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Abstract  17 

Aquatic and terrestrial ecosystems are tightly connected via spatial flows of 18 

organisms and resources. Such land-water linkages integrate biodiversity across 19 

ecosystems and suggest a spatial association of aquatic and terrestrial biodiversity. 20 

However, knowledge about this spatial extent is limited. By combining satellite remote 21 

sensing (RS) and environmental DNA (eDNA) extraction from river water across a 740-22 

km2 mountainous catchment, we identify a characteristic spatial land-water fingerprint. 23 

Specifically, we find a spatial association of riverine eDNA diversity with RS spectral 24 

diversity of terrestrial ecosystems upstream, peaking at a 400 m distance yet still 25 

detectable up to a 3.3 km radius. Our findings testify that biodiversity patterns in rivers 26 

can be linked to the functional diversity of surrounding terrestrial ecosystems and 27 

provide a dominant scale at which these linkages are strongest. Such spatially explicit 28 

information is necessary for a functional understanding of land-water linkages and 29 

provides a reference scale for adequate conservation and landscape management 30 

decisions. 31 
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1. Introduction 33 

Understanding the spatial distribution of biodiversity and its linkage across 34 

ecosystem types is essential, especially in an era of increasing human modifications of 35 

natural landscapes 1,2. It is well-established that species and ecosystem functional 36 

diversity are unevenly distributed across landscapes, with pronounced diversity hot and 37 

cold spots 3,4. Extensive work has also demonstrated how ecosystems more diverse in 38 

species are more productive and stable 5-7. Intriguingly, however, most past work has 39 

focused on individual ecosystem types, such as forests, grasslands, or aquatic 40 

ecosystems, thereby neglecting a possible co-variation of biodiversity across different 41 

ecosystems 8. Indeed, only very recently the relevance of spatial scaling of biodiversity 42 

and ecosystem functioning research and the dependence on the spatial extent has been 43 

postulated 9,10  44 

Natural ecosystems, and the biodiversity therein, are often linked to each other 45 

through flows of organisms and resources 11,12. One of the most prominent examples is 46 

the coupling of aquatic to terrestrial ecosystems 13,14. Aquatic ecosystems are not only 47 

highly biodiverse yet threatened by anthropogenic activities 15,16, but also strongly 48 

interlinked with surrounding terrestrial ecosystems through the characteristic fractal 49 

structure of riverine networks across most landscapes worldwide 17,18. Consequently, in 50 

these systems, the interaction of one ecosystem resulting in an imprint on the diversity 51 

of the other ecosystem is expected, with implications for land management and 52 

conservation. Nevertheless, little is known about the occurrence and extent of such 53 
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imprints, particularly regarding the spatial range at which such an interaction modulates 54 

local biodiversity.  55 

To assess possible spatial linkages of diversity across ecosystem types, 56 

biodiversity must be quantified in scalable manners. Classically, biodiversity is directly 57 

quantified by counting individual species, for example, through inventories conducted 58 

along transects or in plots of defined size. This approach, however, is inherently limited 59 

for spatial upscaling and cross-ecosystem comparisons 9. Currently, two recent 60 

technological advances are revolutionizing biodiversity sciences, overcoming limitations 61 

with taxonomic and functional coverage, and the possibility to be spatially scaled. The 62 

first advancement is through remote sensing (RS) methods, which use portable, 63 

airborne, or satellite devices to characterize the ecosystem structurally, taxonomically, 64 

or physiologically by measuring reflected or emitted radiation at a distance 19-21. RS is 65 

particularly capable of characterizing terrestrial plant communities and a prime method 66 

for measuring essential biodiversity variables (EBVs) 19-21. Particularly, RS can map 67 

terrestrial ecosystem functional traits and diversity at regional to global scales with 68 

resolutions down to a meter, enabling the upscaling of biodiversity from local 69 

composition to ecosystem levels 22-25. The second advancement is through 70 

environmental DNA (eDNA) metabarcoding, which uses DNA extracted from 71 

environmental samples to quantify biodiversity across the tree of life 26-30. eDNA 72 

metabarcoding is widely used in aquatic ecosystem studies, where it is becoming a 73 

standard for biodiversity assessments 31-36. The passive transport of DNA in water makes 74 

it a particularly efficient method in riverine systems, as the flow along the riverine 75 
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network carries and integrates biodiversity information over the catchment 37-40, and 76 

can be used for estimating spatial patterns of biodiversity at the landscape level 41,42.  77 

Essentially, RS and eDNA metabarcoding complement each other in biodiversity 78 

detection. eDNA can detect bacteria, invertebrates, and vertebrates that are largely 79 

inaccessible for RS, while RS can monitor ecosystem physiological and structural 80 

diversity impossible to draw from eDNA data. Therefore, a combination of RS and eDNA 81 

can provide a holistic view of biodiversity for isolated and mosaicked ecosystems 43,44 82 

and allows to uncover land-water linkages of biodiversity at the landscape level 45,46.        83 

Here, we quantified the spatial extent of a linkage of biodiversity between 84 

aquatic and terrestrial ecosystems by combining eDNA sampling and RS in a 740-km2 85 

river drainage basin. We assessed aquatic biodiversity along the river network using 86 

eDNA and matched it to terrestrial ecosystem functional diversity in the catchment 87 

based on Sentinel-2 Multi-Spectral Instrument (MSI) satellite data. Specifically, we 88 

identified the spatial range within which the functional diversity of the terrestrial 89 

vegetation was associated with the taxonomic diversity in the riverine ecosystems and 90 

determined at what spatial scale this linkage was the highest. Thereby, combining eDNA 91 

and RS, we provide a first spatially explicit integration of land-water linkage of 92 

biodiversity, and identify a characteristic spatial fingerprint across aquatic-terrestrial 93 

ecosystem boundaries at the landscape level. 94 

 95 

 96 

 97 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466050doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466050


Zhang et al.         A spatial fingerprint of land-water linkage of biodiversity 

 6 / 32 

 

2. Results 98 

We combined assessments of aquatic biodiversity using eDNA and terrestrial diversity 99 

based on Sentinel-2 Multi-Spectral Instrument (MSI) satellite data in the 740 km2 river 100 

Thur catchment (Fig. 1). The river Thur catchment is located in the northeastern part of 101 

Switzerland. It covers a mountainous landscape with an elevation gradient ranging from 102 

460 m to 2423 m a.s.l. and contains a mosaicked landscape of urban, agricultural and 103 

forested terrestrial ecosystem types. 104 

 105 

 106 

Fig. 1 Location of the Thur river catchment in Switzerland and eDNA sampling sites. 107 

Pink dots are 61 eDNA sampling sites. The blue lines represent river channels draining in 108 

a Northward direction. White lines indicate the boundaries of the main catchment and 109 

its three subcatchments (Thur, Glatt, and Necker).  110 
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 111 

eDNA-derived biodiversity in aquatic ecosystem. We conducted eDNA water sampling 112 

at 61 sites along the river network, representatively covering the whole 740 km2 113 

catchment (Fig. 1). All water samples were filtered, the DNA extracted, and sequenced 114 

using generic COI-specific primers targeting a broad range of pro- and eukaryotic 115 

organisms. Detailed procedures are described in the Methods section and in Mächler et 116 

al., 2019 and 2021 47,48. We received a total of 26,519,031 reads that were clustered into 117 

10,962 zero-radius operational taxonomic units (ZOTUs) with 2404 ± 216 (mean ± 118 

standard error) number of reads per ZOTU as a proxy of taxonomic diversity.  119 

To describe different aspects of biodiversity across all eDNA samples, we used 120 

Hill numbers, which are a compatible statistical framework considering both occurrence 121 

and abundance information 48-51. In this framework, the evenness of biodiversity 122 

patterns gets more weight with increasing Hill number q orders. Here, we calculated Hill 123 

numbers with order q = 0, 1, and 2, which correspond to species richness, the 124 

exponential of Shannon diversity, and the inverse of the Simpson index, respectively 125 

(see Methods, Fig. 2), after removing very rare ZOTUs (occurrence < 0.005% in total, see 126 

details in Methods section). We observed strong and highly uneven biodiversity patterns 127 

across the catchment, with a strong and significant positive correlation between 128 

biodiversity and Strahler order (Fig. S1 a-c; p-value < 0.05), and a decreasing trend of 129 

biodiversity at increasing elevation (Fig. S1 d-f). 130 
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 131 

Fig. 2 Distribution of biodiversity in Thur river catchment. Hill numbers were used to 132 

describe biodiversity of eDNA samples in the river network. Spatial patterns and 133 

histograms on distribution of diversity using Hill numbers with order a q = 0, b q = 1, and 134 

c q = 2 are given. They correspond to species richness (order q = 0), the exponential of 135 

Shannon diversity (order q = 1), and the Simpson index (order q = 2), respectively. 136 

 137 

RS-derived physiological traits and functional diversity in terrestrial ecosystems. We 138 

adapted a spatially continuous method, which was generalized to Sentinel-2 MSI 139 

satellite data, to map the terrestrial ecosystem functional diversity (a metric in EBVs) at 140 

a 20 × 20 m resolution 22,52,53. We used chlorophyll content (CHL), anthocyanin content 141 

(ANT), carotenoid content (CAR), and water content (WAT) to represent four 142 

physiological trait dimensions (see Methods) as direct proxies of functional diversity 143 

(Fig. 3). These spectral components capture plant physiological traits that integrate 144 
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different components of terrestrial ecosystem functions, and thus functional diversity, 145 

related to the presence and conditions of vegetation 52,54. 146 

 147 

 148 

Fig. 3 Functional trait diversity assessed through physiological trait characteristics of 149 

the terrestrial landscape in the Thur river catchment. a Map and density plot of 150 

chlorophyll content (CHL), represented by the red-edge chlorophyll index (CIre). b Map 151 

and density plot of anthocyanin content (ANT), represented by the anthocyanin 152 

reflectance index 1 (ARI1). c Map and density plot of carotenoid content (CAR), 153 

represented by the plant senescence reflectance index (PSRI). d Map and density plot of 154 

water content (WAT), represented by the normalized difference infrared index (NDII). 155 

Non-vegetated pixels were masked out (grey area), and all traits were normalized. 156 

 157 

 For each sampling site, we produced a catchment map based on the digital 158 

elevation model (DEM) and created distance buffers with spatial intervals, within which 159 

functional divergence (FDiv) was calculated (Fig. 4, see Methods section). The mean 160 
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value of FDiv (± standard deviation (SD)) across distance is 0.665 (± 0.025). As the 161 

distance increased, the range of FDiv dropped from 0.216 (distance = 50 m) to 0.049 162 

(distance = 20 km).  163 

 164 

 165 

Fig. 4 Spatial distribution of terrestrial ecosystem functional diversity based on 166 

catchment and distance buffers of the eDNA sampling site. a Catchment map with 167 

distance buffers of site No. 28 as an example. The spatial interval is 0.05 km for 0–10 km 168 

and 0.1 km for 10–20 km. b Functional divergence (FDiv) with upstream distance given 169 

for 61 eDNA sampling sites (grey lines; the example site No. 28 is highlighted as red 170 

line). We calculated FDiv by collecting four-dimensional trait value vectors from pixels 171 

covered by the distance buffer (for details and equations, see Methods section). Non-172 

vegetated pixels were masked out before computation.  173 

 174 
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The land-water linkage of biodiversity. We employed a model II simple linear 175 

regression to assess the association between eDNA-derived biodiversity (Hill numbers) 176 

and the RS-derived terrestrial ecosystem functional diversity (FDiv) across distance, 177 

using R2 as the goodness of fit. Uncertainties were estimated by a bootstrap framework 178 

(see Methods for details).  179 

The linear regression analysis reveals a unimodal association between the eDNA-180 

based (aquatic) Hill numbers and the RS-based (terrestrial) FDiv as the upstream 181 

distance to sampling sites increases, with a linkage signal of up to 3.3 km radius 182 

upstream (Fig. 5). The distances with the highest R2 (distance with maximal land-water 183 

imprint) vary across orders of q. For q = 0, this distance with the strongest imprint is 400 184 

m; for q = 1, it is 350 and 800 m, respectively; for q = 2, it is 350 and 850 m, respectively. 185 

The strong effect of ZOTU-level richness decreases with increasing Hill number (Fig. 5), 186 

suggesting that the rare taxa contribute most to the observed land-water linkage. 187 

Possibly, this could be ascribed to the decreasing contributions from the less abundant 188 

taxonomic groups after increasing the weight of abundance (increasing Hill number 189 

order q), as an abundant taxonomic group may swamp the effect of the less abundant 190 

ones. In addition, it highlights the importance of rare taxa contributing to overall beta-191 

diversity 55 and the negative effect of large-scale homogenization of biodiversity 56, 192 

which results not only in an erosion of beta-diversity within one ecosystem but has also 193 

a cascading negative effect on other ecosystems.  194 
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 195 

Fig. 5 Association between eDNA-derived biodiversity assessed in the river water and 196 

RS-derived terrestrial ecosystem functional diversity across increasing upstream 197 

distance in the Thur river catchment. The R2 of the linear regression (± standard 198 

deviation, blue lines) between eDNA-based Hill numbers with order a q = 0, b q = 1, and 199 

c q = 2, and RS-based functional divergence (FDiv) across distance are given. The R2 of 200 

the null models is shown in grey lines.  201 

 202 

We developed null models to corroborate the robustness of the observed spatial 203 

extent of the land-water linkage, by randomly shuffling the locations of all pixels within 204 

the river catchment. Then, we assessed whether and at what spatial extent such a land-205 

water linkage of biodiversity exists in a null-model scenario (see Methods). We found 206 

that the R2 of our sampling was always greater than the null model for distances < 3.3 207 

km for q = 0, < 1.5 km for both q = 1 and 2, respectively (Fig. 5). These results testify that 208 

biodiversity in riverine ecosystems can be linked to the functional diversity of 209 

surrounding terrestrial ecosystems, with the strongest association occurring at a spatial 210 

extent of several hundred meters.  211 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466050doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466050


Zhang et al.         A spatial fingerprint of land-water linkage of biodiversity 

 13 / 32 

 

To disentangle the observed land-water linkage of biodiversity, we mapped the 212 

ZOTUs against a customized MIDORI Reference 2 database for taxonomic information, 213 

which allowed us to identify the taxonomic affiliation of the most prominent ZOTUs and 214 

read numbers at phylum and class level, respectively (Fig. 6). Abundant affiliations both 215 

with respect to ZOTU richness and read numbers were found for Arthropods (especially 216 

Insecta), Ascomycota (a fungi phylum), and Bacillariophyta (i.e., diatoms), and ZOTUs 217 

across all groups originated from organisms inhabiting both aquatic and terrestrial 218 

environments (Fig. 6).  We subsampled the eDNA data based on the taxonomic 219 

information to evaluate individual contributions across major taxonomic groups. 220 

Specifically, we calculated the relative abundances at the phylum level and assessed 221 

their associations with FDiv across distance. Among all the major taxonomic groups, we 222 

detected strong associations in Bacillariophyta, Chordata, Ascomycota, Cnidaria, 223 

Rotifera, Amoebozoa, Chlorophyta, Cryptophyta, and Porifera, although the spatial 224 

extents were varying (Fig. S2). Importantly, these results show that the land-water 225 

linkage of biodiversity included contributions of aquatic and terrestrial origins, thus 226 

reflecting both an integrated signal of biodiversity across ecosystems and a signal of 227 

local ecosystem biodiversity.  228 

 229 
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 230 

Fig. 6 Number of ZOTUs and reads in the eDNA data. a Number of ZOTUs at the phylum 231 

level. b Number of ZOTUs at the class level. c Number of reads at the phylum level. d 232 

Number of reads at the class level. ZOTUs with occurrences less than three at the 233 

phylum level were removed to avoid spurious effects. All numbers were log10-234 

transformed before plotting. The taxonomic information of eDNA data indicates a 235 

combination of aquatic and terrestrial origins.  236 

 237 

 238 

 239 

 240 
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3. Discussion 241 

Combining eDNA sampling and multispectral remote sensing imagery (Fig. 1), we 242 

demonstrated a spatial association of biodiversity between aquatic and terrestrial 243 

ecosystems and gave a spatially explicit quantification of its peak strength, peaking 244 

across a catchment section at a 400 m radius upstream around the aquatic sampling site 245 

(Fig. 5). Overall, the unimodal signal of the land-water linkage of biodiversity covers a 246 

range of up to 3.3 km upstream, indicating that a place in a river and surrounding 247 

terrestrial ecosystems are closely interlinked, with a tight connection in terms of 248 

biodiversity. Furthermore, for the first time, we provide a specific and scalable approach 249 

to quantify the spatial extent of such linkages across ecosystems types and identify a 250 

characteristic spatial land-water fingerprint.   251 

The characterization of the terrestrial ecosystems from a biodiversity perspective 252 

was based on multiple physiological trait dimensions (Fig. 3), capturing major 253 

components of the dominant vegetation cover. Contrary to traditional biodiversity 254 

surveys and estimates, which are often limited to small scales and numbers of sites and 255 

depend on specific taxonomic knowledge, our approach using high-resolution satellite 256 

RS data is not only capable of depicting regional and spatially continuous characteristics 257 

of biodiversity, but can be directly applied and scaled to map terrestrial biodiversity 258 

across all river catchments worldwide. Additionally, the characterization of aquatic 259 

biodiversity using eDNA allows a scaling across space and time, and most importantly, 260 

does not depend on prior knowledge on the occurrence of specific taxa. Thereby, this 261 

eDNA and RS combination approach could contribute to a global understanding of 262 
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biodiversity patterns. Our method can, in principle, be applied and transferred to all 263 

land-water ecosystems worldwide, and may be especially useful to uncover biodiversity 264 

patterns in understudied regions, such as regions beyond Europe and North America. 265 

In this study, we identified a strong fingerprint of land-water linkage of 266 

biodiversity, with a metric of terrestrial ecosystem functional diversity developed on a 267 

combination of four physiological trait components of vegetation. These four 268 

physiological traits are proved to be able to capture major ecosystem functions of 269 

vegetation 52. To evaluate the relative individual importance of these components, 270 

namely CHL, CAR, ANT, and WAT, we removed one dimension at each time and 271 

repeated the calculation process. We found that the maximum values of R2 dropped 272 

remarkably when CHL or WAT was removed (Fig. S3 & Tab. S1). Moreover, the unimodal 273 

shape was flatter after both CHL and WAT were removed (Fig. S4 & Tab. S1). These 274 

indicate that CHL and WAT, inherently representing the photosynthesis activity of 275 

vegetation and thus a proxy of productivity, mainly characterize the spatial fingerprint 276 

of land-water linkage of biodiversity.  277 

For the characterization of the aquatic biodiversity (Fig. 2), we used a generic COI 278 

marker amplifying eDNA signals across a wide range of taxa, yet predominantly used to 279 

target invertebrates. Although a large proportion of retrieved sequences aligned with 280 

macro-and micro-invertebrates, we covered a wider breadth of taxa regarding ZOTUs, 281 

including microbes and vertebrates. Because the coverage of these organisms is highly 282 

variable in the respective reference databases 57, we applied a taxonomy-free approach 283 

using ZOTUs only to not depend on such databases. This approach covers a broader 284 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466050doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466050


Zhang et al.         A spatial fingerprint of land-water linkage of biodiversity 

 17 / 32 

 

taxonomic breadth yet does not address the contribution of individual taxonomic 285 

groups. Still, according to the taxonomic information of our eDNA data (Fig. 6), we 286 

observed that ZOTUs originated from aquatic and terrestrial environments both 287 

contributed to the land-water linkage of biodiversity. Then, we also evaluated the 288 

relative contribution of each of the major taxonomic groups at the phylum level to the 289 

spatial land-water fingerprint by omitting one of these major taxonomic groups at a 290 

time and repeating the calculations. Intriguingly, the association pattern was almost the 291 

same regardless of which taxonomic group was omitted (Fig. S5), suggesting that the 292 

land-water fingerprint of biodiversity is highly robust and thus does not depend on a 293 

single major organismal group.  294 

Importantly, the unimodal shape of the linkage of biodiversity was not caused by 295 

variations of vegetation productivity, suggesting that the heterogeneity and not the 296 

productivity of terrestrial ecosystems contributes to local aquatic biodiversity. We 297 

tested this by firstly calculating the enhanced vegetation index (EVI) to represent 298 

vegetation productivity 58. Then, we adopted type I ANOVA tests to evaluate the relative 299 

contributions of EVI and FDiv to the Hill numbers across distance (see Methods; Fig. S6). 300 

In addition, we also found that EVI and FDiv were not correlated at distances < 8.0 km 301 

(Fig. S7). Together, this evidences that the unimodal signal of land-water linkage of 302 

biodiversity cannot be ascribed to variations of vegetation productivity.  303 

The methodology to assess the spatial fingerprint of land-water linkage of 304 

biodiversity proved to be an efficient way to uncover an underlying picture of 305 

biodiversity in spatially coupled ecosystems, by combining in situ measures of eDNA and 306 
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regional data of RS. Both eDNA metabarcoding and RS are capable of assessing 307 

biodiversity across scales because of easy access to vast quantities of information with 308 

high robustness and accuracy, non-invasive and standardized procedures, and relatively 309 

low costs 59-63. Therefore, the methods applied here can contribute to next-generation 310 

biodiversity monitoring at regional to global scales 64.  311 

The spatial fingerprint of land-water linkage of biodiversity detected is robust 312 

and may be even more resolved when the spatio-temporal matching of the two 313 

approaches is increased. Our study adopted Sentinel-2 MSI Level-2A bottom of 314 

atmosphere reflectance for RS measurements. It was generated on Level-1C top of 315 

atmosphere reflectance and is less affected by clouds or aerosols. Therefore, it is more 316 

accurate in mapping the physiological traits of vegetation. Due to the lack of Level-2A 317 

reflectance in 2016, we used Level-2A reflectance in 2017 for calculation in order to 318 

match the eDNA sampling at the respective seasonal time point.  While there is likely 319 

seasonality in both RS and eDNA data 65,66, the inter-annual variation in RS between 320 

2016 and 2017 is relatively minor, being testified by a very high correlation of 321 

corresponding bands and physiological trait indices on Level-1C data between 2016 and 322 

2017 (Tab. S2 & S3). Additionally, the meteorological conditions were very similar 323 

between 2016 and 2017, and both years were close to the normal condition in terms of 324 

temperature and precipitation (Tab. S4). Thus, the spatial fingerprint is robust across 325 

years, at least when the land cover and meteorological conditions are not changing. In 326 

reverse, the method may be directly applicable to detecting land-use changes, as a 327 

change in the magnitude and extent of the spatial fingerprint may be expected.  328 
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In conclusion, we uncovered a spatially explicit land-water linkage of biodiversity 329 

in a large mountainous catchment by using eDNA sampling and satellite remote sensing 330 

imagery. The linkage of biodiversity between rivers and surrounding terrestrial 331 

landscapes covers a section in the catchment with a radius of around 3 km, with a 332 

maximum at 400 m, identifying a characteristic fingerprint of land-water linkage of 333 

biodiversity in spatially coupled ecosystems. While developed in a mountainous region 334 

with different major land cover types, including forest, grassland, agriculture, and urban 335 

areas, our method does not depend on specific organismal groups, thus can be used for 336 

all regions with mosaicked land cover types, providing a globally applicable basis for 337 

biodiversity conservation and land management.  338 

 339 

 340 

4. Methods  341 

eDNA sampling in the Thur river network. The Thur catchment covers an area of 740 342 

km2 with three main river branches (Thur, Glatt, and Necker) and the main land covers 343 

including forest (29.0%), arable and grassland (56.0%), urban area (10.2%), unproductive 344 

land (3.6%), and water (1.2%) land types (data from Swiss Federal Statistical Office, 345 

2015. website: https://www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federal-346 

statistics-geodata/land-use-cover-suitability/swiss-land-use-statistics/land-use.html). A 347 

systematic eDNA sampling was conducted in June 2016 under base-flow conditions. The 348 

detailed sampling, laboratory work, and subsequent bioinformatic analyses are 349 

described in Mächler et al., 2019 and 2021 47,48, who mostly analyzed the dataset with 350 
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respect to the diversity of a small subset of all organisms and methodological details of 351 

the eDNA sampling, respectively. In total, we collected 183 water samples at 61 sites 352 

(three individual replicates per site) in the dendritic river network. For each replicate, 353 

250 ml of river water was filtered on site using GF/F filters (pore size 0.7 um Whatman 354 

International Ltd.), and the filters were then immediately stored at -20 °C. Subsequently, 355 

DNA was extracted in a specifically dedicated clean lab, using the DNeasy Blood and 356 

Tissue Kit (Qiagen GmbH). Handling and extraction of all replicates were done in a 357 

randomized order. We performed two PCR runs with the Illumina MiSeq dual-barcoded 358 

two-step PCR amplicon sequencing protocol by targeting a short barcode region of the 359 

cytochrome c oxidase I (COI) 67. We used primers containing an Illumina adaptor-specific 360 

tail, a heterogeneity spacer, and the amplicon target site in the first run, and the 361 

Nextera XT Index Kit v2 for indexing in the second run. Filter controls (FC), extraction 362 

controls (EC), positive and negative PCR controls (PC, NC) were run alongside. The 363 

sequence data were subsequently demultiplexed, and the quality of the reads was 364 

checked with FastQC 68. Then, we end-trimmed (usearch, version 10.0.240), merged the 365 

raw reads (Flash, version 1.2.11), removed primer sites (cutadapt, version 1.12), and 366 

quality-filtered the data (prinseq-lite, version 0.20.4). Next, we used UNOISE3 (usearch, 367 

version 10.0.240) to determine ZOTUs, and performed an additional clustering at 99% 368 

sequence identity to reduce sequence diversity. Before final use, the resulting ZOTUs 369 

were checked for stop codons with invertebrate mitochondrial code, and to only contain 370 

an intact open reading frame.  371 
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We merged the ZOTU abundances of the three replicates at each site and got 372 

26,519,031 reads clustered into 10,962 ZOTUs. Then, we calculated the relative 373 

abundance for each ZOTU at all sampling sites. To alleviate uncertainties, we filtered out 374 

the ZOTUs with less than 0.005% occurrence in total (i.e., <1326 total reads) and finally 375 

used 24,471,930 reads clustered into 1,394 ZOTUs for all analyses. Taxonomic 376 

information at the phylum and the class level for all ZOTUs was acquired by mapping 377 

against a customized MIDORI Reference 2 (UNIQ/GB242) database. After that, we 378 

computed relative abundance for each ZOTU at each site, subsequently referred to as 379 

our eDNA data.  380 

 381 

Hill numbers as metrics of eDNA-derived biodiversity. We used Hill numbers as a 382 

scalable metric to describe eDNA-derived biodiversity estimates. Hill numbers are a 383 

compatible statistical framework that integrates diversity concepts by considering 384 

incidence and abundance data. They have been widely used as metrics for eDNA-based 385 

biodiversity calculation because biodiversity measurements between diversity levels or 386 

studies can be directly compared to each other 48-51. Based on the acquired eDNA data 387 

set, we calculated Hill numbers at each sampling site with order q = 0, 1, and 2 388 

according to equations (1–2), which are analogue to species richness, the exponential of 389 

Shannon diversity, and the inverse of the Simpson index, respectively 48. For q = 1, there 390 

is a singularity problem for the equation; therefore, equation (2) was used instead.  391 

𝐷 
𝑞

= (∑ 𝑝𝑖
𝑞

𝑠

𝑖=1

)

1 (1−𝑞)⁄

,                  (𝑞 ≠ 1).                               (1) 392 
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𝐷 
1 = exp (− ∑ 𝑝𝑖 ∙ ln 𝑝𝑖

𝑠

𝑖=1

) , (𝑞 = 1).                              (2) 393 

Here, 𝑠 is the number of ZOTUs at each site, 𝑝𝑖 is the relative abundance of ZOTU 𝑖. 394 

 395 

Physiological traits in terrestrial ecosystems by Sentinel-2. We used Sentinel-2 derived 396 

measures to describe the functional diversity of the terrestrial ecosystems. We adapted 397 

a method developed by Helfenstein, 2018 52, which successfully applied the terrestrial 398 

ecosystem functional diversity mapping 22 to Sentinel-2 MSI data, to map physiological 399 

traits at a 20-m resolution and then calculate terrestrial ecosystem functional diversity 400 

53. Specifically, we used chlorophyll content (CHL), anthocyanin content (ANT), 401 

carotenoid content (CAR), and water content (WAT) to construct a four-dimensional 402 

functional space. Chlorophyll (green pigment) helps plants capture energy from light in 403 

the photosynthesis reaction; anthocyanin (blue, red, and purple pigment) replaces 404 

chlorophyll during leaf senescence process; carotenoid (orange and yellow pigment) 405 

prevents possible damage in stress conditions; water content reflects dry weight and 406 

drought stress among the plants 25. Hence, these traits can integrally capture the 407 

presence and conditions of vegetation 52.  408 

All physiological traits were computed on Google Earth Engine (GEE), a cloud-409 

based platform for spatial analysis 69. We selected Sentinel-2 MSI Level-2A calibrated 410 

surface reflectance (SR) image collections between June and August in 2017, as no SR 411 

images were produced at the time of eDNA sampling. Based on a cloud-free image 412 
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acquired by employing a median filter to the selected image collections, we calculated 413 

ten indices of CHL, ANT, CAR, and WAT.  414 

1) CHL: the red-edge chlorophyll index (𝐶𝐼𝑟𝑒, equation 3), the green chlorophyll index 415 

(𝐶𝐼𝑔, equation 4), the Medium Resolution Imaging Spectrometer (MERIS) terrestrial 416 

chlorophyll index (𝑀𝑇𝐶𝐼, equation 5), and the normalized difference red-edge 1 and 2 417 

(𝑁𝐷𝑅𝐸1 and 𝑁𝐷𝑅𝐸2, equations 6–7).  418 

𝐶𝐼𝑟𝑒 =
𝜌773−793

𝜌698−713
− 1 =

B7

B5
− 1.                                                          (3) 419 

𝐶𝐼𝑔 =
𝜌773−793

𝜌543−578
− 1 =

B7

B3
− 1.                                                          (4) 420 

𝑀𝑇𝐶𝐼 =
𝜌733−748 − 𝜌698−713

𝜌698−713 + 𝜌650−680
=

B7 − B5

B5 − B4
.                                         (5) 421 

𝑁𝐷𝑅𝐸1 =
𝜌733−748 − 𝜌698−713

𝜌733−748 + 𝜌698−713
=

B6 − B5

B6 + B5
.                                         (6) 422 

𝑁𝐷𝑅𝐸2 =
𝜌773−793 − 𝜌698−713

𝜌773−793 + 𝜌698−713
=

B7 − B5

B7 + B5
.                                         (7) 423 

2) ANT: the anthocyanin reflectance index 1 and 2 (𝐴𝑅𝐼1 and 𝐴𝑅𝐼2, equations 8–9), and 424 

the red-green ratio (𝑅𝐺𝑅, equation 10). 425 

𝐴𝑅𝐼1 =
1

𝜌543−578
−

1

𝜌698−713
=

1

B3
−

1

B5
.                                         (8) 426 

𝐴𝑅𝐼2 =
𝜌785−900

𝜌458−523
−

𝜌785−900

𝜌543−578
=

B8

B2
−

B8

B3
.                                         (9) 427 

𝑅𝐺𝑅 =
𝜌650−680

𝜌543−578
=

B4

B3
.                                                     (10) 428 

3) CAR: the carotenoid reflectance index 1 (𝐶𝑅𝐼1, 11), and the plant senescence 429 

reflectance index (𝑃𝑆𝑅𝐼, equation 12). 430 
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𝐶𝑅𝐼1 =
1

𝜌458−523
−

1

𝜌543−578
=

1

B2
−

1

B3
.                                      (11) 431 

𝑃𝑆𝑅𝐼 =
𝜌650−680 − 𝜌543−578

𝜌733−748
∙ (−1) =

B4 − B3

B6
∙ (−1).                     (12) 432 

4) WAT: the normalized difference infrared index (𝑁𝐷𝐼𝐼, equation 13). 433 

𝑁𝐷𝐼𝐼 =
𝜌785−900 − 𝜌1565−1655

𝜌785−900 + 𝜌1565−1655
=

B8 − B11

B8 + B11
.                                (13) 434 

𝜌𝑋𝑋𝑋−𝑋𝑋𝑋 and  B𝑋 represent the band of Sentinel-2 MSI.  435 

To remove urban and water areas, we calculated the normalized difference 436 

vegetation index (𝑁𝐷𝑉𝐼, equation 14), and then masked out the non-vegetated pixels 437 

by setting a criterion of NDVI < 0.4. 438 

𝑁𝐷𝑉𝐼 =
𝜌785−900 − 𝜌650−680

𝜌785−900 + 𝜌650−680
=

B8 − B4

B8 + B4
.                                 (14) 439 

All the calculated indices were re-projected to the CH1903 projection. 440 

 441 

Selection of physiological traits. To reduce collinearity, we chose one trait in each 442 

physiological trait dimension. We computed a correlation matrix of all the normalized 443 

physiological traits (Fig. S8a) and enumerated all possible four-trait subsets. For each 444 

subset, we calculated the Frobenius norm (‖𝑨‖𝐹) of the correlation matrix (𝑨), 445 

according to equation (15).  446 

𝑨 = [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

],                                                                  447 

‖𝑨‖𝐹 = √∑ ∑|𝑎𝑖𝑗|
2

𝑛

𝑗=1

𝑚

𝑖=1

.                                                         (15) 448 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466050doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466050


Zhang et al.         A spatial fingerprint of land-water linkage of biodiversity 

 25 / 32 

 

Next, we found the optimal subset with the least Frobenius norm (Fig. S8b). The 449 

selected traits were 𝐶𝐼𝑟𝑒 (CHL), 𝐴𝑅𝐼1 (ANT), 𝑃𝑆𝑅𝐼 (CAR), and 𝑁𝐷𝐼𝐼 (WAT).  We 450 

observed less collinearity among the selected traits except for CHL against WAT, where 451 

positive correlations are unavoidable because the process of photosynthesis is tightly 452 

linked to chlorophyll and water availability (Fig S9).   453 

 454 

Catchment data and distance buffers. We used the digital elevation model (DEM) of the 455 

study area provided by the Swiss Federal Institute of Topography (Swisstopo) to extract 456 

the catchment of each eDNA sampling site. ArcGIS software (version 10.3) was used to 457 

generate a flow direction map based on the DEM. We produced a catchment map with 458 

flow distance for each site by tracing the water flow direction of each pixel and 459 

recording its flow distance to the site. Distance buffers of each sampling site were 460 

created by setting the spatial interval to 0.05 km for 0–10 km and 0.1 km for 10–20 km.  461 

 462 

Terrestrial ecosystem functional diversity across distance. We chose functional 463 

divergence (FDiv) among three types of functional diversity (functional richness, 464 

functional divergence, and functional evenness) because FDiv best captured the 465 

variation of terrestrial ecosystem functions and was the most robust to noises and 466 

outliers 22. For each sampling site with a distance buffer, based on the normalized 467 

selected traits, we extracted four-dimensional trait value vectors (𝑉𝑖) from vegetated 468 

pixels (i = 1,2, … , s) that covered by the distance buffer and calculated FDiv by following 469 

equations (16–19). 470 
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𝐶 =
1

𝑠
∑ 𝑉𝑖

𝑠

𝑖=1

.                                                              (16) 471 

𝑑𝐺𝑖 = ‖𝑉𝑖 − 𝐶‖2.                                                          (17) 472 

Δ|𝑑| =
1

𝑠
∑|𝑑𝐺𝑖 − 𝑑𝐺̅̅̅̅ |

𝑠

𝑖=1

.                                              (18) 473 

FDiv =
𝑑𝐺̅̅̅̅

Δ|𝑑| + 𝑑𝐺̅̅̅̅
.                                                         (19) 474 

𝑠 is the number of vegetated pixels in the distance buffer; 𝐶 is the center of gravity of all 475 

vectors; 𝑑𝐺𝑖 is the Euclidean distance between the vector of 𝑖𝑡ℎ pixel (𝑉𝑖) and the center 476 

of gravity (𝐶). 𝑑𝐺̅̅̅̅  is the mean Euclidean distance of all vectors to the center of gravity 477 

(𝐶).  478 

 479 

Linear regression model and uncertainty estimation. Due to uncertainties in both eDNA 480 

and RS measurements, we used a model II simple linear regression model to evaluate 481 

the correlation between Hill numbers and FDiv of surrounding terrestrial ecosystems 482 

across distance, using R2 as a metric. As distance increased, sampling sites were 483 

removed from the regression model if their catchments were already entirely covered 484 

by distance buffer (Fig. S10). To estimate uncertainties, we adopted a bootstrap 485 

framework by subsampling 70% of the available sampling sites 1,000 times, and then 486 

calculated the standard deviation of the bootstrapped R2 results. 487 

 488 

Null models for comparison. We developed null models to ensure that the spatial 489 

association between aquatic and terrestrial ecosystems was not a measurement artifact. 490 
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Specifically, the spatial location of pixels (with their respective functional diversity 491 

measurement) within the river catchment were randomly shuffled in space 1,000 times, 492 

followed by calculating FDiv for each sampling site according to the same distance 493 

buffers generated before. Then, model II simple linear regression was performed to 494 

evaluate the correlation between the eDNA data and the shuffled RS data. We observed 495 

gradually increasing curves across Hill number orders without peaking signals (Fig. 5 and 496 

S11). These evidenced that the spatial fingerprint of biodiversity was a true signal from 497 

the spatial layout of the terrestrial ecosystem functional diversity, and was not an 498 

artifact.  499 

 500 

Evaluation of contributions of vegetation productivity and terrestrial ecosystem 501 

functional diversity. We calculated the enhanced vegetation index (EVI, equation 20), 502 

which can be used to estimate vegetation productivity 58,70. The EVI values were 503 

averaged across the distance buffers after excluding non-vegetated pixels. 504 

𝐸𝑉𝐼 = 2.5 ∙
𝜌785−900 − 𝜌650−680

𝜌785−900 + 6 ∙ 𝜌650−680 − 7.5 ∙ 𝜌458−523 + 1
                                505 

= 2.5 ∙
B8 − B4

B8 + 6 ∙ B4 − 7.5 ∙ B2 + 1
                                                      (20) 506 

Then, we used linear models summarized in ANOVA tables with sequential (type 507 

I) tests to evaluate the relative contributions of EVI and FDiv to the Hill numbers (Hill) 508 

across distance, by equations (21–22).  509 

Test 1:  𝐴𝑁𝑂𝑉𝐴(𝐻𝑖𝑙𝑙~𝐸𝑉𝐼 + 𝐹𝐷𝑖𝑣 + 𝐸𝑉𝐼 × 𝐹𝐷𝑖𝑣).                         (21) 510 

Test 2:  𝐴𝑁𝑂𝑉𝐴(𝐻𝑖𝑙𝑙~𝐹𝐷𝑖𝑣 + 𝐸𝑉𝐼 + 𝐹𝐷𝑖𝑣 × 𝐸𝑉𝐼).                         (22) 511 
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𝐸𝑉𝐼 × 𝐹𝐷𝑖𝑣 and 𝐹𝐷𝑖𝑣 × 𝐸𝑉𝐼 were interaction terms. The relative contributions of EVI 512 

and FDiv are shown in Fig. S5.  513 

 514 

 515 

Acknowledgements 516 

We thank Chelsea Little for support during fieldwork, Luca Carraro for help extracting 517 

catchment information, and Isabelle Helfenstein and Enrico Bertuzzo for their help with 518 

functional divergence computation. F.A. is funded by the Swiss National Science 519 

Foundation Grants No 31003A_173074 and PP00P3_179089, and F.A, F.M., and M.S. by 520 

the University of Zurich Research Priority Programme on Global Change and Biodiversity 521 

(URPP GCB).  522 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466050doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466050


Zhang et al.         A spatial fingerprint of land-water linkage of biodiversity 

 29 / 32 

 

References 523 

1 Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, 524 
and protection. Science 344, 1246752 (2014). 525 

2 Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. 526 
Managing the middle: A shift in conservation priorities based on the global human 527 
modification gradient. Global Change Biology 25, 811-826 (2019). 528 

3 Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in Biodiversity 529 
Hotspots Ch. 1, 3-22 (Springer, Berlin, Heidelberg, 2011). 530 

4 Hughes, A. C., Orr, M. C., Yang, Q. & Qiao, H. Effectively and accurately mapping global 531 
biodiversity patterns for different regions and taxa. Global Ecology and Biogeography 532 
(2021). 533 

5 Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends in Ecology & 534 
Evolution 30, 673-684 (2015). 535 

6 Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 536 
477, 199-202 (2011). 537 

7 Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical 538 
forest experiment. Science 362, 80-83 (2018). 539 

8 Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Terrestrial land-cover type 540 
richness is positively linked to landscape-level functioning. Nature Communications 11, 541 
154 (2020). 542 

9 Gonzalez, A. et al. Scaling‐up biodiversity‐ecosystem functioning research. Ecology 543 
Letters 23, 757-776 (2020). 544 

10 Thompson, P. L. et al. Scaling up biodiversity–ecosystem functioning relationships: the 545 
role of environmental heterogeneity in space and time. Proceedings of the Royal Society 546 
B 288, 20202779 (2021). 547 

11 Guichard, F. & Marleau, J. Meta-Ecosystem Dynamics.  (Springer, Cham, 2021). 548 

12 Gounand, I., Harvey, E., Little, C. J. & Altermatt, F. Meta-ecosystems 2.0: rooting the 549 
theory into the field. Trends in Ecology & Evolution 33, 36-46 (2018). 550 

13 Gounand, I., Little, C. J., Harvey, E. & Altermatt, F. Cross-ecosystem carbon flows 551 
connecting ecosystems worldwide. Nature Communications 9, 4825 (2018). 552 

14 Grimm, N. B. et al. Merging aquatic and terrestrial perspectives of nutrient 553 
biogeochemistry. Oecologia 137, 485-501 (2003). 554 

15 Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. 555 
Nature 467, 555-561 (2010). 556 

16 Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. 557 
Current Biology 29, R960-R967 (2019). 558 

17 Rodriguez-Iturbe, I. & Rinaldo, A. Fractal River Basins: Chance and Self-Organization.  559 
(Cambridge University Press, Cambridge, 2001). 560 

18 Carraro, L. et al. Generation and application of river network analogues for use in 561 
ecology and evolution. Ecology and Evolution 10, 7537-7550 (2020). 562 

19 Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277-278 (2013). 563 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466050doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466050


Zhang et al.         A spatial fingerprint of land-water linkage of biodiversity 

 30 / 32 

 

20 Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nature 564 
Ecology & Evolution 5, 896-906 (2021). 565 

21 O'Connor, B., Bojinski, S., Röösli, C. & Schaepman, M. E. Monitoring global changes in 566 
biodiversity and climate essential as ecological crisis intensifies. Ecological Informatics 567 
55, 101033 (2020). 568 

22 Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological 569 
and physiological forest traits. Nature Communications 8, 1441 (2017). 570 

23 Zheng, Z. et al. Mapping functional diversity using individual tree-based morphological 571 
and physiological traits in a subtropical forest. Remote Sensing of Environment 252, 572 
112170 (2020). 573 

24 Guillén‐Escribà, C. et al. Remotely sensed between‐individual functional trait variation 574 
in a temperate forest. Ecology and Evolution 11, 10834-10867 (2021). 575 

25 Jetz, W. et al. Monitoring plant functional diversity from space. Nature Plants 2, 16024 576 
(2016). 577 

26 Lodge, D. M. et al. Conservation in a cup of water: estimating biodiversity and 578 
population abundance from environmental DNA. Molecular Ecology 21, 2555-2558 579 
(2012). 580 

27 Thomsen, P. F. & Willerslev, E. Environmental DNA–An emerging tool in conservation for 581 
monitoring past and present biodiversity. Biological Conservation 183, 4-18 (2015). 582 

28 Pawlowski, J., Apothéloz‐Perret‐Gentil, L. & Altermatt, F. Environmental DNA: What's 583 
behind the term? Clarifying the terminology and recommendations for its future use in 584 
biomonitoring. Molecular Ecology 29, 4258-4264 (2020). 585 

29 Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next‐586 
generation biodiversity assessment using DNA metabarcoding. Molecular Ecology 21, 587 
2045-2050 (2012). 588 

30 Cilleros, K. et al. Unlocking biodiversity and conservation studies in high‐diversity 589 
environments using environmental DNA (eDNA): A test with Guianese freshwater fishes. 590 
Molecular Ecology Resources 19, 27-46 (2019). 591 

31 Turak, E. et al. Essential Biodiversity Variables for measuring change in global freshwater 592 
biodiversity. Biological Conservation 213, 272-279 (2017). 593 

32 Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey 594 
animal and plant communities. Molecular Ecology 26, 5872-5895 (2017). 595 

33 Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. 596 
Trends in Ecology & Evolution 29, 358-367 (2014). 597 

34 Djurhuus, A. et al. Environmental DNA reveals seasonal shifts and potential interactions 598 
in a marine community. Nature Communications 11, 254 (2020). 599 

35 Bista, I. et al. Annual time-series analysis of aqueous eDNA reveals ecologically relevant 600 
dynamics of lake ecosystem biodiversity. Nature Communications 8, 14087 (2017). 601 

36 Cantera, I. et al. Optimizing environmental DNA sampling effort for fish inventories in 602 
tropical streams and rivers. Scientific Reports 9, 3085 (2019). 603 

37 Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J.-C. & Altermatt, F. Environmental DNA 604 
reveals that rivers are conveyer belts of biodiversity information. Nature 605 
Communications 7, 12544 (2016). 606 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466050doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466050


Zhang et al.         A spatial fingerprint of land-water linkage of biodiversity 

 31 / 32 

 

38 Deiner, K. & Altermatt, F. Transport distance of invertebrate environmental DNA in a 607 
natural river. PLoS ONE 9, e88786 (2014). 608 

39 Shogren, A. J. et al. Controls on eDNA movement in streams: Transport, Retention, and 609 
Resuspension. Scientific Reports 7, 5065 (2017). 610 

40 Pont, D. et al. Environmental DNA reveals quantitative patterns of fish biodiversity in 611 
large rivers despite its downstream transportation. Scientific Reports 8, 10361 (2018). 612 

41 Carraro, L., Mächler, E., Wüthrich, R. & Altermatt, F. Environmental DNA allows 613 
upscaling spatial patterns of biodiversity in freshwater ecosystems. Nature 614 
Communications 11, 3585 (2020). 615 

42 Shackleton, M., Rees, G. N., Watson, G., Campbell, C. & Nielsen, D. Environmental DNA 616 
reveals landscape mosaic of wetland plant communities. Global Ecology and 617 
Conservation 19, e00689 (2019). 618 

43 Yamasaki, E. et al. Genomics meets remote sensing in global change studies: monitoring 619 
and predicting phenology, evolution and biodiversity. Current Opinion in Environmental 620 
Sustainability 29, 177-186 (2017). 621 

44 Lausch, A. et al. Understanding and assessing vegetation health by in situ species and 622 
remote‐sensing approaches. Methods in Ecology and Evolution 9, 1799-1809 (2018). 623 

45 Lin, M. et al. Landscape analyses using eDNA metabarcoding and Earth observation 624 
predict community biodiversity in California. Ecological Applications 31, e02379 (2021). 625 

46 Bush, A. et al. Connecting Earth observation to high-throughput biodiversity data. 626 
Nature Ecology & Evolution 1, 0176 (2017). 627 

47 Mächler, E. et al. Assessing different components of diversity across a river network 628 
using eDNA. Environmental DNA 1, 290-301 (2019). 629 

48 Mächler, E., Walser, J.-C. & Altermatt, F. Decision-making and best practices for 630 
taxonomy-free environmental DNA metabarcoding in biomonitoring using Hill numbers. 631 
Molecular Ecology 30, 3326-3339 (2021). 632 

49 Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 633 
2427-2439 (2007). 634 

50 Alberdi, A. & Gilbert, M. T. P. A guide to the application of Hill numbers to DNA‐based 635 
diversity analyses. Molecular Ecology Resources 19, 804-817 (2019). 636 

51 Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 637 
427-432 (1973). 638 

52 Helfenstein, I. Functional Diversity from Physiological Forest Traits Across Different 639 
Spatial Scales and Optical Sensors: Attempts of Mapping Biodiversity from Space Master 640 
thesis, University of Zurich, (2018). 641 

53 Drusch, M. et al. Sentinel-2: ESA's optical high-resolution mission for GMES operational 642 
services. Remote Sensing of Environment 120, 25-36 (2012). 643 

54 Fahey, R. T. et al. Defining a spectrum of integrative trait‐based vegetation canopy 644 
structural types. Ecology Letters 22, 2049-2059 (2019). 645 

55 Kraft, N. J. et al. Disentangling the drivers of β diversity along latitudinal and elevational 646 
gradients. Science 333, 1755-1758 (2011). 647 

56 Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial 648 
assemblages. Science 366, 339-345 (2019). 649 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466050doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466050


Zhang et al.         A spatial fingerprint of land-water linkage of biodiversity 

 32 / 32 

 

57 Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in 650 
Europe: Gap-analysis and recommendations for future work. Science of the Total 651 
Environment 678, 499-524 (2019). 652 

58 Jiang, Z., Huete, A. R., Didan, K. & Miura, T. Development of a two-band enhanced 653 
vegetation index without a blue band. Remote Sensing of Environment 112, 3833-3845 654 
(2008). 655 

59 Skidmore, A. K. et al. Agree on biodiversity metrics to track from space: Ecologists and 656 
space agencies must forge a global monitoring strategy. Nature 523, 403-406 (2015). 657 

60 Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species 658 
distribution and abundance at a global scale. Biological Reviews 93, 600-625 (2018). 659 

61 Kelly, R. P. et al. Harnessing DNA to improve environmental management. Science 344, 660 
1455-1456 (2014). 661 

62 Valentini, A. et al. Next‐generation monitoring of aquatic biodiversity using 662 
environmental DNA metabarcoding. Molecular Ecology 25, 929-942 (2016). 663 

63 Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. 664 
Nature Ecology & Evolution 5, 46-54 (2021). 665 

64 Bohan, D. A. et al. Next-generation global biomonitoring: large-scale, automated 666 
reconstruction of ecological networks. Trends in Ecology & Evolution 32, 477-487 (2017). 667 

65 De Souza, L. S., Godwin, J. C., Renshaw, M. A. & Larson, E. Environmental DNA (eDNA) 668 
detection probability is influenced by seasonal activity of organisms. PLoS ONE 11, 669 
e0165273 (2016). 670 

66 Bolton, D. K. et al. Continental-scale land surface phenology from harmonized Landsat 8 671 
and Sentinel-2 imagery. Remote Sensing of Environment 240, 111685 (2020). 672 

67 Leray, M. et al. A new versatile primer set targeting a short fragment of the 673 
mitochondrial COI region for metabarcoding metazoan diversity: application for 674 
characterizing coral reef fish gut contents. Frontiers in Zoology 10, 34 (2013). 675 

68 Andrews, S. FastQC: a quality control tool for high throughput sequence data.     676 
Babraham Institute. Available online at  677 
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010). 678 

69 Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. 679 
Remote Sensing of Environment 202, 18-27 (2017). 680 

70 Sims, D. A. et al. On the use of MODIS EVI to assess gross primary productivity of North 681 
American ecosystems. Journal of Geophysical Research: Biogeosciences 111, G04015 682 
(2006). 683 

 684 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466050doi: bioRxiv preprint 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1101/2021.10.27.466050

