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Abstract In almost every natural environment, sounds are reflected by nearby objects,7

producing many delayed and distorted copies of the original sound, known as reverberation. Our8

brains usually cope well with reverberation, allowing us to recognize sound sources regardless of9

their environments. In contrast, reverberation can cause severe difficulties for speech recognition10

algorithms and hearing-impaired people. The present study examines how the auditory system11

copes with reverberation. We trained a linear model to recover a rich set of natural, anechoic12

sounds from their simulated reverberant counterparts. The model neurons achieved this by13

extending the inhibitory component of their receptive filters for more reverberant spaces, and14

did so in a frequency-dependent manner. These predicted effects were observed in the15

responses of auditory cortical neurons of ferrets in the same simulated reverberant16

environments. Together, these results suggest that auditory cortical neurons adapt to17

reverberation by adjusting their filtering properties in a manner consistent with dereverberation.18

19

Introduction20

Reverberations accompany almost all natural sounds that we encounter and are the reflections21

of sound off objects in the environment such as walls, furniture, trees, and the ground (Huisman22

and Attenborough, 1991; Sakai et al., 1998). Compared to the original sound, these reflections23

are attenuated and distorted due to frequency-selective absorption and delayed due to increased24

path length (Kuttruff, 2017).25

Reverberation can be useful, helping us judge room size, sound-source distance, and realism26

(Shinn-Cunningham, 2000; Trivedi et al., 2009; Kolarik et al., 2021). However, strong reverberation27

can impair sound-source localization (Hartmann, 1982; Shinn-Cunningham and Kawakyu, 2003;28

Rakerd and Hartmann, 2005; Shinn-Cunningham et al., 2005) and segregation (Culling et al., 1994;29

Darwin and Hukin, 2000), pitch discrimination (Sayles and Winter, 2008) and speech recognition30

(Knudsen, 1929; Nábĕlek et al., 1989; Guediche et al., 2014; Houtgast and Steeneken, 1985). No-31

tably, reverberation can be detrimental for people with hearing impairments, increasing tone de-32

tection thresholds and reducing intelligibility of consonants (Humes et al., 1986; Helfer and Wilber,33

1990). It can also impede the effectiveness of auditory prostheses such as hearing aids (Schweitzer,34

2003; Qin and Oxenham, 2005; Poissant et al., 2006) and substantially reduces the performance of35

automatic speech recognition devices (Yoshioka et al., 2012; Kinoshita et al., 2016).36

The auditory system has mechanisms to help us cope with reverberation, to the extent that37

healthy listeners often only directly notice it when it is strong (in environments such as cathe-38

drals). In the presence of mild-to-moderate reverberation, healthy listeners can continue to per-39

form sound localization (Hartmann, 1982; Rakerd and Hartmann, 2005) and speech and auditory40

object recognition tasks (Houtgast and Steeneken, 1985; Bradley, 1986; Darwin and Hukin, 2000;41

Culling et al., 2003;Nielsen and Dau, 2010). Since it is such a ubiquitous property of natural sounds,42
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these findings highlight the importance, for both normal and impaired hearing, of understanding43

how the brain copes with reverberation (Xia et al., 2018).44

What are the neurophysiological mechanisms that support listening in reverberant environ-45

ments? Previous studies have examined subcortical processes that facilitate localization of rever-46

berant sounds (Yin, 1994; Litovsky and Yin, 1998; Fitzpatrick et al., 1999; Spitzer et al., 2004; Tollin47

et al., 2004; Pecka et al., 2007; Devore et al., 2009; Kuwada et al., 2012; Kim et al., 2015; Brughera48

et al., 2020), and how subcortical processing of synthetic periodic sounds is disrupted by reverber-49

ation (Sayles and Winter, 2008) and partially restored by compensatory mechanisms (Slama and50

Delgutte, 2015). Much less is known about the neural processing of speech and other complex51

natural sounds in the presence of reverberation. However, converging evidence from electrophys-52

iological recordings in animals (Rabinowitz et al., 2013;Moore et al., 2013;Mesgarani et al., 2014)53

and from human EEG (Khalighinejad et al., 2019) and fMRI (Kell and McDermott, 2019) studies54

suggests that representations of sounds that are invariant to non-reverberant background noise55

emerge at the level of auditory cortex via neuronal adaptation to stimulus statistics (but see also56

Lohse et al. , 2020). Auditory cortex may play a similar role in adaptation to reverberation. Indeed,57

speech and vocalization stimuli reconstructed from auditory cortical responses in awake ferrets58

more closely resemble their anechoic versions than the reverberant ones, even if the sounds were59

presented in reverberant environments (Mesgarani et al., 2014). Similar results have been found60

in humans using sound reconstructions from EEG measurements (Fuglsang et al., 2017). It re-61

mains unclear, however, whether the observed cortical invariance to reverberation can occur in62

the absence of top-down attention, and through what neural mechanisms this is achieved.63

Here, we addressed these questions by using a model to predict what neural tuning properties64

would be useful for effective attenuation of reverberation (a normative “dereverberation model”).65

We then test these predictions using neural recordings in the auditory cortex of anesthetized fer-66

rets. More specifically, we made reverberant versions of natural sounds in simulated rooms of67

different sizes. Next, we trained a linear model to retrieve the clean anechoic sounds from their re-68

verberant versions. Our trainedmodel provided specific predictions for how the brainmay achieve69

this task: with increased reverberation, neurons should adapt so that they are inhibited by sound70

energy further into the past, and this should occur in a sound frequency-dependent manner. We71

observed these predicted effects in the responses of auditory cortical neurons to natural sounds72

presented in simulated reverberant rooms, and show that they arise from an adaptive process.73

These results suggest that auditory cortical neuronsmay support hearing performance in reverber-74

ant spaces by temporally extending the inhibitory component of their spectrotemporal receptive75

fields.76

Results77

Dereverberation model kernels show reverberation-dependent inhibitory fields78

We trained a dereverberationmodel to estimate the spectrotemporal structure of anechoic sounds79

from reverberant versions of those sounds. The anechoic sounds comprised a rich 10-minute-long80

set of anechoic recordings of natural sound sources, including speech, textures (e.g. runningwater)81

and other environmental sounds (e.g. footsteps) (see Sound stimuli and virtual acoustic space).82

Reverberation in small (3.0 x 0.3 x 0.3m) and large (15 x 1.5 x 1.5m) tunnel-shaped rooms was83

simulated using the virtual acoustic space simulator Roomsim (Campbell et al., 2005) (Figure 1A).84

The simulation also modelled the acoustic properties of the head and outer ear by using a ferret85

head-related transfer function (HRTF, Schnupp et al. , 2001). The dimensions of the smaller room86

made it less reverberant (reverberation time, RT10 = 130ms) than the larger room (RT10 = 430ms).87

After the reverberant soundswere generated, theywere converted to cochleagrams (Figure 1B).88

These spectrotemporal representations of the sound estimate the filtering and resulting represen-89

tation of the sound by the auditory nerve (Brown and Cooke, 1994; Rahman et al., 2020). Cochlea-90

grams of an example sound clip presented in the anechoic, small and large room conditions are91
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Figure 1. Dereverberation model.
A, Virtual acoustic space was used to simulate the sounds received by a ferret from a sound source in a reverberant room for diverse naturalsounds. Schematic shows the simulated small room (length (L) = 3m, width (W) = 0.3m, height (H) = 0.3m) used in this study, and the position ofthe virtual ferret’s head and the sound source (1.5m from the ferret head) within the room. We also used a medium (x2.5 size) and large room(x5). The acoustic filtering by a ferret’s head and ears was simulated by a head-related transfer function (HRTF). B, Schematic of thedereverberation model. The waveform (top left panel) shows a 4s clip of our anechoic recordings of natural sounds. For a given room, simulatedroom reverberation and ferret HRTF filtering were applied to the anechoic sound using Roomsim (Campbell et al., 2005), and the resultingsound was then filtered using a model cochlea to produce a reverberant cochleagram (top right panel). A cochleagram of the anechoic soundwas also produced (bottom left panel). For each room, a linear model was fitted to estimate the anechoic cochleagram from the reverberantcochleagram for diverse natural sounds. Each of the 30 kernels in the model was used to estimate one frequency band of the anechoic sound.One such model kernel is shown (middle right panel). Generating the estimated anechoic cochleagram (bottom right panel) involved convolvingeach model kernel with the reverberant cochleagram, and the mean squared error (MSE) between this estimate and the anechoic cochleagramwas minimized with respect to the weights composing the kernels. C, Sample cochleagrams of a 4s sound clip for the anechoic (left panel), smallroom (middle panel), and large room (right panel) reverberant conditions.
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shown in Figure 1C.92

We trained a dereverberation model to recover the anechoic cochleagram, using either the93

small or large room cochleagrams as an input (Figure 1B). The dereverberation model was com-94

prised of a set of “dereverberation” kernels, one for each frequency in the anechoic cochleagram95

(see Model kernels). Eachmodel kernel used the full reverberant cochleagram (up to 200ms in the96

past) to estimate the current power in the anechoic cochleagram within a single frequency band.97

This resulted in a set of positive and negative weights in each model kernel. Obtaining the esti-98

mated anechoic sounds involved convolution over time between the model kernels and the rever-99

berant cochleagrams, and themodel was trained tominimize the difference between this estimate100

and the original anechoic sound (Figure 1B). The model was trained separately to dereverberate101

the small and large room cochleagrams. For each room, on a held-out test set, the dereverberation102

model reduced the difference between the incoming reverberant cochleagram and the anechoic103

cochleagram (small room mean squared error reduction 26%; large room reduction 20%).104

Three examples of model kernels are shown in Figure 2A for the large room and the small105

room, with the anechoic frequency band they estimate indicated at the top. For each model ker-106

nel, the excitatory (red) and inhibitory (blue) weights represent spectrotemporal features in the107

reverberant cochleagrams that are associated with increased or decreased power in the specified108

frequency band of the anechoic cochleagram, respectively. The majority of the excitatory and in-109

hibitory weights appear localized around a particular frequency, resembling the frequency tuning110

seen in auditory cortical neurons (Bizley et al., 2005). This is expected in our dereverberation111

model since each kernel aims to estimate the power in a given frequency band of the anechoic112

cochleagram.113

The model kernels had temporally asymmetric structure, where strongest excitatory weights114

tended to occur first (Figure 2A), followed soon after by a longer inhibitory field. These excitatory115

and inhibitory timings are readily apparent when we plot the frequency-averaged positive and116

negative kernel weights (Figure 2B), and are a common feature across all kernels in the model (Fig-117

ure 2-Figure supplement 1A, and Figure 2-Figure supplement 2A). This pattern has been commonly118

observed in the spectrotemporal receptive fields (STRFs) of auditory cortical neurons (deCharms119

et al., 1998; Linden et al., 2003;Harper et al., 2016; Rahman et al., 2019), so ourmodel qualitatively120

reproduces the basic frequency tuning and temporal characteristics of these auditory cortical neu-121

rons.122

Importantly, we can compare the model kernels for the large room with those for small room.123

The inhibitory components of the large-room kernels tended to be delayed and longer in duration,124

relative to the small-room kernels (Figure 2B). In contrast, the temporal profile of the excitatory125

components was similar for the small and large rooms. We predicted that a comparable shift in126

inhibitory filtering could play a role in reverberation adaptation in auditory cortical neurons.127

Auditory cortical neurons have reverberation-dependent inhibitory fields128

To test the predictions of our dereverberation model in vivo, we presented to anesthetized ferrets129

an 80 sec subset of the natural sounds in the simulated small and large reverberant rooms (see130

Sound stimuli and virtual acoustic space). Wedid thiswhile recording the spiking activity of neurons131

in the auditory cortex usingNeuropixels high-density extracellularmicroelectrodes (Jun et al., 2017)132

(see Surgical procedure). Stimuli were presented as 40 sec blocks, in which all sounds were in the133

same reverberant room condition. This allowed neurons to adapt to the reverberation acoustics of134

the room. We recorded the responses of 2,244 auditory cortical units. Of these, the 696 units (160135

single units, 23%) which were responsive to the stimuli were used for further analysis (see Spike136

sorting).137

We estimated the filtering properties of each unit by fitting a separate STRFs to the neuronal138

responses for each reverberant condition. Neuronal STRFs are linear kernels mapping the cochlea-139

gram of the sound stimulus to the time-varying firing rate of the neuron (Theunissen et al., 2001).140

The positive regions of an STRF represent sound features whose level is positively correlated with141
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the the neuron’s spike rate, providing the “excitatory” part of the receptive field. Similarly, nega-142

tive regions of the STRF indicate features whose level is negatively correlated with the neural unit’s143

spike rate, providing the “inhibitory” receptive field.144

Examples of typical neuronal STRFs are shown in Figure 2C, and these can be compared to the145

model kernel properties of our dereverberationmodel above (Figure 2A). Asmentioned above, the146

model kernels show some similarity to the STRFs typically reported for auditory cortical neurons147

(deCharms et al., 1998; Linden et al., 2003; Harper et al., 2016; Rahman et al., 2019). Likewise, the148

model kernels show similarity to the STRFs we present here, including having frequency tuning,149

early excitatory receptive fields and delayed inhibitory receptive fields (Figure 2D). These consis-150

tencies between the general features of our model and neurophysiological responses validated151

our use of this normative approach to capture neural response properties. We next examined if152

the model could predict neural adaptation to different reverberant conditions.153

The important prediction we observed in the model was that the inhibitory fields tended to154

be more delayed and of longer duration in the large-room kernels versus the small-room kernels,155

whereas the excitatory field remained unchanged. Strikingly, we observed the same pattern in156

the neuronal STRFs in Figure 2D. This observation also held across different frequency channels in157

both the model and the data. (Figure 2-Figure supplement 1, Figure 2-Figure supplement 2).158

Similar effects of reverberation on the inhibitory fields of model kernels and audi-159

tory cortical neurons160

Since both the dereverberation model and the neuronal STRFs had structure which varied accord-161

ing to the reverberation condition, we sought to investigate these effects quantitatively. We used162

two metrics to estimate the temporal dynamics of the inhibitory (and excitatory) components of163

the model kernels and neuronal STRFs: Center of mass (COM ) and peak time (PT ) (see Quan-164

tification of the temporal effects in model kernels and neuronal STRFs). The COM measured the165

average temporal delay of the inhibitory (COM−) or excitatory (COM+) components of the model166

kernels/neuronal STRFs (Figure 2B,D). The PT is the time at which the maximal inhibition (PT −) or167

excitation (PT +) occurred.168

For each anechoic frequency channel in the dereverberation model, we calculated the differ-169

ence between the COM−for the kernels in the large room and small room conditions, providing 30170

COM−differences (1 for each channel), and did the same for theCOM+. We plotted the distribution171

of these differences as histograms in Figure 3A. Similarly, a histogram of the COMdifference be-172

tween the neuronal STRFs in the large and small room conditions is plotted for 696 cortical units in173

Figure 3B. We found that the COM+did not differ significantly between the small and large rooms,174

either for model kernels (median COM+difference = 0.97ms, Wilcoxon signed-rank test, p = 0.066)175

or neuronal STRFs (median COM+difference = 0.32ms, p = 0.39). In contrast, the COM−showed176

clear dependence on room size. The inhibitory centers of mass were higher in the larger room177

for both the model kernels (median COM−difference = 7.9ms, p = 1.9x10−6), and neuronal STRFs178

(median COM−difference = 9.3ms, p = 1.5x10−66).179

The results of our analysis of PTwere largely consistent with our COMfindings (Figure 3C,D).180

The peak time of the excitatory component (PT +) of model kernels did not differ between the small181

and large room (median PT +difference = 0.0ms, p = 1.0), while PT +in the neural data showed a182

small but statistically significant increase in the large room (median PT +difference = 0.0ms, p =183

0.014). The peak time of the inhibitory component, on the other hand, occurred much later in the184

large room, in both the model kernels (median PT −difference = 10ms, p = 3.7x10−3) and neuronal185

STRFs (median PT −difference = 10ms, p = 1.5x10−39). In general, therewasmore spread in theCOM186

and PT in the neuronal data comparing to the dereverberationmodel. This is likely because, unlike187

in themodel, whichwas focused purely on dereverberation, the auditory cortex subservesmultiple188

functions and a diversity of STRF spans is useful for other purposes (e.g. prediction, Singer et al. ,189

2018). Despite this, it is notable that the median COMand PTdifferences of the dereverberation190

model were of similar magnitude to those of the real data.191
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Figure 2. Comparison of dereverberation model kernels and neuronal receptive fields from auditory cortex.
A, Example model kernels resulting from the dereverberation model. Three example model kernels are shown, after training on the large (toprow) or small (bottom row) room reverberation. The frequency channel which the model kernel is trained to estimate is indicated above eachkernel. The color scale represents the weights for each frequency (y-axis) and time (x-axis). Red indicates positive weights (i.e. excitation), andblue indicates negative weights (i.e. inhibition; color bar right). B, Each plot in the top row shows the temporal profile of the excitatory kernelweights for the corresponding example model kernels shown in A. Excitatory temporal profiles were calculated by positively rectifying the kerneland averaging over frequency (the y-axis), and were calculated separately for the small (pink) and large (red) rooms. The center of mass of theexcitation, COM+, is indicated by the vertical arrows, which follow the same color scheme. The bottom row plots the inhibitory temporal profilesfor the small (cyan) and large (blue) rooms. Inhibitory temporal profiles were calculated by negatively rectifying the kernel and averaging overfrequency. The COM− is indicated by the colored arrows. C, Spectrotemporal receptive fields (STRFs) of three example units recorded in ferretauditory cortex, measured for responses to natural sounds in the large room (top row) or small room (bottom row), plotted as for model kernelsin A. D Temporal profiles of the STRFs for the three example units shown in C, plotted as for the model kernels in B.

Figure 2–Figure supplement 1. Model kernels and neuronal STRFs across frequency channels.
Figure 2–Figure supplement 2. Model and neuronal temporal profiles across frequency channels.
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Figure 3. Differences in the temporal profiles for large and small rooms.
A, Histograms of the difference in center of mass of the temporal profiles (for the inhibitory field, COM−, blue; excitatory field, COM+, red) ofdereverberation model kernels between the two different reverberant conditions (large - small room). The COM− increased in the larger roomwith a median difference = 7.9ms; COM+ did not differ significantly between the rooms, median difference = 1.0ms. B, Center of massdifferences, plotted as in A, but for the auditory cortical units. The COM− increased in the larger room, median difference = 9.3ms; COM+ wasnot significantly different, median difference = 0.3ms. C, Histograms of the large - small room difference in peak time for the temporal profilesof the model kernels (inhibitory, PT −, blue; excitatory, PT +, red). The PT − values were larger in the larger room, median difference = 10ms,whereas PT + values were not significantly different, median difference = 0.0ms. D, Peak time differences for neuronal data, plotted as in C. The
PT − values increased in the larger room, median difference = 10ms, and PT + showed a weakly significant change, but the median differencewas 0ms. Asterisks indicate the significance of Wilcoxon signed-rank tests: ∗∗∗∗p < 0.0001, ∗∗p < 0.01, ∗p < 0.05.
Figure 3–Figure supplement 1. A medium room condition shows intermediate center of mass and peak time values compared to the small and
large room conditions.

Figure 3–Figure supplement 2. Simulated neurons suggest a role for adaptation in cortical dereverberation.
Figure 3–Figure supplement 2. Simulated neurons suggest a role for adaptation in cortical dereverberation

(caption).
Figure 3–Figure supplement 3. Neural response to noise probe shows slower adaptation in the more

reverberant condition.
Figure 3–Figure supplement 4. Adaptation to reverberation is confirmed using stimuli that switch between

the small and large room.
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As our stimulus set described above included only 2 reverberant rooms, it was not clear if the192

neurons treated these simulated rooms as two points along an ordered reverberation scale. To193

further examine whether the timing of the neuronal STRF inhibitory component scales with the194

amount of reverberation in our simulated room, we added a third “medium” sized room with the195

same relative proportions and absorption properties as the small and large rooms. We measured196

auditory cortical responses to this extended stimulus set in 2 ferrets (266 neural units).197

The COM and PT measures of neuronal STRF dynamics were compared across the small,198

medium and large room conditions, and are shown in Figure 3-Figure supplement 1. As expected,199

there was little effect of room size on the timing of the excitatory STRF components (Figure 3-200

Figure supplement 1A,C). The COM+ showed a weak but significant overall increase with room201

size (Kruskal-Wallis test; �2(2) = 6.4, p = 0.042), but there was no effect of room size on the peak202

time of excitation, PT + (�2(2) = 1.4, p = 0.50). In post-hoc pairwise comparisons, COM+ only dif-203

fered between the small and medium rooms (Fisher’s least significant differences; large-small: p =204

0.21; large-medium: p = 0.21; medium-small: p = 0.012).205

In contrast, as predicted, we found that the delay of the inhibitory STRF components increased206

with greater room reverberation. The COM− was generally larger for larger rooms (Kruskal-Wallis207

test; �2(2) = 37, p = 7.6x10−9) (Figure 3-Figure supplement 1B). Post-hoc pairwise tests confirmed208

that COM− differed between all three reverberant conditions (Fisher’s least significant differences;209

large-small: p = 1.3x10−9; large-medium: p = 2.0x10−4; medium-small: p = 0.019). The peak time210

of STRF inhibition, PT −, also increased with room size across all 3 rooms (�2(2) = 27, p = 1.6x10−6;211

large-small: p = 2.7x10−7; large-medium: p = 0.0024; medium-small: p = 0.036) (Figure 3-Figure212

supplement 1D).213

Thus, as room size, and hence reverberation time, was increased, we observed an increase214

in the delay of inhibition in the tuning properties of auditory cortical neurons. This increase is215

consistent with a normative model of dereverberation, suggesting that the tuning properties of216

auditory cortical neurons may adapt in order to dereverberate incoming sounds.217

Reverberation effects result from an adaptive neural process218

In principle, there could be other reasons, unrelated to adaptation, why the temporal profile of219

the inhibitory field is delayed and broader in the more reverberant room. An important possibility220

is that differences in sound statistics between the reverberation conditions could result in differ-221

ent STRFs, even if the underlying neuronal tuning is unchanged. For example, the cochleagrams222

of more reverberant sounds are more temporally blurred (Figure 1C). This could lead to slower223

features in the neuronal STRFs for the larger room, purely due to systematic model fitting arte-224

facts (Christianson et al., 2008). In combination with changing sound statistics, a non-adaptive225

static non-linearity in the neural system could produce apparent differences in neuronal tuning226

between the reverberation conditions (Christianson et al., 2008). Here, we perform several addi-227

tional experiments and analyses to test whether the reverberation-dependent effects observed228

above are likely to result from a genuine adaptive process.229

As a first test, for each recorded unit, we fitted a simulated linear-nonlinear-Poisson model230

neuron (Schwartz et al., 2006), composed of a single STRF (fitted to the combined small and large231

room stimuli) feeding into a non-linear output function (see subsection Simulated neuron), which,232

in turn, fed into a non-homogeneous Poisson process. Since this model did not have an adaptive233

component, we used it to assess whether our reverberation-dependent results could arise from fit-234

ting artefacts in a non-adaptive neuron. To do this, we presented the same stimuli to the simulated235

non-adaptive neurons as we did to the real neural responses and performed the same analyses.236

Hence, we fitted STRFs to the simulated neural responses separately for the large and small room237

conditions. We then extracted COMand PTparameters from the excitatory and inhibitory tem-238

poral profiles of these STRFs, and compared them to those of the measured cortical units. The239

simulated results are shown alongside the neural results in Figure 3-Figure supplement 2.240

We asked whether the shift in inhibition observed in the dereverberation model and neural241
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data was also present in this adaptation-free simulation. In the simulation, although the inhibitory242

COM− was slightly larger for the more reverberant condition (Figure 3-Figure supplement 2B), the243

effect size for the simulated neurons (median COM− difference = 0.90ms, p = 1.5x10−5) was very244

small compared to that observed in the real neuronal data (median COM− difference = 9.3ms, p =245

1.5x10−66, Figure 3-Figure supplement 2C). We directly compared the COM− room differences be-246

tween cortical units and their simulated counterparts (Figure 3-Figure supplement 2D), and found247

that the reverberation effects on COM− were consistently larger in the neuronal data (median248

difference = 9.3ms, p = 3.9x10−35). An analysis of the peak time of inhibitory STRF components249

for neural and simulated units was in agreement with the center of mass results (Figure 3-Figure250

supplement 2E-G). The simulation predicted a near zero shift in the peak inhibitory component be-251

tween rooms (median PT − difference = 0ms, p = 3.5x10−9), and was unable to account for the 10ms252

large roomdelay observed in the neuronal responses (median difference = 10ms, p = 4.7x10−31). For253

the simulation, differences in COM+and PT +between the two reverberation conditions were small254

(Figure 3-Figure supplement 2B,E, median COM+ difference = 1.7ms, p = 3.4x10−4; median PT + dif-255

ference = 0.0ms, p = 2.3x10−30), with a slight difference from the real responses for PT +difference256

(median difference = 0.0ms, p = 7.7x10−6) but not COM+difference (median difference = 0.0ms, p257

= 0.72). In summary, differences in stimulus properties alone were not able to account for the258

∼10ms delay in inhibitory COMtiming in the large reverberant room, and these are likely to arise259

instead from neural adaptation to room reverberation.260

To further confirm that the shift in inhibitory receptive fields arises from neuronal adaptation261

to reverberation and not to differences in stimulus statistics between the room conditions, we262

compared how all neurons in our dataset respond to a probe stimulus (a non-reverberated noise263

burst) interspersed within the small and large room reverberation stimuli (see Noise burst analy-264

sis). If the neurons adapt to the current reverberation condition, we should expect them to respond265

differently to the noise probe when it occurs within the small room and large room stimuli, reflect-266

ing the different adaptation states of the neurons. The neuronal responses to the noise probe267

showed a similar initial onset excitation (0-20ms) in both conditions, but the return to baseline268

firing was slower in the large room condition (Figure 3-Figure supplement 3A). This is consistent269

with the previous STRF analysis, wherein the excitatory temporal profile was similar between the270

small and large rooms (Figure 3B,D) , while the inhibitory components were delayed in time in the271

large room (Figure 3B,D). For each cortical unit, we compared the center of mass of the noise burst272

response between the small and large rooms (Figure 3-Figure supplement 3B). The COM of the273

noise response increased slightly in the large room (median COM difference = 1.0ms, p = 0.0063).274

Therefore, responses to an anechoic probe noise show further evidence for reverberation adap-275

tation in auditory cortical neurons, and are consistent with the predicted delayed inhibition in the276

presence of increased reverberation.277

To further confirm and explore the adaptive basis of our results, we presented our reverberant278

sounds in blocks, which switched between the small and large room every 8s (see Figure 3-Figure279

supplement 4A and Switching stimuli analysis). This switching stimulus was tested in 310 neurons280

across 4 ferrets. If the roomadaptation accumulates throughout the 8s following a roomswitch, we281

would expect the inhibitory component of neuronal STRFs to be increasingly delayed throughout282

this period. To test this prediction, we fitted STRFs to neuronal responses separately from the first283

and last half of each 8s room block, for the small (S1 early and S2 late halves) and large room (L1284

early and L2 late halves). The switching stimulus was designed to ensure that the stimulus set of285

L1 and L2 (or S1 and S2) was the same, but the order of stimuli was shuffled differently for these286

two time periods. Specifically, we predicted that the neuronal STRFs would have a larger COM−287

during the L2 than the L1 period, while COM+ should remain unchanged. By the same reasoning,288

in a large-to-small room switch, we expected the COM− to be smaller in S2 than in S1, while COM+289

should remain similar.290

We observed these predicted trends in our data, as show in Figure 3-Figure supplement 4B,C.291

The COM− decreased from S1 to S2 (median difference = -0.9ms, Wilcoxon signed-rank test, p =292
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0.019), while COM+ did not change across these two periods (median difference = 0.52ms, p =293

0.85). In the switch to a large room, COM− increased from the first (L1) to second (L2) half of the294

block (median difference = 1.5ms, p = 0.0088), while COM+ did not change (median difference =295

0.8ms, p = 0.35). These results further suggest that auditory cortical receptive fields are genuinely296

adapting dynamically to the changing reverberant conditions.297

Frequency dependence of the temporal profile of adaptation298

Reverberation is a frequency-dependent effect, as higher frequencies are usually attenuated by air299

and surfaces faster than lower ones in natural conditions (Traer and McDermott, 2016; Kuttruff,300

2017). Therefore, we explored whether our dereverberation model and auditory cortical neurons301

also show frequency-dependent reverberation effects.302

Figures 2-Figure supplement 1 and Figure 2-Figure supplement 2 plot the reverberation model303

kernels and neuronal STRFs as a function of their frequency tuning. A visual inspection of these304

plots reveals that in both the model and the neuronal data, while the temporal spread of the ex-305

citatory components stays relatively constant across the preferred frequency, the inhibitory com-306

ponents tend to extend less far back in time as the preferred frequency increases. This tempo-307

ral narrowing of the inhibitory fields is observed for both the large and the small reverberant308

rooms. Therefore, the frequency-dependent effects predicted by our dereverberation model are309

confirmed in our cortical recordings.310

To further examine these frequency-tuning effects, we plotted the excitatory and inhibitory311

center of mass values (COM+, COM−) as a function of the anechoic frequency estimated by the312

model kernels (Figure 4A) or the best frequency of the neuronal STRFs, i.e. the sound frequency of313

the highest weight (Figure 4B). The inhibitory components occurred systematically later in model314

kernels that were tuned to lower frequencies, in both the small (Pearson’s correlation: r = -0.57, p315

= 0.0037) and large room (r = -0.80, p = 2.6x10−6) simulations. The same correlation between best316

frequency and COM− was present in the neuronal STRFs (small room: r = -0.80, p = 3.0x10−6; large317

room: r = -0.85, p = 1.6x10−7). In contrast, the dereverberation model showed a smaller magnitude318

but significant increase of the excitatory COM+ with best frequency (small room: r = 0.52, p =319

0.0087; large room: r = 0.55, p = 0.0049), while there was no relationship between COM+ and best320

frequency in the neuronal data (small room: r = -0.34, p = 0.1; large room: r = -0.25, p = 0.24).321

Figure 4A,B also show that the inhibitory components were later in time in the large room than322

in the small room across the entire best frequency range, for both the dereverberation model and323

neuronal data. The COM+ values, on the other hand, were largely overlapping between the two324

rooms across this frequency range. This is in agreement with our observations that the inhibitory325

components of the receptive fields shift reliably with room size, while the excitatory components326

do not.327

The frequency dependence of the inhibitory shift may reflect a frequency dependence in the328

reverberation acoustics themselves. The decay rate of the power in the impulse response of a329

reverberant environment depends on sound frequency, and this dependence can change across330

different environments. However, many man-made and natural environments show a gradual331

decrease in decay rate above about ∼0.5kHz (Traer and McDermott, 2016). The early decay rate332

can bemeasured as the reverberation timeRT10, which is the time necessary for the sound level to333

decay by 10dB relative to an initial sound impulse. The frequency-dependent RT10 values for our334

small and large rooms are plotted in Figure 4C. The impulse responses of both rooms exhibited a335

decrease in RT10 values as a function of frequency (Pearson’s correlation; small room: r = -0.82, p336

= 1.1x10−10; large room: Pearson’s correlation: r = -0.91, p = 8.0x10−10). Therefore, the frequency-337

dependent delay in the inhibitory components of our dereverberation model and cortical STRFs338

paralleled the RT10 frequency profile of the virtual rooms in which the sounds were presented.339

10 of 27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466271doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466271
http://creativecommons.org/licenses/by-nc-nd/4.0/


6.5

B Neuronal data

C
O

M
 (

m
s)

0.9 1.3 2.0 2.9 4.4 6.5 9.8 14.6
30

50

70

90

110

130
r
large

= -0.85****

r
small

= -0.80****
r
large

= -0.25
r
small

= -0.34

Dereverberation model

C
O

M
 (

m
s)

A

r
large

= -0.80****

r
small

= -0.57**
r
large

= 0.55**

r
small

= 0.52**

0.9 1.3 2.0 2.9 4.4 6.5 9.8 14.6
40

50

60

70

80

90

C Room reverberation

Frequency (kHz)

R
T

10
 (

m
s)

0.9 1.3 2.0 2.9 4.4 9.8 14.6
0

200

400

600 r
large

= -0.91****

r
small

= -0.82****

Figure 4. The inhibitory field latencies are frequency dependent, consistent with the reverberation.
A, Center of mass values (COM ) are plotted against the anechoic frequency channel being estimated, for the excitatory and inhibitory fields ofeach model kernel for the large room and for the small room. These are color coded as follows: excitatory COM (large room, COM+

large, red;small room, COM+
small , pink) and their inhibitory counterparts (COM−

large, blue; COM−
small , cyan). The dashed lines show a linear regression fit foreach room, and the Pearson’s r value for each fit is given in the top right corner of the plot. B, COM values are plotted against the bestfrequency for the neuronal data (sound frequency of highest STRF weight). Each neuron was assigned a best frequency and the COM valuesmeasured. The solid lines represent the mean COM value for each best frequency, the shaded areas show ± SEM; color scheme and otheraspects as in A. C, RT10 values are plotted as a function of cochlear frequency bands, for the large (dark green) and small (light green) rooms.Linear regression fit (dotted line) was used as in A and B to calculate r. Significance of Pearson’s correlation: ∗∗∗∗p < 0.0001, ∗∗p < 0.01.
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Discussion340

In this study, we applied a normative modelling approach to ask the question: If a function of the341

auditory system is to remove reverberation from natural sounds, how might the filtering prop-342

erties of neurons adapt to achieve this goal? To answer this question we used a rich dataset of343

anechoic speech and natural environmental sounds, adding different amounts of reverberation344

to them. We then trained a linear dereverberation model to remove this reverberation. We con-345

structed our model in such a way that the selectivity (kernels) of the model units after training can346

be compared to the filtering properties (STRFs) of real auditory cortex neurons in the ferret (Fig-347

ure 1). We confirmed the validity of our dereverberation model by showing that it recapitulated348

known properties of auditory cortical neurons, such as frequency tuning and temporally asymmet-349

ric STRFs with excitation followed by inhibition (Figure 2). Interestingly, our dereverberationmodel350

alsomakes two novel predictions: (1) the inhibitory components of neuronal STRFs should bemore351

delayed in more reverberant conditions (Figure 3); and (2) the inhibition should occur earlier for352

higher sound frequencies (Figure 2-Figure supplement 1, 2, Figure 4).353

We verified both of these predictions using electrophysiological recordings from ferret auditory354

cortex neurons, fitting STRFs to neuronal responses to sounds from the same rich dataset, and355

comparing them to the model kernels. Finally, we used three additional methods - non-adaptive356

simulated neurons, probe stimuli and switching stimuli - to confirm that the observed changes in357

the neuronal STRFs are consistent with a truly adaptive dynamic process (Figure 3-Figure supple-358

ment 2, 3, 4). Thus, our results suggest that the population of auditory cortex neurons adapt to359

reverberation by extending their inhibitory field in time in a frequency-dependent manner. This360

proposed auditory cortical adaptation is summarized in Figure 5. In the following, we explore these361

findings in the broader context of previous studies and possible mechanisms for adaptation to re-362

verberation.363

Auditory cortical neurons adapt their responses to reverberation364

Previous studies have shown that human hearing is remarkably robust to reverberation when lis-365

teners discriminate speech and naturalistic sounds (Houtgast and Steeneken, 1985; Bradley, 1986;366

Darwin and Hukin, 2000; Culling et al., 2003; Nielsen and Dau, 2010). Our neurophysiological re-367

sults in the ferret auditory cortex are consistent with such robust representation. We find that368

neurons recorded in the auditory cortex tend to adapt their responses in a way that is consistent369

with the computational goal of removing reverberation from natural sounds (Figures 2, 3), even370

in anesthetized animals. Our results are also in good agreement with a previous study in awake371

passive listening ferrets, which showed that anechoic speech and vocalizations were more read-372

ily decodable from the responses of auditory cortex neurons to echoic sounds, than the echoic373

sounds themselves (Mesgarani et al., 2014). A similar study in humans using EEG corroborated374

these findings, showing better decoding accuracy of anechoic speech envelope compared to dis-375

torted reverberant speech, but only when listeners attended to the sound sources (Fuglsang et al.,376

2017).377

Interestingly, a human MEG study suggests that auditory cortex may contain both reverberant378

and dereverberated representations of speech in reverberant conditions (Puvvada et al., 2017).379

In addition, Traer and McDermott (2016) found that humans were able to discriminate different380

reverberant conditions well with both familiar and unfamiliar sounds. In line with this, a minority381

of neurons in our study did not change the timing of their inhibitory responses in different rever-382

berant conditions or showed the opposite effect from our model prediction (i.e. their COM− and383

PT − decreased in the more reverberant room) (Figure 3B,D). Thus, although most cortical neu-384

rons adapted to reverberation, it is possible that some of themmight carry information about the385

reverberant environment or even represent it more explicitly.386
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Temporal shifts in inhibition underlie adaptation to reverberation387

Our findings build on and provide an explanation for those of Mesgarani et al. (2014). These au-388

thors approximated a reverberant stimulus by convolving speech and vocalizations with decaying389

white noise. In contrast, we used a more diverse stimulus set, which included many environmen-390

tal sounds that can have very different acoustical statistics (Attias and Schreiner, 1996; Turner,391

2010), and a model of reverberation that included early reflections and their frequency depen-392

dence, which are known to have important perceptual effects (Traer and McDermott, 2016). Mes-393

garani et al. (2014) proposed a combination of subtractive synaptic depression and multiplicative394

gain change as a potential mechanism for the observed adaptation in their study. However, they395

acknowledged that other functionally equivalentmechanismsmight also be feasible. Notably, their396

study did not test different echoic conditions with varying amounts of reverberation. Therefore,397

the time constants of the synaptic depression and gain components in their model were fixed.398

Mesgarani et al. (2014) speculated that these time constants might have an important impact in399

conditions with different amounts of reverberation. This is indeed one of our main novel findings:400

more reverberant environments require more temporally delayed inhibitory responses within the401

STRFs of auditory cortical neurons.402

Adaptation to reverberation is frequency dependent403

Another novel finding of the present studywas that the temporal lag of the inhibitionwas frequency404

dependent in both the model kernels and neuronal STRFs (Figure 2-Figure supplement 1, 2). For405

both the small and large rooms, the temporal lag of the inhibition, but not the excitation, approx-406

imately tracked the reverberant profile over sound frequency of the acoustic spaces (measured407

by the reverberation time (RT10, Figure 4). Natural and man-made environments exhibit certain408

regularities, and the decline in reverberation over this frequency range is one of them (Traer and409

McDermott, 2016). Future studies could examine whether neurons adapt their responses accord-410

ingly to room impulse responses with more unusual RT10 frequency profiles.411

The frequency-dependence of the delay in inhibition likely relates to some degree to the time412

constants of mean-sound-level adaptation (Dean et al., 2008), which also decrease with frequency413

in inferior colliculus neurons responding to non-reverberant noise stimuli (Dean et al., 2008). A414

study byWillmore et al. (2016) found that this frequency dependence of mean-sound-level adapta-415

tionmay impact cortical responses and is consistent with removing a running average fromnatural416

sounds with undefined reverberation levels. Hence, the frequency dependence we observe in the417

present study may to some extent reflect general mechanisms for removing both reverberation418

and the mean sound level, and may be at least partially inherited from subcortical areas.419

Possible biological implementations of the adaptation to reverberation420

What might be the basis for the cortical adaptation to reverberation that we have observed? Some421

plausible mechanisms for altering the inhibitory field include synaptic depression (David et al.,422

2009), intrinsic dynamics ofmembrane channels (Abolafia et al., 2011), hyperpolarizing inputs from423

inhibitory neurons (Li et al., 2015; Natan et al., 2015; Gwak and Kwag, 2020), or adaptation inher-424

ited from subcortical regions such as the inferior colliculus or auditory thalamus (medial geniculate425

body) (Dean et al., 2008; Devore et al., 2009;Willmore et al., 2016; Lohse et al., 2020). The physio-426

logical data obtained in this study do not allow us to discriminate among these mechanisms.427

Hence, it would be important to investigate whether the adaptive phenomenon we have found428

occurs at subcortical levels too, namely the inferior colliculus and the medial geniculate body. Pre-429

vious research in the inferior colliculus of rabbits has shown that neural responses to amplitude-430

modulated noise partially compensate for background noise and, for some neurons, particularly431

when that noise comes from reverberation (Slama and Delgutte, 2015). However, this study only432

examined one room size, so it did not investigate the temporal phenomenon we observed. Rabi-433

nowitz et al. (2013) found that neurons in the inferior colliculus in ferrets generally adapt less to434

the addition of non-reverberant background noise than those recorded in auditory cortex. This435
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and other studies indicate that an increase in adaptation to sound statistics from auditory nerve436

to midbrain to cortex helps to construct noise-invariant sound representations in the higher au-437

ditory brain (Dean et al., 2005, 2008; Watkins and Barbour, 2008; Wen et al., 2009; Lohse et al.,438

2020). However, subcortical adaptation phenomena may be influenced by cortical activity through439

descending connections (Robinson et al., 2016), making it challenging to dissect the neuroanatomi-440

cal origin of these effects. Similarly, it is possible that reverberation adaptation also becomesmore441

complete as we progress along the auditory pathway.442

Considerations and future work443

We undertook our electrophysiological recordings in the present study under general anesthesia444

in order to control for the effects of attention on reverberation adaptation and to facilitate stable445

recording of neural responses during our large stimulus set. Cortical adaptation to reverberation446

has been previously observed in awake listeners ((Mesgarani et al., 2014; Fuglsang et al., 2017)),447

and we observed adaptive inhibitory plasticity in the anesthetized animal that is also consistent448

with dereverberation. This indicates that this form of adaptation is at least in part driven by stim-449

ulus statistics and can occur independently of activity and feedback from higher auditory areas450

(Krom et al., 2020).451

Previous work has shown no effect of anaesthesia on another kind of adaptation, contrast gain452

control, in either the ferret auditory cortex (Rabinowitz et al., 2011) or themouse inferior colliculus453

(Lohse et al., 2020). There is therefore no a priori reason to expect that cortical adaptation to rever-454

beration would be substantially different in awake ferrets. Nevertheless, the effects of attention455

and behavior on auditory cortical STRFs in the ferret are well documented (David, 2018). These456

canmanifest, for example, as gain changes and tuning shifts. Considering the importance of rever-457

beration to perception, it would be interesting to explore the effects described here in behaving458

animals.459

Another point for future research to consider is how our normative model could be further460

developed. For simplicity and interpretability, we used an elementary linearmodel. However, there461

aremanymore complex and powerful models for dereverberation in acoustical engineering, some462

of which may provide insight into the biology (Naylor and Gaubitch, 2010). Also, in our modelling463

wewere focused on assessingwhat characteristics of dereverberationmodel kernelsmight change464

under different conditions, not on how the brain learns to make these changes. Hence, we gave465

our dereverberationmodel access to the true anechoic sound, something the brainwould not have466

access to. However, there are blind dereverberation models that aim to dereverberate sounds467

from just one or twomicrophones, without access to the original anechoic sounds or room impulse468

response (Li et al., 2018; Jeub et al., 2010). These blind dereverberation models will be particular469

useful to compare to biology if wewant to explore how the brain learns to performdereverberation470

with just two ears. It is also worth considering that the auditory system will be performing other471

functions in addition to dereverberation and these may be useful to add into a model.472

Summary473

We have observed in auditory cortical neurons a form of adaptation where the inhibitory compo-474

nent of the receptive fields is delayed in time as the room impulse response increases in a larger475

room. This is consistent with the cortex adapting to dereverberate its representation of incoming476

sounds in a given acoustic space. Dereverberated representations of sound sourceswould likely be477

more invariant under different acoustic conditions and thus easier to consistently identify and pro-478

cess, something valuable for any animal’s survival. Reverberation is a ubiquitous phenomenon in479

the natural world and provides a substantial challenge to the hearing impaired and speech recogni-480

tion technologies. Understanding the adaptive phenomena of the brain that allow us to effortlessly481

filter out reverberation may help us to overcome these challenges.482
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Methods and Materials483

Animals484

All animal procedures were approved by the local ethical review committee of the University of485

Oxford and performed under license from the UK Home Office. Three adult female and four adult486

male ferrets (Mustela putorius furo; Marshall BioResources, UK) were used in the electrophysiology487

experiments (mean age = 8.4 months; standard deviation = 4.2 months).488

Surgical procedure489

Terminal electrophysiological recordings were performed on each ferret under general anesthe-490

sia. Anesthesia was induced with an intramuscular injection of ketamine (Vetalar; 5 mg/kg) and491

medetomidine (Domitor; 0.02 mg/kg), and wasmaintained with a continuous intravenous infusion492

of these two drugs in Hartmann’s solution with 3.5% glucose and dexamethasone (0.5 mg/ml/hr).493

The animal was intubated and artificially ventilatedwithmedical O2. Respiratory rate, end-tidal CO2,494

electrocardiogram and blood oxygenation were continuouslymonitored throughout the recording495

session. Eye ointment (Maxitrol; Alcon, UK) was applied throughout and body temperature was496

maintained at 36-38°C. Atropine (Atrocare; 0.06 mg/kg i.m.) was administered every 6 hours, or497

when bradycardia or arrhythmia was observed.498

Once anesthetized, each ferret was placed in a custom-built stereotaxic frame and securedwith499

ear bars and a mouthpiece. After shaving the scalp and injecting bupivacaine (Marcain, <1mg/kg500

s.c.), the skin was incised and the left temporalmuscle removed. A steel holding bar was secured to501

the skull using dental cement (SuperBond; C&B, UK) and a stainless steel bone screw (Veterinary502

Instrumentation, UK). A circular craniotomy (10 mm diameter) was drilled over the left auditory503

cortex, and the dura was removed in this region. The brain surface was covered with a solution of504

1.25% agarose in 0.9% NaCl, and silicone oil was applied to the craniotomy regularly throughout505

recording.506

With the ferret secured in the frame, the ear bars were removed, and the ferret and framewere507

placed in an electrically isolated anechoic chamber for recording. Recordings were then carried out508

in the left auditory cortex. An Ag/AgCl external reference wire was inserted between the dura and509

the skull on the edge of craniotomy. A Neuropixels Phase 3a microelectrode probe (Jun et al.,510

2017) was inserted orthogonally to the brain surface through the entire depth of auditory cortex.511

The cortical area of each penetration was determined based on its anatomical location in the ferret512

ectosylvian gyrus, the local field potential response latency, and the frequency response area (FRA)513

shapes of neurons. Based on these citeria, 95% of the recorded neurons were either within or on514

the ventral border of the primary auditory areas (primary auditory cortex, A1 and anterior auditory515

field, AAF), while the remaining neurons were located in secondary fields on the posterior ectosyl-516

vian gyrus. Following each presentation of the complete stimulus set, the probe was moved to a517

new location within auditory cortex. Data were acquired at a 30 kHz sampling rate using SpikeGLX518

software (https://github.com/billkarsh/SpikeGLX) and custom Matlab scripts (Mathworks).519

Spike sorting520

The recorded signal was processed offline by first digitally highpass filtering at 150Hz. Common av-521

erage referencing was performed to remove noise across electrode channels (Ludwig et al., 2009).522

Spiking activity was then detected and clustered using Kilosort2 software (Pachitariu et al., 2016)523

(https://github.com/MouseLand/Kilosort2). Responses from single neurons were manually curated524

using Phy (https://github.com/cortex-lab/phy) if they had stereotypical spike shapes with low vari-525

ance and their autocorrelation spike histogram showed a clear refractory period. Spikes from a526

given cluster were often measurable on 4-6 neighboring electrode channels, facilitating the isola-527

tion of single units. Only well isolated single units and multiunit clusters that were responsive to528

the stimuli (noise ratio <40 , (Sahani and Linden, 2003; Rabinowitz et al., 2011)) were included in529

subsequent analyses.530
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Sound presentation531

Stimuli were presented binaurally via Panasonic RP-HV094E-K earphone drivers, coupled to oto-532

scope speculae inserted into each ear canal. The speculae were sealed in place with Otoform533

(DreveOtoplastik). The earphoneswere driven by a System3RP2.1multiprocessor andheadphone534

amplifier (Tucker-Davis Technologies). Sounds were presented at a sampling rate of 48828Hz. The535

output response of the earphones was measured using a Brüel & Kjær calibration system with536

a GRAS 40DP microphone coupled to the end of the otoscope speculae with a silicone tube. An537

inverse filter was applied to the speaker output to produce a flat spectral response (±3dB) over538

the stimulus frequency range (200Hz-22kHz). Sound intensity was calibrated with an Iso-Tech TES-539

1356-G sound level calibrator.540

Sound stimuli and virtual acoustic space541

There are two stimulus sets, the set used to train the dereverberationmodel, and the set played to542

the ferrets, which was prepared from a subset the sounds used to make the first set. The stimuli543

used to train the dereverberation model were constructed from a dataset consisting of clips of544

anechoic sounds containing human speech and other natural sounds, such as cracking branches,545

footsteps, and runningwater. Most of the sound clips were recorded in an anechoic chamber using546

a Zoom H2 or Zoom H4 sound recorder, apart from some that came from the RWCP Sound Scene547

Database in Real Acoustic Environments (Nakamura et al., 1999). The clips varied in duration from548

3s to 10s. A portion of the clips from the dataset was concatenated together to make a single549

stimulus of 600s duration. A 0.25s cosine rampwas applied to the onset and offset of each snippet550

to avoid clipping artifacts in concatenation. The 600s stimulus was then band-pass filtered from551

200Hz–20kHz using an 8th-order Butterworth filter. We also constructed a held-out test set of552

100s duration in the samemanner using different examples of the same types of sounds from the553

dataset.554

Finally, this stimulus was played in a virtual acoustic space (VAS), providing it with reverberation555

and head-related filtering. We used the “Roomsim” software (Campbell et al., 2005) to generate556

the virtual acoustic space. This software creates a cuboidal room of arbitrary x, y and z dimensions557

and simulates its acoustic properties for a listener at a particular position and orientation in space,558

for a sound source at a particular position. The simulations are based on the room-image method559

(Allen and Berkley, 1979;Heinz, 1993; Shinn-Cunningham et al., 2001). One difference between the560

standard room-image method and Roomsim is that the latter incorporates the absorption prop-561

erties of different materials, which can be summarized by their frequency-dependent absorption562

coefficients. In principle, the amount of reverberation in a room will depend on its size, shape and563

the material from which the walls are made. For our room simuluations the walls, ceiling and floor564

use the frequency-dependent absorption coefficients of stone (Álvarez Morales et al., 2014). We565

decided to vary the amount of reverberation by changing the room size whilst keeping the other566

parameters fixed. Four different corridor-shaped rooms were created:567

1. Anechoic room568

2. Small room (length x width x height, 3mx0.3mx0.3m, RT10 = 130ms)569

3. Medium room (7.5mx0.75mx0.75m, RT10 = 250ms)570

4. Large room (15mx1.5mx1.5m, RT10 = 430ms)571

Thus processing the 600s stimulus for each room provided four 600s stimuli. Note that the ane-572

choic room does not have a clearly defined “shape”, having no reflecting walls, ceiling or floor, with573

the acoustic filtering determined only by the relative orientation and distances of the sound source574

and receiver. Roomsim simulates the orientation-specific acoustic properties of the receiver’s head575

and outer ear, represented by the head-related transfer function (HRTF). In all simulations, we used576

the same ferret HRTF provided from measurements previously made in the lab on a real ferret577

(from Schnupp et al. , 2001). The joint filtering properties of the ferret’s HRTF and the room were578

simulated together by Roomsim to produce a binaural room impulse response (BRIR). The ferret579
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head position and orientation were simulated in the VAS, positioning it 0.15m from the floor, at580

the midpoint of the room’s width (0.15m for the small, 0.375m for the medium and 0.75m for the581

large) and 1/4 of the room’s length from one end (0.75m for the small, 1.875m for themedium and582

3.75m for the large) and directly facing the opposite end. In all four room conditions, the sound583

source was positioned at the same height as the ferret’s head (0.15m) and at a distance of 1.5m584

straight ahead in the direction faced by the ferret (0◦ azimuth and 0◦ elevation relative to the fer-585

ret’s head). The reverberation time RT10 is the time necessary for the sound level to decay by 10dB586

relative to an initial sound impulse. We measured this using a cochlear model, as explained in the587

next section Cochlear model.588

The stimuli presented to the ferrets were constructed from a representative subset of the ane-589

choic natural stimuli used to train the dereverberation model. We cut 40 different snippets of590

natural sounds, each 2s in duration, from the clips in the datatset. These 2s snippets were con-591

catenated together into two 40s long stimuli. A 0.25s cosine ramp was applied to the onset and592

offset of each snippet to avoid clipping artifacts in concatenation. The two 40s stimulus blocks593

were then processed in VAS in exactly the same way as with the modelling stimulus set, for the594

same small, medium and large rooms. This provided two 40s blocks for each reverberant condi-595

tion (a small, medium or large room, see subsection Sound stimuli and virtual acoustic space). We596

played the small and large room conditions in 7 animals and the small, medium and large room597

conditions in 2 out of those 7. The 40s blocks were presented in pseudo random order, with ∼5s598

of silence between blocks. This presentation was repeated ten times, with a different order each599

time.600

Cochlear model601

We used a power-spectrogram based model of cochlear processing as described in Rahman et al.602

(2020). Briefly, a spectrogram was produced from the sound waveform by taking the power spec-603

trum through a short-time Fourier transform (STFT) using 10-ms Hanning windows, overlapping by604

5 ms. The power of adjacent frequency channels was summed using overlapping triangular win-605

dows (using code adapted from melbank.m, http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.606

html) to produce 30 log-spaced frequency channels ranging from 400Hz to 19kHz center frequen-607

cies. The resulting power in each channel at each time point was converted to log values and any608

value below a low threshold was set to that threshold.609

We used the cochleagram to measure the frequency-band-specific reverberation times (RT10)610

shown in Figure 4C. Our method is similar to that of Traer and McDermott (2016), but for consis-611

tency we used our cochlear model rather than theirs. First, we produce an impulse response, the612

sound induced at the right ear of the ferret in the virtual room, by a simple click at the standard613

source position. Then, we put this impulse response through our cochlear model to generate a614

cochleagram. Next, for each frequency band in this cochleagram, we fitted a straight line to the615

plot of the decaying log power output (dB) of the cochleagramover time. Using the slope of this line616

of best fit, we found the amount of time it took for this output to decay by 10dB. This provided the617

RT10 for each frequency band. We measured the overall RT10 of each room by taking the median618

RT10 over all 30 frequency bands.619

Model kernels620

The dereverberation model consisted of a set of linear kernels, one for each of the 30 frequency621

channels in the anechoic cochleagram. The kernels were fitted separately for each reverberant622

condition, thus providing 30 kernels for each room. The dereverberation model is summarized by623

the following equation:624

x̂anechf ′t =
fmax
∑

f=1

ℎmax
∑

ℎ=1
kf ′fℎx

reverb
f (t−ℎ+1) + bf ′ (1)
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Here, x̂anechf ′t is the estimate of the anechoic cochleagram for frequency channel f ′ and time bin625

t. Obtaining x̂anecℎf ′t involved convolving the kernels kf ′fℎ with the reverberant cochleagram xreverbft .626

Here f is the frequency channel in the reverberant cochleagram and ℎ indexes the time lag used627

in the convolutions. The model weights kf ′fℎ are composed of 30 kernels, one for each frequency628

channel f ′ in the anechoic cochleagram. Finally, the bias term for frequency channel f ′ is bf ′ .629

For each anechoic frequency channel f ′, the associated model kernel was separately fitted to630

minimize the mean squared error between the kernel’s estimate of that frequency channel of the631

anechoic cochleagram x̂anecℎf ′t and that actual channel of the anechoic cochleagram xanecℎf ′t , subject to632

L2 regularization (“ridge” regression) on kf ′fℎ. The weights were fitted using the glmnet package633

(GLM, J. Qian, T. Hastie, J. Friedman, R. Tibshirani, and N. Simon, Stanford University, Stanford, CA;634

http://web.stanford.edu/~hastie/glmnet_matlab/index.html). To select the regularization strength (the635

hyperparameter �), we performed 10-fold cross-validation, using 90% of the data for the training636

set and 10% (an unbroken 60s segment) for the validation set. Our validation sets over folds were637

non-overlapping. We found the � that gave the lowest mean-squared error averaged over the 10638

folds. Using this �, we then re-fitted themodel kernels using thewhole cross-validation set (training639

+ validation set). These resulting kernels are the ones shown and used in all analyses. These kernels640

were also used to estimate the dereverberation capacity of themodel on the held-out test set. Note641

that here onward we typically refer to individual model kernels by kfℎ for brevity, dropping the f ′642

index used for the full set of kernels kf ′fℎ.643

Neuronal STRFs644

For each cortical unit, for each reverberation condition, we separately estimated its spectro-temporal645

receptive field (STRF) using its response to the natural stimuli under that condition (Theunissen646

et al., 2001). We used the STRF, a linear model, as this enabled comparison to our linear derever-647

beration model. The STRF model can be summarized by the following equation:648

ŷnt =
fmax
∑

f=1

ℎmax
∑

ℎ=1
wnfℎx

reverb
f (t−ℎ+1) + bn (2)

Here, ŷnt is the estimated spike counts of neuron n at time bin t. Also, xreverbft is the reverberant649

cochleagram in frequency channel f and at time t. For each neuron n, the weights in wnfℎ over650

frequency channel f and history (time lag) index ℎ provide its STRF. Finally, bn is the bias term of651

unit n.652

Notice the similarity of Equation 2 to Equation 1 of the dereverberation model. In both cases,653

we used the reverberant cochleagram as an input (from either the small, medium, or large room)654

and fitted the best linear mapping to the output. In the case of neuronal STRFs, the output is655

the neuronal spike count over time, whereas in the model kernel it is a frequency channel of the656

anechoic cochleagram. For each neuron and room, we seperately fitted an STRF by minimizing the657

mean squared error between the estimated spike counts ŷnt and the observed spike counts ynt. To658

do this, for a given room, we used the first 36s of neural response to the two 40s-stimuli associated659

with that room (as the last 4s contained a noise probe, see subsection Noise burst analysis). The660

weights were fitted using the glmnet package (GLM, J. Qian, T. Hastie, J. Friedman, R. Tibshirani,661

and N. Simon, Stanford University, Stanford, CA; http://web.stanford.edu/~hastie/glmnet_matlab/662

index.html). As for the model kernels (above), the fitting was subject to L2 regularization. To select663

the regularization strength (the hyperparameter �), we performed 10-fold cross-validation, using664

90% of the data for the training set and 10% (an unbroken 7.2s segment) for the validation set.665

Our validation sets over folds were non-overlapping. We found the � that gave the lowest mean-666

squared error averaged over the 10 folds. Using this �, we then re-fitted the STRFs using the whole667

cross-validation set (training + validation set). The resulting STRFs are the ones shown and used in668

all analyses. As with the model kernels, from here onwards we typically refer to an individual STRF669

for a given neuron by the form wfℎ for brevity, dropping the neuron index n used here in wnfℎ.670
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Quantification of the temporal effects in model kernels and neuronal STRFs671

To quantify the temporal profiles of themodel kernels and neuronal STRFs, we chose two different672

measures:673

1. Center of mass (COM )674

2. Peak time (PT )675

To compute them, we first obtained the averaged excitatory and inhibitory temporal profiles676

of the model kernels/neuronal STRFs as follows:677

w+
ℎ = 1

fmax

fmax
∑

f=1
[wfℎ]+ (3)

w−
ℎ = 1

fmax

fmax
∑

f=1
[wfℎ]− (4)

where wfℎ is the neuronal STRF with f and ℎ subscripts denoting frequency channel and history,678

respectively. Equations 3 and 4 are the same for the dereverberation model kernels but with k679

instead of w, as with all subsequent equations in this section. fmax is the number of frequencies680

(30) in the model kernel/neuronal STRF wfℎ. The notation [wfℎ]+ and [wfℎ]− stand for the element-681

wise operations max(wfℎ,0) and min(wfℎ,0), that is:682

[wfℎ]+ =

⎧

⎪

⎨

⎪

⎩

wfℎ if wfℎ ≥ 0

0 otherwise (5)

[wfℎ]− =

⎧

⎪

⎨

⎪

⎩

wfℎ if wfℎ ≤ 0

0 otherwise (6)

Thus w+
ℎ and w−

ℎ are the frequency-averaged positive-only, [wfℎ]+, and negative-only, [wfℎ]−,683

parts of the kernel wfℎ.684

From this, the COM was defined as follows:685

COM+ = �
∑ℎmax

ℎ=1 w
+
ℎ

ℎmax
∑

ℎ=1
(ℎ − 1)w+

ℎ (7)

COM− = �
∑ℎmax

ℎ=1 w
−
ℎ

ℎmax
∑

ℎ=1
(ℎ − 1)w−

ℎ (8)
The duration of a time bin is � = 10ms, hence time lag in the history of the neuronal STRF/model686

kernel ranges from �(ℎ − 1) = 0ms to �(ℎmax − 1) = 190ms. Thus COM+ is the temporal center of687

mass for the positive (excitatory) components of the neuronal STRF/model kernel and COM− the688

temporal center of mass for the negative (inhibitory) components.689

The peak time (PT ) was defined as the time at which the excitation and inhibition in the fre-690

quency averaged neuronal STRFs/model kernels peaked:691

PT + = (argmax
ℎ

(w+
ℎ ) − 1)� (9)

PT − = (argmin
ℎ

(w−
ℎ ) − 1)� (10)
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Simulated neuron692

In order to explore whether the changes that we observed are truly adaptive, we used simulated693

neurons that lacked adaptive receptive fields to generate responses. We then applied the same694

analyses to these simulated neuronal responses as we did to the actual responses. For each neu-695

ron n, we constructed a corresponding simulated neuron in the following way. First, we fitted a696

single STRF as described in section Neuronal STRFs. However, in this case we used the full dataset697

from the “small” and “large” conditions together, rather than fitting separate STRFs to the two con-698

ditions as we did previously.699

Next, we fitted a sigmoid output non-linearity by first generating a spike count prediction ŷnt for700

the full dataset according to equation 2 from section Neuronal STRFs, using this single STRF and701

then finding the sigmoid that best fits the actual spike count ynt according to the following equation:702

ŷnonlinnt =
�1

1 + exp(−(ŷnt − �3)∕�2)
+ �4 (11)

Here ŷnonlinnt is the output of the point non-linearity at time bin t, providing a new estimate of703

the neuron’s spike count. As mentioned, ŷnt is the predicted spike count from the linear stage (see704

Equation 2) at time bin t, when fitted to the small and large room responses together. It is the four705

parameters �1, �2, �3 and �4 that are optimized in the fit.706

We then used the fitted simulated model to produce an approximation of the real neuronal707

response to the reverberant stimulus sets for both the small and large conditions. In order to sim-708

ulate realistic neuronal noise, we used the ŷnonlinnt output, at each time bin t, as themean of a Poisson709

distribution from which we generated 10 “virtual” trials. Finally we performed the same analyses710

on these simuluated neural responses as we did for the real data; we fitted STRFs for the two re-711

verberation conditions separately using these simulated model responses in place of the actual712

responses and then analyzed the resulting STRFs as outlined in the section above (Quantification713

of the temporal effects in model kernels and neuronal STRFs).714

Noise burst analysis715

To further confirm the adaptive change in properties of neurons across the two reverberant condi-716

tions, we presented a 500ms long unreverberated broadband noise burst embedded at a random717

time in the last 4s of each 40s sound block (i.e., from 36-40s) for each condition (small and large).718

Seven out of the ten repeats of any stimulus block contained a noise burst, with those seven ran-719

domly shuffled within the ten. The random timing distribution of the noise bursts was uniform720

and independent across repeats and conditions. For each neuron, responses to the noise bursts721

were assessed using peristimulus time histogram (PSTHs) with 10ms time bins. For the majority722

of neurons, the firing rate had returned to baseline by 100ms , so we decided to use the 0-100ms723

time window for further analysis (Figure 3-Figure supplement 3A). Different neurons had different724

response profiles, so in order to compare the adaptive properties in the two conditions we chose725

the center of mass (COM ) of the firing rate profile within this window as a robust measure. This726

was defined similarly to the COM measure in subsection Quantification of the temporal effects in727

model kernels and neuronal STRFs (see also Equations 7 and 8). The COM for the noise bursts728

in the large and small conditions was calculated for each neuron individually and the difference729

between the two conditions computed (Figure 3-Figure supplement 3B).730

Switching stimuli analysis731

In order to confirm and explore the adaptive nature of the neuronal responses to reverberant732

sounds, we presented “switching stimuli” (Figure 3-Figure supplement 4A). These stimuli switched733

back and forth every 8 seconds between the large roomand the small roomandwere created in the734

following way. First, we took our original reverberant stimuli for both the small room (80s duration)735

and large room (80s duration) conditions and divided them into consecutive 4s snippets, providing736

20 snippets for each condition. We duplicated these two sets and shuffled each one independently,737
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providing a total of four sets of 20 4s-long snippets. We then combined the snippets into eight 40s-738

long switching stimuli. These switching stimuli comprised 5 epochs of 8s duration each, with 4739

“switches” between the small and large epochs. Half of the stimuli started from the large room740

condition and the other half from the small room condition. Within each 8s epoch, we defined two741

periods (period 1: 0-4s and period 2: 4-8s). The large-room periods were denoted by L1 (0-4s) and742

L2 (4-8s), and the small-room periods by S1 (0-4s) and S2 (4-8s) (Figure 3-Figure supplement 4A).743

The snippets from the first small-room set of 20 snippets populated the 20 S1 periods in order,744

while those from the second small-room set populated the S2 periods in a different order, due745

to the shuffling. Likewise, snippets from the first large-room set of 20 snippets populated the 20746

L1 periods, and those from the second large-room set populated the L2 periods. Thus, the same747

set of stimuli were included in S1 and S2, and in L1 and L2, with the only differences being their748

ordering, and between the small and large room stimuli the amount of reverberation. When the 4s749

periods and 8s epochs were spliced together, they were cross-faded into each other with a 10ms750

cosine ramp with 5ms overlap, such that the transition from one period to the next was smooth751

with no detectable clicks between them. We played the eight 40s stimuli in random order to the752

ferrets; this was repeated 10 times with the order different each time.753

The cortical responses recorded with these stimuli were analyzed using the procedure outlined754

in subsection Neuronal STRFs. For each neuron, we fitted four separate STRFs using the neural755

responses to the S1, S2, L1 and L2 periods. We did not use the first 8s of each of the eight 40s756

stimuli, since there was no prior sound (silence) and thus they would not be directly comparable757

to the other 4 epochs. We also did not use the first 500 ms of any of the periods, to avoid potential758

non-reverberation-related responses from the rapid transitions between them. From the resulting759

four STRFs, we extracted the COM+ and COM− values for each and compared S1 to S2 (Figure 3-760

Figure supplement 4B) and L1 to L2 (Figure 3-Figure supplement 4C).761
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Figure 2–Figure supplement 1. Model kernels and neuronal STRFs across frequency chan-
nels.
A, Model kernels arranged by the anechoic frequency that they were trained to estimate. For each
anechoic frequency, the top row shows the kernel for the large room condition, and the bottom
row shows the kernel for the small room condition. In each plot, frequency is on the vertical axis
and history on the horizontal. B, Neuronal STRFs arranged by best frequency, the frequency in
the STRF with the largest weight. The STRFs of all neural units with the same best frequency were
averaged to produce these plots. Plots are arranged as in A.
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Figure 2–Figure supplement 2. Model and neuronal temporal profiles across frequency chan-
nels.
A, Temporal profiles of the excitatory (top rows) and inhibitory (bottom rows) weights of themodel
kernels, plotted as in Figure 2B. The estimated anechoic frequency channel is indicated above each
pair of plots, as in Figure 2-Figure supplement 1A. The color code is as in Figure 2B: pink = small
room excitation; red = large room excitation; cyan = small room inhibition; blue = large room in-
hibition. The center of mass (COM ) values for the excitation and the inhibition in each room are
indicated by the colored arrows. For each anechoic frequency, each temporal profile was normal-
ized by dividing by the maximum value for the excitatory temporal profile of the same room. B,
Temporal profiles of the excitatory and inhibitory components of the averaged neuronal STRFs
shown in Figure 2-Figure supplement 1B, plotted and normalized as for the model kernels in A.
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Figure 3–Figure supplement 1. Amediumroomcondition shows intermediate center ofmass
and peak time values compared to the small and large room conditions.
A, Violin plots for the center of mass (COM+) of the excitatory fields of the neuronal STRFs for the
small, medium and large room conditions computed. B, Same as A, but here the violin plots show
the center of mass (COM−) of the inhibitory fields for the neuronal STRFs. C, Violin plots for the
peak time of the excitatory fields (PT +). D, The same data as C, but here the violin plots show the
peak time (PT −) of the inhibitory fields. In all violin plots, the white dot represents the median,
the horizontal thick line the mean, the thick gray lines the interquartile range, the thin gray lines
1.5x interquartile range, and the colored shaded area represents the distribution. The results of
Kruskal–Wallis tests followed by multiple comparisons using Fisher’s least significant difference
(LSD) procedure are indicated above the bars in A, B and D: ∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001,∗∗∗∗ p <
0.0001.
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Figure 3–Figure supplement 2. Simulated neurons suggest a role for adaptation in cortical
dereverberation. See next page for caption.
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Figure 3–Figure supplement 2. Simulated neurons suggest a role for adaptation in cortical
dereverberation.
To confirm that STRF differences between rooms were genuinely a result of adaptation, we simu-
lated the recorded neurons using a non-adaptive linear-nonlinear-Poisson model and compared
STRF measures of the simulated responses with those of the real neuronal STRFs in the different
room conditions. A, The simulated neurons were made in the following way: 1) We fitted a single
STRF for each neuron using the combined data from the small and large rooms; 2) We used this
STRF along with a fitted non-linearity and a Poisson noise model to generate the simulated firing
rate for the small and large rooms separately; 3) Using the small and large room cochleagrams and
simulated firing rates, we fitted separate STRFs for the two conditions; 4) We computed the center
of mass and peak time metrics as before. B, Difference in center of mass between the large and
small room conditions (large - small room) for the simulated model neurons. The COM− values
(blue) were slightly larger in the large room, median difference = 0.90ms, and the COM+ values
(red) were slightly elevated too, median difference = 1.7ms. C, Reproduction of Figure 3B showing
the difference in center of mass of neuronal STRF components between the large and small room
conditions (large - small room). The COM− values increased in the larger room (median difference
= 9.3ms), whereas COM+ did not differ significantly (median difference = 0.32ms). D, The center
of mass differences shown in B and C were subtracted for each unit and plotted as the resulting
difference of differences (real cortical unit - simulated model neuron). The COM− differences be-
tween rooms were consistently larger in the neuronal data (median difference = 9.3ms), while the
COM+ differences did not differ significantly (median difference = -1.1ms). E, Difference in peak
time between the large and small rooms (large - small) for the simulated model neurons. The PT −

median difference = 0ms and the PT + median difference = 0ms. F, Reproduction of Figure 3D
showing the difference in peak time between the large and small rooms (large - small), calculated
from neuronal STRFs. The PT − values were larger in the large room (median difference = 10ms).
PT + did differ significantly between the rooms, but with a median difference = 0ms. G, Histogram
of the difference in peak time room differences between the neural units and corresponding simu-
latedmodel neurons (neural unit - simulatedmodel neuron), plotted as in D above. The PT − values
were consistently larger in the large room for the neuronal data vs the simulated model neurons
(median difference = 10ms). PT + did significantly differ, but themedian difference = 0ms. Asterisks
indicate the significance of Wilcoxon signed-rank tests: ∗∗∗∗p < 0.0001, ∗∗∗p < 0.001, ∗p < 0.05.

1031

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.10.28.466271doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466271
http://creativecommons.org/licenses/by-nc-nd/4.0/


B
Response time differences

P
ro

p
or

tio
n

Center of mass difference (ms)

-60 -40 -20 0 20 40 60
0

0.1

0.2

0.3

0.4 **

A
Noise burst response

F
iri

n
g 

ra
te

 (
H

z)
Time (ms)

0 20 40 60 80 100

5

10

15

20 Large room
Small room

Figure 3–Figure supplement 3. Neural response to noise probe shows slower adaptation in
the more reverberant condition.
A, Average firing rate across all cortical units in response to a noise burst that was embeddedwithin
the reverberant stimuli. Responses to the noise within the small (light green) and large (dark green)
rooms are plotted separately. Shaded areas show ±SEM across units. The vertical line indicates
the noise onset. B, Histogram of the difference in center of mass of the neuronal response to
the noise probe (shown in A) between the two room conditions (large - small room). The center
of mass shifted to a later time in the larger room (median difference = 1.0ms). Asterisks indicate
significance of a Wilcoxon signed-rank test: ∗∗p < 0.01.
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Figure 3–Figure supplement 4. Adaptation to reverberation is confirmed using stimuli that
switch between the small and large room.
A, Schematic shows the structure of the stimulus, which switched between the large (dark green)
and small room (light green) conditions. Letters indicate the reverberant condition in each stimulus
block (S: small room, L: large room). Each 8s block within a given room condition was divided for
analysis into an early (S1,L1) and late (S2,L2) period. STRFs were fitted to the data from each of
the 4 periods independently (S1, S2, L1, L2). B, Difference in center of mass of inhibitory (COM−,
blue) and excitatory (COM+, red) STRF components between the late and early time period of
the small room stimuli (S2 - S1, see A). The COM− decreased in S2 relative to S1 with a median
difference = -0.9ms; COM+ did not differ significantly, median difference = 0.52ms. C, Center of
mass difference plotted as in B, but for the large room stimuli (L2 - L1). The COM− values were
larger in L2 relative to L1, median difference = 1.5ms, while the COM+ values were not significantly
different, median difference = 0.8ms. Asterisks indicate the significance of Wilcoxon signed-rank
tests: ∗∗p < 0.01, ∗p < 0.05.
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