
1 

 

Map7D2 and Map7D1 facilitate MT stabilization through distinct 1 

mechanisms to control cell motility and neurite outgrowth 2 

Koji Kikuchi1*, Yasuhisa Sakamoto1, Akiyoshi Uezu2, Hideyuki Yamamoto3, Kei-ichiro 3 

Ishiguro4, Kenji Shimamura5, Taro Saito6, Shin-ichi Hisanaga6, and Hiroyuki Nakanishi1* 4 

1Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto 5 

University, 1-1-1 Honjo, Kumamoto 860-8556, Japan 6 

2Department of Cell Biology, Duke University Medical School, Durham, North Carolina 27710, 7 

U.S.A 8 

3Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, 9 

Okinawa 903-0215, Japan. 10 

4Department of Germline Development, Institute of Molecular Embryology and Genetics, 11 

Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan 12 

5Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, 13 

Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan  14 

6Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, 15 

Japan 16 

 17 

*Correspondence: kojik@kumamoto-u.ac.jp (K.K), hnakanis@gpo.kumamoto-u.ac.jp (H. N.) 18 

 19 

Keywords: Map7D2/Map7D1/Microtubule stabilization/Cell motility/Neurite outgrowth  20 

 21 

 22 

  23 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466197doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466197


2 

 

Abstract 1 

Microtubule (MT) dynamics are modulated through the coordinated action of various 2 

MT-associated proteins (MAPs). However, the regulatory mechanisms underlying MT 3 

dynamics remain unclear. Herein, we show that MAP7 family protein Map7D2 facilitates MT 4 

stabilization to control cell motility and neurite outgrowth. Map7D2, was highly expressed in 5 

the brain and testis, directly bound to MTs through its N-terminal half similarly to Map7, and 6 

promoted MT stabilization in vitro. Map7D2 localized prominently to the centrosome and 7 

partially on MTs in N1-E115 mouse neuroblastoma cells, which expresses two of the four 8 

MAP7 family members, Map7D2 and Map7D1. Map7D2 loss decreased the intensity of MTs 9 

without affecting stable MT markers acetylated and detyrosinated tubulin, suggesting that 10 

Map7D2 stabilizes MTs via direct binding. In addition, Map7D2 loss increased the rate of 11 

random cell migration and neurite outgrowth, presumably by disturbing the balance between 12 

MT stabilization and destabilization. The other MAP7 family protein expressed in N1-E115, 13 

Map7D1, exhibited similar subcellular localization and gene knock-down phenotypes. However, 14 

in contrast to Map7D2, Map7D1 was required for the maintenance of acetylated tubulin levels. 15 

Taken together, our data suggest that Map7D2 and Map7D1 facilitate MT stabilization through 16 

distinct mechanisms for the control of cell motility and neurite outgrowth.  17 
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Introduction 1 

Microtubule (MT) dynamics play crucial roles in a variety of cellular processes, including 2 

mitosis, vesicle and organelle transport, as well as cell motility and morphology (Cleary, 2021; 3 

Etienne-Manneville, 2013; Roll-Mecak, 2020). MT dynamics are altered in response to various 4 

intrinsic or extrinsic signals and are then modulated through the coordinated actions of various 5 

MT-associated proteins (MAPs), which control the processes of dynamic instability (Cleary, 6 

2021; Roll-Mecak, 2020). Therefore, it is important to identify and characterize MAPs in order 7 

to understand the regulatory mechanisms of MT dynamics. We previously performed a 8 

comprehensive proteomic analysis of MT co-sedimented proteins from the brain and identified 9 

a series of functionally uncharacterized MT-binding proteins (Sakamoto, 2008). The list 10 

included MAP7 family members Map7, Map7D1, and Map7D2, but not Map7D3. Among the 11 

MAP7 family, Map7 has been extensively characterized. Several lines of evidence suggest that 12 

Map7 has the ability to stabilize and reorganize MTs. Ectopic expression of Map7 induces MT 13 

bundling and resistance to nocodazole treatment-induced MT depolymerization (Masson, 1993). 14 

Map7 expression is upregulated during MT reorganization in response to the differentiation of 15 

keratinocytes (Fabre-Jonca, 1999) and the establishment of apicobasal polarity in human colon 16 

adenocarcinoma cell lines such as Caco-2 and HT-29-D4 cells (Carles, 1999; Masson, 1993). In 17 

addition, recent studies have shown that Map7 and the Drosophila Map7 homolog, Ensconsin 18 

(Ens), are involved in Kinesin-1-dependent transport by promoting the recruitment of a 19 

conventional Kinesin-1, Kif5b, and its Drosophila homolog, Khc, to MTs during various 20 

biological processes (Barlan, 2013; Hooikaas, 2019; Kikuchi, 2018; Metzger, 2012; Sung, 2008; 21 

Tymanskyj, 2018). The competition between Map7 and other MAPs for MT binding regulates 22 

the loading of motor proteins, thereby controlling the distribution and balance of motor activity 23 

in neurons (Monroy, 2018; Monroy, 2020). While a considerable body of evidence has 24 

highlighted the important roles of Map7 in the regulation of MT dynamics, the function of 25 

MAP7 family member Map7D2 in the regulation of MT dynamics and its relationship with 26 

other MAP7 family members remain unclear. 27 

In this study, we determined the tissue distribution and biochemical properties of 28 

Map7D2 for the first time. Map7D2 is expressed predominantly in the glomerular layer of the 29 

olfactory bulb and the Sertoli cells of testes. Further, it directly associates with MTs through its 30 

N-terminal half, similarly to Map7, significantly enhancing MT stabilization. We also examined 31 

the cellular functions of Map7D2 using the N1-E115 mouse neuroblastoma cell line, which 32 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.466197doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466197


4 

 

expresses both Map7D2 and Map7D1, but not Map7 nor Map7D3. Map7D2 predominantly 1 

localizes to the centrosome and partially on MTs, and suppresses cell motility and neurite 2 

outgrowth by facilitating MT stabilization via direct binding. Finally, we determined the 3 

functional differences between Map7D2 and Map7D1 with regard to MT stabilization in 4 

N1E115 cells. Although Map7D1 exhibits similar subcellular localization and gene knock-down 5 

phenotypes to Map7D2, Map7D1 is required to maintain the amount of acetylated tubulin in 6 

contrast to Map7D2. These results suggest that Map7D2 and Map7D1 facilitate MT 7 

stabilization through distinct mechanisms for the control of cell motility and neurite outgrowth. 8 

Results 9 

Map7D2 is highly expressed in the glomerular layer of the olfactory bulb and the Sertoli 10 

cells of testes. 11 

We previously performed a comprehensive proteomic analysis of MT co-sedimented proteins 12 

from the rat brain and identified a number of novel factors (Sakamoto, 2008). In the present 13 

study, we focused on Map7D2, which is one of the MAP7 family members (Fig. S1A). To 14 

analyze the tissue distribution of Map7D2, we first performed northern blotting analysis using 15 

total RNA extracted from various rat tissues. Northern blotting analysis showed that the 16 

approximately 4.2-kb mRNA was hybridized only in the brain and testis, being more abundant 17 

in the former (Fig. 1A). Of note, no detectable signal was observed in other rat tissues examined, 18 

including the heart, spleen, lung, liver, skeletal muscle, and kidney. Next, we investigated the 19 

tissue distribution of Map7D2 at the protein level by immunoblotting. For the immunoblotting 20 

analysis, we raised an anti-Map7D2 polyclonal antibody using aa 1-235 of rat Map7D2 21 

(rMap7D2) as an epitope (Fig. S2A). Using lysates from HeLa cells transfected with an empty 22 

vector, hMap7-V5His6, or rMap7D2-V5His6, we confirmed that the antibody detected Map7D2, 23 

but not Map7 (Fig. S2A). In addition, we evaluated antibody specificity by siRNA-mediated 24 

knock-down of endogenous Map7D2. For this experiment, we used a mouse neuroblastoma cell 25 

line, N1-E115, in which the expression of Map7d2 and Map7d1, but not Map7 and Map7d3, 26 

was detected by quantitative real-time PCR (RT-qPCR) (Fig. S2B). We designed three 27 

independent siRNAs against Map7d2 or Map7d1. The immunoreactive band disappeared 28 

following treatment with each Map7d2 siRNA, but not the control or Map7d1 siRNA (Fig. 29 

S2C), indicating that the antibody specifically recognized Map7D2. We then performed 30 

immunoblotting analysis using lysates from various rat tissues. Consistent with the northern 31 
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blotting analysis, Map7D2 was detected at the protein level only in the brain and testis, while no 1 

immunoreactive bands were detected in other rat tissues (Fig. 1B).  2 

We further analyzed the expression patterns of Map7D2 in the brain and testis by 3 

immunofluorescence. Based on RNA-seq CAGE, RNA-Seq, and SILAC database analysis (Fig. 4 

S3; Expression Atlas, https://www.ebi.ac.uk/gxa/home/), Map7D2 expression was confirmed in 5 

the four brain tissue regions of postnatal day 0 mice, the cerebellum, cerebral cortex, 6 

hippocampus, and olfactory bulb. Among these regions, Map7D2 was most highly expressed in 7 

the Map2-negative area of the olfactory bulb, the glomerular layer (Fig. 1C). Only weak signals 8 

were detected in the cerebellum, cerebral cortex, and hippocampus (Fig. 1C). Next, we analyzed 9 

Map7D2 expression in the seminiferous tubules of adult mice. Map7D2 signals were merged 10 

with Tubb3 signals, a marker for Sertoli cells (Fig. 1C), indicating that Map7D2 is expressed 11 

predominantly in Sertoli cells. Taken together, these data suggest that in vivo, Map7D2 may 12 

function in the glomerular layer of the olfactory bulb and the Sertoli cells of the testis. 13 

 14 

Map7D2 has an ability to stabilize MTs. 15 

MAP7 family members share two conserved regions (Fig. S1A). The amino acid sequences of 16 

the N-terminal (aa 53-138) and C-terminal (aa 389-562) regions of human Map7D2 (hMap7D2) 17 

were 64.0% and 42.9% identical to those of human Map7 (hMap7), respectively, while other 18 

regions showed no significant homology to hMap7 (Fig. 2A). Using the rat brain cDNA library, 19 

we obtained rMap7D2 cDNA by PCR. The cloned cDNA encoded a protein consisting of 763 20 

aa with a molecular weight of 84,823 (DDBJ/EMBL/GenBank accession number AB266744) 21 

(Fig. 2A). The full-length aa sequence of rMap7D2 was 68.1% identical to that of hMap7D2. 22 

For subsequent experiments, we used the rMap7D2 that we cloned. 23 

We sought to determine whether rMap7D2 directly binds to MTs. To this end, we 24 

performed an MT co-sedimentation assay using recombinant rMap7D2. When His6-rMap7D2 25 

was incubated with MTs, followed by ultracentrifugation, it was recovered with MTs in the 26 

pellet (Fig. 2B). The dissociation constant (Kd) was calculated to be approximately 6 × 10-7 M 27 

(Fig. 2B). This value is comparable to those of well-known MAPs Tau and CLIP-170 (Gustke, 28 

1994; Lansbergen, 2004). The stoichiometry of His6-rMap7D2 binding to tubulin was calculated 29 

to be one His6-rMap7D2 molecule per about ten tubulin α/β heterodimers. This value was also 30 
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comparable to that of Map7 (Bulinski, 1994). It has been reported that Map7 binds to MTs 1 

through a conserved region on the N-terminal side, while Map7D3 binds via a conserved region 2 

on the C-terminal side (Yadav et al., 2014). To further examine the location of the MT-binding 3 

domain of rMap7D2, the N-terminal (aa 1-421) and C-terminal (aa 422-763) halves were 4 

subjected to an MT co-sedimentation assay (Fig. 2A). The N-terminal half was co-sedimented 5 

with MTs, whereas the C-terminal half was not (Fig. 2C). These results indicate that the 6 

MT-binding domain of rMap7D2 is located at the N-terminal half, similarly to that of Map7, but 7 

not Map7D3. 8 

Next, we tested whether rMap7D2 affects MT dynamics. The MT turbidity assay was 9 

used to analyze the effect of rMap7D2 on the kinetics of MT assembly. The addition of 10 

rMap7D2 significantly enhanced the amount of polymerized MTs in a time-dependent manner, 11 

whereas tubulin self-polymerized even in the absence of rMap7D2 (Fig. 2D). Identical results 12 

were observed by fluorescence microscopy analysis using rhodamine-labeled tubulin (Fig. 2E). 13 

Furthermore, we investigated the ability of Map7D2 to bundle MTs in HeLa cells. Consistent 14 

with the in vitro data, overexpression of Myc-rMap7D2 induced MT bundling in HeLa cells 15 

(Fig. 2F). Taken together, these results indicate that Map7D2 facilitates MT stabilization. 16 

 17 

Map7D2 localized prominently to the centrosome and partially to MTs. 18 

Following the biochemical characterization of Map7D2, we sought to determine its functions 19 

within the cell. To this end, we used N1-E115 cells that express Map7D2 and Map7D1 (Fig. 20 

S2B and C). First, we analyzed the subcellular localization of Map7D2 in N1-E115 cells. 21 

N1-E115 cells can undergo neuronal differentiation in response to DMSO under conditions of 22 

serum starvation (Kimhi, 1976), and most of the cells extend neurites up to 12 h after treatment 23 

with 1% DMSO (Fig. S4A) (Smit, 2003). In both proliferating and differentiated cells, Map7D2 24 

localized prominently to the centrosome and partially to MTs (Fig. 3A-C). These localizations 25 

were confirmed in N1-E115 cells stably expressing EGFP-rMap7D2 (Fig. 3D and E). 26 

Furthermore, during cytokinesis, Map7D2 accumulated at the midbody, where MT bundling 27 

occurs (Fig. 3B). Similarly, localization of Map7D2 was also observed at neurites, where MT 28 

bundling is also known to occur (Fig. 3C). Together with the biochemical properties, these 29 

subcellular localization data suggest that Map7D2 is involved in MT stabilization within the 30 

cell. 31 
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Since N1-E115 cells express another Map7 family member, Map7D1, we also 1 

determined its subcellular localization. Map7D1 exhibited similar localization to that of 2 

Map7D2 in both proliferative and differentiated states (Fig. S4B-D). Interestingly, Map7D1 3 

knock-down upregulated Map7D2 expression, as confirmed with three different siRNAs (Fig. 4 

S2C), indicating that this effect was not due to the off-target effects of a particular siRNA. 5 

Endogenous Map7D2 expression was suppressed in N1-E115 cells stably expressing 6 

EGFP-rMap7D2 and was restored by specific knock-down of EGFP-rMap7D2 using gfp siRNA 7 

(Fig. 3D). These results suggest that the expression of Map7D2 was influenced by changes in 8 

that of Map7D1. In contrast, Map7D2 knock-down did not affect Map7D1 expression (Fig. 9 

S2C), and identical results were observed in the Map7d2 knock-out (Map7d2-/-) N1-E115 cells 10 

we generated (Fig. S5A and B). As Map7D2 has the potential to functionally compensate for 11 

Map7D1 loss, we decided to analyze the phenotypes of single and double knock-downs for 12 

Map7D2 and Map7D1 in the following experiments. 13 

 14 

Map7D2 is required for MT stabilization in the control of cell motility and neurite 15 

outgrowth. 16 

It is well known that acetylation and detyrosination of α-tubulins are associated with stable MTs 17 

(Baas, 2016; Janke, 2017). Therefore, we examined the effects of Map7D2 or Map7D1 18 

knock-down on the levels of acetylated and detyrosinated tubulins. Neither Map7D2 19 

knock-down (Fig. 4A), nor Map7d2 knock-out affected the total levels of these modified 20 

tubulins (Fig. 4B). In contrast, Map7D1 knock-down reduced the total level of acetylated but 21 

not detyrosinated tubulin (Fig. 4A), with double knock-down of Map7D2 and Map7D1 having 22 

the same impact (Fig. 4A). Consistently, immunostaining analysis also showed that Map7D1 23 

knock-down greatly decreased the intensity of acetylated tubulin around the centrosome in 24 

N1-E115 cells (Fig. 4C and D). Map7D1 knock-down decreased the intensity of α-tubulin and 25 

increased that of Map7D2 (Fig. 4C and D), indicating that Map7D1 is required for the 26 

maintenance of stable and acetylated MTs. Under Map7D2 knock-down, the intensity of 27 

α-tubulin and Map7D1 decreased without affecting that of acetylated tubulin (Fig. 4C and D). 28 

Together with our biochemical data for Map7D2, these results suggest that Map7D2 facilitates 29 

MT stabilization via direct binding, in contrast to Map7D1. 30 
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Dysregulation of MT stabilization is known to affect various biological functions, for 1 

instance, it can lead to increased cell motility and neurite outgrowth (Alesi, 2016; Biernat, 2002; 2 

Grenningloh, 2004; Hubbert, 2002). Therefore, we analyzed whether random cell migration or 3 

neurite outgrowth of N1-E115 cells is affected by single or double knock-down and Map7d2 4 

knock-out. As expected, each single knock-down and the Map7d2 knock-out enhanced not only 5 

the migration speed and distance during random cell migration (Fig. 5A-C), but also the rate of 6 

neurite outgrowth (Fig. 5D). Furthermore, double knock-down of Map7D2 and Map7D1 tended 7 

to result in increased cell motility and neurite outgrowth (Fig. 5B-D). Taken together, these 8 

results suggest that Map7D2 and Map7D1 facilitate MT stabilization through distinct 9 

mechanisms, thus controlling cell motility and neurite outgrowth. 10 

Discussion 11 

In the present study, we provide the first comprehensive analysis of Map7D2 biochemical 12 

properties (Fig. 2). The N-terminal and C-terminal regions of Map7D2 exhibited high homology 13 

to those of Map7 (Fig. S1). The N-terminal homologous region is basic and highly charged. 14 

Most MT-binding domains characterized thus far are confined to positively charged regions 15 

(Aizawa, 1990; Lewis, 1989; Noble, 1989; Pierre, 1992). Consistently, the MT-binding region 16 

of Map7 was shown to be located at the N-terminal positively charged region (Masson, 1993). 17 

Since we demonstrated that the N-terminal half of rMap7D2 directly bound to MTs (Fig. 2C), it 18 

is likely that Map7D2 also associates with MTs through the positively charged N-terminal 19 

region. Although the physiological role of the C-terminal region of Map7D2 is currently 20 

unknown, it is conceivable that this region may play an important role as it is conserved 21 

between Map7D2 and Map7. A region within the C-terminus of Map7 is required for complex 22 

formation with Kif5b, the heavy chain of Kinesin-1 (Fig. S6), and is involved in 23 

Kif5b-dependent transport by loading Kif5b onto MTs (Hooikaas, 2019; Kikuchi, 2018; 24 

Metzger, 2012; Tymanskyj, 2018). Interestingly, we found that Map7D2 also formed a complex 25 

with Kif5b (Fig. S6). Furthermore, it was recently reported that Map7D2 contributes to 26 

Kinesin-1-mediated transport in the axons of hippocampal neurons (Pan, 2019). Taken together, 27 

the biochemical properties are largely conserved between Map7D2 and Map7. 28 

In contrast, the cellular functions of Map7D2 may differ from those of Map7. Our 29 

group and Hooikaas et al. have previously reported that Map7 and Map7D1 have functional 30 

overlaps in HeLa cells (Hooikaas, 2019; Kikuchi, 2018). For instance, both form a complex 31 
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with Dishevelled, a mediator of Wnt5a signaling, while Map7D2 does not (Kikuchi, 2018). In 1 

addition, Map7D2 exhibits distinct localization patterns in cultured hippocampal neurons, 2 

localizing to the proximal axon (Pan, 2019). In the present study, we propose the molecular 3 

mechanism how Map7D2 and Map7D1 regulate MT stabilization in N1-E115 cells (Fig. 5E). 4 

Map7D2 and Map7D1 both strongly localize to the centrosome and partially on MTs in 5 

proliferating as well as in differentiated N1-E115 cells (Fig. 3 and Fig. S4B-D). Further, the 6 

knock-down of either resulted in a comparable reduction of MT intensity (Fig. 4C and D), 7 

enhancing the rate of cell motility and neurite outgrowth (Fig. 5A-D). Mechanistically, Map7D1 8 

is required for the maintenance of MT acetylation, which is enriched in stable MTs, whereas 9 

Map7D2 is not (Fig. 4). Taking these findings into consideration with our biochemical data, we 10 

propose that, in contrast to Map7D1, Map7D2 facilitates stabilization by directly binding MTs 11 

to then control cell motility and neurite outgrowth. 12 

We also determined the tissue distribution of Map7D2, which has not been described 13 

to date (Fig. 1). The tissue distribution of Map7 was previously analyzed using gene-trap mice 14 

(Komada, 2000). At the mRNA level, Map7 is expressed in a variety of epithelial tissues, dorsal 15 

root ganglia, trigeminal ganglia, and primitive seminiferous tubules during embryonic 16 

development. We also reported that both Map7 and Map7D1 are expressed in the epithelia of 17 

the mouse fallopian tube at the protein level (Kikuchi, 2018). Consistent with Map7 expression 18 

in primitive seminiferous tubules, Map7 homozygous gene-trap mice exhibited defects in 19 

spermatogenesis (Komada, 2000). Map7D2 was expressed predominantly in the glomerular 20 

layer of the olfactory bulb and Sertoli cells of the testis (Fig. 1C). The glomerular layer is 21 

known to be the region where axons accumulate and does not express Map2, a marker of 22 

neuronal cell bodies and dendrites (Fig. 1C). As Map7D2 localizes to the proximal axon in 23 

cultured hippocampal neurons (Pan, 2019), Map7D2 may have similar localization and function 24 

in olfactory bulb neurons. The function of Map7D2 in Sertoli cells was not clarified in the 25 

present study. Therefore, whether Map7D2 is involved in mammalian neurogenesis and 26 

spermatogenesis represents a question for future research. 27 

28 
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Materials and methods 1 

Molecular cloning, expression, and purification of rMap7D2 2 

Based on the information of DDBJ/EMBL/GenBank accession number XM_228973, 3 

oligonucleotide primers (5′-ATGTCGACATGGAGCGCAGCGGTGGGAACGGCG-3′ and 4 

5-ATGTCGACTCAACAGAAGGTGTTCAGCGTAGTTTC-3′) were designed, and rat 5 

Map7d2 (rMap7d2) cDNA was obtained by PCR using rat cDNA as a template. Expression 6 

vectors for rMap7d2 were constructed in pCMV5-Myc (Nakanishi, 1997), pQE9 (Qiagen), 7 

pGEX-5X-3 (Cytiva), pcDNA3.1/V5-His (Thermo Fisher Scientific), pCLXSN-GFP (Reiley, 8 

2005), and pEGFP-N3 (Clontech). His6-tagged or GST-fused proteins were expressed in 9 

Escherichia coli and purified using TALON metal affinity beads (CLONTECH) or 10 

glutathione-Sepharose beads (Cytiva), respectively. GST-rMap7D2 (full length) was further 11 

purified by gel filtration using a HiLoad 16/60 Superdex 200 column (Cytiva). 12 

 13 

Antibodies 14 

A rabbit polyclonal anti-Map7D2 antibody was raised against GST-rMap7D2 (aa1-235). All the 15 

primary antibodies used are listed in Supplemental Table S1. Secondary antibodies coupled to 16 

horseradish peroxidase (HRP) were purchased from Sigma-Aldrich. Alexa Fluor-conjugated 17 

secondary antibodies used for immunofluorescence experiments were purchased from Thermo 18 

Fisher Scientific. 19 

 20 

MT binding assay 21 

The MT co-sedimentation assay was performed as previously described, with a slight 22 

modification (Yamamoto, 2002). MTs were prepared by incubating tubulin in polymerization 23 

buffer (80 mM PIPES/NaOH, pH 6.8, 1 mM MgCl2, 1 mM EGTA, and 1 mM GTP) containing 24 

10% glycerol for 20 min at 37°C. After incubation, taxol was added at a final concentration of 25 

15 μM. Various amounts of rMap7D2 were incubated with 0.4 mg/mL of MTs in 26 

polymerization buffer containing 15 μM taxol for 20 min at 37°C. After incubation with MTs, 27 

the mixture (200 μL) was placed over a 700-μL cushion of 50% sucrose in polymerization 28 
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buffer containing 15 μM taxol. After the sample was centrifuged at 100,000 × g for 30 min at 1 

37°C, the supernatant was removed from the cushion, and the original volume was restored with 2 

SDS sample buffer. Comparable amounts of the supernatant and pellet fractions were subjected 3 

to SDS-PAGE, followed by CBB protein staining. The amount of protein was estimated using a 4 

densitometer. ELISA for MT binding was performed in a 96-well microtiter plate as previously 5 

described (Pedrotti, 1994). Briefly, wells were coated by incubating with 0.2 mg/mL of MTs in 6 

polymerization buffer containing 15 μM taxol for 2 h at 37°C and then blocked via incubation 7 

with 5% glycine. Increasing amounts of rMap7D2 were added to each well and incubated for 20 8 

min at 37°C. The plate was washed and further incubated with an anti-Map7D2 antibody. After 9 

washing, the plates were incubated with a secondary antibody conjugated to horseradish 10 

peroxidase. SuperSignal ELISA Pico (Pierce) was used as a chemiluminescent peroxidase 11 

substrate.  12 

   13 

MT polymerization assays 14 

MT assembly was assayed by measuring turbidity at 350 nm using a spectrophotometer, as 15 

previously described (Gaskin, 1974). Briefly, GST-rMap7D2 (0.14 mg/mL) was incubated with 16 

2 mg/mL tubulin in polymerization buffer at 37°C. The sample was continuously monitored at 17 

350 nm using a Hitachi U-2000 spectrophotometer. MT assembly was further assayed by 18 

fluorescence microscopy using rhodamine-labeled tubulin (Hyman, 1991). Briefly, 19 

GST-rMap7D2 (0.07 mg/ml) was incubated at 37°C for 20 min with 0.8 mg/mL tubulin (1 : 9 = 20 

rhodamine-labeled tubulin : unlabeled tubulin) in polymerization buffer. Incubation was stopped 21 

through the addition of 1% glutaraldehyde. The sample was spotted onto a glass slide and 22 

viewed under a fluorescence microscope.  23 

 24 

Northern blotting 25 

An RNA blot membrane (Clontech) was hybridized with the 32P-labeled full coding sequence of 26 

rMap7D2, according to the manufacturer’s protocol. 27 

 28 
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Cell culture and transfection 1 

HeLa and N1-E115 cells were cultured at 37°C in DMEM supplemented with 10% fetal bovine 2 

serum and penicillin-streptomycin. The methods employed for plasmid or siRNA transfection 3 

were previously described (Kikuchi, 2010). Plasmid transfection of N1-E115 cells was 4 

performed using Lipofectamine LTX according to the manufacturer’s instructions. 5 

Differentiation of N1-E115 neuroblastoma cells was induced by decreasing the serum level to 6 

0.5% fetal bovine serum and adding 1% dimethyl sulfoxide (DMSO) (hereafter, the 7 

above-described medium was referred to as differentiation medium). Stealth double-stranded 8 

RNA was purchased from Thermo Fisher Scientific (USA). All siRNAs used in this study are 9 

listed in Supplemental Table S2. Three individual siRNAs for mouse Map7d2 or Map7d1 were 10 

designed based on the respective sequences. Double-stranded RNA targeting luciferase was 11 

used as a control. The cells were cultured for 72 h and subjected to various experiments. In Fig. 12 

4A, C, D, and Fig. 5B-D, to exclude siRNA off-target effects, a mixture of three individual 13 

siRNAs for Map7D1 or Map7D2 was used. For the generation of N1-E115 cells stably 14 

expressing EGFP-rMap7D2, clones were selected by adding G418 at 24 h post-transfection. 15 

EGFP-rMap7D2 expression was confirmed by immunoblotting using antibodies against GFP 16 

and Map7D2. 17 

 18 

Generation of Map7d2 knock-out N1-E115 cell lines by CRISPR-Cas9  19 

Two sgRNA sequences were designed using the CHOPCHOP CRISPR/Cas9 gRNA finder tool 20 

(http://chopchop.cbu.uib.no/). The short double-stranded DNA for each sgRNA 21 

(5-CACCGTGAAGAGAGCACATGTGCC-3 and 5-AAACGGCACATGTGCTCTCTTCAC-3, 22 

or 5-CACCGCAGGATCACCAGGGCCTGG-3 and 23 

5-AAACCCAGGCCCTGGTGATCCTGC-3′) were inserted into the BbsI site of pX330 (Cong, 24 

2013). To construct the Map7d2 knock-out vector, the 5′ and 3′ arms of each gene were 25 

amplified by PCR using N1-E115 genomic DNA and cloned into the pCR4 Blunt-TOPO vector 26 

(Thermo Fisher Scientific). The puromycin resistance marker was inserted between the 5′ and 3′ 27 

arms (Fig. S6A). N1-E115 cells were transfected with 1 µg of each of the two pX330-sgRNA 28 

plasmids and the knock-out vector using Lipofectamine LTX (Thermo Fisher Scientific). 29 

Knock-out clones were selected by adding puromycin (Sigma-Aldrich) at 24 h post-transfection. 30 
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Successful knock-out was confirmed by immunoblotting using an anti-Map7D2 antibody and 1 

genomic PCR. 2 

 3 

Animals 4 

Mice (C57BL6/N; Japan SLC, Japan) were used in this study. Animal care and experiments 5 

were conducted in accordance with the guidelines for the care and use of laboratory animals of 6 

the Center for Animal Resources and Development, Kumamoto University. All experiments 7 

were approved by the experimental animal ethics committee of Kumamoto University 8 

(A2019-127 and A2021-018). Mice were kept in a light- and temperature-controlled room with 9 

a 12-h light/dark cycle at 22 ± 1 °C. 10 

 11 

Quantitative real-time PCR 12 

Each RNA sample was subjected to reverse transcription using murine leukemia virus reverse 13 

transcriptase (Thermo Fisher Scientific), and the generated cDNA was used as a template for 14 

qRT-PCR. Each reaction mixture was prepared using the KAPA SYBR Fast qPCR kit (Kapa 15 

Biosystems), and the PCR reaction was performed on ViiA7 (Thermo Fisher Scientific). The 16 

primers used for RT-qPCR are listed in Supplementary Table S3. 17 

 18 

Immunoblotting and immunoprecipitation 19 

For immunoblotting, cells were washed once with PBS and lysed with Laemmli's sample buffer. 20 

After boiling, the lysates were separated by SDS–PAGE, transferred to PVDF membranes 21 

(Millipore), and immunoblotted with antibodies. For immunoprecipitation analysis, the HeLa 22 

cells were washed once with PBS at 24 h post-transfection and lysed with 1× NP40 buffer [20 23 

mM Tris-HCl (pH 8.0), 10% glycerol, 137 mM NaCl, 1% NP40] supplemented with protease 24 

inhibitors and phosphatase inhibitors for 20 min on ice. The supernatant was collected after 25 

centrifugation and incubated with the appropriate antibodies. After incubation, 15 µL of protein 26 

A or G Sepharose beads was added, and the mixtures were rotated for 1 h at 4°C. The beads 27 
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were washed once with 1×NP40 buffer, twice with LiCl buffer [0.1 M Tris-HCl (pH 7.5), 0.5 M 1 

LiCl], once with 10 mM Tris-HCl (pH 7.5), and were finally resuspended in Laemmli's sample 2 

buffer. 3 

 4 

Immunofluorescence staining 5 

For immunofluorescence staining, cells were grown on coverslips and fixed in 100% methanol 6 

at -20 °C for 5 min. After blocking with 1% BSA in PBS for 1 h at room temperature, the 7 

samples were incubated with primary antibodies overnight at 4°C, followed by incubation with 8 

Alexa Fluor-conjugated secondary antibodies (Thermo Fisher Scientific) for 1 h. For 9 

immunofluorescence tissue staining, tissues were fixed in 4% paraformaldehyde in PBS at 4°C 10 

overnight, and then immersed sequentially in 10, 20, and 30 % sucrose in PBS at 4°C. After 11 

sucrose equilibration, tissues were immersed in OCT (Sakura Finetechnical) at room 12 

temperature for 5 min, followed by embedding in OCT and freezing in liquid nitrogen. Sections 13 

(10 μm) were stored at −80°C. The sections were washed once with PBS for 10 min and twice 14 

with 0.1 % Triton X-100 in PBS for 10 min. After blocking with Blocking One (Nacalai) for 1 h 15 

at room temperature, the samples were incubated with primary antibodies overnight at 4°C, 16 

followed by incubation with Alexa Fluor-conjugated secondary antibodies (Thermo Fisher 17 

Scientific) for 1 h. Nuclei were stained with DAPI for 30 min at room temperature. The samples 18 

were viewed under a fluorescence microscope (Olympus, BX51) or a confocal microscope 19 

(Olympus, FV1000 or Leica, TCS SP8). Images were processed and analyzed using Fiji 20 

software (National Institutes of Health). 21 

 22 

Random cell migration assay and neurite outgrowth assay 23 

For the random cell migration assay, cells were seeded onto a laminin-coated (10 μg/mL) 24 

glass-bottom dish and recorded under an inverted microscope system equipped with an 25 

incubator (Olympus, LCV110). For the neurite outgrowth assay (Fig. S5C), the underside of 3 26 

μm pore transwell membranes (Corning) was coated with 500 μL of 10 μg/mL laminin in PBS 27 

into a well of a 24-well plate. After coating, the membranes were removed from the laminin and 28 

placed into the well of a 24-well dish containing 500 μL differentiation media. One hundred 29 
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microliters of cell suspension (containing 1–2 × 105 cells) was added to the insert chamber on 1 

top of the membrane. The cells were allowed to extend neurites through the membrane pores to 2 

the lower chamber (underside of the membrane) for 6 h at 37°C. The cells were then fixed and 3 

stained with an anti-α-tubulin antibody. Images were processed and analyzed using Fiji software 4 

(National Institutes of Health). 5 

 6 

Statistics 7 

The experiments were performed at least three times (biological replicates), and the results are 8 

expressed as the average ± S.D. or the median, first and third quartiles, and 5-95 % confidence 9 

intervals for the box-and-whisker plot. Differences between data values were tested for 10 

statistical significance using the Student's t-test. Statistical significance was set at P <0.05. 11 

 12 

Other Procedures 13 

Tubulin was prepared from fresh porcine brains by three cycles of polymerization and 14 

depolymerization, followed by DEAE-Sephadex column chromatography (Shelanski, 1973; 15 

Williams R.C.Jr. and Lee, 1982). 16 

 17 

18 
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Figures 31 

Figure 1. Tissue distribution of Map7D2.  32 
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(A) Northern blot analysis. An RNA blot membrane (CLONTECH) was hybridized with the 1 

32P-labeled full coding sequences of rMap7D2 according to the manufacturer’s protocol. (B) 2 

Immunoblotting analysis. Various tissue lysates (20 μg of protein) were subjected to 3 

SDS-PAGE, followed by immunoblotting with the anti-Map7D2 antibody. (C) Expression 4 

patterns of Map7D2 in the brain and testis by immunofluorescence. Upper panels, frozen 5 

sagittal sections of postnatal day 0 mouse brains were stained with anti-Map7D2 (magenta) and 6 

antibodies against mature neuron marker Map2 (green). DNA was labeled with DAPI (gray). 7 

For a comparison of signal intensities, images were captured under the same parameters. 8 

Contrast-enhanced images of Map7D2 staining were shown in the rightmost column. Lower 9 

panels, frozen coronal sections of adult mouse testis were stained with anti-Map7D2 (magenta) 10 

and antibodies against Sertoli cell marker Tubb3 (green). DNA was labeled with DAPI (gray). 11 

Scale bars in upper panels or lower panels: 100 or 50 μm, respectively. 12 

 13 

Figure 2. Map7D2 has the ability to stabilize MTs. 14 

(A) Schematic structures of hMap7, hMap7D2, and rMap7D2. (B) Co-sedimentation of 15 

rMap7D2 with MTs. Left panel, His6-rMap7D2 (34 μg/mL) was mixed with MTs, followed by 16 

ultracentrifugation. Comparable amounts of the supernatant and pellet fractions were subjected 17 

to SDS-PAGE, followed by CBB protein staining. S, supernatant; P, pellet. Middle panel, 18 

various amounts of His6-rMap7D2 were mixed with MTs, followed by ultracentrifugation. 19 

Amounts of free and bound His6-rMap7D2 were calculated by determining protein amounts 20 

from the supernatant and pellet fractions, respectively, with a densitometer. Right panel, 21 

Scatchard analysis. (C) Location of the MT-binding domain. GST-rMap7D2-N (80 μg/mL) or 22 

GST-rMap7D2-C (200 μg/mL) was mixed with MTs, followed by ultracentrifugation. 23 

Comparable amounts of the supernatant and pellet fractions were subjected to SDS-PAGE, 24 

followed by CBB protein staining. S, supernatant; and P, pellet. (D) Turbidity measurement. 25 

GST-rMap7D2 was mixed with tubulin. The sample was incubated at 37°C and continuously 26 

monitored at 350 nm using a spectrophotometer. (○) without GST-rMap7D2; and (●) with 27 

GST-rMap7D2. *, P < 0.003 (the F-test). (E) Immunofluorescent observation. GST-rMap7D2 28 

was incubated for 20 min at 37°C with rhodamine-labeled tubulin. After fixation, the sample 29 

was spotted on a slide glass and viewed under a fluorescence microscope. (F) HeLa cells 30 

transiently overexpressing Myc-rMap7D2. Myc-rMap7D2 was transfected into HeLa cells, and 31 
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the cells were then double-stained with anti-Myc and anti-α-tubulin antibodies. Arrowheads 1 

show MT bundles. Scale bars, 50 μm in E and 10 μm in F. 2 

 3 

Figure 3. Subcellular localization of Map7D2 in proliferative and differentiated N1-E115 4 

cells.  5 

(A-C) Localization of Map7D2 in interphase (A), mitosis (B), and differentiation state (C) of 6 

N1-E115 cells. Cells were double-stained with anti-Map7D2 and anti-α-tubulin antibodies. In A, 7 

the insets show enlarged images of regions indicated by a white box. In B, the inset shows 8 

metaphase cells. In C, images of differentiated cells were captured by z-sectioning, and each 9 

inset show enlarged images of regions indicated by a white box at each focal plane. Arrowheads 10 

show the centrosomal localization of Map7D2. (D) Generation of N1-E115 cells stably 11 

expressing EGFP-rMap7D2. To check the expression level of EGFP-rMap7D2, lysates derived 12 

from the indicated cells were probed with anti-GFP (top panel) and anti-Map7D2 (middle panel) 13 

antibodies. The blot was reprobed for γ-tubulin as a loading control (bottom panel). Of note, 14 

stable expression of EGFP-rMap7D2 reduced endogenous Map7D2 expression, and specific 15 

knock-down of EGFP-rMap7D2 using gfp siRNA restored endogenous Map7D2 expression. (E) 16 

Confirmation for subcellular localization of Map7D2 using N1-E115 cells stably expressing 17 

EGFP-rMap7D2. Images were captured by z-sectioning. Top panels show images taken with the 18 

lower or upper focal plane, and bottom panels show the image reconstructed in the z-axis 19 

direction. Arrow head shows centrosomal localization of Map7D2. Scale bars: 10 μm. 20 

 21 

Figure 4. Map7D2 is required for MT stabilization within the cell. 22 

(A) Immunoblot analysis for acetylated (Ace-) and detyrosinated (Detyr-) tubulin in cells treated 23 

with each siRNA. Lysates derived from the indicated cells were separated by SDS-PAGE and 24 

subjected to immunoblotting with anti-Map7D1, anti-Map7D2, anti-Ace-tubulin, or 25 

anti-Detyr-tubulin antibodies. The blot was reprobed for Clathrin heavy chain (HC) or α-tubulin 26 

as a loading control. (B) Immunoblot analysis for Ace- and Detyr-tubulins in wild-type and 27 

Map7d2-/- cells. Three independent Map7d2-/- clones were used in this study. Lysates derived 28 

from the indicated cells were separated by SDS-PAGE and were immunoblotted with 29 
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anti-Map7D1, anti-Map7D2, anti-Ace-tubulin, or anti-Detyr-tubulin antibodies. The blot was 1 

reprobed for α-actin or α-tubulin as a loading control. (C) Immunofluorescence staining for 2 

α-tubulin, Ace-tubulin, and Map7D1 or Map7D2 in cells treated with each siRNA. For a 3 

comparison of signal intensities, images were captured under the same parameters. The insets 4 

show enlarged images of regions indicated by a white box. Of note, Ace-tubulin was present 5 

predominately around the centrosome in N1-E115 cells. (D) Quantification for 6 

immunofluorescence staining shown in C. Left panels, the intensities of α-tubulin, Ace-tubulin, 7 

and Map7D1 around the centrosome in the indicated cells were measured via ROI analysis 8 

(control, n = 197 cells; siMap7d2, n = 192 cells from three independent experiments). Right 9 

panels, the intensities of α-tubulin, Ace-tubulin, and Map7D2 around the centrosome in the 10 

indicated cells were measured by ROI analysis (control, n = 193 cells; siMap7d1, n = 227 cells 11 

from three independent experiments). *, P < 1×10-13; **, P < 1×10-8 (the Student's t-test). Scale 12 

bars: 10 μm in C and 5 μm in D. 13 

 14 

Figure 5. Map7D2 suppresses random cell migration and neurite outgrowth.  15 

(A) Bright-field images of migrating N1-E115 cells. Arrowheads show lamellipodia formed in 16 

the direction of migration. (B) Tracking analysis of random cell migration in the indicated cells. 17 

Each color represents the trajectory of 12 randomly selected cells. (C) Velocity and net distance 18 

measured in the indicated cells (control: n =114 cells; siMap7d1: n = 100 cells; siMap7d2: n = 19 

71 cells; siMap7d1/d2: n = 107 cells; Map7d2-/-: n = 60 cells from three independent 20 

experiments). *, P<1×10-4; **, P<0.002 (the Student's t-test). (D) Neurite outgrowth assay in the 21 

indicated cells. Neurites and cell bodies were visualized by α-tubulin staining (upper). The 22 

neurite outgrowth from each cell was distinguished by acquiring images with Z-sectioning. Data 23 

are from three or four independent experiments and represent the average�±�S.D. (lower). *, 24 

P<0.002; **, P<0.0002 (the Student's t-test). (E) Proposed model for the distinct mechanisms of 25 

Map7D2 and Map7D1 for MT stabilization. See Discussion for further detail. Scale bars in A 26 

and D: 20 μm. 27 

 28 
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