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Simple Summary  

 

Uveal melanoma (UM) is the most common adult eye cancer. UM originates in the iris, ciliary body, or 

choroid (collectively known as the uvea), in the middle layer of the eye. This first or primary UM is treated 

by targeting the cancer cells using ocular radiation implants or by surgical removal of the eye. However, 

when UM spreads to the liver and other parts of the body, patients have a poor survival prognosis. 

Unfortunately, there are no effective treatment options for UM that has spread. Our aim is to help identify 

effective treatments for UM cancer that has spread. In our study, we identified that the drug ACY-1215 

prevents the growth of UM cells from the liver. Our study has found a promising treatment approach for 

advanced UM.  
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Abstract  

 

Metastatic uveal melanoma (MUM) is characterized by poor patient survival. Unfortunately, current 

treatment options demonstrate limited benefits. In this study, we evaluate the efficacy of ACY-1215, a 

histone deacetylase 6 inhibitor (HDAC6i), to attenuate MUM cell growth in vitro and in vivo, and elucidate 

the underlying molecular mechanisms. Treatment of OMM2.5 MUM cells with ACY-1215 resulted in a 

significant (p = 0.0001), dose-dependent reduction in cell survival and proliferation in vitro, and in vivo 

regression of primary OMM2.5 xenografts in zebrafish larvae. Furthermore, flow cytometry analysis 

revealed that ACY-1215 significantly arrested the OMM2.5 cell cycle in S phase (p = 0.0006) following 24 

hours of treatment and significant apoptosis was triggered in a time- and dose-dependent manner (p = 

<0.0001). Additionally, ACY-1215 treatment resulted in a significant reduction in OMM2.5 p-ERK 

expression levels. Through proteome-profiling, attenuation of the microphthalmia-associated 

transcription factor (MITF) signaling pathway was linked to the observed anti-cancer effects of ACY-1215. 

In agreement, pharmacological inhibition of MITF signaling with ML329, significantly reduced OMM2.5 

cell survival and viability in vitro (p = 0.0001) and in vivo (p = 0.0006). Our findings provide evidence that 

ACY-1215 and ML329 are efficacious against growth and survival of MUM cells and are potential 

therapeutic options for MUM.   

 

 

Keywords: Metastatic uveal melanoma, HDAC6 inhibitor, ACY-1215, MITF, p-ERK, ML329, Zebrafish 

xenografts   
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Introduction 

Uveal melanoma (UM) is the most common adult intraocular cancer, afflicting approximately 4.3 per 

million people worldwide [1]. Although a rare cancer, incidence rates increase geographically in a South 

to North gradient, with countries like Ireland, Norway and Denmark reported to have the highest 

incidences in Europe [2-4]. UM originates with different frequencies in the uveal tract of the eye: choroid 

(~90%), iris (~4%) and ciliary body (~6%) [5]. The most effective treatments for primary UM include surgical 

resection of the tumor, radiotherapy (plaque brachytherapy or proton-beam therapy) and enucleation of 

the affected eye [4,6]. Unfortunately, approximately 50% of patients diagnosed with primary UM progress 

to develop metastatic UM (MUM), primarily in the liver (~89%), which is associated with poor survival 

prognosis (median overall survival (OS) ranging from 4 to 15 months) [2,7,8]. There is no standard of care 

treatment for MUM patients and current therapeutic options have limited benefit. MUM patients receive 

site -directed therapies (including surgical resection of tumor), the chemotherapeutic drug Dacarbazine 

(commonly used to treat cutaneous melanoma) or immunotherapy drugs such as Ipilimumab and 

Pembrolizumab [8,9]. Unfortunately, treatment with Dacarbazine either as a monotherapy or 

combinatorial therapy did not improve overall survival or progression free survival [8,10-12]. In addition, 

immune checkpoint inhibitors, MEK inhibitors and liver-directed therapies are in clinical and preclinical 

trials for UM at present [13-15]. Recently, a Phase III clinical study with Tebentafusp (a form of 

immunotherapy that recruits and redirects T cells to tumor cells) reported favorable evidence in MUM 

patients with  the one-year OS rate reported at 73% (N = 252) in the Tebentafusp treatment group 

compared to 59% (N = 126) in the control group, with an estimated median OS of 21.7 months and 16.0 

months, respectively [16]. Nevertheless, there is still an imperative to identify highly efficacious novel 

drugs for the treatment of MUM, as Tebentafusp has only been trialed in a subset of MUM patient cohort 

who are HLA-A*02:01-positive.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466226doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466226
http://creativecommons.org/licenses/by/4.0/


Histone deacetylase inhibitors (HDACi) have garnered widespread interest in the past two decades as anti-

cancer agents [17-21]. Four pan-HDAC inhibitors - Vorinostat (SAHA) for relapsed and refractory cutaneous 

T-cell lymphoma (CTCL), Belinostat for peripheral T-cell lymphoma (PTCL), Romidepsin for CTCL/PTCL and 

Panobinostat for multiple myeloma, are approved for market use as treatment options by the FDA and/or 

EMA [18]. Chidamide is approved by the Chinese FDA for treatment of PTCL, with more research underway 

in other cancers [22]. Pre-clinical studies identified pan-HDACi to show efficacy as anti-cancer agents in 

UM and/or MUM cell lines, in vitro and/or in vivo [23]. Encouragingly, the first Phase II clinical trial with 

29 MUM patients reported that a combination treatment of Entinostat (pan-HDACi) and Pembrolizumab 

(PD-1 inhibitor) resulted in a median OS of 13.4 months with one year OS reported as 59%; and median 

progression free survival (PFS) of 2.1 months and a 17% one year PFS [24,25]. More recently, a novel 

compound, VS13, which displays increased selectivity against HDAC6, reduced UM cell viability [26]. 

In relation to selective HDAC inhibition, histone deacetylase 6 inhibitors (HDAC6i) show promise as anti-

cancer agents in preclinical studies; and are currently under clinical trial investigations as a monotherapy 

or combinatorial therapy for lymphoproliferative disease, hematologic malignancies, and solid tumors [27-

30]. HDAC6 is a Class IIb enzyme and unlike other HDAC isozymes, mainly resides in the cytoplasm and 

acts primarily on cytosolic proteins [31]. This provides a potential selective advantage over pan-HDAC 

inhibitors due to their pleiotropic effects. Pre-clinical studies report multiple selective HDAC6i compounds 

as anti-cancer agents with anti-cell proliferation, anti-cell viability, and tumor attenuation in glioblastoma, 

ovarian cancer, and bladder cancer [17,30,32-34]. A handful of HDAC6i clinical trials are registered and 

currently proceeding. A Phase Ib/II trial of ACY-1215 (Ricolinostat) in a small cohort of lymphoma patients 

revealed it was well-tolerated, and the disease stabilized in 50% (8 out of 16 patients evaluated) of 

patients [27]. ACY-1215 in combination with paclitaxel, was well tolerated and exhibited activity in patients 

with ovarian cancer in a small-scale Phase Ib trial, which was prematurely terminated [28]. In a Phase I/II 

trial in patients with relapsed or refractory multiple myeloma, ACY-1215 given in combination with 
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Bortezomib and Dexamethasone, was well tolerated and active as an anti-myeloma agent [29]. There are 

also ongoing clinical trials with HDAC6 inhibitors (e.g., ACY-1215, Citarinostat (ACY-241) or KA2507) as a 

single agent or combination therapy for non-small cell lung cancer, metastatic breast cancer and solid 

tumor [30].  

Here, we investigated the efficacy of HDAC6i, specifically ACY-1215, to inhibit MUM cell growth in vitro 

and in vivo; and to understand the molecular mechanism of ACY-1215 in MUM cell survival and 

proliferation. ACY-1215 significantly attenuated growth of MUM cells in vitro and in vivo; and this effect 

is correlated to regulation of microphthalmia-associated transcription factor (MITF) and phospho-ERK (p-

ERK) expression levels, which offers additional therapeutic targets for MUM.  
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Results 

 

ACY-1215 significantly attenuates long term proliferation of human uveal melanoma cell lines  

Three commercially available HDAC6i (Tubastatin A, ACY-1215 and Tubacin) were selected to determine 

their efficacy in reducing long-term proliferation of human UM cell lines derived from primary (Mel285 

and Mel270) and metastatic (OMM2.5) UM tumors [35]. Cells were treated for 96 hours at selected 

concentrations, treatment was stopped, cells were cultured for another 10 days in fresh complete media 

and colonies formed visualized with crystal violet staining and counted [36]. Initial screens at 10 - 50 µM 

Figure 1 
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showed a dose-dependent reduction in UM cell proliferation with all three HDAC6i tested (Figure S1). 

ACY-1215 was selected as the highest-ranked drug for subsequent studies based on its observed effects 

in all three UM cell lines tested and its existing approved use in clinical trials [27-29]. ACY-1215 was tested 

at 1, 5, 10, 20 and 50 µM concentrations in Mel270 and OMM2.5 cells, as these cell lines were established 

from the same patient (Figure 1). Mel270 cells showed significant reductions in viable clones averaging 

94.7%, 99.98%, 99.98% and 99.8% (p = 0.0001) decreases at 5, 10, 20 and 50 µM concentration of ACY-

1215, respectively, compared to vehicle controls (0.5% DMSO) (Figure 1B and 1C). Similarly, in OMM2.5 

cells, ACY-1215 significantly reduced surviving colonies in a dose-dependent manner averaging 92.9%, 

99.5%, 99.98% and 99.8% (p = 0.0001) decreases when treated at 5, 10, 20 and 50 µM respectively, 

compared to vehicle control (Figure 1B and 1D). Patients diagnosed with MUM are previously prescribed 

the chemotherapeutic Dacarbazine, hence this was used as a clinical control treatment on both Mel270 

and OMM2.5 cells. However, there was no significant difference observed at the tested concentration of 

20 µM in either Mel270 (9.8% increase in colony formation, p = 0.095) or OMM2.5 (16.5% increase in 

colony formation, p = 0.704) cells (Figure 1B, 1C and 1D). As our primary goal was to identify novel 

treatment strategies for MUM, follow-on studies determined ACY-1215 efficacy in vivo and mechanism of 

action in OMM2.5 cells. 

 

Zebrafish OMM2.5 xenografts proved that ACY-1215 is efficacious in vivo  

Our in vitro study provided preliminary evidence that ACY-1215 has anti-UM properties. Therefore, the 

efficacy of ACY-1215 in vivo was evaluated using a pre-clinical model of MUM, zebrafish OMM2.5 

xenografts. A toxicity screen determined the maximum tolerated dose of ACY-1215 and Dacarbazine in 

zebrafish larvae, with both drugs well-tolerated at all tested concentrations (Figure S2). OMM2.5 Dil 

labelled cells were transplanted into the perivitelline space of 2 days old larvae and xenografts were 
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treated with 0.5% DMSO, 20 µM ACY-1215 or 20 µM Dacarbazine for 3 days (5 days old) (Figure 2A). These 

concentrations were selected based on the in vitro studies conducted. Primary xenograft fluorescence 

Figure 2 
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from OMM2.5 transplants regressed by approximately 65% (p = <0.0001) with 20 µM ACY-1215 treatment 

compared to vehicle controls (Figure 2B and 2D). There was no notable difference in primary xenograft 

fluorescence when treated with 20 µM Dacarbazine in comparison to vehicle control. Additionally, the 

ability of transplanted OMM2.5 cells to disseminate was assessed by the number of cells present at the 

caudal vein plexus, 3 days post treatment. Dissemination of OMM2.5 Dil labelled cells was not affected 

by either 20 µM ACY-1215 or 20 µM Dacarbazine (Figure 2C and 2E). On average, four disseminated 

OMM2.5 Dil labelled cells were detected at the caudal vein plexus of ACY-1215 treated larvae and five 

disseminated cells were counted in larvae treated with either 20 µM Dacarbazine or 0.5% DMSO. In 

summary, ACY-1215 at the tested concentration is effective in preventing UM cell growth/viability but not 

dissemination of OMM2.5 xenografts, in vivo.        

 

Analysis of ACY-1215 Targets in UM Patients Samples and UM cells 

HDAC6 is a selective target of ACY-1215 at lower concentrations, hence HDAC6 expression in the different 

UM/MUM cell lines was confirmed by immunoblotting (Figure 3). No significant difference in HDAC6 

expression was detected when the untreated primary ocular tumor derived cell lines (Mel270 and 

Mel285) or untreated MUM (OMM2.5) cell line were compared to untreated ARPE19 cells, a human 

retinal pigment epithelium cell line (Figure 3A, 3A’ and Figure S3). To determine if ACY-1215 was indeed 

blocking HDAC6 activity, expression of its downstream substrate, acetylated α-tubulin was analyzed [30]. 

We observed a significant increase in acetylated α-tubulin levels after 4 (3.56-fold increase, p = 0.001) and 

24 (3.67-fold increase, p = 0.0002) hours post treatment (hpt) with 20 µM ACY-1215 compared to 0.5% 

DMSO treated OMM2.5 cells, confirming the inhibitory effects of ACY-1215 (Figure 3B, 3B’ and Figure 

S7A). As a dose-dependent anti-cancer effect of ACY-1215 was observed in the clonogenic assays and 

zebrafish xenografts, correlations between expression level of HDAC6 and UM patient overall 
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survival/progression free survival was analyzed. Extracting the gene expression data of 80 primary UM 

samples from The Cancer Genome Atlas (TCGA), Cox proportional-hazards models and Kaplan-Meier 

survival curves were generated. Kaplan-Meier survival curves were generated with a cut-off of 50% to 

demarcate as high or low HDAC6 expression, and Log-rank test was used to compare survival probability 

between groups. Interestingly, high HDAC6 expression was significantly associated with better overall 

survival but not with progression free survival (Cox OS, p = 0.007 and Cox PFS, p = 0.154) (Figure 3C).  

A known caveat of ACY-1215 is the non-selective inhibition of other HDAC isozymes at higher 

concentrations. The reported IC50 of ACY-1215 is 4.7 nM, at which ACY-1215 acts as a highly potent and 

Figure 3 
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selective HDAC6 inhibitor. Hence, we postulated that the observed effects of ACY-1215 in OMM2.5 cells 

are partly attributed to parallel inhibition of other HDACs. At higher concentrations, ACY-1215 inhibits 

HDAC 2, 3, 1, 8, 7, 5, 4, 9, 11 and SIRT 1/2 (Figure S4A and S4B) [37]. Thus, correlations between these 

HDAC isoforms and UM OS/PFS probability was analyzed (Figure S4C). HDAC2 (Cox OS, p = 0.1; Cox PFS, p 

= 0.454), HDAC3 (Cox OS, p = 0.443; Cox PFS, p = 0.293) and HDAC1 (Cox OS, p = 0.219; Cox PFS, p = 0.408) 

expression does not correlate with OS or PFS, respectively. Intriguingly, high HDAC11 expression 

correlated significantly with better OS and PFS (Cox OS, p = 0.006; Cox PFS, p = 0.024). On the other hand, 

HDAC8 (Cox OS, p = 0.231), HDAC7 (Cox OS, p = 0.751), HDAC5 (Cox OS, p = 0.837), HDAC4 (Cox OS, p = 

0.34), HDAC9 (Cox OS, p = 0.704) and SIRT1 (Cox OS, p = 0.579) expression did not significantly correlate 

to overall survival probability. Low expression of HDAC8 (Cox PFS, p = 0.024), HDAC7 (Cox PFS, p = 0.05), 

HDAC5 (Cox PFS, p = 0.012), HDAC4 (Cox PFS, p = 0.012), HDAC9 (Cox PFS, p = 0.00001) and SIRT1 (Cox 

PFS, p = 0.023) significantly correlated to a better PFS probability. There was significant correlation 

between high SIRT2 expression and OS probability (Cox OS, p = 0.025) while its expression did not correlate 

to PFS (Cox PFS, p = 0.531). In summary, HDAC6 expression levels were not altered across the three 

UM/MUM cell lines analyzed, and high HDAC6 expression level is associated with better survival for UM 

patients.  

 

Proteome profiling uncovers molecular signals altered in OMM2.5 UM cells by ACY-1215  

Having observed beneficial effects against the growth and viability of UM cell lines in vitro and in vivo, 

proteome profiling of ACY-1215 treated OMM2.5 cells was performed to investigate the molecular 

mechanism of its anti-cancer action (Figure 4, Figure S5, Table S1 and S2). Changes in protein expression 

levels were analyzed after 4 and 24 hours of 20 µM ACY-1215 treatment (Figure 4A). A total of 4,423 

proteins were detected across all samples by mass spectrometry. At 4 hpt, 42 proteins were differentially 
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expressed with 11 proteins significantly upregulated and 30 proteins significantly downregulated (Figure 

Figure 4 
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S5A and S5B). Using Cluego pathway analysis, the terms dendrite development and regulation of G 

protein-coupled receptor signaling pathways were identified as downregulated (Figure S5C). A distinct 

pathway was not detected within the upregulated proteins. At 24 hpt, 150 proteins and 202 proteins were 

significantly down- and up-regulated, respectively (Figure 4B). GO pathway enrichment analysis (fold 

change of > 1.2) for biological processes identified multiple pathways downregulated by ACY-1215, with 

pigment granule organization (11.24% of proteins) and pigment cell differentiation (7.87% of proteins) 

being prominently altered (Figure 4C, Figure S6A and Table S1). Through enriched pathway analysis, 

biological processes such as regulation of microtubule polymerization or depolymerization (7.25% of 

proteins), DNA duplex unwinding (3.11% of proteins), regulation of chromatin silencing (3.11% of 

proteins), regulation of extrinsic apoptotic signaling pathway in absence of ligand (2.07 % of proteins), 

cellular senescence (1.55% of proteins), exit from mitosis (1.55% of proteins) and ERBB2 signaling pathway 

(1.55% of proteins) were significantly upregulated by ACY-1215 treatment in OMM2.5 cells (Figure 4D, 

Figure S6B and Table S2). Proteins Arginase-2, mitochondrial (ARG2; 13.05-fold), Semenogelin-2 (SEMG2; 

10.26-fold), Protein AHNAK2 (AHNAK2; 8.69-fold), Neurosecretory protein VGF (VGF; 7.29-fold), Nuclear 

receptor subfamily 4 group A member 1 (NR4A1; 6.86-fold), Thymidine kinase, cytosolic (TK1; 5.72-fold), 

PRKC apoptosis WT1 regulator protein (PAWR; 4.80-fold), Tudor and KH domain containing, isoform 

CRA_a (TDRKH; 4.48-fold), Bromodomain-containing protein 2 (BRD2; 3.91-fold) and Ubiquitin-
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conjugating enzyme E2 S (UBE2S; 3.85-fold) were within the top ten significantly upregulated proteins 

(Figure 5A).  

Interestingly, from the top 10 downregulated proteins, microphthalmia-associated transcription factor 

(MITF) was downregulated 4.19-fold by ACY-1215, with proteins connected to MITF signaling also strongly 

downregulated, i.e., melanophilin (MLPH; 11.59-fold), SRY-box transcription factor (SOX10; 7.11-fold) and 

L-dopachrome tautomerase (DCT; 5.67-fold), compared to vehicle controls (Figure 5A). Corroborating our 

proteomics data, MITF expression was significantly downregulated (p = 0.002) following 24 hours of 20 

µM ACY-1215 treatment (Figure 6A, 6A’ and Figure S7B). A significant difference in MITF expression was 

not detected after 20 µM ACY-1215 treatment for only 4 hours compared to vehicle control. Expression 

Figure 5 
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of additional MITF target proteins and regulators such as Melanoma antigen recognized by T-cells 1 

(MLANA; 3.09-fold), 5,6-dihydroxyindole-2-carboxylic acid oxidase (TYRP1; 2.12-fold), Tyrosinase (TYR; 

2.04-fold), Ras-related protein Rab-27A (RAB27A; 2.00-fold), Cyclin-dependent kinase 2 (CDK2; 1.98-fold), 

Transcriptional coactivator YAP1 (YAP1; 1.80-fold), Melanosome protein PMEL (PMEL; 1.48-fold), were 

significantly reduced by ACY-1215 (Figure 5B). Furthermore, phospho-ERK and ERK expression levels were 

Figure 6 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466226doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466226
http://creativecommons.org/licenses/by/4.0/


analyzed in order to determine whether the MAPK/ERK signaling pathway played a role in the ACY-1215 

mechanism of action. Through immunoblotting, a significant difference in p-ERK expression levels was not 

observed after 4 hours of 20 µM ACY-1215 treatment compared to vehicle control (Figure 6B, 6B’ and 

Figure S7C). Following 24 hpt with 20 µM ACY-1215, p-ERK expression levels were significantly 

downregulated (p = <0.0001) compared to vehicle control (Figure 6B and Figure S7C). Overall, through 

proteomic analysis, MITF and p-ERK were identified as key players involved in the ACY-1215 mechanism 

of action in OMM2.5 cells.     

 

ACY-1215 treatment arrests cell cycle progression in S phase  

Outside of UM, previous studies have independently demonstrated that ACY-1215 and MITF regulate the 

cell cycle [38-42]. To determine whether ACY-1215 treatment altered cell cycle phases in MUM cells, 

OMM2.5 cells were treated with either 0.5% DMSO, 10, 20 or 50 µM of ACY-1215, 50 µM Etoposide (a 

chemotherapeutic used as a positive control for apoptotic cell death) or 20 µM Dacarbazine for 4 and 24 

hours. The cells were isolated, fixed, labelled with propidium iodide, and analyzed using flow cytometry 

(Figure 7 and Figure S8). In line with published studies, OMM2.5 cells undergo two cell cycle phases, due 

to the DNA ploidy of UM cells [43,44]. Approximately 60% - 70% of the cell population were diploid, in cell 

cycle 1 and the remaining cell population presented with aneuploidy in cell cycle 2 (Figure S8). Significant 

changes in G1, S and G2 cell cycle phases were not observed after 4 hours of ACY-1215 in any treatment 

group compared to vehicle controls (Figure 7B, 7C and 7E). After 24 hours of treatment with Etoposide or 

ACY-1215, a significant reduction (p = 0.0001) in the number of cells in G1 phase and a significant increase 

(p = 0.0001) in the number of cells in S phase was identified across the treatment groups compared to 
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vehicle controls (Figure 7B, 7D and 7F). On average, 19.0%, 8.2% and 11.9% of OMM2.5 cells were in G1 

phase following 10, 20 and 50 µM of ACY-1215 treatment, respectively, compared to 58.0% of cells in G1 

when treated with vehicle control. 80.7%, 91.6% and 88.0% of cells on average were detected in S phase 

upon treatment with 10, 20 and 50 µM of ACY-1215 in comparison to 39.35% of 0.5% DMSO treated cells. 

OMM2.5 cells treated with 20 µM Etoposide had 7.8% of cells in G1 and 88.4% of cells in S phase. The 

Figure 7 
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number of cells in G2 phase across all treatment groups did not significantly change at 24 hpt. No change 

was observed in any of the cell cycle phases following Dacarbazine treatment at 4 or 24 hours. In summary, 

cell cycle analysis proved that ACY-1215 treatment for  24 hours attenuated OMM2.5 cell cycle 

progression in S phase. 

 

Elevated apoptosis results from ACY-1215 treatment of MUM cells 

As the majority of OMM2.5 cells were arrested at S phase after 24 hours of ACY-1215 treatment, we 

investigated if these cells undergo increased apoptosis. OMM2.5 cells were treated, isolated, labelled with 

YO-PROTM-1 Iodide and Propidium iodide to distinguish between viable, non-viable and cells in different 

apoptotic stages (Figure 8 and Figure S9). In line with our cell cycle results, 4 hours of ACY-1215 treatment 

did not significantly alter apoptotic cell number in any treatment group (Figure S9). At 24 hpt, a significant 

reduction in live cells was reported with 20 µM (2.52% reduction of total number of live cells; p = 0.0055) 

and 50 µM (5.28% reduction of total number of live cells; p = <0.0001) ACY-1215 compared to the vehicle 

control (Figure 8A’, 8A’’ and 8C). Additionally, ACY-1215 significantly increased the average number of 

early apoptotic cells as evidenced by 3.22% (p = 0.017) and 4.89% (p = <0.0001) early apoptotic cells 

following 20 µM or 50 µM ACY-1215 treatment, respectively, compared to the vehicle control. After 24 

hours of treatment, there was no significant difference detected in the average number of cells 

undergoing late apoptosis or dead cells across all treatment groups (Figure 8A’’ and 8C). In line with our 

findings, cleaved PARP expression (a marker for apoptosis) was significantly upregulated at 24 hpt with 

20 µM ACY-1215 (p = 0.049) and not at 4 hpt (Figure 6C, 6C’ and Figure S7D). 

Prolonged ACY-1215 treatment for 96 hours, resulted in the majority of cells being either non-viable or 

undergoing late apoptosis (Figure 8B, 8B’ and 8D). The average number of viable cells with 10, 20 or 50 

µM ACY-1215 was significantly reduced to 9.47% (p = <0.0001), 1.56% (p = <0.0001) and 0.46% (p = 
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<0.0001), respectively. In contrast 92.9% and 89.45% of cells were viable in vehicle control and 20 µM 

Figure 8 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466226doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466226
http://creativecommons.org/licenses/by/4.0/


Dacarbazine treated groups, on average, respectively (Figure 8B’ and 8D). A significant increase in early 

apoptotic cells was detected in the 10 µM ACY-1215 treatment with 23.95% (p = <0.0001) of cells, 

compared to the vehicle control; a significant change was not observed in all other treatment groups. In 

0.5% DMSO treatment group 1.15% of cells and 1.36% of cells treated with 20 µM Dacarbazine were in 

late apoptotic stage while a substantial number of cells, on average 19.8% (p = <0.0001) in 10 µM, 39.0% 

(p = <0.0001) in 20 µM and 42.9% (p = <0.0001) in 50 µM ACY-1215 treated groups were undergoing late-

stage apoptosis (Figure 8B’ and 8D). ACY-1215 treatment resulted in a profound number of non-viable 

cells in a dose-dependent manner, with 44.8% (p = <0.0001), 52.4% (p = <0.0001) and 54.5% (p = <0.0001) 

following 10, 20 and 50 µM concentrations, in comparison to 2.71% dead cells in vehicle control and 4.47% 

in 20 µM Dacarbazine treated groups (Figure 8B’ and 8D). Etoposide (50 µM), a positive control for 

apoptosis, showed 5.41% (p = <0.0001) cells were viable, 45.2% (p = <0.0001) were in late apoptotic stage 

and 45.0% (p = <0.0001) were non-viable (Figure 8B’ and 8D). Furthermore, micrograph images of all 

treated cells corroborate our results that 96 hours of treatment with Etoposide or ACY-1215 significantly 

reduced cell viability, with most of the cells not adhered to the culture plate, in contrast to the vehicle 

control or clinical chemotherapeutic for 24-hour treatment groups (Figure 8A’’’ and 8B’’). Overall, we 

observe a time- and dose dependent alteration in OMM2.5 cell viability, cell cycle arrest and triggering of 

apoptosis, 24 hours post ACY-1215 treatment.  

 

MITF inhibitor treatment prevents MUM cell survival and proliferation in vitro 

To further interrogate the requirement of MITF in MUM cell survival, the ability of OMM2.5 cells treated 

with the MITF pathway inhibitor ML329, to survive and proliferate was analyzed using colony formation 

assays. Cells were treated with increasing doses of ML329, ranging between 0.05 µM and 50 µM, given 

the reported IC50 value of 1.2 µM (Figure 9A and 9B) [45]. The treatment regime was performed 
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aspreviously described , whereby OMM2.5 cells were treated with respective drug doses for 96 hours, 

and then maintained in culture, in fresh complete media for an additional 10 days (Figure 9A). 

 

Figure 9 

ML329 induced a significant reduction in the average number of surviving colonies (reduced by 18.9%, p 

= 0.005) when treated with 0.05 µM ML329 treatment compared to 0.5% DMSO (Figure 9C and 9D). At 

higher concentrations of ML329, more pronounced effects were detected with significant reductions in 
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viable clones averaging 52.6% to 99.8% (p = 0.0001) decreases at 0.1 to 50 µM concentration of ML329, 

compared to vehicle controls (Figure 9C and 9D). Corroborating our data, treatment of OMM2.5 cells with 

20 µM Dacarbazine did not result in a significant difference in the average number of viable clones while 

20 µM ACY-1215 treatment led to a significant reduction (99.8%; p = 0.0001) in number of surviving clones, 

compared to 0.5% DMSO. Given that MITF was found to play a role in MUM cell survival, correlations 

between MITF expression and UM patient OS/PFS was investigated. Curiously, high or low MITF 

expression levels were not significantly associated with better OS nor PFS (Cox OS, p = 0.748 and Cox PFS, 

p = 0.232) as shown by Kaplan-Meier survival curves (Figure 9E).  

 

Inhibition of MITF pathway hinder MUM cells survival in vivo in zebrafish OMM2.5 xenograft models  

The efficacy of the MITF pathway inhibitor, ML329, on survival of MUM cells in vivo was determined using 

zebrafish xenograft models. ML329 was well tolerated by zebrafish in vivo, albeit with drug precipitation 

at higher concentrations (1 - 100 µM) (Figure S10). Although we observed effects in vitro at concentrations 

as low as at 0.25 µM ML329, we chose the concentration of 1.25 µM for our study to fit with the reported 

IC50 value [45]. As before, OMM2.5 Dil labelled cells were injected into the perivitelline space after which 

the larvae (2 dpf) were treated with either 0.5% DMSO or 1.25 µM ML329 for 3 days (Figure 10A). There 

was no significant difference in the average number of disseminated cells to the caudal vein plexus of the 

OMM2.5 xenografted larvae at 0.5% DMSO (3.1 cells) or 1.25 µM ML329 (2.6 cells) treatment groups 

(Figure 10B and 10D). However, on average, a 51% (p = 0.0006) reduction in OMM2.5 primary xenograft 

fluorescence was detected after normalization, following treatment with 1.25 µM ML329 compared to 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466226doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466226
http://creativecommons.org/licenses/by/4.0/


vehicle controls (Figure 10A and 10C). Experimentally, therefore we observe a beneficial effect of blocking 

the MITF pathway in MUM cell line in vitro and in vivo.   

Figure 10 
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Discussion  

 

Metastatic UM (MUM) is a poor prognosis cancer lacking effective treatment options. Our study has 

provided evidence that inhibition of HDAC6 or MITF is efficacious in conferring anti-cancer effects in a 

MUM cell line, both in vitro and in vivo. To the best of our knowledge, this is the first study to provide 

evidence regarding the potential link between HDAC6 and MITF in MUM.  

Three commercially available, first generation HDAC6i were screened in UM and MUM cell lines and ACY-

1215 was selected for follow-up studies. ACY-1215 either as a monotherapy or in combination with other 

drugs, is presently in clinical trials for several cancers [27,46]. We observed strong anti-cancer effects 

elicited by ACY-1215 treatment in a dose-dependent manner in both UM and MUM derived cell lines, 

albeit weak HDAC6 expression is reported in UM tissues [47]. Notably, HDAC6 activity is significantly 

increased in inflammatory breast cancer even though HDAC6 is not overexpressed [48]. Hence, it is 

plausible that in MUM, there is increased HDAC6 activity but not HDAC6 expression. Our data indirectly 

supports the findings by Nencetti et al., whereby a novel synthetized quinoline derivative VS13, with high 

selectivity against HDAC6; led to a reduction in UM cell viability in vitro [26]. In addition, here, the anti-

cancer effect of ACY-1215 was demonstrated in vivo in zebrafish OMM2.5 xenograft models, without any 

significant change to the number of disseminated cells. This is not surprising given the timeframe of the 

experiment, and a low burden in the average number of disseminated cells to the caudal vein plexus three 

days post transplantation in the vehicle controls. It would be worthwhile to perform follow-up studies to 

evaluate the efficacy of ACY-1215 on tumor metastasis, with long-term treatment regimens and in patient-

derived samples in vivo in larvae and/or in adult zebrafish [49-52].  

However, pure HDAC6 inhibition mediated effects must be inferred with caution, as higher doses of ACY-

1215, result in non-selective inhibition, and the observed beneficial effects are mediated by additional 
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targets [37,53]. In a study by Lin et al., CRISPR-induced HDAC6 knock-out lines (e.g. melanoma, triple 

negative breast cancer, colorectal cell lines) demonstrated that the cell viability/proliferation capability 

was comparable to wildtype controls; additionally ACY-1215 was able to mediate its anti-cancer effects at 

high concentrations (micromolar) even when HDAC6 was knocked-out [53]. Corroborating their findings, 

Depetter et al., revealed that treatment with 10 μM ACY-1215 in HAP1 cells with HDAC6 knock-out, led to 

a reduction in cell viability [37]. In another study, a distinct anti-proliferative effect was observed in high-

grade serous ovarian cancer cells when a non-selective concentration of 10 μM ACY-1215 was used [54]. 

In both studies, the authors suggest that the true beneficial effects of HDAC6 inhibition might be reaped 

in combinatorial therapy rather than when administered as a single agent. Therefore, it has to be 

acknowledged that at our selected treatment concentration of 20 μM, we are likely to be non-selectively 

targeting other factors such as Class I HDAC isozymes, given the reported IC50 value for ACY-1215 is 4.7 

nM. Importantly, HDAC6 was indeed inhibited by ACY-1215 at the concentration we used, as its substrate 

acetylated α-tubulin was significantly upregulated. Furthermore, from our proteomics data we also 

identified proteins involved in microtubule polymerization and regulation of microtubule polymerization 

or depolymerization to be significantly altered [55]. Irrespective of non-selective inhibition of HDAC 

isozymes, ACY-1215 still presents as a promising therapeutic for treatment of MUM, with its ability to 

prevent UM cell growth, that warrants further interrogation.  

Proteome profiling of ACY-1215 treated OMM2.5 cells was key to deducing potential mechanisms of 

action. We discovered that the MITF signaling pathway and associated factors were significantly 

downregulated upon treatment with ACY-1215. Tying in with the concentration of ACY-1215 used, our 

findings are in line with another study, whereby it was reported that treatment of melanoma and clear 

cell sarcoma cells with different pan-HDAC inhibitors resulted in reduced MITF expression in vitro and in 

vivo in a mouse melanoma xenograft model [56].   
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The role of MITF has been extensively studied in cutaneous melanoma [57-59]. MITF is a key transcription 

factor and a master regulator of melanogenesis and melanocyte differentiation. It also plays a 

multifaceted role regulating several cellular processes including cell cycle, DNA-damage repair, lysosome 

biogenesis, metabolism, autophagy, and oxidative stress [60-63]. MITF can be further distinguished into 

five different isoforms, MITF-A, MITF-B, MITF-C, MITF-H and MITF-M [64]. Particularly in cutaneous 

melanoma, MITF-M is involved in carcinogenesis events such as survival, proliferation, differentiation, 

invasion and migration [59]. Not surprising, certain types of mutations in MITF and MITF-associated 

members are linked to oncogenic functions in melanoma [60,65,66]. MITF plays a dual role in cutaneous 

melanoma, based on its expression levels and activity, however, there is controversy surrounding this 

matter [61]. For instance, some studies report that low MITF expression is necessary for proliferation and 

higher levels of MITF correlates to suppression of cell proliferation and promotes differentiation [59]. 

While others state that low levels of MITF expression is linked to invasiveness while high levels of MITF 

expression is required for cell proliferation/differentiation [40,58,67]. Nevertheless, targeting the MITF 

pathway shows promise as an anti-cancer approach. Aida et al., demonstrated that the growth of 

melanoma cells, SK-MEL-5 and SK-MEL-30 were inhibited by siRNA mediated knock-down of MITF [68]. 

Similarly, in another study, knock-down of MITF by shRNA, in MM649 cells resulted in reduced cell 

proliferation in vitro and tumor growth and dissemination in vivo in mouse xenografts [57]. Furthermore, 

pharmacological inhibition of the MITF signaling pathway using small molecule ML329 reduced cell 

viability in MITF-dependent melanoma (SK-MEL-5 and MALME-3M) cells without affecting the viability of 

A375 cells, a MITF-independent cell line [45]. Comparably, another compound, CH5552074, inhibited the 

growth of SK-MEL-5 cells via the suppression of MITF protein [68]. Interestingly, knock-down of MITF in 

B16F10 melanoma cells and overexpression of MITF in YUMM1.1 cells led to increased tumor growth in 

vivo in mice [69]. Apart from melanoma, studies have connected MITF with a role in multiple cancers 

including non-small cell lung cancer, pancreatic cancer, and hepatocellular carcinoma [70-72]. Most 
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recently, it was demonstrated that knockdown of MITF in clear cell renal cell carcinoma cells, resulted in 

reduced cell proliferation and an increase in cells in S/G2 phases, suppressed cell migration and invasion 

in vitro and tumor formation in vivo; an opposing effect was observed when MITF was overexpressed [41]. 

In the context of UM, MITF is upregulated in UM cells [73]. In our study, expression levels of MITF and 

several proteins involved in pathways associated with MITF, such as pigment cell differentiation and 

melanosome organization, were downregulated upon ACY-1215 treatment. This was consistent with the 

observed trend when MITF is downregulated. Taken together, there is ample evidence to suggest that 

targeting the MITF signaling pathway may be a novel therapeutic option for MUM.  

Moreover, several studies have independently shown that ACY-1215 regulates cell cycle and cell death 

mechanisms in various cancers. In HCT-116 and HT29 colorectal cancer cells, a reduction in cell 

proliferation and viability was noted in a time- and dose-dependent manner; and apoptosis was observed 

as well at non-selective ACY-1215 concentrations [39,74]. Interestingly, ACY-1215 when used at HDAC6 

selective concentrations (up to 2 μM) did not promote apoptosis, however, if used in combination with 

other anti-cancer drugs it proved to be more effective [74,75]. In esophageal squamous cell carcinoma cell 

lines (EC109 and TE-1), ACY-1215 treatment resulted in suppression of cell proliferation through the arrest 

of cell cycle in G2/M phase and an increase in apoptosis [76]. Similarly, 4 μM ACY-1215 treatment for 24 

hours, prompted an increase in percentage of cells in G0/G1 phase; and a time/dose-dependent 

proapoptotic effects of ACY-1215 uncovered in lymphoma cell lines [38]. More recently, in gall bladder 

cancer cells, ACY-1215 inhibited cell proliferation and induced apoptosis as well as enhancing the 

chemotherapeutic effects of other anti-cancer agents upon co-treatment [77]. Collectively, in these 

studies it became evident that the PI3K/AKT and MAPK/ERK pathways played a central role in ACY-1215 

mechanism of action. We postulated whether ACY-1215 treatment promoted cell cycle arrest and 

apoptosis in MUM cells. As expected, at the non-selective concentration, ACY-1215 treatment resulted in 

the halting of cell cycle progression in S phase and induced apoptosis. We observed a significant increase 
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in early apoptotic cells and a significant reduction in the number of viable cells at 20 and 50 μM ACY-1215 

treatment by 24 hours. Additionally, expression of cleaved PARP, which is used as an indicator for 

apoptosis, was markedly upregulated in ACY-1215 treated MUM cells at 24 hours post treatment [78,79]. 

Further supporting evidence can be drawn from our proteomics data, whereby the pathways - regulation 

of extrinsic apoptotic signaling pathway in absence of ligand, exit from mitosis and cellular senescence 

were upregulated indicating an increase in expression levels of proteins associated with these biological 

processes. By 96 hours, at all tested ACY-1215 concentrations, the majority of cells were either apoptotic 

or in late apoptotic stages. Considering that MITF was significantly downregulated at 24 hours post 

treatment with ACY-1215, the cause of increased cell death observed following ACY-1215 treatment, is 

potentially mediated through the downregulation of MITF. In order to further confirm that the observed 

anti-cancer effects of ACY-1215 is through the regulation of MITF, OMM2.5 cells were treated with a MITF 

pathway inhibitor, ML329, in vitro and in vivo in zebrafish OMM2.5 xenografts. We noted a dose-

dependent reduction in cell viability in vitro and at the tested concentration, inhibition of the MITF 

pathway revealed an anti-UM effect in vivo. Additional interrogation of the link between HDAC6 and MITF, 

opened up the possibility of MAPK/ERK signaling being involved in the ACY-1215 mechanism of action in 

MUM cells. We observed that p-ERK expression levels were significantly reduced following 24 hours of 

ACY-1215 treatment. This correlates with reduced MITF expression levels, observed at the same time. It 

is not surprising that the MAPK/ERK signaling pathway is involved in ACY-1215 mechanism of action. It 

was previously reported that ERK1/2 and HDAC6 are interacting partners involved in a positive feed-

forward loop [80-82]. In colon cancer cell lines, knock-down of HDAC6 resulted in reduced p-ERK 

expression but not total ERK expression levels [83]. Peng et al., showed that in A375 melanoma cells, 

inhibition with ACY-1215 alone and in combination with vemurafenib led to the disruption and 

inactivation of ERK [84]. Interestingly in prostate cancer cells (LNCaP), blocking of HDAC6 with 
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Panobinostat led to increased ERK activity and as a consequence promoted apoptosis [85]. But this was 

not the case in PC-3 prostate cancer cells. While in another study, increased HDAC6 expression in lung 

cancer cell by Isoproterenol treatment led to the inhibition of the ERK signaling cascade [86]. Taken 

together, this indicates that there might be cell-specific context for HDAC6-ERK1 regulation and activity. 

In UM, GNAQ/GNA11 mutations are associated with constitutive activation of the MAPK/ERK signaling 

pathway, although heterogeneity in MAPK/ERK signaling has been observed across UM samples with 

GNAQ/GNA11 mutations [87-90]. More specifically, the OMM2.5 cells used in this study carry a mutation 

in GNAQ, which is known to result in constitutively active MAPK/ERK signaling in UM [8,91]. Therefore, we 

postulate that inhibition of HDAC6 leads to reduced ERK activity that subsequently results in reduced p-

ERK expression levels. In turn, reduced p-ERK expression levels decrease MITF expression and 

Figure 11 
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consequently, associated biological processes downstream such as cell survival mechanisms are inhibited 

(Figure 11). Collectively, our findings warrant an in-depth analysis into understanding the role of MITF in 

MUM and to consider targeting MITF and/or candidates in the MITF signaling pathway as additional 

potential therapeutic option(s). 

Though promising, the role of HDAC6 and MITF still needs to be thoroughly investigated in UM and MUM 

patient samples. Currently, there is no clear evidence linking either HDAC6 or MITF in MUM prognosis. 

Immunohistochemistry based expression analysis of 16 primary UM samples detected variable low levels 

of HDAC6 expression, with a clear correlation between HDAC6 expression levels and UM, unable to be 

drawn due to the limited sample size [47]. Based on TCGA data analysis comprising 80 UM patient samples, 

a significant correlation was found between HDAC6 expression and OS probability, highlighting a possible 

involvement of HDAC6 in UM prognosis. Moreover, HDAC2 and SIRT2 expression correlated to OS while 

HDAC4 expression showed correlations to PFS. HDAC 1 and 3 expression was not correlated to either OS 

or PFS. Although, HDAC 1, 2, 3, 4 and Sirtuin 2 (SIRT2) expression was detected in UM eye samples [47]. A 

limited number of studies have explored the expression of MITF in UM and MUM. MITF expression was 

found in 100% (15 out of 15) of 15) of UM samples in one study, however, in another study, MITF 

expression was detected in 65% (37 out of 57 samples) of choroidal UM patient samples, with levels of 

MITF expression not significantly associated with the survival of these patients [92,93]. Comparably, from 

our TCGA data analysis, there was no correlation between MITF expression levels and OS/PFS seen in UM 

patients. It has been previously suggested that MITF would be a useful marker for ocular malignant 

melanoma [94]. Taken together, it will be worthwhile to perform an extensive study with a larger cohort 

of UM and MUM patient samples to conclusively determine whether HDAC6 and MITF plays a part in 

MUM prognosis. Additionally, it needs to be determined whether targeting these pathways offer a broad 

treatment option for MUM irrespective of MUM causative mutation(s).  
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This study is pivotal in highlighting that MITF plays a critical role in the survival of OMM2.5 cells and 

provides evidence that the observed ACY-1215 mechanism of action in OMM2.5 cells is most likely 

through the regulation of MITF. Our data suggests that HDAC6 and/or pan-HDACs and the MITF signaling 

pathway offer novel options to identify therapeutic targets for treatment of MUM that needs to be 

considered and further evaluated. 
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Methods 

 

Cell culture 

Mel270, Mel285 and OMM2.5 cells (kindly provided by Dr. Martine Jager, Leiden, The Netherlands) were 

cultured with Complete Media containing RPMI 1640 (Gibco; Waltham, MA, United States) + 10% fetal 

bovine serum (FBS) + 2% penicillin-streptomycin (PEST), in T175 flasks for not more than 20 passages [35]. 

ARPE-19 cells were maintained in Complete media containing DMEM: F12 supplemented (Lonza; Basel, 

Switzerland) + 10% FBS + 1% PEST + 2.5 mM L-Glutamine. Culture flasks and plates were incubated at 370C 

with 5% CO2. 

 

Clonogenic assay 

All three cell lines were seeded into 6-well plates at 1.5 x 103 cells/ml (final volume 2 ml) and allowed to 

adhere overnight. Initial drug screens were performed with Mel285 cells seeded at 1.5 x 103 cells/ml and 

Mel270/OMM2.5 cells were seeded at 9 x 103 cells/ml. The following day, cells were treated with either 

0.5% DMSO (vehicle control) or 20 µM Dacarbazine (clinical control; Sigma-Aldrich; St. Louis, MO, United 

States) or HDAC6i (Tubastatin A (SelleckChem; Houston, TX, USA), ACY-1215 (SelleckChem) and Tubacin 

(Sigma-Aldrich)) at increasing doses ranging from 1 µM, 5 µM, 10 µM, 20 µM and 50 µM, prepared in 

Complete Media. The MITF inhibitor, ML329 (Ambeed, Inc.; Sigma-Aldrich), was tested at increasing 

concentrations ranging from 0.05 µM, 0.1 µM, 0.25 µM, 0.5 µM, 1 µM, 1.25 µM, 2.5 µM, 5 µM, 10 µM, 20 

µM and 50 µM. All drugs were dissolved in DMSO to prepare stock solutions. Cells were treated with 2 ml 

of desired drug solution per well in duplicate and incubated at 370C with 5% CO2 for 96 hrs. Drug solutions 

were removed and wells washed twice with 1 x phosphate buffered saline (PBS; Lonza). Fresh Complete 
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Media were added to the plates and cells allowed to grow for an additional 10 days at 370C with 5% CO2. 

Clones were washed twice and fixed with 4% paraformaldehyde/formaldehyde for 10 mins at room 

temperature (RT). Clones were stained with 0.5% crystal violet solution (Pro-Lab diagnostics PL700; 

Richmond Hill, ON, Canada) for 10 mins - 2 hours at RT, shaker, washed and dried (once desired staining 

is achieved). Plates were imaged using the GelCount™ system (Oxford Optronix; Oxford, UK) and analyzed 

using the ColonyCountJ Plugin in ImageJ v1.53e [95]. Statistical analysis was performed using One-way 

ANOVA with Dunnett's Test for Multiple Comparisons in GraphPad Prism v7.00 for Windows (GraphPad 

Software, San Diego, CA, USA, www.graphpad.com). A p value of < 0.05 was considered as statistically 

significant. Experiments were performed in triplicates/quadruplicates.    

 

OMM2.5 zebrafish xenografts 

All animal work and husbandry were performed in accordance with ethical approval granted by Linköping 

Animal Research Ethics Committee. Zebrafish embryos/larvae from Tg(fli1a:EGFP) background were 

raised in embryo media containing 5 mM NaCl, 0.17 mM KCl, 0.33 mM MgCl2, 0.33 mM CaCl2 and 0.003% 

phenylthiourea (PTU), in a petri dish at 28.50C incubator. Adult Tg(fli1a:EGFP) zebrafish were maintained 

in a 14 hour light/10 hour dark cycle in a recirculating water system at 280C. OMM2.5 cells were prepared 

for transplantation as described in previously published report [96]. OMM2.5 cells were labelled with 6 

mg/ml Dil (Sigma-Aldrich) stain solution prepared in 1 X PBS for 30 min at 370C. OMM2.5 Dil labelled cells 

were washed twice with 1 X PBS and resuspended in complete media. OMM2.5 Dil cells were filtered 

through a 40 µm cell strainer prior to microinjection. Approximately 200 - 500 labelled cells were micro-

injected (microINJECTORTM, Tritech Research; Los Angeles, CA, USA) into the perivitelline space of two 

days old Tg(fli1a:EGFP) zebrafish larvae under anesthesia (0.05 mg/ml MS222; Sigma-Aldrich). Larvae 

were imaged using a fluorescent microscope (SMZ1500 attached with DS-Fi2 camera head, Nikon; Tokyo, 
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Japan) for red fluorescence and placed individually into 48-well plates. Only larvae with tumor cells 

correctly implanted in the perivitelline space were included in the study. Larvae (0 days post treatment 

(dpt)) were treated with either 0.5% DMSO, 20 µM ACY-1215 (MCE, MedChemExpress; NJ, USA), 20 µM 

Dacarbazine (TCI, Tokyo Chemical Industry; Tokyo, Japan) or 1.25 µM ML329 for three days at 350C and 

imaged at both perivitelline space and caudal vein plexus post treatment (25 - 32 pooled larvae were used 

per treatment group). Differences to transplanted OMM2.5 Dil labelled cells primary fluorescence 

between 0 dpt and 3 dpt was measured, normalized and calculated using ImageJ. Before drug treatment, 

toxicity assays were performed with either 0.5% DMSO, ACY-1215, Dacarbazine or ML329 (ranges from 1 

- 100 µM). Eight larvae (4 larvae/well) per treatment group was exposed to the desired concentration of 

drug solutions for 3 days in 24/48-well plates at 350C and imaged at 3 dpt. One-way ANOVA with Dunnett's 

Test for Multiple Comparisons or Student’s T test statistical analysis was performed using GraphPad Prism.  

 

Proteome profiling and mass spectrometry analysis 

OMM2.5 cells were seeded at a density of 1 x 106 cells per well and drug treated for 4 or 24 hours with 

0.5% DMSO or 20 µM ACY-1215, in duplicate (N = 4). Protein was isolated using PreOmics iST For 

protein/proteomics preparation kit (PreOmics GmbH; Martinsried, Germany) according to manufacturer’s 

protocol. Mass Spectrometry and bioinformatic analysis of samples were performed as described 

previously [97]. Slight variations to methodology consist of raw data processing performed with MaxQuant 

v1.6.10.43, with MS/MS spectra and database search performed against Uniprot Homo sapiens database 

(2020_05) containing 75,074 entries [97]. Pathway analysis of enriched proteins (a fold change of (+/-) > 

1.2 and a p value of < 0.05) was performed using ClueGo (v2.5.8) [98] and Cluepedia (v1.5.8) [99] plugins 

in Cytoscape (v3.8.2) [100] with the Homo sapiens (9606) marker set. GO: Biological Process functional 

pathway databases, consisting of 18058 genes, were used. GO tree levels (min = 3; max = 8) and GO term 
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restriction (min#genes = 3, min% = 4%) were set and terms were grouped using a Kappa Score Threshold 

of 0.4. The classification was performed by two-sided hypergeometric enrichment test, and its probability 

value was corrected by the Benjamini-Hochberg method (Adjusted % Term p-value < 0.05). 

 

Western blot analysis  

Protein was isolated from Mel270, Mel285, OMM2.5 and ARPE19 cells at a cell density of 1 x 106 or 4 x 

105 and immunoblotting was performed as described [36]. For validation of proteomics data, protein 

isolated for MS study was utilized. Protein concentrations were measured using BCA protein assay kit 

(ThermoFisher Scientific; Waltham, MA, United States) in accordance with manufacturer’s instructions 

and 10 μg of protein was loaded per lane (N = 3 - 4). Blots were probed for HDAC6 (1:1000; #7558, Cell 

Signaling Technology; Danvers, MA, USA, kindly provided by Dr. Tríona Ní Chonghaile, Dublin, Ireland), 

acetylated α-tubulin (1:1000; #5335, Cell Signaling Technology), MITF (1:1000; #ab122982, Abcam kindly 

provided by Dr. Desmond Tobin, Dublin, Ireland), cleaved PARP (1:1000; #5625, Cell Signaling Technology 

kindly provided by Dr. Emma Dorris, Dublin, Ireland), p-ERK (1:500; #sc-7383, Santa Cruz Biotechnology 

Inc.; Dallas, TX, USA), ERK (1:500; #sc-514302, Santa Cruz Biotechnology, Inc.), α-tubulin (1:1000; #sc-

5286, Santa Cruz Biotechnology Inc.), GAPDH (1:1000; #2118, Cell Signaling Technology) and β-actin 

(1:1000; #A5441, Sigma-Aldrich). Anti-rabbit IgG, HRP-linked Antibody (1:3000; #7074s, Cell Signaling 

Technology) and anti-mouse IgG, HRP-linked Antibody (1:3000; #7076s, Cell Signaling Technology) were 

used as secondary antibodies. Signal was detected with enhanced chemiluminescence substrate (Pierce™ 

ECL Western Blotting Substrate; ThermoFisher Scientific). Densitometry analysis was performed using 

ImageJ and One-way ANOVA with Dunnett's Test for Multiple Comparisons or Student’s T test statistical 

analysis using GraphPad Prism. 
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Flow cytometry analysis 

A total of 300,000 OMM2.5 cells were seeded and treated with 0.5% DMSO, 50 µM Etoposide (Sigma-

Aldrich; kindly provided by Dr. William Watson, Dublin, Ireland), 10, 20 and 50 µM ACY-1215 or 20 µM 

Dacarbazine, in duplicate (N = 3 - 4) for 4, 24 and 96 hours at 370C with 5% CO2. Cells were trypsinized and 

filtered through 50 µm CellTrics filter. Live cells were labelled sequentially with YO-PRO™-1 Iodide 

(Molecular ProbesTM by ThermoFisher Scientific) for 15 mins and Propidium Iodide (PI, Molecular ProbesTM 

by ThermoFisher Scientific) for 3 mins, in the dark at RT to analyze apoptotic events. For cell cycle analysis, 

cells were fixed in ice cold 70% ethanol at 40C. Cells post-fixed were labelled with 1.25 µl of 1 mg/ml 

propidium iodide stock and co-treated with 2.5 µl of 10 mg/ml RNase A enzyme (ThermoFisher Scientific) 

for 30 mins at RT, in the dark. All samples were run on a BD AccuriTM C6 Flow Cytometer (BD Biosciences; 

NJ, USA) and up to 50,000 events were recorded per sample (N = 3 - 4). YO-PRO™-1 Iodide and PI were 

excited using a 488 nm laser, and its fluorescence was collected using FL-1 channel (B530/30 band pass 

filter) and FL-3 channel (B675LP band pass filter), respectively. For cell cycle analysis, PI was excited using 

a 488 nm laser and its fluorescence collected using FL-2 channel (575/25 band pass filter). Collected 

samples were gated based on controls (DMSO/Etoposide) and preliminarily analyzed using CFlow Plus 

Software (v1.0.264.21; BD Biosciences). Reanalysis was performed using FCS ExpressTM De Novo (Research 

Edition) v6 software. Instrument was calibrated with manufacturer’s specifications prior to use. Two-Way 

ANOVA followed by Tukey’s multiple comparison test or Dunnett's Test for Multiple Comparisons 

statistical analysis were performed using GraphPad Prism. Detailed information on flow cytometry 

experiments and analysis performed are provided in Table S3.  
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TCGA analysis 

Survival analyses were performed with package “survminer”, R v3.5.0 (R Foundation for Statistical 

Computing, Vienna, Austria). Gene expression and clinical data from 80 primary UM included in The 

Cancer Genome Atlas (TCGA) were collected from the cBioPortal. RNA-seq data were downloaded in 

Fragments Per Kilobase of exon per million fragments Mapped (FPKM) and then converted to log2 scale. 

The associations between gene expression and prognosis were assessed by Cox proportional hazard 

regression models. Progression Free Survival (PFS) and Overall Survival (OS) were used as end points. For 

categorization of the gene expression into “High” and “Low” categories, median values were used as cut-

off. Survival probabilities were plotted on a Kaplan-Meier curve and a Log-rank test was used to compare 

the two groups. Progression free survival is defined as time to metastatic recurrence. Overall survival is 

defined as death by any cause. 
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Conclusion 

 

This research provides evidence that HDAC6 inhibitors and MITF inhibitors should be considered and 

further investigated as a potential treatment option for MUM. Specifically, this study proves the efficacy 

of ACY-1215 as an anti-cancer agent for MUM in vitro and in vivo. We have additionally elucidated that 

ACY-1215 regulates MITF expression via p-ERK signaling when used at high concentrations. 
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Figure legends 

 

Figure 1: ACY-1215 is efficacious as an anti-cancer drug in UM and MUM cell lines. A: Schematic diagram 

on the treatment regime followed. B: Representative image of clonogenic assay plates for Mel270 (top 

panel) and OMM2.5 cells (bottom panel) treated with 0.5% DMSO; 1, 5, 10, 20 or 50 μM ACY-1215 or 20 

μM Dacarbazine for 96 hours. C and D: A dose-dependent, significant decrease in the surviving number of 

OMM2.5 colonies was observed, indicative of reduction in cell viability upon ACY-1215 treatment in 

comparison to 0.5% DMSO treatment. One-way ANOVA with Dunnett's Test for Multiple Comparisons 

statistical analysis was performed, error bars represent mean + SEM, ****p value of 0.0001 (N = 3 - 4).  

 

Figure 2: ACY-1215 demonstrates anti-cancer effects in vivo in zebrafish OMM2.5 xenografts. A: Schematic 

depicting the workflow for assessing ACY-1215 effects in vivo. B: Top panel shows representative images 

of transplanted OMM2.5 Dil labelled cells into the perivitelline space of 2 days old zebrafish larvae. Bottom 

panels present representative images of the distribution of OMM2.5 Dil labelled cells in xenografts 3 days 

post treatment (dpt) with 0.5% DMSO (n = 30), 20 μM ACY-1215 (n = 31) or 20 μM Dacarbazine (n = 27). 

C: At 3 dpt, OMM2.5 Dil labelled cells have disseminated (white arrowhead) to the caudal vein plexus of 

the zebrafish larvae. D: ACY-1215 treatment for 3 days, resulted in a significant (****, p = 0.0001) 

reduction in normalized primary xenograft fluorescence on average in comparison to larvae treated with 

0.5% DMSO or 20 μM Dacarbazine. E: No difference observed in the average number of disseminated cells 

between vehicle control treated or drug-treated groups after 3 days. Statistical analysis was performed 

using One-way ANOVA with Dunnett's Test for Multiple Comparisons and error bars present mean + SEM. 
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Figure 3: Expression and activity of HDAC6 in UM/MUM cells. A and A’: HDAC6 is expressed in Mel270, 

OMM2.5, Mel285 and ARPE19 cells (N = 3). B and B’: 20 μM ACY-1215 treatment significantly increased 

acetylated α-tubulin expression levels at 4 hpt (**, p = 0.0013) and 24 hpt (***, p = 0.0002) compared to 

0.5% DMSO treatment. Student’s Unpaired T test statistical analysis was performed, and data presented 

as mean + SEM. Representative blots for each protein probed and densitometry analysis presented, plus 

raw blots are provided in Supplementary Figures 3 and 7. C: Kaplan-Meier survival curves demonstrating 

correlation between expression of HDAC6 and overall survival (OS) or progression free survival (PFS) in 

UM patients. Median values were used as cut-off for high (red) and low (blue) expression levels, with Log-

rank p-values (categorical variable) and Cox p-values (continuous variable) calculated (n = 80).   

  

Figure 4: Proteome profiling of ACY-1215 treated cells to uncover mechanism of action. A: ACY-1215 

treatment regime for proteome profiling of OMM2.5 cells. B: Heat map showing all significant 

differentially expressed proteins at 24 hours post 20 μM ACY-1215 treatment. A total of 4423 proteins 

were identified in MS with 150 downregulated (blue) and 202 upregulated (red) proteins (N = 4). C and D: 

Enriched protein pathway analysis for GO term: biological processes, for down- and up-regulated proteins 

given a fold change cut off of +/- > 1.2, p < 0.05 displayed as pie charts. 

 

Figure 5: Significantly altered proteins identified by proteomic profiling following ACY-1215 treatment for 

24 hours. A: Table highlighting the top 10 strongly down- and up-regulated proteins at 24 hours post 

treatment (hpt) with 20 μM ACY-1215. B: List of proteins involved in the MITF signaling pathway that were 

downregulated upon 20 μM ACY-1215 treatment for 24 hours. 
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Figure 6: Western Blot validation of proteomics data. A and A’: There was no change in MITF expression 

levels after 4 hours of 20 μM ACY-1215 treatment, while treatment for 24 hours with 20 μM ACY-1215 led 

to a significant (**, p = 0.002) reduction in MITF expression levels. B and B’: Relative expression levels of 

p-ERK to total ERK remained unchanged after 20 μM ACY-1215 treatment for 4 hours. At 24 hours post 

treatment with 20 μM ACY-1215, relative expression levels of p-ERK to total ERK was significantly (****, 

p < 0.0001) downregulated when compared to the 0.5% DMSO treatment. C and C’: Expression of cleaved 

PARP was significantly (*, p = 0.049) upregulated after 24 hours treatment with 20 μM ACY-1215 in 

comparison to 0.5% DMSO treated OMM2.5 cells. Representative blots for each protein probed and 

densitometry analysis presented, raw blots are provided in Supplementary Figure 7. β-actin, GAPDH or α-

tubulin were used as loading controls. Student’s Unpaired T test statistical analysis was performed, and 

data presented as mean + SEM. 

 

Figure 7: Cell cycle progression is arrested in S phase by ACY-1215 in OMM2.5 cells. A: Schematic 

illustrating treatment protocol undertaken. B: Flow cytometry data analysis plot legend. C and E: 4 hours 

of treatment with 10, 20 or 50 μM ACY-1215; or 50 μM Etoposide or 20 μM Dacarbazine did not alter the 

cell cycle profile. D and F: A significant (****, p = 0.0001) reduction in the percentage of cells in G1 phase 

and a significant (****, p = 0.0001) increase in the percentage of cells in S phase was observed after 24 

hpt with 10, 20 or 50 μM ACY-1215 or 50 μM Etoposide, in comparison to vehicle controls. No changes in 

the cell cycle phases were observed following 20 μM Dacarbazine treatment. No alterations to G2 phase 

were observed in all treatment groups. Statistical analysis was performed by two-way ANOVA with 

Dunnett's Test for Multiple Comparisons and data represented as mean + SEM (N = 4). 
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Figure 8: ACY-1215 activates the apoptotic pathway in OMM2.5 cells. A: Diagram portraying treatment 

regime. A’ and B: Plots representing gating of cell singlets into different stages of apoptosis. A’’ and B’: 

Representative plots depicting OMM2.5 treated with 0.5% DMSO; 10, 20 or 50 μM ACY-1215; 50 μM 

Etoposide or 20 μM Dacarbazine, at 24 and 96 hpt, respectively. A’’’ and B’’: Representative micrographs 

of OMM2.5 cells at 24 and 96 hours post treatment. C: A significant reduction in the percentage of live 

cells and a significant increase in the percentage of early apoptotic cells was detected following 20 μM 

(**, p = 0.005 and *, p = 0.016, respectively) and 50 μM (****, p < 0.0001) ACY-1215 treatment compared 

to 0.5% DMSO treatment. D: Live cell populations were significantly (****, p < 0.0001) reduced and cell 

populations in late apoptotic stage and apoptotic stage were significantly (****, p < 0.0001) increased 

upon 50 μM Etoposide and all concentrations of ACY-1215 tested. 10 μM ACY-1215 treatment resulted in 

a significant increase in the early apoptotic cell population compared to 0.5% DMSO. 20 μM Dacarbazine 

treatment was comparable to vehicle control plots. Statistical analysis by Two-way ANOVA followed by 

Tukey’s Multiple Comparisons test with error bars shown as mean + SEM (N = 3). 

 

Figure 9: Inhibition of MITF pathway reduces OMM2.5 cell viability in vitro. A: Schematic diagram of 

treatment regime. B: Chemical structure of ML329, a small molecule MITF pathway inhibitor. C: 

Representative image of clonogenic assay plates for OMM2.5 cells treated with 0.5% DMSO, 0.05 - 50 μM 

ML329, 20 μM Dacarbazine or 20 μM ACY-1215 for 96 hours. D: A dose-dependent, significant reduction 

in the number of OMM2.5 colonies was observed in ML329 treatment groups compared to the 0.5% 

DMSO treatment group. One-way ANOVA with Dunnett's Test for Multiple Comparisons statistical analysis 

was performed, error bars represent mean + SEM, ****, p value of 0.0001 (N = 3 - 4). E: Kaplan-Meier 

survival curves demonstrating no correlation between expression of ML329 and overall survival (OS) or 

progression free survival (PFS) in UM patients. Median values were used as cut-off for high (red) and low 
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(blue) expression levels, with Log-rank p-values (categorical variable) and Cox p-values (continuous 

variable) calculated (n = 80).   

 

Figure 10: ML329 demonstrates anti-UM properties in zebrafish OMM2.5 xenografts. A: Top panel shows 

OMM2.5 Dil labelled cells xenografted into the perivitelline space of 2 days old zebrafish larvae. Bottom 

panel presents zebrafish larvae 3 days post treatment with 0.5% DMSO (n = 29) or 1.25 μM ML329 (n = 

29). B. Representative image of OMM2.5 Dil labelled cells disseminated (white arrowhead) to the caudal 

vein plexus of zebrafish larvae at 3 dpt. C: A significant (***, p = 0.0006) regression of the average 

normalized primary xenograft fluorescence of OMM2.5 Dil labelled cells was observed when treated with 

1.25 μM ML329. D: No difference detected in the average number of disseminated OMM2.5 Dil cells 

following treatment with 1.25 μM ML329 compared to vehicle control. Student’s T test was used for 

statistical analysis with error bars presenting mean + SEM.    

 

Figure 11: Proposed model for ACY-1215 mechanism of action in OMM2.5 cells. Mutations in GNAQ, lead 

to constitutively active MAPK/ERK signaling that activates cell survival mechanisms in OMM2.5 cells (black 

arrows). Inhibition of HDAC6 by ACY-1215 is either ① directly involved in the downregulation of MITF 

expression levels and consequently its downstream effectors and biological processes; or ② 

downregulation of p-ERK expression levels upon HDAC6 inhibition, in turn downregulates MITF expression 

and consequently inhibits biological processes that promotes cell survival and proliferation. Red arrows 

represent consequence of HDAC6 inhibition and dotted arrows indicative of plausible mechanism of 

action.  
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Supplementary Materials: Figure S1: HDAC6 inhibitors present with anti-cancer activity in UM (Mel285, 

Mel270) and MUM (OMM2.5) cell lines. Figure S2: Toxicity effects of ACY-1215 and Dacarbazine in 

zebrafish larvae. Figure S3: Raw Western blot images for HDAC6 expression in UM and MUM cells. Figure 

S4: Potential off-target effects of ACY-1215 on HDAC isozymes. Figure S5: Proteome profile of OMM2.5 

cells treated with ACY-1215 for 4 hours. Figure S6: Pathway analysis map of down- and up-regulated 

proteins following ACY-1215 treatment for 24 hours. Figure S7: Raw Western blot images for acetylated 

α-tubulin, MITF, p-ERK, ERK and cleaved PARP expression in ACY-1215 treated OMM2.5 cells. Figure S8: 

DNA ploidy in OMM2.5 cells. Figure S9: 4 hours ACY-1215 treatment did not have a profound effect on 

apoptosis pathway in OMM2.5 cells. Figure S10: Toxicity screen of ML329 in zebrafish larvae. Table S1: 

List of downregulated proteins and associated pathways after 24 hours of ACY-1215 treatment. Table S2: 

List of upregulated proteins and associated pathways following ACY-1215 treatment for 24 hours. Table 

S3: Minimum Information about a Flow Cytometry Experiment (MIFlowCyt). 
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