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Abstract 

 

Background: The majority of high-throughput single-cell molecular profiling methods quantify 

RNA expression; however, recent multimodal profiling methods add simultaneous measurement 

of genomic, proteomic, epigenetic, and/or spatial information on the same cells. The development 

of new statistical and computational methods in Bioconductor for such data will be facilitated by 

easy availability of landmark datasets using standard data classes. 

Results: We collected, processed, and packaged publicly available landmark datasets from 

important single-cell multimodal protocols, including CITE-Seq, ECCITE-Seq, SCoPE2, scNMT, 

10X Multiome, seqFISH, and G&T. We integrate data modalities via the MultiAssayExperiment 

Bioconductor class, document and re-distribute datasets as the SingleCellMultiModal package in 

Bioconductor’s Cloud-based ExperimentHub.  The result is single-command actualization of 

landmark datasets from seven single-cell multimodal data generation technologies, without need 

for further data processing or wrangling in order to analyze and develop methods within 

Bioconductor’s ecosystem of hundreds of packages for single-cell and multimodal data.   

Conclusions: We provide two examples of integrative analyses that are greatly simplified by 

SingleCellMultiModal. The package will facilitate development of bioinformatic and statistical 

methods in Bioconductor to meet the challenges of integrating molecular layers and analyzing 

phenotypic outputs including cell differentiation, activity, and disease. 

 

Keywords: Single cell multimodal, Bioconductor, Data analysis, Genomics, Transcriptomics, 

Proteomics, spatial transcriptomics, bioinformatics 
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Introduction 

Understanding the quantitative relationship between molecules and physiology has 

motivated the development of quantitative profiling techniques, especially for single-cell 

sequencing [1]. Single-cell multimodal omics technologies (Nature Method of the Year 2019 [2]) 

couple single-cell RNA sequencing with other molecular profiles such as DNA sequences, 

methylation, chromatin accessibility, cell surface proteins, and spatial information, simultaneously 

in the same cell. Integrative analysis of multiple molecular measurements from the same cell has 

enabled, for example, discovery of rare cell types by defining subpopulations based on surface 

markers with CITE-Seq [3] and ECCITE-Seq [4] (Cellular Indexing of Transcriptomes and 

Epitopes by sequencing, Expanded CRISPR CITE-Seq), of epigenetic regulation and cell 

differentiation lineage with scNMT-seq [5] (single-cell nucleosome, methylation, and 

transcriptome sequencing), a high resolution commercial version of single cell chromatin 

accessibility with 10X Multiomics [20], understanding of spatial patterns of  gene expression with 

seq-FISH [6], and correlation of genotype-phenotype in healthy and disease states with G&T-seq 

[7] (parallel Genome and Transcriptome sequencing). Other single-cell multimodal datasets take 

measurements from separate cells due to the technical constraints, like mass-spectrometry based 

proteomic methods including SCoPE2 [8] (single-cell protein analysis by mass spectrometry). 

Capturing and integrating an array of different molecular signals at the single-cell level 

poses new analytical challenges.  Single-cell multimodal experiments generate multidimensional 

and high volume datasets, requiring distinct informatic and statistical methods to store, process 

and analyze data. Integrating different molecular layers to provide biologically meaningful insight 

is an active area of development in R/Bioconductor due to the availability of data containers and 

analysis toolkits for single-cell analysis. R/Bioconductor is an open development and open source 

platform for analyzing biomedical and genomic data with dedicated data structures such as the 
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SingleCellExperiment class [9] for single-cell data and the MultiAssayExperiment class [10] for 

multi-omics data. Both are designed based on the SummarizedExperiment class [11], the central 

Bioconductor data structure for storing, manipulating, and analyzing high-throughput quantitative 

omics data. Relative to analysis platforms within and outside of the R programming language (e.g. 

GATK, Seurat [12], mixOmics [13], MOFA+ [14], CiteFuse package [15], ScanPy for CITE-Seq 

[16], Conos for SCoPE2 [17]), Bioconductor provides the broadest range of interoperable data 

structures and packages for statistical analysis and visualization of single-cell multimodal data. 

Easy availability of publicly available experimental data using standardized data classes 

has long played an important role in the development of interoperable software packages for the 

analysis of data from new technologies, helping to coalesce development efforts around shared 

datasets and commonly used data classes such as ExpressionSet [18] and then 

(Ranged)SummarizedExperiment [19] and SingleCellExperiment [9]. We therefore introduce a 

suite of single-cell multimodal landmark datasets for benchmarking and testing multimodal 

analysis methods via the Bioconductor ExperimentHub package SingleCellMultiModal (Figure 

1A). The scope of this package is to provide efficient access to a selection of curated, pre-

integrated, publicly available landmark datasets for methods development and benchmarking 

within the Bioconductor ecosystem. Some such methods and code for analysis workflows are 

reviewed by Lê Cao et al. [20]. Users can obtain integrative representations of multiple modalities 

as a MultiAssayExperiment, a common core Bioconductor data structure relied on by dozens of 

multimodal data analysis packages . SingleCellMultiModal uses Bioconductor’s ExperimentHub 

package and service to host, coordinate, and manage the data from the cloud. We plan to update 

the package as new datasets and technologies become available and we welcome community 

contributions. This manuscript serves as a review of essential aspects of these technologies 

suitable for developers of bioinformatic and statistical software, and as a description of the 

SingleCellMultiModal data package. 
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Summary of landmark datasets in SingleCellMultiModal 

To evaluate and design new statistical methods that accompany experimental single-cell 

multimodal data, it is important to establish landmark datasets. The goal of this section is to 

provide an overview of the landmark datasets currently in SingleCellMultiModal as well as to 

introduce the experimental and technological context for each experimental assay (Table 1). For 

more information concerning the details of the technologies, consult [21]. We briefly describe each 

landmark experiment including context, major findings from the publication, and challenges in its 

analysis, then summarize its accompanying dataset in SingleCellMultiModal including number of 

cells and features (Figure 1B).  
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MODALITIES 

EXPERIMENTAL 
ASSAY 

CELL / 
PROCESS 
TYPE DATATYPE NAME CITATION 

RNA + DNA G&T-seq Mouse 
epithelial, 
human breast 
tumor  

mouse_embryo_8_cell [7] 

RNA + Protein CITE-Seq Cord blood 
mononuclear  

cord_blood [3] 

ECCITE-Seq Peripheral blood 
mononuclear, 
human T-cell 
lymphoma, 
mouse fibroblast 

peripheral_blood [4] 

RNA + 
Epigenetic 

scNMT-seq Mouse 
gastrulation 

mouse_gastrulation [22] 

10X Multiome 
scATAC-seq + 
Single-cell RNA-
seq 

Peripheral blood 
mononuclear  

pbmc_10x [23] 

RNA + Spatial seqFISH Mouse cortical 
neuronal 

mouse_visual_cortex [24], [21] 

RNA + 
Proteomic 

SCoPE2 Human 
monocyte and 
PMA-induced 
macrophage 

macrophage_differentiation [8] 

Table 1: Single-cell multimodal datasets included SingleCellMultiModal package. Modalities 
refer to the molecular feature measured in the experimental assay. Cell/process type provides 
information on the type of material or development event data was collected. Datatype name 
column refers to the dataset name in SingleCellMultiModal 
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Figure 1: Representation of modalities included in the SingleCellMultiModal package. (A) 
a Venn diagram representation of the modalities collected by each different technology, including: 
RNA (center), surface proteins (top left), spatial information (bottom left), methylation and open 
chromatin (bottom right), and peptides (top right). (B) The number of features and cells collected 
for each data modality by each technology. 

 

RNA and Protein: antibody tagged cell surface markers 

Purpose: Traditionally, protein expression in cell populations are measured using flow cytometry. 

With the advent of single-cell multimodal methods cell surface proteins are measured with higher 

resolution with simultaneous measurements of mRNA abundance, which enhances the ability to 

identify new cell subpopulations in heterogeneous samples. Cellular Indexing of Transcriptomes 

and Epitopes by sequencing (CITE-Seq) measures protein cell surface markers and gene 

expression in the same cell. An extension of CITE-Seq is ECCITE-Seq, Expanded CRISPR-

compatible CITE-Seq, which allows for the capture of sgRNA from CRISPR mediated screens. 

Collectively, these technologies provide a high-throughput method for single-cell 

immunophenotyping and transcriptome analysis.  

Technology: CITE-Seq relies on antibodies conjugated to DNA barcodes to infer protein levels, 

and in tandem count DNA handles from PCR amplification of mRNA transcripts. Inside the droplet 

contains mRNA transcripts, proteins conjugated with antibody derived tags (ADTs), beads 
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decorated with oligo-dT, reverse transcriptase and primers for cDNA amplification. The use of 

DNA barcodes is a departure from traditional fluorescence labels, which are limited in number 

because of the overlaps in spectral detection, excitation and emission frequencies [25].  

A variation of CITE-Seq is ECCITE-Seq that can track single-cell CRISPR screens using 

sgRNA sequencing capture [4]. The CRISPR-Cas9 system is used to generate targeted gene 

knockout/mutants by using two components: sgRNA (single guide RNA for gene of interest) and 

Cas9 (endonuclease for cleaving double DNA strand breaks). sgRNA are composed of custom 

crRNA 17-22nt with a scaffold tracrRNA, which means the sgRNA are composed of two RNA 

pieces: one is customizable and the other is not. The sgRNA targets the gene of interest and 

orchestrates the Cas9 enzyme to gene location to insert a variety of mutations or full gene knock-

outs. The CRISPR-Cas9 system introduces targeted gene mutations with greater ease at the 

bench, plus it is easier to scale up to many more experimental samples than previous approaches.  

Antibody oligo counts are listed in the ADT and HTO (hashtag oligo) tables and sgRNAs 

counts in the GDO tables. After cell perturbations via CRISPR screens, cells are collected and 

prepared with 10X Genomics V(D)J solution which incorporates Single-cell RNA-seq with 

additional profiling of protein surface markers and sgRNAs (when applicable). The molecular 

contents, mRNA and DNA-tagged proteins, will hybridize to the decorated beads. The benefit of 

adding barcoding to cells is that it allows for tracking of doublets (two cells in one droplet). 

Landmark data: There are several experimental datasets derived from the original CITE-Seq 

landmark paper. Among them we selected the cord blood dataset where the cells have been 

incubated with CITE-seq antibody conjugates and fluorophore-conjugated antibodies. This 

cord_blood dataset has two different assays. The scADT assay is a matrix indicating the 13 

proteins surface abundance for each of the 8617 cells, while the scRNA assay is a matrix of 20400 

human genes and 15880 mouse genes where each entry contains the expression abundance in 

each of the 8617 cells (Table 2). 
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Dataset 
Identifier 

Assay  
Type 

Modes Species Data 
Structure 

Version # features  # cells 
 

Cord blood RNA-seq Transcripts Human matrix 1.0.0 36280 8617 

ADT Proteins Human matrix 1.0.0 13 8617 

Table 2: CITE-Seq dataset description, with assay types, molecular modes, number of 
specimens, number of features and number of cells. ADTs,  antibody derived tags 
 

The package also includes an ECCITE-Seq dataset aimed at characterizing immune 

subpopulation cell types after an experimental perturbation. The peripheral_blood dataset is 

organized in two different conditions: the control (CTRL) and the cutaneous T-cell lymphoma 

(CTCL). For both conditions the ECCITE-Seq protocol has been performed to produce transcripts 

(RNA-seq), proteins (ADT) and cell tracking (HTO) abundance. All these modalities are collected 

as separated assays into the MultiAssayExperiment, where a sparse matrix is used to store the 

RNA-seq counts. The modalities are collected from the same cells, but not all the cells are entirely 

profiled by the same modalities. Of the total 36248 cells, 4190 cells from the CTCL and 4292 cells 

from the CTRL are matched with all modalities (Figure 2). sgRNA data is stored in long format 

providing access through the metadata data structure of the MultiAssayExperiment. The CITE-

Seq dataset is accessible via the SingleCellMultiModal package by using the 

CITEseq(DataType="cord_blood") function call, while for the ECCITE-Seq data  it’s sufficient 

to change the identifier as follow CITEseq(DataType="peripheral_blood"). Both function calls 

return a MultiAssayExperiment object with matrices or sparse matrices as assays (Table 3). 
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Dataset 
Identifier 

Assay 
Type 

Modes Species Data 
Structure 
 

Condition # features  # cells 
 

Peripheral 
blood 

RNA-seq Transcripts Human dgCMatrix CTCL 33538 5399 

CTRL 33538 4849 

ADT Proteins Human dgCMatrix CTCL 52 6500 

CTRL 52 6500 

HTO Cell tracking Human dgCMatrix CTCL 7 6500 

CTRL 7 6500 

sgRNAs stored in long format # rows # cols 

sgRNAs CRISPR 
perturbation 

Human data.frame CTCL 
TCRab 

9626 18 

CTCL 
TCRgd 

2430 18 

CTRL 
TCRab 

8359 18 

CTRL 
TCRgd 

3099 18 

Table 3: ECCITE-Seq dataset description: assay types, molecular modes, number of 
specimens, number of features and number of cells. ADTs,  antibody derived tags; HTO, 
Hashtagged oligos;  sgRNAs, CRISPR V(D)J’s.  
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Figure 2: Upset plot [26] of the overlap of modalities on the same cells in the control sample 

of the ECCITE-Seq “peripheral blood” dataset. 8482 cells are assayed in all three modes 

(ADT, HTO, RNA), 3105 cells are assayed by HTO and ADT only, etc. RNA data are available for 

~10248 cells, whereas HTO and ADT data are each individually available for ~13000 cells across 

both conditions. This plot is produced by the upsetSamples function of the MultiAssayExperiment 

package, and can be applied directly to all datasets produced by SingleCellMultiModal. 

RNA and Protein: mass spectrometry-based  

Purpose and goals: CITE-Seq offers valuable information about the expression of surface 

proteins. However, the acquisition is limited to tens of targets as the identification relies on 

antibodies. Furthermore, it cannot provide information on intracellular markers. Mass 

spectrometry (MS)-based single-cell proteomics (SCP) provides a means to overcome these 

limitations and to perform unbiased single-cell profiling of the soluble proteome. MS-SCP is 
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emerging thanks to recent advances in sample preparation, liquid chromatography (LC) and MS 

acquisition. The technology is in its infancy and protocols still need to be adapted in order to 

acquire multiple multimodalities from a single-cell. In this section the multimodality is achieved by 

subjecting similar samples to MS-SCP and Single-cell RNA-seq.  

Technology: The current state-of-the-art protocol for performing MS-SCP is the SCoPE2 protocol 

[8]. Briefly, single-cells are lysed, proteins are extracted and digested into peptides. The peptides 

are then labeled using tandem mass tags (TMT) in order to multiplex up to 16 samples per run 

(Figure 3A). The pooled peptides are then analysed by LC-MS/MS. LC separates the peptides 

based on their mass and affinity for the chromatographic column. The peptides are immediately 

ionized as they come out (Figure 3B) and are sent for two rounds of MS (MS/MS, Figure 3C). The 

first round isolates the ions based on their mass to charge (m/z) value. The isolated ions are 

fragmented and sent to the second round of MS that records the m/z and intensity of each 

fragment. The pattern of intensities over m/z value generated by an ion is called an MS2 spectrum. 

The MS2 spectra are then computationally matched to a database to identify the original peptide 

sequence from which they originated. The spectra that were successfully associated to a peptide 

sequence are called peptide to spectrum matches (PSMs, Figure 3D). Next to that, a specific 

range of the MS spectrum holds the TMT label information where each label generates a fragment 

with an expected m/z value. The intensity of each label peak is proportional to the peptide 

expression in the corresponding single-cell and this allows for peptide quantification (Figure 3D). 

Finally, the quantified PSM data go through a data processing pipeline that aims to reconstruct 

the protein data that can be used for downstream analyses (Figure 3E). 
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Figure 3: SCoPE2 workflow. The workflow consists of 4 main steps. (A) Sample preparation 

extracts and labels peptides from single-cells. (B) LC separates the peptides based on their mass 

and affinity for the column. Note that the TMT tag does not influence those properties. Peptides 

that are eluting are ionised thanks to an electrospray. (C) MS/MS performs an m/z scan of the 

incoming ions to select the most abundant ones that are then fragmented separately.  A second 

round of MS acquires the spectrum generated by the ion fragments. (D) Each spectrum is then 

computationally processed to obtain the cell-specific expression values and the peptide identity. 

(E) The data processing pipeline reconstructs the protein data from the quantified PSMs. 

Abbreviations: TMT: tandem mass tags; LC: liquid chromatography; MS: mass spectrometry; 

MS/MS: tandem MS; m/z: mass over charge; PSM: peptide to spectrum match.  
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The major challenge in MS-SCP is to recover sufficient peptide material for accurate 

peptide identification and quantification. SCoPE2 solves this issue by optimizing the sample 

preparation step to limit samples loss, by providing analytical tools to optimize the MS/MS 

settings, and most importantly by introducing a carrier sample into the pool of multiplexed 

samples. The carrier is a sample that contains hundreds of cells instead of a single-cell and allows 

to boost the peptide identification rate by increasing the amount of peptide material delivered to 

the MS instrument.  

Parallel to SCoPE2, other groups have developed a label-free MS-SCP, where each LC-

MS/MS run contains unlabelled peptides from a single cell [27]. Although it allows for more 

accurate quantifications, it suffers from low throughput. The current methodological advances in 

MS-SCP have extensively been reviewed elsewhere [28].  

Landmark data: The SCoPE2 dataset we provide in this work was retrieved from the 

supplementary information of the landmark paper [8]. This is a milestone dataset as it is the first 

publication where over a thousand cells are measured by MS-SCP. The research question is to 

understand whether a homogeneous monocyte population (U-937 cell line) could differentiate 

upon PMA treatment into a heterogeneous macrophage population, namely whether M1 and M2 

macrophage profiles could be retrieved in the absence of differentiation cytokines. Different 

replicates of monocyte and macrophage samples were prepared and analyzed using either MS-

SCP or Single-cell RNA-seq. The MS-SCP data was acquired in 177 batches with on average 9 

single-cells per batch. The Single-cell RNA-seq data was acquired in 2 replicates with on average 

10,000 single-cells per acquisition using the 10x Genomics Chromium platform. Cell type 

annotations are only available for the MS-SCP data. Note also that MS-SCP data provides 

expression information at protein level meaning that the peptide data has already been 

processed. The processing includes filtering high quality features, filtering high quality cells, log-

transformation, normalization, aggregation from peptides to proteins, imputation and batch 

correction (Figure 3E). More details on the protein data processing can be found in the original 
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paper or in the paper that reproduced that analysis [29]. Count tables were provided for the Single-

cell RNA-seq dataset with no additional processing.  

The data can be accessed in the SingleCellMultiModal package by calling 

SCoPE2("macrophage_differentiation") (Table 4).  Relevant cell metadata is provided 

within the MultiAssayExperiment object. The MS-SCP dataset contains expression values for 

3,042 proteins in 1,490 cells. The Single-cell RNA-seq contains expression values for 32,738 

genes (out of which 10,149 are zero) for 20,274 cells.  

Dataset 
Identifier 

Assay 
Type 

Modes Species Data 
Structure 

Version # 
features  

# cells 
 

macrophage 
_differentiation 

LC-MS/MS Proteins Human matrix 1.0.0 3,042 1,490 

RNA-seq Transcripts Human HDF5 1.0.0 32,7381 20,274 

Table 4: SCoPE2 dataset descriptions, with assay types, molecular modes, specimens, dataset 
version provided, number of features and number of cells 
 

Single-cell nucleosome, methylation and transcription sequencing (scNMT-seq) 

Purpose: The profiling of the epigenome at single-cell resolution has received increasing interest, 

as it provides valuable insights into the regulatory landscape of the genome [30,31]. Although the 

term epigenome comprises multiple molecular layers, the profiling of chromatin accessibility and 

DNA methylation have received the most attention to date. 

Technology: DNA methylation is generally measured using single-cell bisulfite sequencing 

(scBS-seq) [32]. The underlying principle of scBS-seq is the treatment of the DNA with sodium 

bisulfite before DNA sequencing, which converts unmethylated cytosine (C) residues to uracil 

(and after retro-PCR amplification, to thymine (T)), leaving 5-methylcytosine residues intact. The 

resulting C→T transitions can then be detected by DNA sequencing. Further methodological 

 
1 10,149 out of the 32,738 features are zero 
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innovations enabled DNA methylation and RNA expression to be profiled from the same cell, 

demonstrated by the scM&T-seq assay [33].  

Chromatin accessibility was traditionally profiled in bulk samples using DNase sequencing 

(DNase-seq) [34]. However, in recent years, transposase-accessible chromatin followed by 

sequencing (ATAC-seq) has displaced DNase-seq as the de facto method for profiling chromatin 

accessibility due to its fast and sensitive protocol, most notably in single-cell genomics [35]. 

Briefly, in ATAC-seq, cells are incubated with a hyperactive mutant Tn5 transposase, an enzyme 

that inserts artificial sequencing adapters into nucleosome-free regions. Subsequently, the 

adaptors are purified, PCR-amplified and sequenced. Notably, single-cell ATAC-seq has also 

been combined with Single-cell RNA-seq to simultaneously survey RNA expression and 

chromatin accessibility from the same cell, as demonstrated by SNARE-seq [36], SHARE-seq 

[37]  and the recently commercialised Multiome Kit from 10x Genomics [23]. Finally, some assays 

have been devised to capture at least three molecular layers from the same cell, albeit at a lower 

throughput than SNARE-seq or SHARE-seq. An example is scNMT-seq (single-cell nucleosome 

methylation and transcriptome sequencing) [5]. scNMT captures a snapshot of RNA expression, 

DNA methylation and chromatin accessibility in single-cells by combining two previous multi-

modal protocols: scM&T-seq [33] and Nucleosome Occupancy and Methylation sequencing 

(NOMe-seq) [38] 

In the first step (the NOMe-seq step), cells are sorted into individual wells and incubated 

with a GpC methyltransferase. This enzyme labels accessible (or nucleosome depleted) GpC 

sites via DNA methylation. In mammalian genomes, cytosine residues in GpC dinucleotides are 

methylated at a very low rate. Hence, after the GpC methyltransferase treatment, GpC 

methylation marks can be interpreted as direct readouts for chromatin accessibility, as opposed 

to the CpG methylation readouts, which can be interpreted as endogenous DNA methylation. In 

a second step (the scM&T-seq step), the DNA molecules are separated from the mRNA using 
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oligo-dT probes pre-annealed to magnetic beads. Subsequently, the DNA fraction undergoes 

scBS, whereas the RNA fraction undergoes Single-cell RNA-seq. 

Landmark data: The scNMT landmark paper reported simultaneous measurements of chromatin 

accessibility, DNA methylation, and RNA expression at single-cell resolution during early 

embryonic development, spanning exit from pluripotency to primary germ layer specification [22]. 

This dataset represents the first multi-omics roadmap of mouse gastrulation at single-cell 

resolution. Using multi-omic integration methods, the authors detected genomic associations 

between distal regulatory regions and transcription activity, revealing novel insights into the role 

of the epigenome in regulating this key developmental process. 

One of the challenges of this dataset is the complex missing value structure. Whereas 

RNA expression is profiled for most cells (N=2480), DNA methylation and chromatin accessibility 

is only profiled for subsets of cells (N=986 and N=1105, respectively). This poses important 

challenges to some of the conventional statistical methods that do not handle missing information.  

The output of the epigenetic layers from scNMT-seq is a binary methylation state for each 

observed CpG (endogenous DNA methylation) and GpC (a proxy for chromatin accessibility). 

However, instead of working at the single nucleotide level, epigenetic measurements are typically 

quantified over genomic features (i.e. promoters, enhancers, etc.). This is done assuming a 

binomial model for each cell and feature, where the number of successes is the number of 

methylated CpGs (or GpCs) and the number of trials is the total number of CpGs (or GpCs) that 

are observed. Here we provide DNA methylation and chromatin accessibility estimates quantified 

over CpG islands, gene promoters, gene bodies and DNAse hypersensitive sites (defined in 

Embryonic Stem Cells). 

The pre-integrated scNMT dataset is accessed from the SingleCellMultiModal package by 

calling e.g. scNMT("mouse_gastrulation", version = "1.0.0") (Table 5).  Relevant cell 

metadata is provided within the MultiAssayExperiment object. The overall dataset is 277MB. 
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Dataset 
Identifier 

Assay type Modes Data 
structure 

# features  # cells 
 

Mouse 
Gastrulation 

RNA-seq Transcripts Matrix 18345 2480 

DNA 
Methylation 

CpG islands Matrix 14080 986 

promoters Matrix 17179 986 

Gene bodies Matrix 17559 986 

DHS Matrix 6673 986 

Chromatin 
accessibility 

CpG islands Matrix 14824 1101 

promoters Matrix 18037 1103 

Gene bodies Matrix 17924 1105 

DHS Matrix 20082 1094 

Table 5: scNMT-seq dataset description, with of assay types, molecular modes, number of 
specimens, number of features and number of cells 

 

Chromium Single-cell Multiome ATAC and gene expression 

Purpose: A new commercial platform introduced in late 2020 by 10X Genomics, the Chromium 

Single Cell Multiome ATAC and gene expression (10x Multiome), provides simultaneous gene 

expression and open chromatin measurements from the same cell at high throughput. This 

technology is well suited to identify gene regulatory networks by linking open chromatin regions 

with changes in gene expression, a task which is harder to perform when the two modalities are 

derived from separate groups of cells. However, very few datasets have been published to date 

using the 10x Multiome technology, and so how much information can be obtained by 

simultaneously profiling both modalities in the same cell remains an open question. 
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Technology: First, cells are purified and single nuclei are isolated, chromosomes are 

transpositioned. Next, ATAC and mRNA sequencing libraries are prepared with 10X Genomics 

Chromium microfluidic controller device where nuclei are partitioned and embedded in a droplet 

with a decorated gel bead with DNA 16nt 10X barcode that allows for pairing ATAC and mRNA 

signals to the same nuclei. mRNA is tagged with an 12nt Unique Molecular Identifier sequence 

(UMI), and a poly(dT)VN for poly-adenylated 3'ends. ATAC fragments are tagged with a Illumina 

primer sequence and an 8nt space sequence. All barcoded products are amplified in two rounds 

of PCR and then processed for sequencing. According to the Chromium Single-Cell Multiome 

ATAC and gene expression assay product information, it has a flexible throughput of 500 - 10,000 

nuclei per channel and up to 80,000 per run with a 65% recovery rate and low multiplet rate of 

<1% per 1000 cells (10Xgenomics.com). 

Landmark data: 10X genomics has released a dataset of ~10k peripheral blood mononuclear 

cells (PBMCs) from a human healthy donor. Here we provide the RNA expression matrix and the 

binary matrix of ATAC fragments for each cell, quantified over a set of pre-computed peaks (Table 

6). To access data in the SingleCellMultiModal package, call the scMultiome("pbmc_10x") 

command. Relevant cell metadata is provided within the MultiAssayExperiment object. The 

overall dataset is 1.1 GB. 

 

Dataset 
Identifier 

Assay type Modes Data structure # features  # cells 
 

Human 
PBMCs 

RNA-seq Gene 
expression 

SingleCellExperiment 36,549 10,032 

Chromatin 
accessibility 

Fragments 
over peaks 

SingleCellExperiment 108,344 10,032 

Table 6: 10X Multiome dataset descriptions, with assay types, molecular modes, number of 
features and number of cells 
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RNA and Spatial sequencing assays 

Purpose and goals:  The power of microscopy to resolve spatial information has been paired 

with single-cell sequencing to measure transcriptomic activity. These microscopy-based 

sequencing technologies capture a cell population’s heterogeneous gene expression typically lost 

in bulk assays. Technologies like seqFISH(+) (sequential Fluorescence In Situ Hybridization), 

fluorescence in situ hybridization sequencing [6], Multiplexed error-robust fluorescence in situ 

hybridization (MERFISH) [39], Slide-seq [40,41] combine sequential barcoding with in situ 

molecular fluorescence probing, allowing the identification from tens to thousands of mRNAs 

transcripts while preserving spatial coordinates at micrometer resolution. We refer to this family 

of technologies as molecular-based spatial transcriptomics. Another family of spatial omics 

technologies can be described as spot-based; it includes  the 10x Visium Spatial Gene Expression 

and Slide-seq [40]. In this family, the spatial coordinates are typically associated with barcoded 

spot-like identities, where the transcripts are amplified and sequenced. Currently, our package 

does not include any spot-based spatial transcriptomics dataset. The TENxVisiumData package 

[42] (available at https://github.com/HelenaLC/TENxVisiumData) contains several such datasets. 

See [43] for a comprehensive review of spatial transcriptomics technologies. 

Technology: The seqFISH technology makes use of temporal barcodes to be read in multiple 

rounds of hybridization where mRNAs are labeled with fluorescent probes. During the 

hybridization rounds, the fluorescent probes are hybridized with the transcripts to be imaged with 

microscopy. Then they are stripped to be re-used and coupled with different fluorophores, during 

further rounds. In this case, the transcript abundance is given by the number of colocalizing spots 

per each transcript. The main differences between the technologies are due to the barcoding of 

RNAs. In seqFISH they are detected as a color sequence while in MERFISH the barcodes are 

identified as binary strings allowing error handling but requiring longer transcripts and more 

rounds of hybridizations [44]. 
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Landmark data: The provided seqFISH dataset is designed on a mouse visual cortex tissue and 

can be retrieved in two different versions. Both versions include Single-cell RNA-seq and seqFISH 

data. Single-cell RNA-seq data in version 1.0.0 are part of the original paper [24] of 24057 genes 

in 1809 cells, while version 2.0.0 is a pre-processed adaptation of version 1.0.0 [21] where the 

authors analyzed it in order to provide the 113 genes in common with seqFISH data in 1723 cells. 

The provided seqFISH data are the same for both versions as part of their original paper [45,46] 

made of 1597 cells and 113 genes. The dataset is accessible via the SingleCellMultiModal 

Bioconductor package by using the seqFISH(DataType="mouse_visual_cortex", version = 

"1.0.0") function call, which returns a MultiAssayExperiment object with a SpatialExperiment 

object for the seqFISH data and a SingleCellExperiment object for the Single-cell RNA-seq data 

(Table 7). 

Dataset 
Identifier 

Assay 
Type 

Modes Species 
 

Data Structure Versio
n 

# 
features  

# cells 
 

Mouse 
visual 
cortex 

Single-cell 
RNA-seq 

Transcripts Mouse SingleCellExpe
riment 

1.0.0 24057 1809 

2.0.0 113 1723 

seqFISH Spatial 
Transcripto
mics 

Mouse 
 

SpatialExperim
ent 

1.0.0/
2.0.0 

113 1597 

Table 7: seqFISH dataset descriptions, with assay types, molecular modes, specimens, dataset 
version provided, number of features and number of cells 

RNA and DNA sequencing assays 

Purpose and goals: Parallel genome and transcriptome sequencing (G&T-seq) of single-cells [7] 

opens new avenues for measuring transcriptional responses to genetic and genomic variation 

resulting from different allele frequencies, genetic mosaicism [47], single nucleotide variants 

(SNVs), DNA copy-number variants (CNVs), and structural variants (SVs). Although current 

experimental protocols are low-throughput with respect to the number of cells, simultaneous DNA 
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and RNA sequencing of single-cells resolves the problem of how to associate cells across each 

modality from independently sampled single-cell measurements [48]. 

Technology: Following cell isolation and lysis, G&T-seq measures DNA and RNA levels of the 

same cell by physically separating polyadenylated RNA from genomic DNA using a biotinylated 

oligo-dT primer [49]. This is followed by separate whole-genome and whole-transcriptome 

amplification. Whole-genome amplification is carried out via multiple displacement amplification 

(MDA) or displacement pre-amplification and PCR (DA-PCR) for DNA sequencing, providing 

targeted sequencing reads or genome-wide copy number estimates. Parallel Smart-seq2 whole-

transcriptome amplification is used for Illumina or PacBio cDNA sequencing, providing gene 

expression levels based on standard computational RNA-seq quantification pipelines. While 

pioneering technologies such as G&T-seq [7] and DR-seq [50] sequence both the DNA and RNA 

from single-cells, they currently measure only few cells (50-200 cells [51]) compared to assays 

that sequence DNA or RNA alone (1,000 - 10,000 cells [51]) such as Direct Library Preparation 

[52] or 10x Genomics Single-cell RNA-seq [53].  

Landmark data: G&T-seq has been applied by Macaulay et al. [7] for parallel analysis of genomes 

and transcriptomes of (i) 130 individual cells from breast cancer line HCC38 and B lymphoblastoid 

line HCC38-BL, and (ii) 112 single cells from a mouse embryo at the eight-cell stage. Publicly 

available and included in the SingleCellMultiModal package is the mouse embryo dataset, 

assaying blastomeres of seven eight-cell cleavage-stage mouse embryos, five of which were 

treated with reversine at the four-cell stage of in vitro culture to induce chromosome mis-

segregation.  The dataset is stored as a MultiAssayExperiment [10] consisting of (i) a 

SingleCellExperiment [9] storing the single-cell RNA-seq read counts, and (ii) a 

RaggedExperiment [54] storing integer copy numbers as previously described [55] (Table 8). 

Although assaying only a relatively small number of cells, the dataset can serve as a prototype 

for benchmarking single-cell eQTL integration of DNA copy number and gene expression levels, 
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given that Macaulay et al. [7] reported copy gains or losses with concomitant increases and 

decreases in gene expression levels.    

Dataset 
Identifier 

Assay 
Type 

Mode Species Data 
Structure 

Version # features  # cells 
 

E-ERAD-381 

 

RNA-seq mRNA 
expression 

Mouse SingleCell
Experime
nt 

1.0.0 23363 

 

112 

DNA-seq Copy number Mouse RaggedEx
periment 

1.0.0 2366 112 

Table 8: G&T-seq dataset description, with  assay types, molecular modes, number of 
specimens, number of features and number of cells 
 

Integrative analysis across modalities using data from SingleCellMultiModal  

 
Existing methods of integrative analysis of single-cell multimodal data have been recently 

reviewed [20]. Very briefly, some of the most popular current implementations are 1) the Seurat 

V4 R package which aims at vertical integration across several modal data types [56], 2) 

mixOmics [13] provides an extensive framework for data integration at molecular (P-integration, 

MINT [57]) and sample levels (N-integration, DIABLO [58]), and 3) Multi-Omics Factor Analysis, 

MOFA+ [14], a generalisation of Principal Components Analysis for inferring low-dimensional 

representation of multimodal data. Datasets provided by SingleCellMultiModal can be readily 

reshaped as input to any of these packages. We provide novel examples of such integrative 

analysis for exploratory visualization using SingleCellMultiModal datasets, produced within 

package documentation: MOFA+ [14] on the 10X Multiome dataset (Figure 4). For more 

information, see Data Integration Methods. In addition, we provide a sample analysis on the 

SCoPE2 dataset, which can be found in SingleCellMultimodal’s package vignette. 
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Figure 4: Summary of example integration using the 10X Genomic Multiome data from 
the SingleCellMultiModal package. (A): (left) from the 10X Genomic Multiome data resource, 
a sparse matrix and FASTA datasets provided, (right) pre-processing steps of source date 
required to work with of Multiome dataset provided in SingleCellMultiModal  (C): 

MultiAssayExperiment (MAE) objects returned when called  (D), (E) data integration of 

10x Genomic Multiome dataset, combining the chromatin accessibility data with the 
transcriptome data using MOFA+. (D): RNA-seq and ATAC-seq matrices used for weight 
factored analysis, (E): UMAP cluster of cell types based on factor analysis. For more detail on 
the analysis, see the Methods and the SingleCellMultiModal package vignette. Other datasets 
can be represented similarly: raw data processing and integration of data modes occur 
upstream of the SingleCellMultiModal package, users invoke a single command that creates a 
MultiAssayExperiment integrating appropriate memory-efficient objects, which are applied 
directly to downstream R/Bioconductor analyses. 

Methods 

SingleCellMultiModal data package 

All datasets are distributed through the SingleCellMultiModal experimental data package in 

Bioconductor. This package employs ExperimentHub [59] for robust Cloud-based data download 

from AWS S3 buckets, with automatic local caching to avoid repetitive downloads. These methods 

are described in detail elsewhere for application to The Cancer Genome Atlas and cBioPortal 

[60]. Briefly, metadata and individual omics datasets are stored in ExperimentHub as simple core 

Bioconductor objects such as matrix, SparseMatrix, SingleCellExperiment, and 

RaggedExperiment. A simple user-facing convenience function is provided for each dataset that 

retrieves all necessary individual components, assembles a MultiAssayExperiment object [10], 

and returns this to the user. For very large matrices we employ HDF5 on-disk representation. 

Methods for users to access these datasets are documented in the SingleCellMultiModal package 

vignette and functions manual. 

CITE-Seq and ECCITE-Seq dataset 

The CITE-Seq contains two modalities of cord blood mononuclear cells, the transcripts (scRNA) 

and the cell surface proteins (scADT) measured and preprocessed as described in the CITE-Seq 

landmark paper [3]. The PBMC UMI counts were retrieved from the GEO repository with 

accession number GSE100866 and then loaded in R to be transformed in matrix format and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466079doi: bioRxiv preprint 

https://paperpile.com/c/FZKGcV/VTIZ
https://paperpile.com/c/FZKGcV/E2zn
https://paperpile.com/c/FZKGcV/7qtW
https://paperpile.com/c/FZKGcV/4lPK
https://doi.org/10.1101/2021.10.27.466079
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

then be loaded as separate assays of a MultiAssayExperiment object. This latter object can be 

retrieved from the SingleCellMultiModal package with the function call: 

CITEseq(DataType="cord_blood", dry.run=FALSE). 

The ECCITE-Seq has three modalities of the of peripheral blood mononuclear cells, (scRNA), the 

cell surface proteins (scADT) and the Hashtagged Oligo (scHTO) measured and preprocessed as 

described in the ECCITE-Seq landmark paper [4]. 

The PBMC modalities for the  cutaneous T-cell lymphoma (CTCL) and controls (CTRL) were 

retrieved in TXT format from the GEO repository with accession number GSE126310 and then 

loaded in R to be transformed in matrix and data.frame format and then be loaded as separate 

assays of a MultiAssayExperiment object.  The CRISPR perturbed scRNAs data are stored 

as data.frame in the object metadata to keep their original long format. This latter object can 

be retrieved from the SingleCellMultiModal with the function call: 

CITEseq(DataType="peripheral_blood", dry.run=FALSE). 

Visual Cortex seqFISH dataset 

The seqFISH dataset has two different modalities, the spatial transcriptomics (seqFISH) and the 

single-cell RNA-seq, in two different versions. The main difference between the two versions are 

in the Single-cell RNA-seq counts data which in version 1.0.0 are provided as downloaded in 

CSV format from the GEO repository with accession number GSE71585, while the version 2.0.0 

is a processed dataset [46] where only the genes with correspondence in the seqFISH dataset 

have been preserved. Methods of pre-processing are described at 

https://github.com/BIRSBiointegration/Hackathon. In both versions the seqFISH dataset is the 

processed version [46] as downloaded from 

https://cloudstor.aarnet.edu.au/plus/s/ZuBIXuzuvc9JMj3. Processed version of the seqFISH 

data were downloaded as TXT format for the coordinates (fcortex.coordinates.txt), as TSV format 

for the cell annotated labels (seqfish_labels.tsv) and TXT format for the counts 
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(seqfish_cortex_b2_testing.txt). The data constitute a SpatialExperiment object with the 

counts as assay, the cell labels as colData and the coordinates stored as spatialData. 

In the same way, the processed Single-cell RNA-seq data were downloaded as TXT format for 

the counts (tasic_training_b2.txt), as TSV format for the cell annotated labels (tasic_labels.tsv) 

to build a SingleCellExperiment object with the counts as assay and the cell labels as colData. 

Finally, the SingleCellExperiment and the SpatialExperiment have been loaded into a 

MultiAssayExperiment object as two different assays. The MultiAssayExperiment object 

can be retrieved with the function call, for example:  

seqFISH(DataType=”visual_cortex”, dry.run=FALSE, version=”2.0.0”) 

Mouse Gastrulation scNMT dataset 

Preprocessing methods are described in full by  Argelaguet et al. [22]. Briefly, RNA-seq libraries 

were aligned to the GRCm38 mouse genome build using HiSat235 (v.2.1.0). Gene expression 

counts were quantified from the mapped reads using featureCounts [61] with the Ensembl 87 

gene annotation [62]. The read counts were log-transformed and size-factor adjusted using 

scran normalisation [63]. Bisulfite-seq libraries were aligned to the bisulfite converted GRCm38 

mouse genome using Bismark [64]. Endogenous CpG methylation was quantified over ACG 

and TCG trinucleotides and GpC chromatin accessibility over GCA, GCC and GCT 

trinucleotides. Note that for GCG trinucleotides it is not possible to distinguish endogenous CpG 

methylation from induced GpC methylation. In addition, CGC positions were discarded because 

of off-target effects of the GpC methyltransferase enzyme [65]. 

For each CpG site in each cell we obtained binary methylation calls and for each GpC 

site in each cell we obtained binary accessibility calls.  Notice that binary readouts is an 

exclusive property of single-cell bisulfite sequencing data, as for the vast majority of sites only 

one allele is observed per cell. This contrasts with bulk bisulfite sequencing data, where each 

dinucleotide typically contains multiple reads originating from different cells. 
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Finally, we quantified DNA methylation and chromatin accessibility over genomic 

features by assuming a binomial model is assumed for each cell and feature, where the number 

of successes is the number of methylated CpGs (or GpCs) and the number of trials is the total 

number of CpGs (or GpCs) that are observed within the specific cell and genomic feature. Here, 

We quantified DNA methylation and chromatin accessibility rates over CpG islands, gene 

promoters, gene bodies and DNAse hypersensitive sites. All these data modalities were 

compiled together with the RNA expression into a MultiAssayExperiment object. The 

dataset can be loaded from within the SingleCellMultiModal package by the function call 

scNMT("mouse_gastrulation", dry.run = FALSE). Code with the data processing 

pipeline is available in https://github.com/rargelaguet/scnmt_gastrulation.  

10X Multiome dataset 

PBMCs were extracted from a healthy donor after removing granulocytes through cell 

sorting.The dataset was downloaded as a CellRanger ARC output from 

https://support.10xgenomics.com/single-cell-multiome-atac-

gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k, which includes the gene expression matrix 

and the chromatin accessibility matrix quantified over ATAC peaks. The dataset included 11,909 

cells with a median of 13,486 high-quality ATAC fragments per cell and a median of 1,826 

genes expressed per cell. Data processing details, including the peak calling algorithm, can be 

found in https://support.10xgenomics.com/single-cell-multiome-atac-

gex/software/pipelines/latest/what-is-cell-ranger-arc. The dataset is provided as a 

MultiAssayExperiment [10] consisting of two SingleCellExperiment [9], one containing 

the single-cell RNA-seq read counts, and the other containing the binary ATAC peak matrix. 

The dataset can be loaded from within the SingleCellMultiModal package by the function 

call scMultiome("pbmc_10x", dry.run = FALSE). 
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Macrophage differentiation SCoPE2 dataset 

The macrophage differentiation project contains two datasets: single-cell RNA-seq data and 

MS-SCP data. Upstream processing is described in detail in the SCoPE2 landmark paper [8]. 

Briefly, for the Single-cell RNA-seq dataset, the authors used CellRanger to align the reads and 

to build the UMI count matrices. Based on cell QC and manual inspection, they discarded cells 

containing less than 104 UMI barcodes. The resulting tables for two technical replicates were 

deposited in a GEO repository with accession GSE142392.  For the MS-SCP dataset, the 

authors followed the workflow described in Figure 3, with identification and quantification steps 

performed using the MaxQuant software and additional protein quantification using a custom R 

script available on GitHub (https://github.com/SlavovLab/SCoPE2).  

We retrieved the single-cell RNA-seq dataset from the GSE142392 repository. The MS-

SCP data and annotations were retrieved from CSV files available at the authors’ website 

(https://scope2.slavovlab.net/docs/data). We formatted the Single-cell RNA-seq and the MS-

SCP data as two separate SingleCellExperiment objects without further processing. Because 

the Single-cell RNA-seq data is relatively large, it is stored as a sparse matrix using the HDF5 

data format. We combined the two data objects in a single MultiAssayExperiment object. 

This latter object can be queried from the SingleCellMultimodal package with the function 

call SCoPE2("macrophage_differentiation", dry.run = FALSE).  

G&T-seq dataset 

Raw sequencing data was obtained from the European Nucleotide Archive (ENA [66], 

accession PRJEB9051). The data was downloaded in fastq files for whole-genome and whole-

transcriptome paired-end sequencing data for 112 mouse embryo cells. The data was 

processed as described in the step-by-step protocol of Macaulay et al. [49]. Preprocessing and 

mapping of genome sequencing data was carried out following steps 78-84 of the protocol of 

Macaulay et al. [49], using Rsubread [67] for read trimming, alignment to the mm10 mouse 
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reference genome, and removal of PCR-duplicate reads. DNA copy-number profiling was 

carried out following steps 85-87, using bedtools [68] to convert BAM to BED files, and 

subsequently applying Ginkgo [69] for copy number determination. Preprocessing and 

mapping of transcriptome sequencing data was carried out following steps 94-96, using 

Rsubread [67] for read trimming and alignment to the mm10 mouse reference genome. Read 

counts for each gene were obtained using the featureCounts [61] function of the 

Rsubread package. The dataset is provided as a MultiAssayExperiment [10] consisting of 

(i) a SingleCellExperiment [9] storing the single-cell RNA-seq read counts, and (ii) a 

RaggedExperiment [54] storing integer copy numbers as previously described [55]. The 

dataset can be loaded from within the SingleCellMultiModal package by the function call 

GTseq(dry.run = FALSE). 

Data integration of the 10x Multiome data set 

For the integration of the 10x Multiome dataset we used MOFA+ [14] to obtain a latent 

embedding with contributom from both data modalities. The RNA expression was normalised 

using scran [63], followed by feature selection of the top 2000 most variable genes. The 

chromatin accessibility was normalised using TFIDF, followed by feature selection of the top 

10,000 peaks with the highest mean accessibility. The MOFA model was trained with K=15 

factors using default options. To obtain a non-linear embedding we applied UMAP [70] on the 

MOFA factors. 

Discussion 

Experimental data packages providing landmark datasets have historically played an important 

role in the development of new statistical methods in Bioconductor, from the classic acute 

lymphocytic leukemia (ALL) microarray dataset [71] to the HSMMSingleCell single-cell RNA-seq 
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dataset [72], as well as packages providing more extensive curated selections of standardized 

datasets in a specific realm [73]. Such packages greatly lower the barrier of access to relevant 

data for developers of scientific software, and provide a common testing ground for 

development and benchmarking. We present the SingleCellMultiModal Bioconductor 

experimental data package, to distribute landmark single-cell multimodal datasets in pre-

integrated immediately usable forms, utilizing standard Bioconductor data structures. Multimodal 

datasets are serialized as a MultiAssayExperiment object by a single command,  without 

requiring users to perform data wrangling to link multiple ‘omics profiles or to manage cells with 

incomplete data. We provide curated landmark datasets for a selection of key single-cell 

multimodal assays that will serve as benchmarks for the development and assessment of 

appropriate analysis methods in R/Bioconductor. We provide a brief review of the assays 

provided for the purpose of providing essential background to developers of statistical and 

bioinformatic methods, a summary of the data contained in each dataset, and examples of 

minimal code needed to access each dataset in an R/Bioconductor session. Methods of 

statistical analysis are reviewed in a recent complimentary paper [21].  

Single-cell RNA-seq analysis methods in Bioconductor are well developed and widely 

used [9], setting the stage for new development in single-cell multimodal data analysis that will 

be facilitated by the SingleCellMultiModal experimental data package. Areas of active research 

include integrative systems biology across data modes, spatial statistics on high-dimensional 

data, dimension reduction and clustering [13], cell identification, multimodal batch correction, 

and new data structures for representation and analysis of large and spatially resolved single-

cell multimodal data. These areas of research and their software products will be facilitated and 

made more interoperable by the easily accessible and uniformly represented data provided by 

this work.  
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Abbreviations 

Abbreviation Definition 

10X Multiome 10x Chromium Single Cell Multiome ATAC + Gene Expression 

ADT Antibody derived tag 

CITE-Seq Cellular Indexing of Transcriptomes and Epitopes by sequencing 

ECCITE-Seq Expanded CRISPR CITE-Seq 

G&T-seq Genome and Transcriptome sequencing 

HDF5 Hierarchical data format V5 

HTO Hashtag oligonucleotide 

LC liquid chromatography 

m/z mass over charge 

MOFA+ Multi-Omics Factor Analysis V2 

MS mass spectrometry 

MS/MS tandem MS 

PSM peptide to spectrum match 

scNMT single-cell Nucleosome, Methylation, and Transcriptome sequencing 

SCoPE2 Single Cell ProtEomics by Mass Spectrometry V2 

Single-cell RNA-seq Single-cell RNA sequencing 

seqFISH sequential Fluorescence In Situ Hybridization 

TMT tandem mass tag 

UMI unique molecular identifier sequence 
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Data Availability Statement 

The data reviewed and curated in this review are publicly available under the Artistic 2.0 license 

as the SingleCellMultiModal Bioconductor package 

(https://doi.org/doi:10.18129/B9.bioc.SingleCellMultiModal), with open development and issue 

tracking on Github (https://github.com/waldronlab/SingleCellMultiModal). The original 10X 

Genomics Multiome data are available from https://support.10xgenomics.com/single-cell-

multiome-atac-gex/datasets 
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