625 (2018).
660 661	61	Kelly, R. P. <i>et al.</i> Harnessing DNA to improve environmental management. <i>Science</i> 344 , 1455-1456 (2014).
662 663	62	Valentini, A. <i>et al.</i> Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. <i>Molecular Ecology</i> 25 , 929-942 (2016).
664 665	63	Williams, L. J. <i>et al.</i> Remote spectral detection of biodiversity effects on forest biomass. <i>Nature Ecology & Evolution</i> 5 , 46-54 (2021).
666 667	64	Bohan, D. A. <i>et al.</i> Next-generation global biomonitoring: large-scale, automated reconstruction of ecological networks. <i>Trends in Ecology & Evolution</i> 32 , 477-487 (2017).
668 669 670	65	De Souza, L. S., Godwin, J. C., Renshaw, M. A. & Larson, E. Environmental DNA (eDNA) detection probability is influenced by seasonal activity of organisms. <i>PLoS ONE</i> 11 , e0165273 (2016).
671 672	66	Bolton, D. K. <i>et al.</i> Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. <i>Remote Sensing of Environment</i> 240 , 111685 (2020).
673 674 675	67	Leray, M. <i>et al.</i> A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. <i>Frontiers in Zoology</i> 10 , 34 (2013).
676 677 678	68	Andrews, S. FastQC: a quality control tool for high throughput sequence data. Babraham Institute. Available online at https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
679 680	69	Gorelick, N. <i>et al.</i> Google Earth Engine: Planetary-scale geospatial analysis for everyone. <i>Remote Sensing of Environment</i> 202 , 18-27 (2017).
681 682 683	70	Sims, D. A. <i>et al.</i> On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. <i>Journal of Geophysical Research: Biogeosciences</i> 111 , G04015 (2006).
684		