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Mass spectrometry imaging (MSI) vows to enable simultaneous spatially-resolved investigation 

of hundreds of metabolites in tissue sections, but it still relies on poorly defined ion images for 

data interpretation. Here, we outline moleculaR, a computational framework 

(https://github.com/CeMOS-Mannheim/moleculaR) that introduces probabilistic mapping and 

point-for-point statistical testing of metabolites in tissue. It enables collective molecular 

projections and consequently spatially-resolved investigation of ion milieus, lipid pathways or 

user-defined biomolecular ensembles within the same image. 

 

 

 

Mass spectrometry imaging (MSI) has evolved into a label-free core technology for visualization 

and spatially-resolved analysis of digested proteins, drugs, glycans and metabolites, incl. lipids, 

in basic, clinical and pharmaceutical research 1,2. Despite enormous advances in speed, sensitivity 

and spatial resolution of MSI instruments and despite a growing number of successful MSI 

applications, the fundamental concept in MSI data processing, the use of so-called ion images for 

visualization and molecular analysis, has not changed since the inception of the technology 3,4. 

Ion images, i.e., false color renderings of m/z intervals containing an unassigned peak-of-interest 

(POI), can be prone to technical artifacts 5 and user perception-bias 6. Moreover, methods for 

deriving spatial quantitative MSI scores like an overall energy charge score or techniques for 

spatial probing of global tissue characteristics such as ion milieu, the degree of lipid unsaturation, 

or even the distribution of entire lipid classes as a function of tissue morphology are lacking. 

Here, we report the computational framework moleculaR that may replace current ion images 

by a transformation of MSI data into spatial point patterns (SPP) that, besides a long history in 

crime pattern analysis, have successfully been used in other biomedical imaging fields like 

microscopy or magnetic resonance imaging (MRI) 7-9. SPPs display points on a map where events, 

such as presence or absence of metabolites-of-interest (MOI), are likely 9. They generally enable 

new types of arithmetic operations with data, e.g., analysis of localized events and advanced 
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statistical and homogeneity analysis of spatial data 8. To this end, moleculaR provides the 

scientific community with solutions for molecular spatial probability mapping and for collective 

visualization and analysis of molecular ensembles, e.g., alkali metal adducts as ion milieu 

indicators, energy charge as correlate of metabolic hotspots or entire lipid classes as the basis for 

the analysis of metabolic pathways. 

Ion images currently used in MSI do not represent ion intensity of a single observed POI in a user-

unbiased way. They rather neglect mass accuracy and resolving power at the POI m/z and use 

the sum of ion intensities of all peaks present in a user-defined mass range centered on the POI 

m/z instead (Suppl. Figure 1A). m/z values of observed POI and biologically relevant MOI like the 

potassium adduct of heme ([Heme+K]+), i.e., database entries with corresponding theoretical 

masses, typically differ. Hence, the molecular identity of POIs is a statistical consideration. 

Computational frameworks that estimate if POI may correspond to MOI are available, most 

notably FDR-controlled metabolite annotation provided by platforms like METASPACE 

(https://metaspace2020.eu)10. To complement this POI-centric analytical perspective (is 

POI=MOI?), we introduce an MOI-centric biomedical perspective that systematically analyzes and 

visualizes if biologically relevant MOIs have a statistically validated spatial presence across tissue 

morphologies. To this end, we propose molecular probability maps (MPMs) for rigorous user-

independent spatial statistical testing that are based on the assumption that for any given MOI 

spatial autocorrelations exist that mirror the biological interaction between neighboring tissue 

morphologies 11. Instead of estimating this correlation intensity globally, our approach localizes 

areas of heightened "activity" in terms of points proximity and signal intensity. We propose that 

MPMs shall replace or complement ion images for the spatial analysis of MOI.  

To generate MPMs, matrix-assisted laser desorption/ionization (MALDI) MSI raw data of any 

given MOI m/z is first transformed into an SPP representation, a well-known basis for statistical 

data interpretation in other fields of biomedical imaging 8. This transformation features data- 

rather than user-defined mass windows and Gaussian-weighted ion intensities of observed POIs 

that are based on estimates of the mass resolving power at the MOI’s m/z (Fig. 1A and Suppl. 

Fig. 1B). Next, to evaluate whether or not point intensities and spatial clustering of the MOI in 
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the tissue section are statistically significant, a complete spatial randomness (CSR) model of that 

MOI is created by random spatial permutations of MOI points (see Methods), which is then used 

as the spatial null hypothesis (Fig. 1B). Applying kernel density estimation via an isotropic 

Gaussian with an POI-specific bandwidth estimation (Suppl. Fig. 2), the intensity distribution of 

the CSR density image is expected and observed to converge towards a normal distribution 

(Suppl. Fig. 3), which then forms the basis for inferring intensity cutoffs beyond which the 

intensities of MOI’s density image are unlikely to occur if generated by a random spatial process 

(see Methods). MPMs are then defined as the composite representation of MOI spatial 

distribution on a rastered grid with data-dependent Gaussian weighted intensities (according to 

the scheme of Fig. 1A) with analyte hotspots and/or analyte coldspots superimposed as contours 

that identify areas of MOI significant abundance and deficiency, respectively (Fig. 1B). As 

exemplified for the sphingomyelin SM(d34:2)+H+ (0.1 FDR), MPMs are rather robust against 

different types of computationally added noise, as evidenced by Dice similarity coefficients of  

0.80, 0.97 and 0.98 for comparisons of MPMs based on raw data versus added Gaussian noise, 

spiked artifacts (isolated very high-intensity pixels) or interfering signals placed in the proximity 

of the MOI, respectively (Fig. 1C). Applying the same testing procedure to 142 MPMs of MOIs 

(METASPACE-verified at ≤ 0.2 FDR) in positive ion mode revealed median Dice similarity 

coefficients of 0.76, 0.96 and 0.94 for these three types of added noise, respectively (Suppl. Fig. 

4). In a neurooncology example, MPMs of two exemplary MOIs, the sphingomyelin SM(d36:4)+H+ 

(0.10 FDR) and the phosphatidylserine PS(36:1)-H- (0.05 FDR), demonstrate how spatial 

probabilistic mapping of analytes aids in outlining the significant presence or absence of analytes 

relative to vital tumor regions, as inferred from a neuropathologist’s annotation of a fresh-frozen 

tissue section of isocitrate dehydrogenase (IDH) wild-type glioblastoma (GB) (Fig. 1DE). One 

important application of MPMs is the spatially-aware analysis of differential distribution of drugs 

or metabolites between test tissues, e.g. those dosed with drugs or carrying mutations, and 

corresponding reference tissues. Here, for instance, MPMs map statistically-validated significant 

localization of immunosuppression-associated tryptophan  
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Figure 1. Metabolite Probability Maps (MPM) for spatial probabilistic mapping of metabolites in MALDI-MSI. a) 
SPP representation of metabolite-of-interest (MOI). Full-width-at-half-maximum (FWHM) values are computed 
for all peaks of a user-selected full mass spectrum and curve-fitted to describe FWHM as a function of m/z. For 
any MOI m/z (dashed blue line), a Gaussian envelop is computed with 𝜎 equaling the estimated FWHM at MOI 
m/z. The observed nearby peaks-of-interest (POIs) are Gaussian-weighted, thus down-weighting proximal 
background signals. b) MPM computational workflow. A corresponding CSR model is created for each MOI’s SPP 
with equal spatial point density. Kernel density is estimated for both sides; the resulting spatial density functions, 
𝜌𝑀𝑂𝐼(𝑥, 𝑦) and 𝜌𝐶𝑆𝑅(𝑥, 𝑦), are compared to estimate areas of significant abundance (MOI “hotspots”; red/white 
contours) or deficiency (MOI “coldspots”; blue/white contours). c) MPMs (middle row) but not ion images (upper 
row) of exemplary sphingomyelin SM(d34:2)+H+ (0.1 FDR) are robust against noise and common signal artifacts: 
random Gaussian noise (second column), presence of abnormally-high-intensity peak artefacts (third column) and 
added overlapping peaks 2𝜎 away from MOI m/z (fourth column). MPM hotspots in raw, noise-free (green) and 
contaminated data (red) show high overlap (yellow) for all artefacts as judged by their Dice similarities (DS). d) 
H&E-stained image of a human glioblastoma (GB) tissue section (VT: vital tumor; VT-Vasc: vascularized vital tumor; 
Subnecr: pre-necrotic; Necr: necrotic). e) Comparison of ion images and corresponding MPMs of SM(d36:4)-H- 
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and PS(36:1)-H- (≤0.10 FDR) relative to VT regions (green mesh). f) MPMs enables spatially-aware cross-tissue 
comparison of tryptophan [Trp-H]- in IDH-mutant GB as test tissue compared to IDH-wild type GB as reference 
tissue, where the CSR model of the test tissue is inferred from signal intensities of the reference tissue.  

 

in IDH-mutant- compared to IDH wild-type glioblastoma 12, thereby enabling true spatial 

probabilistic cross-tissue comparisons (Fig. 1F). In such scenarios, intensity weights in the CSR 

model are sampled from the intensities of the corresponding reference tissue, thus enabling 

probabilistic cross-tissue comparisons. 

Even more far-reaching than single molecule MPMs, data-integrating probability maps of entire 

lipid classes in SwissLipids (https://www.swisslipids.org)13, of large groups of molecules such as 

potassium adducts of lipids 14,15 or of any other user-defined set of metabolites, so called 

collective-projection probability maps (CPPM), pave the way for visualization and exploration of 

integrated MSI data: Here, molecular ensembles are transformed to their respective SPP 

representations, then collectively projected into a single image space (Fig. 2A), and finally 

subjected to spatial probabilistic mapping into CPPMs (Fig. 2BCD). Importantly, this 

computational framework permits spatial evaluation of composite numeric scores obtained by 

applying basic arithmetic operations on spatial point patterns of multiple MOIs, for example 

calculating the spatial abundance of adenine nucleotides [ATP-H]-, [ADP-H]- and [AMP-H]- 

individually relative to their collective sum and a more complex evaluation of adenylate energy 

charge 16 and adenylate kinase mass action ratio 17 (Fig. 2B). Our data suggests that the latter two 

scores be indicative of viable tumor (VT), suggesting that CPPMs of molecular ensembles as 

innovative use of MSI data can provide insights into spatially resolved pathophysiology that 

would not be possible by single molecule ion images.  
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Figure 2. Collective projection probability maps (CPPMs) of molecular ensembles representing scores for energy 
metabolism, ion milieu, degree of lipid unsaturation, or (lyso)glycerophospholipid remodeling. a) SPPs for a 
cohort of MOIs are collectively projected into the same tissue space. MPMs are then computed from these 
collective SPPs. b) CPPMs enable basic arithmetic manipulations on SPPs of multiple MOIs. Green mesh indicates 
co-registered vital tumor regions (Fig. 1d). MPMs of [ATP-H]-, [ADP-H]- and [AMP-H]- (≤0.2 FDR; upper row) 
compared to their sum-normalized CPPMs (bottom row; Σ = [ATP-H]- + [ADP-H]- + [AMP-H]-). CPPMs also enable 
complex spatial quantitative scores such as adenylate energy charge ( ([ATP-H]-+0.5 [ADP-H]-)/([ATP-H]-+[ADP-H]-

+[AMP-H]-); top right) and adenylate kinase mass action ratio ([ATP-H]-[AMP-H]-/[ADP-H]- 2; bottom right). c) 
Analysis of the tissue’s alkali ion milieu and lipid (un)saturation. Numbers in parenthesis = METASPACE-verified 
lipids at ≤ 0.2 FDR. left column: CPPMs of all detected protonated or alkali metal adducts of (lyso-)GPLs (PC, LPC, 
PE, LPE, PS, LPS, PI, LPI) relative to the overall sum Σ(lyso)GPLs. right column: CPPMs showing lipid (un)saturation 
relative to Σ(lyso)GPLs (sat: saturated; unsat: unsaturated). d) CPPMs enable spatial investigation of glycerol-
phospholipid remodeling (Lands’ cycle) in GB by visualizing structurally similar lipids (≤ 0.5 FDR) within the same 
image space. Upper panel: Lyso- and non-lyso-GPL pairs are normalized to their sum (ex. for LPC and PC, Σ 
represents the sum of all LPC and PC lipids). Lower panel: Rainfall plot showing boxplot and density curves 
representations of the expression of select Lands’ cycle enzymes in normal brain (blue; GTEx data) and GB (red; 
TCGA data) both represented as log2 transcripts per million (Wilcoxon rank-sum test, ** P < 0.01, **** P < 0.0001). 
Suppl. Fig. 8 illustrates corresponding data for a serial section.  
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Analytical considerations such as region-specific ion suppression notwithstanding, we reasoned 

that CPPMs of all potassium or sodium adducts of lipids in the SwissLipids database could serve 

as indicator of the ion milieu in a cancer tissue sample. Analogously, it has been noted that 

sodium MRI can serve as an indicator of vital tumor in-vivo 18: Na+/K+-ATPase maintains high 

overall potassium and low tissue sodium concentrations in viable cells, and higher cellularity 

corresponds to a lower tissue sodium concentration 18. In contrast, highly abundant Na+-adducts 

colocalize with necrotic tissue in xenografts of five different tumor cell lines 15. Similarly, the 

projected molecular ensemble (=CPPM) of potassium adducts of all (lyso-) glycerophospholipids 

(GPLs) was more abundant in vital tumor and vascularized areas, whereas the CPPMs of projected 

sodium adducts was more pronounced in necrotic tissue showing significant absence (analyte 

coldspot) in vital tumor (Fig. 2C). 

Similarly, viable tumor displayed reduced GPLs with short fatty acids (< 34 C-atoms per two fatty 

acids) (Suppl. Fig. 5) or with saturated fatty acids (Fig. 2C), but GPLs with 34 to ≤ 40 C-atoms were 

enriched there (Suppl. Fig. 5). CPPM-based mapping of saturated GPLs indicated derichment in 

VT areas, but enrichment of mono- and poly-unsaturated GPLs was not as prominent as 

suggested based on few selected ion images (Fig. 2C) 19. Finally, collective projections of 

molecular ensembles support initial surveys of entire molecular pathways. For instance, >400 

lipids involved in GPL biosynthesis and remodeling can be interpreted in a single pathway 

overview (Suppl. Fig. 6 and 7). Interestingly, CPPMs of PC, PA, PS but less so of PI and their 

corresponding lyso-GPL derivatives suggest alterations in the Lands’ cycle of phospholipid 

remodeling in GB, i.e. enrichment of GPLs and concomitant depletion of lyso-GPLs in viable tumor 

(Fig. 2D). Retrospective transcript expression profiling of Lands cycle enzymes revealed 

overexpression of various acyltransferase genes (LPCAT1, AGPAT1, LPCAT3, MBOAT7) in GB 

compared to normal brain tissue but less changes in phospholipase A2 (PLA2G6) expression that 

underline the CPPM-based assessment. Taken together, spatial probabilistic mapping of 

molecular ensembles supports the global interrogation of metabolic pathways, hence opening 

up new avenues for the comprehensive analysis of metabolite classes. 
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With this study, we make the moleculaR framework available for the scientific community as an 

R package complementing leading MSI-bioinformatics packages 20-22. MoleculaR comes pre-

loaded with the SwissLipids database and is capable of importing metabolite annotation results 

from the METASPACE platform to compute FDR-verified MPMs and CPPMs. moleculaR is equally 

applicable for ultra-high-resolution MSI like MRMS, or for MALDI-ToF MS and MALDI-QTOF MS. 

It could also be deployed and hosted on a centralized server and is equipped with a web-based 

GUI.  
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Methods  
 

Materials 

All reagents were of HPLC grade. Milli-Q water (ddH2O; Millipore) was prepared in-house. 

Conductive indium tin oxide (ITO) coated glass slides were purchased from Bruker Daltonics 

(Bremen, Germany). Adhesive slides SuperFrost PlusTM were obtained from Thermo Fisher 

Scientific (Waltham, Massachusetts, USA) for histological analysis. Trifluoroacetic acid (TFA) and 

1,5-diaminonaphtalene (1,5-DAN, ≥ 97.0%) MALDI matrix were purchased from Sigma-Aldrich 

(St. Louis, MO). Acetonitrile (ACN) was obtained from VWR (Darmstadt, Germany). For external 

calibration of the Bruker solarix magnetic resonance  mass spectrometer (MRMS), a mixture of 

poly-DL-alanine (10 mg/mL), L- alanine ≥ 99.5% (5 mg/mL) and taurine ≥ 99% (5 mg/mL; all from 

Sigma Aldrich) in water was used.  

Human tissue specimen.  

All patients have been treated at the Heidelberg University Hospital. Patients gave informed 

consent prior to inclusion to exploratory molecular analysis including but not limited to MALDI 

Mass Spectrometry Imaging. The research is conducted in concordance with the declaration of 

Helsinki and was approved by the Ethics Committee at the University of Heidelberg, Germany 

(applications 206/2005 and AFmu-207/2017). Tissue samples were taken through primary 

operation of the brain tumor. Frozen resected tumor material was retrieved from the 

Department of Neuropathology in Heidelberg and reviewed by a board-certified neuro-

pathologist. Diagnoses were molecularly confirmed according to the recent WHO classification 

and methylation profiles were confirmed with methylation EPIC array (#WG-317-1003, Illumina, 

San Diego, California, USA). Hematoxylin and eosin (H&E) stained tissues were scanned using an 

Aperio ImageScope scanner (Leica Biosystems) and annotated by an expert neuropathologist. 

MALDI Mass Spectrometry Imaging.  

Frozen human tissue was cryosectioned (10 μm; Leica CM1950; Leica Biosystems, Nussloch, 

Germany). Sections were mounted onto ITO slides (Bruker Daltonics), and adjacent sections were 

placed on SuperFrost slides (Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA) for H&E 
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staining. Cryosections were dried for 15 min in a desiccator and stored at -80 °C. Tissue sections 

on ITO slides were coated with 10 mg/mL 1,5-DAN matrix in 50% ACN/water using an M3 TM-

Sprayer (HTX-Technologies, LLC, North Carolina, USA): Temperature: 75 °C; No of Passes: 17; Flow 

Rate: 0.1 mL/min; Velocity: 1200 mm/min; Track spacing: 3 mm; Pattern: CC; Pressure: 10 psi; 

Gas Flow Rate: 2 L/min; Nozzle Hight: 40 mm; Drying Time: 0 sec. MALDI-High-mass-resolution-

imaging was performed on a solariX 7T XR (Bruker Daltonics) FTICR MRMS using Compass 

ftmsControl (Version 2.2.) and flexImaging (Version 5.0) softwares (both Bruker Daltonics). All 

measurements were done at 50 μm lateral resolution in the mass range between m/z 100-1200 

in negative mode followed by measurement in positive mode on the same spots. Spectra were 

recorded with a 1M data point transient, a mass resolution of 85k at m/z 400, 98k at m/z 314, 123k 

at m/z 249 and a FID of 0.4893 sec. Per pixel 1 scan from 100 laser shots with a frequency of 1000 

Hz was used. Q1 mass was set to m/z 120, while Time-of-Flight was adjusted to 0.9 ms. In both 

modes a Plate Offset of 100 V was used in combination with a deflector plate voltage of 200 V. 

External mass calibration was performed using polyalanine with addition of taurine (m/z 

125.014664) to cover the whole mass range 23. For internal lock mass calibration in negative and 

positive modes, the [M-H]- signal of phosphatidylinositol (38:4) (m/z 885.548756) and the 

[M+H]+ signal  of phosphatidylcholine (34:1) (m/z 760.585082) were used, respectively. To 

minimize data load, data was saved as Profile Spectrum with a Data Reduction Factor of 97%. 

Further data preparation and analysis were performed with in-house developed software tools 

as follows. 

Semi-automatic multi-modal image fusion using deformable registration 

To transform H&E annotations to the MSI image domain, the optical images (5 µm² per pixel) 

acquired prior to MALDI MSI acquisitions (and intrinsically registered with the MSI image 

information) and the H&E images (0.5 µm² per pixel) were used. Briefly, H&E and optical images 

were transformed into grayscale images using the luminosity method (weighted average of the 

red, green, blue channel). Then, acquisition regions within the MSI data and annotations of the 

H&E files were used to define a minimal bounding box for each sample region. Subsequently, all 

sample regions were cropped out of the grayscale images. Cropped images of both modalities 

were resampled with a resolution of 7.5 µm² per pixel. Afterwards, images were exported in the 
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nrrd image file format. Image-based registration is used to transform the cropped images from 

the MSI to the H&E image domain by using elastix 24. The full registration is composed of a rigid 

step, followed by a deformable step. Each registration results in a set of parameters describing 

the transformation from the H&E to the MSI image domain. Those parameters are used to 

transform point information accordingly. Transformed polygons and corresponding annotation 

labels were written to mis-files. 

Rigid registration is based on a multi-resolution registration strategy (Gaussian pyramid with 

three levels and down-sampling factors of 4,2,1). The Advanced Mattes Mutual Information 

metric in elastix was used as metric for the optimization of a rigid transformation using linear 

interpolation and 250 iterations. For the subsequent deformable registration steps, the same 

multi-resolution scheme and metric were applied. As deformable transformation, a recursive B-

Spline transformation was used with interpolation using third-order B-Splines. The optimization 

was run for 750 iterations. For cases of failed image registration, a multi-metric registration 

approach was used, and manually defined control points were added at corresponding locations 

in both modalities to support the deformable registration. In this case the multi-metric output 

was a composition of the Matt’s Mutual Information metric and the Corresponding Points 

Euclidean Distance metric (equally weighted). The M²aia (RRID:SCR_019324; 

https://www.github.com/jtfcordes/m2aia) 25 desktop application was used to view registration 

results, to control registration parameters and to interactively define pairwise corresponding 

control points within both image modalities. 

Data Preprocessing.  

The centroided MALDI FTICR dataset was first exported into imzML format using SCiLS Lab 

Software version 2016a (Bruker Daltonics, Bremen, Germany).  Further analysis proceeded in R, 

using the MALDIquantForeign R package for data import 22.  Positive and negative mode spectra 

were stored internally in sparse-matrix representation (Matrix package) for computation 

efficiency. Bulk data analysis was carried out via MALDIquant 22. One pixel representing a full 

mass spectrum was randomly chosen, and full width at half maximum (fwhm) values were 

computed per peak and plotted against m/z. A smoothing curve (Friedman's ‘super smoother’:  
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Friedman, J. H. (1984) A variable span scatterplot smoother. Laboratory for Computational 

Statistics, Stanford University Technical Report No.5) was fitted to describe fwhm as a continuous 

function of m/z (Fig. 1A, Suppl. Fig. 1B) which is then used to estimate fwhm at any given m/z. 

Peaks that occurred in less than 1% of the pixels were filtered out after being binned to a relative 

tolerance of 12 ppm (i.e. the maximal relative deviation of a peak position to be considered as 

identical). Processed datasets (negative and positive modes) were exported into processed 

(centroided) imzML 26 files via MALDIquantForeign. Data-adaptive pixel-wise recalibration based 

on endogenous biological signals was conducted using the MSI-recalibration tool 27. The 

centroided imzML data was uploaded into the METASPACE annotation platform 10 and lipid 

search was performed against the SwissLipid database 13. The corresponding annotations were 

then downloaded as csv files and used as metabolites-of-interest (MOIs) for the molecular 

probability map (MPM) and collective projection map (CPPM) workflows, in other words, only 

METASPACE-verified MOIs were considered for subsequent analysis.  

 Spatial Point Pattern (SPP) Data Representation.  

Given a particular MOI with its chemical sum formula and considering possible ionization states 

(H-, H+, K+ and Na+ for this study), the theoretical monoisotopic m/z, 𝑚𝑀𝑂𝐼, is computed. This 

𝑚𝑀𝑂𝐼 is then plugged into above mentioned fwhm continuous function to compute the expected 

data-dependent fwhm, which is then used to determine the 𝜎 of a Gaussian envelop centered at 

𝑚𝑀𝑂𝐼 (Fig. 1A).  This Gaussian envelope, scaled to [0,1] intensity, is used as a weighting function 

for any observed peaks-of-interest (POIs) occurring within its effective support (𝑚𝑀𝑂𝐼 ± 3𝜎), i.e. 

computing ∑ 𝑤𝑗𝑖𝑗
𝑝
𝑗=1  where 𝑝 is the number of peaks observed within 𝑚𝑀𝑂𝐼 ± 3𝜎, and 𝑤𝑗 is the 

corresponding Gaussian weight at the 𝑗-th peak with intensity 𝑖𝑗 (Fig. 1A and Suppl. Fig. 1B). This 

serves as a protection against possible proximal background signals by down-weighting them 

relative to 𝑚𝑀𝑂𝐼; the more the measured peak signal deviates from 𝑚𝑀𝑂𝐼, the lower the weight 

it receives in the SPP representation. It is important to note, however, that this does not protect 

against mis-calibrated/misaligned data and in such cases we recommend applying the data-

adaptive MSI recalibration method of La Rocca et al. 27 which was also performed for this study.  

The Spatstat framework 28 is then used to construct a marked (i.e., intensity-weighted) SPP 
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representation 𝑆𝑃𝑃𝑀𝑂𝐼 of the MSI peaks distributed in a spatial 2D contour Φ𝑡𝑖𝑠𝑠𝑢𝑒 representing 

the tissue section with a spatial point density Λ which equals to the number of points per unit 

area, i.e., the average spatial density of all points 𝑛 within Φ𝑡𝑖𝑠𝑠𝑢𝑒 or 𝑛/𝐴𝑡𝑖𝑠𝑠𝑢𝑒  where 𝐴𝑡𝑖𝑠𝑠𝑢𝑒  is 

the total area of Φ𝑡𝑖𝑠𝑠𝑢𝑒.  

Molecular Probability Map (MPM). 

The SPP representation of MOI, 𝑆𝑃𝑃𝑀𝑂𝐼, within a given tissue contour Φ𝑡𝑖𝑠𝑠𝑢𝑒 enables 

computation of the corresponding 𝑀𝑃𝑀𝑀𝑂𝐼. First, a random point pattern 𝐶𝑆𝑅𝑀𝑂𝐼 is created 

according to a complete spatial randomness (CSR) model and is used to represent a sample of 

random events to be considered as an intrinsic control for every analyte case. This CSR process is 

generated spatially as a uniform Poisson process with a fixed spatial point density of Λ. Unlike in 

common CSR generating models 8,29, in the case of MSI, 𝐶𝑆𝑅𝑀𝑂𝐼 must also carry intensity weights 

(representing pixel-wise signal intensities) in order to be a valid intrinsic control model for 

𝑆𝑃𝑃𝑀𝑂𝐼 . For this reason 𝐶𝑆𝑅𝑀𝑂𝐼 is then marked by signal intensities randomly sampled from the 

empirical intensity distribution underlying the 𝑆𝑃𝑃𝑀𝑂𝐼. For simplicity, random sampling is 

replaced by randomly permuting the 𝑆𝑃𝑃𝑀𝑂𝐼 intensities, which basically has the effect of spatial 

reshuffling of 𝑆𝑃𝑃𝑀𝑂𝐼 points until they assume a spatial uniform Poisson process effectively 

dissolving any spatial clustering or spatial autocorrelation of signals (Fig.1B). Afterwards Kernel 

density estimation (KDE) is applied with an isotropic Gaussian kernel (weighted by points’ signal 

intensities) for both 𝑆𝑃𝑃𝑀𝑂𝐼 and its corresponding 𝐶𝑆𝑅𝑀𝑂𝐼 and is sum-normalized to compute 

the spatial density functions 𝜌𝑀𝑂𝐼(𝑥, 𝑦) and 𝜌𝐶𝑆𝑅(𝑥, 𝑦), respectively. Let 𝑓𝑀𝑂𝐼(𝑘) and 𝑓𝐶𝑆𝑅(𝑘) 

denote the probability density functions of intensities 𝑘 obtained from the resulting 𝜌𝑀𝑂𝐼(𝑥, 𝑦) 

and 𝜌𝐶𝑆𝑅(𝑥, 𝑦), respectively. As a consequence of the central limit theorem, the intensity 

distribution 𝑓𝐶𝑆𝑅(𝑘) converges towards a normal distribution as the bandwidth increases to 

infinity, which in practice can already be observed for small bandwidth values. This does not 

necessarily apply to 𝑓𝑀𝑂𝐼(𝑘) (see Suppl. Fig. 3a and b). 

 

Hence 
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𝑓𝐶𝑆𝑅(𝑘) ≅  

1

𝜎𝐶𝑆𝑅√2𝜋
 𝑒

−
1
2

(
𝑘−𝜇𝐶𝑆𝑅

𝜎𝐶𝑆𝑅
)

2

, (1) 

where 𝜇𝐶𝑆𝑅 and 𝜎𝐶𝑆𝑅  are the mean and standard deviation of 𝜌𝐶𝑆𝑅(𝑥, 𝑦). To identify areas which 

have a higher likelihood of showing a significant abundance of MOI when compared to a random 

distribution (i.e. analyte hotspots) and, on the other hand, areas which have a higher likelihood 

of showing a significant deficiency of MOI (i.e. analyte coldspots), upper and lower cutoff 

quantiles 𝑘𝑢𝑝𝑟 and 𝑘𝑙𝑤𝑟 are defined for 𝑓𝐶𝑆𝑅(𝑘), respectively: 

 𝑘𝑢𝑝𝑟 = 𝑄𝐶𝑆𝑅(1 − 𝑝) 

𝑘𝑙𝑤𝑟  =         𝑄𝐶𝑆𝑅(𝑝) 
(2) 

Here, 𝑄𝐶𝑆𝑅(𝑝) denotes the corresponding quantile function (i.e. inverse cumulative distribution 

function) of 𝑓𝐶𝑆𝑅, and 𝑝 is the p-value threshold below which the null hypothesis is rejected (set 

to 0.05 for this study). To account for the inherent multiple testing problem, a conservative 

Bonferroni correction (used for all figures in this study) or, optionally, a less conservative 

Benjamini-Hochberg correction is applied. The analyte hotspots and coldspots are accordingly 

defined as locations (𝑥ℎ𝑠, 𝑦ℎ𝑠) and (𝑥𝑐𝑠, 𝑦𝑐𝑠) where 

 𝜌𝑀𝑂𝐼(𝑥ℎ𝑠, 𝑦ℎ𝑠) =  𝜌𝑀𝑂𝐼(𝑥, 𝑦) ≥  𝑘𝑢𝑝𝑟  

𝜌𝑀𝑂𝐼(𝑥𝑐𝑠, 𝑦𝑐𝑠) =  𝜌𝑀𝑂𝐼(𝑥, 𝑦) ≤  𝑘𝑙𝑤𝑟  
(3) 

The MOI’s molecular probability map, 𝑀𝑃𝑀𝑀𝑂𝐼 is then defined as a composite representation of 

MOI spatial density of Gaussian weighted intensities according to the scheme shown in Fig. 1A, 

with analyte hotspots and/or analyte coldspots superimposed as polygonal contours identifying 

areas of MOI significant abundance and deficiency, respectively. The bandwidth ℎ𝐺  for the 

chosen Gaussian kernel of the KDE is computed in two distinct ways; KDE is applied iteratively 

with ℎ𝐺  varying from 1 to 10 (pixels; multiples of 50 µm in this study) in 0.5 increments, during 

each iteration the Moran’s I statistic, a measure of spatial autocorrelation, is determined. The 

optimal ℎ𝐺  is then determined by finding the point in the Moran’s I vs ℎ𝐺  plot at which the spatial 

autocorrelation levels-off, i.e. after which an increase in ℎ𝐺  does not result in a considerable 

increase in the spatial autocorrelation of the smoothed density image (Suppl. Fig. 2). This “elbow” 

point is determined by finding the maximum distance from points on the curve to a line drawn 

between the curve’s end points (Suppl. Fig. 2). For CPPM, ℎ𝐺  is more efficiently computed by the 
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Scott method i.e.  ℎ𝐺  = 𝑛−1/(𝑑+4); where d is the number of dimensions and, for this study, equals 

to 2 30. 

Collective Projections Probability Map (CPPM) 

Given a set of MOIs 𝐶 ∈ {𝑀𝑂𝐼1, 𝑀𝑂𝐼2, … , 𝑀𝑂𝐼𝑚}𝑥, for each single MOIi an SPP representation 

𝑆𝑃𝑃𝑖  is calculated as previously described. Afterwards all individual 𝑆𝑃𝑃𝑖  are projected into the 

same Φ𝑡𝑖𝑠𝑠𝑢𝑒 allowing for coordinate duplication resulting in 𝑆𝑃𝑃𝐶  where the overlap of points 

results in accumulation of the corresponding signal intensities. The workflow then commences 

with the square root transformation of intensities to compensate for the inherent 

heteroskedasticity and possible differences in ionization efficiency between the individual MOIis. 

Then 𝐶𝑆𝑅𝐶  is created and subsequently KDE is applied on both sides until 𝑀𝑃𝑀𝐶  is computed as 

described in the previous section such that the resulting collective projection probability map 

𝐶𝑃𝑃𝑀𝐶  is equivalent to 𝑀𝑃𝑀𝐶 . The naming distinction is only made to emphasize that CPPM is 

based on the visualization of multiple analytes at a time.  

For any number of MOIs, basic arithmetic operations on the spatial point patterns of MOIs could also be 

applied. This is useful when a ratio of two MOIs is desired (ex. Fig. 2B bottom row) or when a more 

complex evaluation is of interest (ex. Fig. 2B top right and bottom right). To perform such operations, first 

the set of the input 𝑆𝑃𝑃𝑀𝑂𝐼s are converted into pixel-based images with equal pixel grids. 

Afterwards the spatial expression is evaluated on a pixel-by-pixel basis. Possible divisions by zero 

are computationally dropped. The resulting raster image is then converted back to an SPP whose 

points are carrying the respective computed pixel intensities. The created SPP is then fed into the 

MPM framework as previously described.  

Transcript Expression Profiling of TCGA and GTEx Datasets 

TCGAbiolinks 31 was used to download fragments per kilobase of transcript per million mapped 

reads (FPKM) and the clinical information of The Cancer Genome Atlas (TCGA) glioblastoma (GB) 

datasets from Genomic Data Commons (GDC) (https://gdc.cancer.gov). Patient samples 

characterized as “primary tumor” were retained (n = 156). The FPKM values were converted to 

transcripts per million (TPMs) 32. TPM data of normal brain tissues (n = 1671) were downloaded 
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from the Genotype-Tissue Expression (GTEx) dataset (https://gtexportal.org). All TPM values 

were log2-transformed. 

For bioinformatics analysis of TCGA and GTEx data, all pairwise comparisons were performed 

using Kruskal-Wallis and Wilcoxon rank-sum tests. All analyses were run in R (https://cran.r-

project.org) version 4.1, and Bioconductor (https://bioconductor.org) version 3.14. All graphical 

representations were generated using ggplot2, RColorBrewer, gridExtra, and ggridges packages.  

Data Availability 
Raw data that support the anticipated results is available at Metaspace through the following 

link: https://metaspace2020.eu/project/abusammour-2021.  

Code Availability 
A well-documented companion R package that implements the presented framework is made 

available at https://github.com/CeMOS-Mannheim/moleculaR alongside with clear introductory 

sections and exemplary code vignettes. The R package is equipped with a web-based GUI and 

could be deployed and hosted on a centralized server as described in package link above.  
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