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Abstract7

Biomembranes adopt varying morphological configurations that are vital to cellular functions. Many studies8

use computational modeling to understand how various mechanochemical factors contribute to membrane9

shape transformations. Compared to traditional approximation-based methods (e.g., finite element method),10

the class of discrete mesh models offers greater flexibility to simulate complex physics and shapes in three11

dimensions; its formulation produces an efficient algorithm while maintaining expressive coordinate-free ge-12

ometric descriptions. However, ambiguities in geometric definitions in the discrete context have led to a13

lack of consensus on which discrete mesh based model is theoretically and numerically optimal; a bijective14

relationship between the terms contributing to both the energy and forces from the discrete and smooth ge-15

ometric theories remains to be established. We address this and present an extensible framework, Mem3DG,16

for modeling 3D mechanochemical dynamics of membranes based on Discrete Differential Geometry (DDG)17

on triangulated meshes. The formalism of DDG resolves the inconsistency and provides a unifying perspec-18

tive on how to relate the smooth and discrete energy and forces. Mem3DG is designed to facilitate models in19

tandem with and mimicking experimental studies. It also supports the use of realistic membrane ultrastruc-20

ture from 3D imaging as an input. To demonstrate, Mem3DG is used to model a sequence of examples with21

increasing mechanochemical complexity: recovering classical shape transformations such as 1) biconcave22

disk, dumbbell, and unduloid and 2) spherical bud on spherical, flat-patch membrane; investigating how the23

coupling of membrane mechanics with protein mobility jointly affects phase and shape transformation. While24

the first two examples serve as validation, the later examples provide a blueprint for extending Mem3DG to25

model a system of interest. As high-resolution 3D imaging of membrane ultrastructure becomes more readily26

available, we envision Mem3DG to be applied as an end-to-end tool to simulate realistic cell geometry under27

user-specified mechanochemical conditions. We hope that Mem3DG will be a useful tool to help advance the28

mission of computational membrane mechanobiology.29

1 Introduction30

Computational modeling of lipid bilayer mechanics has long been accepted as a way to probe the biophysical31

aspects of membrane curvature generation. The ability of lipid bilayers and cellular membranes to bend in32

response to various applied forces has been studied extensively from the mathematical modeling perspective.33

However, the nonlinear system of equations that result from such modeling often leads to a computational bot-34

tleneck to generate predictions from simulations that can be tested against experimentally observed shapes.35

In this study, we develop a mesh-based model using discrete differential geometry to reduce this bottleneck.36

To justify why our method is necessary and is a computational advance, we first describe the importance37

of membrane curvature generation in biology, the current state-of-the-art in membrane mechanics modeling,38

and finally explicitly state the goals of our approach.39

1.1 Membrane curvature generation in biology40

As one of the most essential and conserved structures of cells, cellular membranes perform many functions.41

First, they form compartments to separate chemical environments. Beyond the passive role of partitioning42

space, lipids in the membranes interact with proteins and other cellular components influencing cell signaling43

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 31, 2021. ; https://doi.org/10.1101/2021.10.30.466618doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.30.466618


(e.g., by localizing molecules and acting as an entropic barrier) (1, 2). Membrane morphology and topology44

changes are critical for trafficking cargo in and out of cells and are very carefully regulated (3–8). Central45

to these roles is the ability of the membrane to curve and adopt varying morphological configurations from46

spheres to highly-curved and variegated structures.47

Advances in experimental studies of membrane–protein interactions (9–20), ultrastructural imaging (21–48

30), and image analysis (9–11, 31–37) have revealed much about the molecular interactions that regulate49

membrane curvature. To investigate the mechanics behind these interactions, many theoretical and com-50

putational models in terms of membrane energetics and thermodynamics have been developed (7, 38–52).51

These models, owing to the ease of in silico experimentation, have become an important tool for generat-52

ing and testing hypotheses (53, 54). These mechanics models and associated simulations have been used53

to provide intuition on the mechanical requirements for forming and maintaining complex cellular membrane54

shapes (55–63).55

While the utility of this approach has been established and many models have been developed (38),56

many models are limited by critical assumptions or other technical challenges. For example, the ability to use57

geometries from membrane ultrastructural imaging experiments as a starting condition would improve model58

realism (64). With respect to computational complexity, the solver should be able to model deformations59

and topological changes in three dimensions and be compatible with both energy minimization and time-60

integration for comparing with static and time-series experiments respectively. This is in contrast to the current61

assumptions of the existence of an axis of symmetry that is quite commonly made for purposes of ease of62

simulation (65). An additional feature for these solvers should be that their implementation is modular such63

that the addition of new physics or increasing model complexity should be straightforward. This includes64

the potential for coupling the membrane model with agent-based and other simulations to propagate other65

cellular components such as the cytoskeleton (66). Thus, new computational tools which are general, easy66

to use, and without restrictive assumptions are needed to bring modeling closer to experimental observations67

of membrane shapes in cells.68

1.2 State-of-the-art membrane modeling69

To emphasize the motivations behind our choice of extending and developing a new mesh-based membrane70

model, we provide a brief summary of the legacy literature in modeling membrane mechanics. The most com-71

mon theoretical model of membrane bending is the Helfrich-Canham-Evans Hamiltonian,1 which describes72

the lipid bilayer as a two-dimensional fluid-like structure that exhibits solid-like elasticity in the out-of-plane73

direction (39, 40, 68–70). It is a continuum model which describes the bending energy of the membrane as74

a function of its mean and Gaussian curvatures. The assumptions for the continuum are satisfied as long as75

the deformations are much larger in length scale compared to the individual lipid components.76

Given the necessary material properties and boundary conditions, by minimizing the Helfrich energy, we77

can obtain the equilibrium shape of the membrane (39, 70–72). While straightforward in concept, energy78

minimization requires the determination of the forces on the membrane which is a challenging task (65). The79

forces on the membrane are given by the variation of the energy with respect to the embedded coordinate (i.e.,80

shape) of the membrane2. Taking the shape derivatives of the Helfrich energy produces the “shape equation”,81

so termed because solutions of this partial differential equation, with the prescribed boundary conditions,82

produce configurations at equilibrium (i.e., force-balance).83

Solving the shape equation is non-trivial since it is a partial differential equation with fourth-order nonlinear84

terms. As a result, analytical solutions of the shape equation are known only for a few cases constrained to85

specific geometries and boundary conditions (42). For most systems, we must resort to the use of numerical86

methods. The simplest numerical schemes can be formulated by making restrictive assumptions such as87

considering only small deformations from a plane (e.g., Monge parametrization) or assuming that there exists88

an axis of symmetry such that the resulting boundary value system can be integrated (38). While these89

1The Helfrich energy is related to the Willmore energy in the mathematics literature (67)
2We call this variation the shape derivative which is distinct from the chemical derivative that will be introduced later in the context

of mechanochemical coupling
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methods are suitable for idealized shapes, these assumptions are not consistent with the membrane shapes90

found in biology are and thus not general enough for advancing the field.91

Table 1: Comparison of common mathematical frameworks for modeling membrane mechanics with specifications to advance the

mission of computational membrane mechanobiology. A general framework will permit the easy transfer of inputs and results between

model and experiments. Models which can be coupled with other modeling schemes representing other cellular components can help

address the complexity of cell biology. Discrete mesh models have many desirable traits, with respect to these specifications, at the

cost of forgoing rigorous error analysis.

Phase

field/level

set

FEM
Discrete

Mesh/Mem3DG

General 3D X X X

Statics + dynamics X X X

Membrane heterogeneity X X X

Compatibility with agent/particle X

Compatible with stochastic dynamics (e.g., DPD or MC) X

Explicit surface parametrization X X

Implementation preserves geometric intuition X

Ability to support topological changes X
requires

mesh

surgery

Error analysis X X

Solvers of membrane shape in 3D have also been developed and can be categorized into three groups:92

1) phase field or level set methods (73–75), 2) Finite Element Method (FEM) (76–83), and 3) discrete surface93

mesh models (60, 84–94). These methods and others, reviewed in detail by Guckenberger et al. (95), differ94

in the strategy used to discretize the membrane domain and compute the relevant derivatives. We compare95

the aforementioned general, 3D models to our established model criteria in Table 1 and elaborate below.96

Phase field and level set methods solve the shape equation by propagating a density field on an ambient97

volumetric mesh. The membrane shape is implicit in these models and can be found by drawing an isosur-98

face or level set of the model. While this is ideal for modeling membrane topological changes, the implicit99

representation of the membrane adds complexity for interfacing with data generated using modern methods100

of visualizing membrane ultrastructure. The meshes output from ultrastructural studies must be converted101

into a density or phase field prior to input to the model. While this conversion is possible, representing the102

dynamic and variegated shapes of cellular membranes would require a dense volume mesh, which reduces103

computational tractability. The implicit surface representation also complicates the addition of new in-plane104

physics for end-users.105

FEM and discrete mesh models use an explicit surface parametrization (i.e., a mesh). Thus the meshes106

output from ultrastructural imaging datasets can be used in these frameworks with minor modifications (32,107

96). Comparing FEM methods with our specifications we identify a few key challenges. First, the numerical108

evaluation of smooth geometric measurements on arbitrary manifolds in an FEM framework requires non-109

intuitive tensor algebra to translate the shape equation in coordinate where it is ready to be solved. After110

this formulation, solving the shape equation can require the use of high order function basis such as the111

C1 conforming FEM based on subdivision scheme (76, 77) or isogeometric analysis (IGA) (79–81, 83), which112

adds code complexity and run-time cost. Extending an FEM framework to incorporate new physics, topological113

changes, or interfaces with other models requires advanced mathematical and coding skills. This can restrict114

the usage to the computational math community and prevent broad usage by the biophysics community.115
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Finally, evaluating discrete mesh-based methods, which define the system energy and/or forces using116

geometric primitives from a mesh, we find that they satisfy many of the requirements in Table 1. Due to the117

ease of use and implementation, discrete mesh models have gained in popularity and many different schemes118

can be found in the literature (60, 84–94, 97, 98). These schemes differ in their approach to defining and119

computing geometric measures necessary for defining the energy and forces on a discrete object. Discrete120

geometries have discontinuities and limited information that leads to degenerate definitions for geometric121

values. For example, there is no canonical definition for the normal of a vertex of a mesh as opposed to122

the normal of a smooth geometry (87, 99, 100). One challenge for selecting the suitable formulation to use123

is the lack of approximation error metric for which the discrete definition best matches the smooth theory.124

Another confounding factor is the step at which the problem is discretized. Some implementations discretize125

the energy of the system by constructing standalone discrete energy, which captures the behavior of the126

Helfrich energy (65). From this discrete energy, they take the shape derivatives to obtain an expression for127

the discrete force. Without careful consideration, the discrete forces derived in this manner are unstructured128

and there is little resemblance to expressions of force from smooth theory. A second option is to discretize129

the smooth force expression directly(65, 95). While this preserves the geometric connection for the forces,130

there is no longer well-defined discrete energy. Several discrete mesh methods were benchmarked by Bian131

et al. (87) and Guckenberger et al. (95) who found differences in the accuracy, robustness, and ease of132

implementation (87, 95).133

1.3 Goals of the current work134

In this work, we outline a discrete mesh framework for modeling membrane mechanics with the following135

goals in mind: (a) we do not make a priori assumptions about axes of symmetry or restrict the coordinates in136

any way; (b) we resolve the ambiguity in the definition of geometric measures on the mesh and permit direct137

comparison for both the energy and force expressions in smooth and discrete contexts; and (c) this framework138

allows for use of meshes generated from ultrastructural imaging. We begin by defining a discrete energy that139

is analogous to the Helfrich energy. Then using concepts from DDG, we derive discrete shape derivatives and140

group terms to produce a discrete shape equation. We will show that our discrete shape equation has a clear141

correspondence between the terms of the smooth shape equations (57, 67, 70, 71). Beyond establishing this142

important connection, we will show that the elegant analytical expressions for discrete variational terms from143

the DDG also yield improved geometric intuition and numerical accuracy (99, 100).144

Benchmarking of our expressions was performed with our accompanying software implementation called145

Membrane Dynamics in 3D using Discrete Differential Geometry (Mem3DG). Mem3DG is written in C++, released146

under the Mozilla Public License version 2, and comes with accompanying documentation and tutorials which147

can be accessed on GitHub (https://github.com/RangamaniLabUCSD/Mem3DG). Beyond the computation148

of discrete energies and forces on a mesh of interest, we also include functionality for performing energy149

minimization and time integration. Using Mem3DG, we validate the exactness of the analytical expressions150

of force terms by numerically examining the convergence of the force terms as a function of system energy151

perturbation. To illustrate compliance with our tool specifications, we apply Mem3DG to a sequence of examples152

with increasing complexity. Finally, we outline the steps to incorporate additional physics such as membrane-153

protein interactions and surface diffusion into Mem3DG.154

2 Methods155

The lipid bilayer is modeled as a thin elastic, incompressible shell using the Helfrich-Canham-Evans Hamil-156

tonian or spontaneous curvature model (39, 69, 101). The bending energy, Eb, of a smooth surface or 2-157

manifold, M, can be expressed in terms of the mean H, Gaussian K, and spontaneous curvature H̄ with158

material parameters κ the bending and κG the saddle-splay moduli. Additional energy terms Es and Ep ac-159

count for the tension–area (λ–A) and pressure–volume (∆P–V ) relationships; The total energy of the bilayer160
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is therefore161

E =

∫
M

[
κ(H − H̄)2 + κGK

]
dA︸ ︷︷ ︸

Eb

+

∫ A

Ā
λdÃ︸ ︷︷ ︸

Es

−
∫ V

V̄
∆PdṼ︸ ︷︷ ︸
Ep

. (1)

The preferred surface area and volume, Ā and V̄ , combined with the spontaneous curvature, H̄, characterize162

the zero-energy state for the system energy. In a nutshell, given the material properties, the system energy163

is fully determined by its geometric measurements such as volume, area, and curvatures.164

Machinery to express these measurements have been a topic of extensive study in classical differential165

geometry (102, 103). However, finding the minima of the governing energy, solving the stationary solution to166

the geometric Partial Differential Equation (PDE), can be mathematically and numerically difficult. While dif-167

ferential geometry provides succinct expressions to describe the measurements in a coordinate-free fashion,168

computational methods often require the introduction of a coordinate basis and subsequent manipulation of169

expressions using tensor algebra, which can obscure the underlying geometric intuition.170

As an alternative, forgoing the need for a smooth geometry, one can treat a discrete geometry (such as171

a geometric mesh) as the input. This perspective where the discrete geometry is the actual geometry is that172

of DDG. By eliminating the burdens of treating the input mesh as an approximation of a smooth object, DDG173

capitalizes upon the piecewise nature of meshes to produce efficient and parallelizable finite difference-like174

formulae which are amenable to algorithmic implementation while maintaining clear geometric meaning. In the175

following sections, we use concepts from DDG to formulate a discrete analog to the smooth membrane shape176

problem. Following the derivation of the discrete theory, we describe the development of an accompanying177

software implementation called Mem3DG.178

2.1 Notation and preliminaries179

We assume the following notation conventions and provide a table of important symbols (Table 2). To aid the180

reader on how the elements of the mesh are used in the derivation, several fundamental geometric primitives181

(i.e., values on a mesh which are easily measurable; listed in Table 2A) are illustrated in Fig. 1A-C.182

We note that in discrete contexts the notation,
∫
a, should be considered the discrete (integrated) counter-183

part of a pointwise measurement a in a smooth setting. The rationale and significance behind the usage of an184

integrated measure in discrete contexts are elaborated in Appendix B and the DDG literature (99, 100). Using185

this notation, discrete surface integrals are expressed as sums of integrated values over the discrete mesh186

components listed in Table 2B (e.g.,
∑

vi

∫
ai is the discrete analog to

∫
M a). It is possible to interchange187

between integrated,
∫
ai, and pointwise, ai, measures by using the dual area (Ai),188

ai =

∫
ai/Ai. (2)

For simplicity, we will not use separate notations for operators applying in smooth and discrete settings. The189

context can be inferred from the objects to which the operators are applied. Where it serves to improve our190

geometric or other intuition, smooth objects will be presented alongside discrete objects for comparison.191

2.2 Obtaining a discrete energy defined by mesh primitives192

Following the perspective of DDG, we restrict our input to the family of triangulated manifold meshes,M (i.e.,193

discrete 2-manifolds embedded in R3)3.194

Paralleling the smooth Helfrich Hamiltonian (Eq. (1)), a functional of geometric measurements of a surface,195

the discrete Helfrich Hamiltonian is composed of discrete analog of those measurements,196

E(~r) =
∑
vi

[
κi

∫
(Hi − H̄i)

2 + κG

∫
Ki

]
︸ ︷︷ ︸

Eb

+

∫ A

Ā
λ(Ã;~r) dÃ︸ ︷︷ ︸

Es

−
∫ V

V̄
∆P (Ṽ ;~r) dṼ︸ ︷︷ ︸

Ep

. (3)

3We will use M for both the smooth and discrete surfaces.
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Table 2: Glossary of commonly used symbols and conventions

A. Geometric primitives:

M smooth or discrete 2-manifold

~r ∈ R3 embedded coordinate of M
l edge length

∠ corner angle

ϕ dihedral angle

A area of mesh cell,

e.g., face Aijk, edge Aij and vertex Ai

~n surface normal

B. Surface Integral:∫
a integrated quantity over mesh cell e.g.,

Aiai or Aijkaijk∑
vi

sum over all vertices vi of the mesh∑
eij

sum over all edges eij of the mesh∑
fijk

sum over all faces fijk of the mesh∑
vj∈N(a) sum over the vertex vj in the neighbor-

hood of a∑
eij∈N(a) sum over the edges eij in the neigh-

borhood of a∑
fijk∈N(a) sum over the face fijk in the neighbor-

hood of a

C. Tensors:

x ∈ R scalar quantity

xtype
index

sub- and super-script convention e.g.,∫
~f
b

i is the bending force for vertex i

~x ∈ R3 vector quantity

x = {xi} (n× 1) indexed scalar quantity

~x = {xi} (n× 3) indexed vector quantity

X̃ matrix or tensor quantity

D. Derivatives:

∇~r shape derivative

∇φ chemical derivative

∇~θ
surface gradient

ȧ time derivative

∆s Laplace-Beltrami operator

E. Physical Variables:

E energy

f force density

µ chemical potential

H mean curvature

K Gaussian curvature

A surface area

V enclosed volume

·̄ preferred state e.g., H̄ is the sponta-

neous curvature

φ ∈ [0, 1] protein density parameter

λ membrane tension

∆P osmotic pressure across the membrane

κ bending rigidity

κG Gaussian modulus

KA stretching modulus

KV osmotic strength constant

c̄ molar ambient concentration

n molar quantity of enclosed solute

η Dirichlet energy constant

ε adsorption energy constant

ξ membrane drag constant

B protein mobility constant
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In comparison with Eq. (1),Hi andKi are pointwise mean and Gaussian curvature measurements on vertices,197 ∫
(Hi − H̄i)

2 is the integrated Willmore measure, and the smooth surface integral is replaced by its discrete198

analog (i.e. finite summation),
∑

vi
(Table 2B).199

The geometric properties of a given membrane configuration can be connected to the system’s energy200

through constitutive relations. In this work, we assume that the surface tension follows a linear stress-strain201

model(104),202

λ(A;~r) = KA
A(~r)− Ā

Ā
, (4)

where Ā is the preferred surface area of the membrane, and KA is the stretching modulus of the membrane.203

The osmotic pressure can be defined based on the van’t Hoff formula as204

∆P (V ;~r) = Pin − Pout = iRT
( n
V

− c̄
)
, (5)

where i, R, T , c̄ and n are the van’t Hoff index, ideal gas constant, temperature, ambient molar concentration,205

and molar amount of the enclosed solute. Substituting these constitutive relations (Eqs. (4) and (5)) into the206

energy (Eq. (3)), we get explicit expressions for Es and Ep,207

E(~r) = Eb(~r) +
1

2
KA

[A(~r)− Ā]2

Ā︸ ︷︷ ︸
Es

+ iRTn [rc − ln rc − 1]︸ ︷︷ ︸
Ep

, (6)

where rc = c̄/(n/V ) is the ratio of the concentrations of the ambient and enclosed solutions. Note that the208

preferred volume, V̄ , which is needed to evaluate the integral in Eq. (3), is related to to the parameters in209

Eq. (5) by V̄ = n/c̄. If the system is around the isosmotic condition (e.g., V → V̄ ), the leading order of the210

energy is given as,211

Ep ≈
1

2
KV

(V − V̄ )2

V̄ 2
, (7)

where KV ≡ iRTn groups the phenomenological parameters.212

To compute the energy of a system, we must obtain values for several geometric measurements which213

appear in the discrete energy function (i.e., H, K, A, V , etc.). For measures such as the volume and area,214

there are clear approaches for their evaluation on a triangulated mesh: summing the areas of the triangular215

faces and summing over the signed volume of tetrahedra (Fig. 1E – osmotic pressure and surface tension).216

For other measures such as the discrete mean and Gaussian curvatures, additional care must be taken.217

While in smooth contexts these curvatures have unique definitions, in discrete contexts there are multiple218

approaches for their calculation. For example, the mean curvature can be computed via the application of the219

cotangent Laplacian, the kernel of the heat equation, or fitting polynomials to a local patch (65). As mentioned220

earlier, there are challenges with these approaches which can limit their numerical accuracy and obscure the221

connection to smooth theory. Here using discrete exterior calculus and identification of geometric invariants,222

we produce theoretically and numerically consistent discrete expressions.223

Similar to the polygonal curve introduced in Appendix B, a triangulated mesh has zero curvature on facets224

and ill-defined curvature on edges and vertices. Using the Steiner view, the sharp corners formed by vertices225

and edges are “smoothened” with portions of spherical and cylindrical shells, which have well-defined mean226

curvature (Fig. 1D). Taking the limit as the radii of the cylinders and spheres decrease, the leading order227

contribution of total mean curvature is given by the Steiner formula on an edge,228 ∫
Hij =

lijϕij

2
, (8)

referred to as the edge mean curvature, where lij is the length of edge eij , and ϕij is the dihedral angle on eij229

(i.e., the angle formed by the face normals of the neighboring triangles incident to eij) (illustrated in Fig. 1B).230

While not necessary, a triangulated mesh is often realized in R3 via vertex positions; thus it is conventional to231
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Figure 1: Overview of the DDG framework. A, B, C) Illustrations of geometric primitives in the neighborhood of A) Fan around a

vertex, B) Diamond around an edge, and C) Triangle on a face. D) Discrete definition of scalar edge mean curvature,
∫
Hij , scalar

vertex Gaussian curvature,
∫
Ki, and Laplace-Beltrami operator,

∫
∆s(·). E) Comparative derivation of Helfrich shape equation in

both smooth and discrete formulation.
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prescribe data on vertices instead of edges. Summation of edgewise quantities over the “fan” neighborhood232

(Fig. 1A) provides the recipe of converting an edgewise to a vertexwise measure,233

(·)i =
1

2

∑
eij∈N(vi)

(·)ij , (9)

where the prefactor, 1/2, accounts for fact that each edge is shared by two vertices.234

While we have an integrated mean curvature, the discrete Helfrich Hamiltonian contains a pointwise mean235

curvature squared term. To define a pointwise mean curvature, the size of the domain occupied by the236

integrated mean curvature needs to be specified (c.f., Appendix B for rationale). The area, Ai, referred to237

as the dual area of the vertex vi, can be defined as one-third of the areal sum of the incident triangles (“fan”238

illustrated in Fig. 1A). Applying Eqs. (2) and (9) to Eq. (8), the pointwise mean curvature is thus,239

Hi =

∫
Hi

Ai
=

∑
eij∈N(vi)

lijϕij

4Ai
. (10)

Substituting Eq. (10) into the integrated Willmore measure term of Eq. (3), the integrated Willmore measure240

can be expressed as a function of the integrated mean and spontaneous curvature,241 ∫
(Hi − H̄i)

2 =
1

Ai

(∫
Hi −

∫
H̄i

)2

. (11)

Discrete Gaussian curvature is given by the angle defect formula,242 ∫
Ki = 2π −

∑
fijk∈N(vi)

∠kij , (12)

which is a well-known measure that preserves many properties parallel to the smooth theory (e.g., Gauss-243

Bonnet, turning number, among other invariants). One way to derive the angle defect formula is to compute244

the area of a spherical n-gon contained by a local Gauss map of the neighboring n faces around a vertex (99,245

100). The discrete Gauss-Bonnet theorem states that246 ∑
vi

∫
Ki = 2πχ(M)−

∑
eij∈∂M

∫
κgij , (13)

where χ(M) = |V | − |E|+ |F | is the Euler characteristic of M, a topological invariant where |V |, |E| and |F |247

represent the number of vertices, edges and faces of the mesh respectively. The discrete geodesic curvature,248 ∫
κg, is the discrete curvature of the boundary curve, ∂M, as introduced and defined in Appendix B. When249

the surface M is closed and does not undergo topological changes, the boundary term drops out and the250

total Gaussian curvature is a constant multiple of 2π. When surface M is open, the geodesic curvature is251

integrated over one or more closed boundary loops, ∂M. This integral, referred to as the turning number of252

a closed polygon, is invariant under regular homotopy (i.e., continuous deformation during which the curve253

stays regular) (99), which is admitted by the deformation of all membrane boundaries considered in this study.254

In summary, within the scope of the current work, all energetic contributions from Gaussian curvature terms,255

including the boundary elements, are constant or zero and can thus be neglected. Nevertheless, in future256

studies where Gaussian curvature term cannot be neglected (e.g, topological changes, non-uniform saddle-257

splay modulus), Eq. (12) provides the geometric definition to obtain the discrete energy.258

A numerical comparison of the discrete scalar measures with their smooth counterparts is shown in Fig. E.1.259

We note that for all geometric measures (i.e., volume, area, and curvatures), unlike in smooth differential ge-260

ometry where their numerical evaluation requires the introduction of coordinates, DDG measurements are261

functions of mesh primitives. By substituting these discrete geometric measures from DDG into Eq. (6) and262

Eq. (3), we get a numerical recipe for computing the total system energy.263
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2.3 Force from discrete shape derivative of energy264

We can obtain the force density by taking the negative shape derivative of the energy. In continuous settings,265

the differentiation is an infinite-dimensional problem that requires the use of the calculus of variations and266

differential geometry to find analytical expressions (39, 43, 70, 71) (Fig. 1E – smooth). Deriving the forces267

from the discrete energy (Eq. (3)) is a much simpler task.268

Discrete forces can be obtained by taking partial derivatives of mesh primitives with respect to the vertex269

embedded coordinates, ~r (Fig. 1E – discrete). Regarding notation, despite the computational differences, the270

differential operations in both the discrete and smooth contexts are called (discrete) shape derivatives and271

denoted as ∇~r(·) due to the common geometric meaning. We note that the computation of discrete shape272

derivatives for membrane modeling has been described previously in the literature (85, 87). Also that there273

are many overlapping definitions for discrete curvature, energy, and variations thereof in the graphics litera-274

ture (105–107). Our work extends upon the prior art which evaluates derivatives algebraically, by introducing275

simplifications based upon the grouping of terms and identification of geometric objects. These simplifications276

have important implications for improving the geometric understanding as well as the run-time and numerical277

performance of an implementation.278

At the high level, our goal is to express the forces on each vertex, given a set of physics, using geometric279

primitives and properties defined on specific mesh elements. By grouping terms, we find that the vertex-280

wise forces arising from the different physics can be expressed as weights which are functions of the input281

parameters and system configuration, multiplied by basic geometric vectors. We will show that these terms282

have an exact correspondence to terms in the smooth shape equation (Fig. 1E). We remark that, in some283

sense, the force expressions are reminiscent of finite difference equations which approximate differentials as284

a linear combination of values at discrete points. This may have implications for the suitability of modeling285

smooth biological surfaces with discrete meshes.286

2.3.1 Force from osmotic pressure287

For the smooth geometry, the shape derivative of the enclosed volume yields the outward pointing surface288

normal with its size equal to the local area element (108). For a discrete mesh, the shape derivative of the289

volume is given by the face normal on triangular faces with its local area element equaling to the face area,290

which is referred to as the integrated face normal,
∫
~n(ijk) (Fig. 1E – osmotic pressure) (87, 99, 100), where291

(ijk) denotes the symmetry under index permutation (e.g., ai(jk) means aijk = aikj). Similar to edge values,292

the force normal can be converted to vertex normal,293 ∫
~ni = ∇~riV =

1

3

∑
fijk∈N(vi)

∫
~n(ijk) =

1

3

∑
fijk∈N(vi)

Aijk~n(ijk), (14)

where analogous to Eq. (9), the prefactor 1/3 accounts for fact that each face is shared by three vertices. The

discrete vertex forces from the derivative of the pressure-volume work,
∫
~f
p

i , is then given by scaling it with

the uniform osmotic pressure, ∫
~f
p

i = ∆P

∫
~ni. (15)

2.3.2 Forces from surface tension294

Next considering the shape derivative of the surface energy, Es, in smooth contexts, the derivative of the total

surface area also points at the surface normal, with its magnitude measuring the size (dA) and the curvature

(2H) of the local patch (Fig. 1E – surface tension) (108). In discrete case, we can directly compute the

derivative of total area on each vertex by summing the area gradient of incident triangles with respect to the

vertex position; The sum is therefore referred as (twice of) the integrated mean curvature vector on vertices,∫
2 ~H i = ∇~riA =

∑
fijk∈N(vi)

∇~riAijk =
∑

fijk∈N(vi)

∫
2 ~H i(jk), (16)

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 31, 2021. ; https://doi.org/10.1101/2021.10.30.466618doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.30.466618


where we define
∫
2 ~H i(jk) ≡ ∇~riAijk, and

∫
~H i(jk) is the mean curvature vector on a triangle face corner.

The capillary forces from surface tension,
∫
~f
s

i , are given by scaling the integrated mean curvature vector by

the surface tension, ∫
~f
s

i = −λ
∫

2 ~H i. (17)

Evaluating the algebraic sum of area gradients reveals the “cotangent formula” applied to the vertex posi-295

tions (Fig. 1E – surface tension). From independent derivations with unrelated frameworks (e.g., discrete ex-296

terior calculus and FEM), discretizing the smooth Laplace-Beltrami operator on a triangulated mesh produces297

the cotangent formula which is called the discrete Laplace-Beltrami operator,
∫
∆s(99, 100, 105). Inspect-298

ing the expressions in Fig. 1E – surface tension, we see that our discrete expression parallels smooth theory,299

where the mean curvature is related to the coordinates through the application of the smooth Laplace-Beltrami300

operator,301 ∑
eij∈N(vi)

∫
2 ~H ij =

∫
∆s~ri ↔ ∆s~r = 2H~n. (18)

2.3.3 Forces from bending302

To evaluate the shape derivative of the discrete bending energy we consider the terms from the Gaussian and303

mean curvature separately. Based on the discrete Gauss-Bonnet theorem (Section 2.2), the total Gaussian304

curvature only varies if the surface undergoes a topological change. Since we do not consider non-uniform305

saddle-splay modulus and topological changes in the examples in this work, this term does not contribute306

to the force. The shape derivative of the bending energy contributed by the integrated Willmore measure307

requires more algebra and the introduction of halfedges, eij (c.f., Appendix C.1). Here we will focus on the308

key results and refer the reader to the full derivations for each term in Appendix C.2.309

There are four fundamental geometric vectors on halfedges that comprise the bending force: the mean310

curvature vector (see Fig. 1B for indices),311 ∫
2 ~H ij =

1

2

(∫
2 ~H i(jk) +

∫
2 ~H i(jl)

)
; (19)

the Gaussian curvature vector, ∫
~Kij =

1

2
ϕij∇~ri lij ; (20)

and the two Schlafli vectors,∫
~Sij,1 =

1

2
lij∇~riϕij ,

∫
~Sij,2 =

1

2

(
ljk∇~riϕjk + ljl∇~riϕjl + lji∇~riϕji

)
, (21)

which act to smooth the profile of local dihedral angles. Note that the shape derivatives are taken with respect312

to different vertices (i.e., ∇~ri or ∇~rj ), such that the mean curvature
∫
~H ij , Gaussian curvature

∫
~Kij , and313

Schlafli vectors
∫
~Sij are asymmetric under index permutation. To account for the orientation we refer to them314

as halfedge vector quantities on eij (Appendix C.1). A numerical comparison of the discrete geometric vector315

with their smooth counterparts is shown in Fig. E.1 and Fig. E.2.316

The bending force
∫
~f
b

i (Fig. 1E – bending) can be expressed as weights which are functions of input

parameters multiplied by basic geometric measurements in scalar and vector form,∫
~f
b

i =
∑

eij∈N(vi)

−
[
κi(Hi − H̄i) + κj(Hj − H̄j)

] ∫
~Kij

+

[
1

3
κi(Hi − H̄i)(Hi + H̄i) +

2

3
κj(Hj − H̄j)(Hj + H̄j)

] ∫
2 ~H ij

−
[
κi(Hi − H̄i)

∫
~Sij,1 + κj(Hj − H̄j)

∫
~Sij,2

]
,

(22)
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which parallels the shape derivative of the smooth bending energy,

∇⊥
~r Eb = ∇⊥

~r

[∫
M
κ(H − H̄)2dA

]
= κ

[
2(H − H̄)

(
H2 −K + H̄H

)
+∆s(H − H̄)

]
dA,

(23)

where ∇⊥
~r
= ∇~r · ~n is the shape derivative in the surface normal direction.317

Comparing the smooth-discrete expressions, we make a few observations:318

• The Schlafli vector terms, ~S, is the discrete analog of the smooth biharmonic term,∆s(H− H̄), the high-319

order local smoothing force. The numerical comparison of these two terms, as well as results directly320

obtained using cotangent formula applied on pointwise scalar mean curvature, are covered in Fig. E.2321

and Fig. E.1.322

• Eq. (23) is normal component of the shape derivative of the bending energy; an additional tangential323

component is required if surface heterogeneity exists (e.g. κ is not spatially uniform) (40, 65). In contrast,324

the discrete shape derivative (Eq. (22)) is the total derivative in R3, which includes both the tangential325

and normal components4. Depending on the extent and symmetry of the heterogeneity, discrete force326

can point in any direction in R3.327

• The coefficients in Eq. (22) shows an intriguing pattern combining contribution from both vi and vj . From328

a finite-difference approximation standpoint, this results in an approximation scheme for which a rigorous329

error analysis has not yet been conducted.330

2.3.4 Net force and the benefit of DDG331

Summing the force terms from each physics, we obtain a net force. The expression for the total force is332

a function of geometric primitives and was derived using concepts from DDG without the need to introduce333

coordinates and use tensor algebra. The numerical performance of these expressions are benchmarked334

for several scalar and vector measurements on smooth and discrete surfaces shown in Fig. E.1, Fig. E.2,335

and later discussed in Section 2.5.4. Also important, our resulting expressions allow the direct comparison336

of terms between smooth and discrete contexts. By choosing definitions that preserve the chain of shape337

derivatives for the geometric vectors of interest (c.f., Fig. A.2), we can preserve geometric intuition between338

smooth and discrete differential geometry theory (100). With respect to the numerical performance, since the339

terms of the discrete shape equation are defined using values from neighborhoods around individual vertices340

the algorithms are efficient and straightforward to parallelize. Owing to the local nature of the force evaluation,341

heterogeneities in material and other properties across the membrane are also straightforward to incorporate.342

2.4 Defining metrics for simulation and error quantification343

For monitoring simulation progress, exactness of force calculations with respect to the discrete energy, and344

convergence studies of computed quantities upon mesh refinement we introduce the following norms.345

2.4.1 L2 norm346

From a PDE perspective, the vertex forces are also called the residual of the shape equation, whose solution347

represents the equilibrium solution. The simulation is terminated when the residual is smaller than a user-348

specified threshold. The rationale for using the L2 norm is justified by perturbing the system configuration and349

conducting an expansion on the system energy,350

E(~r + ε∇E(~r)) = E(~r) + ε〈∇E(~r),∇E(~r)〉+O
(
ε2
)

= E(~r) + ε

∥∥∥∥∫ ~f

∥∥∥∥2
L2

+O
(
ε2
)
,

(24)

4In the smooth sense since there is no well-defined vertex normal direction in discrete geometry
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where we refer the inner product of the force matrix as the L2 norm of the forces. Computationally, this is351

equivalent to the standard Frobenius matrix L2 norm,352 ∥∥∥∥∫ ~f

∥∥∥∥
L2

=

√
trace

(∫
~f
>
∫
~f

)
. (25)

Using the L2 norm and Eq. (24), we can perform a numerical validation of the exactness of the discrete force353

calculation with respect to the discrete energy. We expect the force to approximate the energy up to 2nd order354

with respect to the size of a perturbation. This validation will be further elaborated in Section 3.4.355

2.4.2 L1 norm356

A scale-invariant L1 norm is well-suited to quantify the magnitude of the error on varying domain size and357

mesh resolution. Given a vertexwise local scalar measurement,
∫
a, or a vector measurement,

∫
~a, and their358

reference values,
∫
ā, and

∫
~̄a,359 ∥∥∥∥∫ a

∥∥∥∥
L1

=

∑
vi
|
∫
ai −

∫
āi|

A∥∥∥∥∫ ~a

∥∥∥∥
L1

=

∑
vi
‖
∫
~ai −

∫
~̄ai‖L2

A
,

(26)

where the normalizing factor, the total surface area A, is used to obtain a pointwise estimate of the error. The360

L1 norm is applied in the local comparison of discrete and smooth measurements, where we further elaborate361

in Section 2.5.4.362

2.5 Software implementation – Mem3DG363

Along with the theoretical developments, we have developed an accompanying software implementation writ-364

ten in C++ called Mem3DG. Our goal in developing this software is to enable the easy use and application of the365

corresponding theory developed above to biological problems of interest.366

Mem3DG is a library that contains several components to support this goal. Fig. 2 provides a synopsis of367

Mem3DG. The input to Mem3DG includes a triangulated mesh with its coordinate ~r embedded in R3. Users can368

choose to use Mem3DG to construct idealized meshes (e.g., icosphere, cylinder, or flat hexagonal patch) as an369

input or to read in meshes from several commonmesh formats. Meshes are stored and manipulated in Mem3DG370

using the half-edge data structure provided by Geometry Central (109). The supported input file formats are371

those which are readable by hapPLY and Geometry Central (109, 110). Once a mesh and parameters are372

loaded, Mem3DG can evaluate the discrete energy and forces of the system. Mem3DG adopts a modular design373

that facilitates the use of different energy and force components and has utilities which help the user to specify374

the physics and governing parameters. Mem3DG also supports local system simulations where the input mesh375

has boundaries. Additional details about the supported boundary conditions is given in Section 2.5.2.376

To perform energy minimization and time integration of the system, various schemes have been imple-377

mented. These schemes are described in Section 2.5.3. As discussed further in Section 2.5.4, when a user378

wishes to use Mem3DG to represent complex biological membrane geometries, additional care regarding the379

quality of the mesh is necessary. Mem3DG includes algorithms for basic mesh regularization and remeshing380

which can be toggled by the user to support their applications. The simulation terminates when it reaches the381

time limit or the system reaches equilibrium, whose criteria is determined using the energy L2 norm introduced382

in Section 2.4. A user can choose between several formats to output a trajectory over time or the configuration383

of the local minima from Mem3DG. In addition to the mesh outputs supported by Geometry Central, we have also384

developed a scheme for outputting mesh trajectories in NetCDF format (111). Mem3DG can read and visualize385

the output trajectories and mesh configurations using Geometry Central and Polyscope (109, 112).386

For rapid prototyping and enumeration of simulation conditions, we have also developed a Python API387

called PyMem3DG. The functionality in C++ is exposed in Python using bindings from pybind11 (113). Illustra-388

tive examples of using both Mem3DG and PyMem3DG are provided in the online tutorials. For the experiments389
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Figure 2: Overview of data flow within Mem3DG. The user provides Mem3DG with an initial condition in the form of a triangulated mesh

and vertexwise state and kinematic variables (green box). The main loop (black loop) of Mem3DG evaluates the discrete energy and

forces, and propagates the trajectory, among other supporting steps. Modules in dashed lines are optional depending on whether

the system mesh has boundaries and if external forces are specified. User-specified options and possible extensions of Mem3DG to

accommodate various physics are highlighted in yellow boxes. Mem3DG automatically exits the simulation when the system converges

or the maximum time step is reached.
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discussed in this work, all of the simulations were performed using PyMem3DG and the accompanying code and390

initial configurations are on GitHub: https://github.com/RangamaniLabUCSD/Mem3DG.391

2.5.1 Defining properties of a membrane reservoir for systems with open boundaries392

To facilitate correspondence with wet experiments and to support the reduction of computational cost, it is393

possible to construct systems using meshes with open-boundaries in Mem3DG. For example, when modeling394

the formation of a small endocytic bud from a large cell, the deformation is small compared to the broader395

system. If we assume that the bulk of the cell is invariant with respect to bud formation, the computational396

burden can be reduced by modeling only the local deformation; we can assume that the modeled patch397

is attached to an implicit membrane reservoir. To define this coupled system, the constant area (Ar) and398

volume (Vr) of the reservoir must also be provided. The total area and volume of the broader system is given399

by A = Apatch+Ar, and V = Vpatch+Vr, where Apatch and Vpatch are area and “enclosed volume” of the mesh400

patch respectively. In our models, we enforce that all elements of a boundary loop are on the same plane;401

this way Vpatch can be unambiguously defined as the enclosed volume when each boundary loop is closed402

by a planar sheet. The capability to model systems attached to a reservoir reduces the modeled degrees of403

freedom while enabling intuitive physics to simplify the process of mimicking experimental conditions using404

Mem3DG.405

2.5.2 Prescribing boundary conditions with force masking406

Mem3DG supports modeling membranes with and without boundaries: a sphere (with no boundaries), a disk407

(with 1 boundary), and a open cylinder (with 2 boundaries). For systems without boundaries, since the force408

calculation of the scheme is exact, the forces will not introduce artificial rigid body motions, as was also noted409

by Bian et al. (87). To study system with boundaries, Mem3DG currently supports three types of boundary410

conditions:411

• Roller, where the movement of boundary vertices is restricted along a given direction or plane.412

• Pinned, where the position of boundary vertices are pinned while the curvature is allowed to vary.413

• Fixed, where both the position and the boundary curvature are fixed for vertices on the boundary.414

The different boundary conditions are achieved by masking the elements of the force matrix corresponding to415

the boundary vertices and some neighborhood. For example, to apply roller boundary conditions, we mask416

the Z–component of the force on the boundary vertices, therefore constraining their movement to the X–Y417

plane; pinned boundary conditions mask all force components for the boundary vertices to fix their position;418

fixed boundary conditions mask all force components for the outermost three layers to fix both their position419

and curvature.420

2.5.3 Time integration and energy minimization421

In this work, we use the forward Euler algorithm to integrate the system dynamics and the nonlinear conjugate422

gradient method to solve for equilibrium conditions. Both solvers are complemented by a backtracking line423

search algorithm, which satisfies Wolfe conditions to support adaptive time-stepping and robust minimization424

(114).425

The forward Euler scheme was chosen as the simplest dynamical propagator; physically it represents

over-damped conditions where the environment of the membrane is too viscous for the system to carry any

inertia. Mathematically the physics is described by,

~̇r =
1

ξ

∫
~f =

1

ξ

∫
(~f

b
+ ~f

s
+ ~f

p
), (27)

where ξ is the drag coefficient. From an optimization perspective, forward Euler is equivalent to the gradient426

descent method for minimizing an objective function, which is the discrete energy in our case.427

A second propagator is the nonlinear conjugate gradient method for locally minimizing the discrete en-428

ergy to yield the equilibrium shape of the membrane. Since the system is nonlinear we periodically perform429
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forward Euler (gradient descent) steps after several conjugate gradient steps. This approach of iterating be-430

tween conjugate gradient and gradient descent steps is commonplace in the literature for solving nonlinear431

systems (114).432

We note that other time integrators and energy minimizers are also compatible with Mem3DG. Included in433

the software are reference implementations of Velocity Verlet integration (for symplectic time integration),434

and Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS, a quasi-Newton method to the435

equilibrium shape for large scale problems where fast computation is needed). We do not discuss these436

additional solvers in this work.437

2.5.4 Practical considerations for applying Mem3DG to biological problems438

As we have noted above, in the DDG perspective, the mesh is the geometry and thus the formulation of the439

discrete forces and energies is exact. There are therefore very few restrictions on the resolution and quality440

of the input mesh. However, in biophysics, we often consider biological membranes as smooth systems. We441

expect that many users of Mem3DGmaywish to approximate a smooth system using our discretemodel. In doing442

so, they make an implicit assumption that such an approximation is reasonable. Although the relationships443

between geometric objects and their shape are preserved between the smooth and discrete contexts, our444

ability to approximate a smooth problem with a discrete mesh is not guaranteed. Similar to finite differences445

and FEM, additional constraints on mesh quality and resolution must be imposed. To verify and understand446

the limitations of the assumption that the discrete mesh is the geometry and includes all of the geometric447

information, we numerically test the convergence of the discrete quantities under variation of resolution on448

an oblate spheroid mesh. The additional details regarding these numerical experiments are presented in449

Appendix D.450

Figure 3: Comparison of discrete quantities with their smooth counterparts on spheroid shape. A) Convergence plot of global

quantities, including total area, volume, mean curvature (squared), and Gaussian curvature, and B) Convergence plot of L1 norm of

scalar and vector local quantities, including the mean curvature, Gaussian curvature, and the biharmonic term.

Setting the characteristic length scale of the finest mesh to be h = 1, as the mesh coarsens (i.e., mesh451

size increases) h increases. Fig. 3 shows the scaling relationship of the deviation in magnitude between452

the smooth and discrete quantities. Fig. 3A shows the convergence property of global measurements that453

determines the energy (Eq. (1) and Eq. (3)), including the total area,A, enclosed volume, V , and total Gaussian454

curvature and mean curvature (squared),
∫
MKdA,

∫
MHdA and

∫
MH2dA, respectively. Except for the total455

Gaussian curvature being an exact topological invariant, all integrated quantities exhibit approximately 2nd456

order convergence rate.457

We acknowledge that convergence of global measurements does not imply that local measurements will458

also converge. To validate the convergence of local measurements, which determines the convergence of459
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local forces on the membrane (e.g., Eq. (15), Eq. (17) and Eq. (22)), we utilize the L1 norm (Eq. (26)) to460

evaluate the deviation of local quantities from their smooth counterparts. Fig. 3B shows the local convergence461

plot. Similar to their global counterparts, local scalar mean and Gaussian curvature,
∫
H, and

∫
K, converge462

at O(h2). Fig. 3B also shows the convergence of vector quantities, which not only contribute to the magnitude463

of the force but also set the direction of the force. The test shows that most vector quantities converge slightly464

slower than their scalar counterparts. Two terms exhibit poor convergence, the Schlafli vector term in Eq. (22),465

H
∫
S, and a scalar counterpart,

∫
∆sH. The latter term corresponds to the direct application of the cotangent466

Laplacian (Eq. (17)) to the pointwise scalar mean curvature field; this approach is not used in our framework467

but is common in the literature(65). Both non-convergent expressions are discrete representations of the468

biharmonic term, ∆sH, which have been noted to be sensitive to noise of vertex coordinates in the prior469

literature (95). Recall that the biharmonic term is the fourth-order derivative of the embedded coordinates.470

Although the traditional approximation theories suggest that higher-order derivatives often exhibit slower rates471

of convergence (115), to the best of our knowledge, there is not yet a rigorous study that connects DDG472

with an approximation theory. Nevertheless, we anticipate that similar principles hold. Two spatial plots473

comparing local measurements between smooth and discrete contexts are provided in the appendix (Fig. E.1474

and Fig. E.2); each test is conducted using the finest mesh size (h = 1). Based on this numerical validation,475

we conclude that the computation of energy converges with a 2nd order rate (Fig. 3A). While most components476

of the forces converge, the biharmonic term remains a limiting factor.477

One other practical consideration for our models is that the Helfrich Hamiltonian, matching the in-plane478

fluidity of biological membranes, has no resistance to shearing. Without additional constraints, the mesh479

is susceptible to shearing motions which can deteriorate mesh quality in some conditions (81). This can480

degrade the implicit assumption that the discrete mesh represents a smooth geometry. To ensure that such481

an approximation can remain valid throughout a trajectory, we have incorporated algorithmic solutions to482

adaptively maintain an isotropically well-resolved discrete geometry. This is achieved by two operations:483

1) mesh regularization using local force constraints which are common in finite element methods (76, 80,484

81, 83) Appendix E.2. and 2) mesh mutations such as decimating, flipping, and collapsing edges. Mesh485

mutations are also a common practice to cope with deterioration in other mesh simulations which use a Monte486

Carlo integration (60, 87–93). The algorithms for mesh regularization and mutation are further described in487

Appendix E.488

3 Results and Discussion489

To further validate the method and to provide a sense of how Mem3DG can be used and extended to solve more490

complex physics, we apply Mem3DG to a sequence of examples with increasing complexity. First, wemodel well-491

studied systems with homogeneousmembrane conditions. We show that Mem3DG is capable of reproducing the492

classical solutions without imposing the axisymmetric constraint commonly adopted by other solvers. The later493

examples set a blueprint for extending and modifying Mem3DG for particular systems of interest. We introduce494

new energy and corresponding force terms to expand the formulation for complex systems of interest. We495

emphasize that the goal of these examples is to illustrate the generality of the theory and software and to496

outline specific steps for future extensions; we do not perform rigorous experimental comparisons nor extract497

scientific insights. Additional care must be taken to mimic specific biological experiments for model validity,498

which is left for future work.499

Each of the following sections considers a different class of membrane biophysics problem of increasing500

complexity in the coupling of the in-plane protein density parameter, φ ∈ [0, 1]. To mimic the various influ-501

ences protein-lipid interactions can have on the bilayer, the protein density can be set to influence membrane502

properties such as the spontaneous curvature, H̄(φ), and bending rigidity, κ(φ). More complex phenomena503

such as the production of in-plane interfacial forces from membrane-protein phase separation(55, 59, 116)504

can also be modeled. In our final proof of concept, we extend Mem3DG to support full mechanochemical dy-505

namics, where proteins can mobilize in- and out-of-plane through adsorption and lateral diffusion, based on its506

coupling with membrane material properties and shape transformation. These scenarios highlight the relative507

ease of extending Mem3DG with additional physics and the potential utility to simulate realistic experimental508
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Movie 1: Animated time series simulation of Fig. 4C–reference. The color map indicates the local pointwise mean curvature, H,

and t represents the numerical time. Available on GitHub: https://github.com/RangamaniLabUCSD/2020-Mem3DG-Applications/
blob/master/examples/videos/compressed/pearl_control_1.mp4

Movie 2: Animated time series simulation of the unduloid shape shown in Fig. 4C–medium osmolarity. The color map indi-

cates the local pointwise mean curvature, H, and t represents the numerical time. Available on GitHub: https://github.com/
RangamaniLabUCSD/2020-Mem3DG-Applications/blob/master/examples/videos/compressed/pearl_pearl_1.mp4

scenarios. Note that for all of the examples, unless otherwise specified, the bending rigidity of membrane,509

κ, is assumed to be the rigidity of a bare membrane, κb = 8.22× 10−5 µm · nN. Despite the superior perfor-510

mance of the nonlinear conjugate gradient method in finding an energy minimizing configuration, to maintain511

both static and dynamic interpretability, we perform all simulations using a forward Euler integrator unless512

otherwise noted. All simulations presented in this work were conducted on a standard workstation with Intel513

Xeon processors. Although the numerical algorithms are amenable to parallelization, Mem3DG is currently a514

single-threaded program. Using a single core, the simulations here complete in minutes and up to two hours.515

3.1 Modeling spherical and cylindrical membranes with homogeneous physical properties516

Figure 4: Recover typical equilibrium shapes of membranes with homogeneous material properties. A-B) Equilibrium solutions under

different osmolarity (c̄) and spontaneous curvature (H̄) conditions, with initial condition of A) Oblate spheroid and B) Prolate spheroid.

We vary the osmolarity by adjusting the concentration of the ambient solution, c̄, while holding the enclosed amount of solute, n,
constant. C) Equilibrium solutions of a tubular membrane structure under variations in osmolarity and surface tension.

We begin our examples by using Mem3DG to find the equilibrium shapes of membranes with homogeneous517

protein density, φ. We ask, given an initial membrane configuration with uniform bending modulus and spon-518
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Movie 3: Animated time series simulation of the beads-on-a-string structure shown in Fig. 4C–high tension. Disruption of the inter-

mediate metastable state, a symmetric structure with two beads shown in Appendix A, occurs. The color map indicates the local

pointwise mean curvature, H, and t represents the numerical time. Available on GitHub: https://github.com/RangamaniLabUCSD/
2020-Mem3DG-Applications/blob/master/examples/videos/compressed/pearl_bead_1.mp4

taneous curvature, what are the minimizers of the system energy? The answers are the classical equilibrium519

solutions to the shape equation obtained analytically (42), and numerically using many methods with differ-520

ent assumptions (39, 117). We will show solutions obtained using Mem3DG with topologies of sphere and521

tube (Fig. 4). These geometries were selected not only because of their potential for comparison with the522

legacy literature but also because they are reminiscent of biological membranous structures such as red523

blood cell (118, 119), cell-cell tunneling and tethering (120–122), neuron beading (123, 124), among other524

biological processes.525

Starting with closed topological spheres, Fig. 4A and B shows the typical equilibrium shapes under os-526

motic stress while the surface area is conserved. The preferred area of the vesicle, Ā = 4π µm2, represents527

a sphere of radius 1 µm. This constraint is achieved by prescribing a large stretching modulus, KA, such528

that the areal strain, (A − Ā)/A, is less than one percent. The strength constant of osmotic pressure, KV is529

set to be 0.1 µm·nN. Initializing the simulations from an oblate spheroid, as the osmolarity increases (e.g.,530

the normalized ambient solution, c̄/n), we recover the well-known biconcave red blood cell shape (101, 117)531

(Fig. 4A). The vesicle adopts a more convex configuration as we increase the spontaneous curvature, indi-532

cating an overall increase in its mean curvature with the concomitant decrease of areas with negative mean533

curvature (the dimple regions). In contrast, starting from a prolate spheroid, as the spontaneous curvature534

increases, the vesicle adopts a dumbbell configuration as the energetically preferred state (Fig. 4B). The size535

of the beads on the dumbbell is governed by the osmolarity, c̄/n. These trends with respect to the variations536

of the spontaneous curvature and osmolarity are consistent with the analytical and numerical results in the537

broader literature (42, 87). Qualitatively the predicted geometries of closed vesicles with homogeneous spon-538

taneous curvature match the predictions of a detailed benchmark of mesh-based methods performed by Bian539

et al. (87).540

We also modeled the shapes of membranes starting from an open cylinder configuration under differ-541

ent osmotic and surface tension conditions (Fig. 4C). This problem is related to a well-studied phenomenon542

called the Plateau-Rayleigh instability (125, 126). The Plateau-Rayleigh instability describes how surface ten-543

sion breaks up a falling stream of fluid into liquid droplets. Compared with a liquid stream, lipid membrane544

provides additional resistance against the instability due to its rigidity. Zhong-can and Helfrich (127) obtain545

stability regimes as a function of membrane bending rigidity and spontaneous curvature using the spectral546

stability analysis (127). Though osmotic pressure is often reported as an important cause of morphological547

instability (124, 128, 129), the effect of osmotic pressure is difficult to isolate in wet experiments because548

change to osmolarity affects the surface tension, which is a key driver of the instability. In our simulations, the549

two effects are decoupled, making the investigation of individual contributions to the morphology possible. All550

shapes in Fig. 4C evolve from the initial tubular mesh with radius of 1 µm and axial length of 19.9 µm, under a551

constant spontaneous curvature of 1 µm−1. These simulations are set up as local models (c.f., Section 2.5.1)552

where the explicit mesh is assumed to be coupled to a membrane reservoir. Additional geometric information553

defining the membrane reservoir and boundary conditions are required to initialize the the local model. The554

tubular structure is considered to be a cylinder that connects two otherwise detached domains (e.g., mem-555

brane reservoirs), which combined have a total reservoir volume, Vr = 4.19µm3. The strength of osmotic556

pressure, KV , is set to be 0.01 µm·nN. To isolate the effect of osmotic pressure and surface tension on the557

morphology, we prescribe a specific surface tension which we assume to be invariant with respect to changes558

to the surface area. On the two boundary loops of the mesh we apply roller boundary conditions, which re-559

strict the movement of boundary vertices in the axial direction. The length of the tube is thus constrained to560

be 19.9 µm while the radius of the tube including the boundaries is free to shrink or expand.561

As the osmolarity increases from the reference condition (c̄/n = 0.022µm−3) (Movie 1), we obtain solutions562

such as the unduloid (or pearled) structure at c̄/n = 0.030µm−3 (Movie 2), and tube at c̄/n = 0.051µm−3,563

which follow the trends from both analytical (42) and experimental observations (19, 124, 128). As we in-564
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crease the surface tension from the reference condition (λ = 1× 10−7 nN · µm−1) to a tension-dominated565

regime (λ = 1× 10−4 nN · µm−1), we obtain the beads-on-a-string structure which minimizes the surface-to-566

volume ratio (Movie 3). The formation of beads-on-a-string is an interesting configuration which has been567

identified in biological membranes and other systems (123, 124). Note that our simulations revealed a sym-568

metric metastable state where two large beads forms at either end (Appendix A), connected by a thin tube,569

prior to adopting the asymmetric conformation shown in Fig. 4C. We believe that discretization artifacts such570

as mesh mutations acts as a perturbation to break the symmetry of the metastable intermediate and transition571

the membrane to a single bead configuration.572

These examples with uniform spontaneous curvature profile proves the ability of Mem3DG to reproduce573

the expected classical solutions for spherical and tubular membrane geometries. Note that no axisymmetric574

constraint is imposed in these simulations. Mem3DG solves the system in full three dimensions and the symmet-575

rical configurations is due to the problem physics. The ability to adapt changing and complex curvatures of the576

membrane using discrete mesh is achieved using mesh mutation and other manipulations within solver steps.577

For example, the pinched neck regions of the tubes are automatically decimated with finer triangles than other578

regions of the mesh. For a global closed membrane simulation such as in Fig. 4A, B, we do not remove any579

rigid body motions from the system; Since the forces from DDG are exact and we used the forward Euler580

integrator, no artificial rigid body motions are introduced throughout the simulation. These examples show581

that that the derivation of the discrete energy and forces along with the software implementation are accurate582

and proceed to test Mem3DG with more complex examples.583

3.2 Modeling endocytic budding mechanisms584

Figure 5: Budding dynamics by robust mechanisms of protein scaffolding and interfacial line tension constriction. A-C) Control group,

D-F) Bending-driven scaffolding mechanism, and G-I) Interfacial line tension assisted budding. A) Spontaneous curvature distribution,

H̄, on initially flat patch. D) Normal projection of the bending force at T = 15. G) Normal projection of the line tension force at T = 7.
B, E, H) Shape evolution through time-series snapshots of the Y-Z cross-sections of the membrane, corresponding to the vertical

dash lines in C, F, I) Trajectory plots of system energy and its competing components.

Our goal is to highlight the potential of Mem3DG and its associated framework for investigating mechanical585

phenomena relevant to cellular biology. Endocytosis is a cellular process in which cells uptake cargo from586

the extracellular environment; the transported material is engulfed by the cell membrane which then buds587
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Movie 4: Animated time series simulation using the reference parameters, shown by Fig. 5A-C. The color map indicates the local point-

wise spontaneous curvature and t represents the numerical time. Available on GitHub: https://github.com/RangamaniLabUCSD/
2020-Mem3DG-Applications/blob/master/examples/videos/compressed/patch_control_1.mp4

Movie 5: Animated time series simulation of the bending-rigidity-driven budding, shown by Fig. 5D-F. The color map indicates the

projection of the bending force onto the surface normal and t represents the numerical time. Available on GitHub: https://github.
com/RangamaniLabUCSD/2020-Mem3DG-Applications/blob/master/examples/videos/compressed/patch_Kb_1.mp4

off to form a vesicle (13). Endocytosis occurs through various mechanisms including the clathrin-mediated588

endocytosis (13, 130). It has been shown that clathrin aggregates on the plasma membrane helping to deform589

the membrane and form a spherical bud (9, 13, 59). However, the specific mechanisms of how membrane-590

clathrin interactions facilitate membrane curvature generation remains unresolved. While there is significant591

literature investigating the many proposed mechanisms, here we develop models to demonstrate the bud592

formation via spatially localized spontaneous curvature, combined with a line tension term arising from phase593

separations on the membrane(131).594

We model endocytic budding on a circular patch with radius 1 µm (a disc with one boundary loop). We595

assume that the patch is a local system which is coupled to a large vesicle (Section 2.5.1). A heterogeneous596

protein density, φ ∈ [0, 1], is applied to mimic the distribution of clathrin and other scaffolding proteins. Shown597

in Fig. 5A, the protein density is high (φ = 1) towards the center of the a geodesic disk with radius 0.5 µm)598

and decreases towards the boundaries (φ = 0). During simulation, the geodesic distance to the center of599

the patch is periodically computed using the heat method (132). Vertexwise φ is assigned based on stair600

step profile smoothed by the hyperbolic tangent function applied to the geodesic distance. Each experiment601

is initialized as a flat patch and the displacement of boundary vertices are restricted using a fixed boundary602

condition. Since the patch is viewed as a small piece within a larger closed vesicle reservoir, we assume that603

the surface tension is constant.604

A commonmodel to account for the preferential bending owing to protein-membrane interactions is through605

the spontaneous curvature; we assume H̄(φ) = H̄c φ, where H̄c = 6µm−1 is the spontaneous curvature606

imposed by the membrane protein coat. Proteins such as clathrin are known to form stiff scaffolds on the607

membrane. Similar to the spontaneous curvature, we can assume a linear relationship between bending608

rigidity and protein density, κ(φ) = κb + κc φ, where constant κb is the rigidity of the bare membrane, and κc609

is additional rigidity of the protein scaffold.610

Shown in Fig. 5A-C and Movie 4, is the control simulation where we set the contribution to the rigidity611

from protein to be the same as that of the raw membrane, κc = κb. Fig. 5A shows the initial flat configuration612

of the control experiment; the color bar shows the heterogeneous spontaneous curvature resulted from the613

prescribed protein density profile. In the control experiment, the bending force is resisted by the surface tension614

(Fig. 5C) until, at the final frame in Fig. 5B (t = 5), the membrane reaches the equilibrium configuration where615

the surface tension cancels with the bending force. In a secondmodel, we assume that the scaffolding proteins616

is much more rigid than the bare membrane, κc = 3κb. Fig. 5D-F and Movie 5 show the bud formation due to617

this increased protein scaffolding effect. The greater rigidity results in an increase of initial bending energy,618

which outcompetes the resistance from the surface tension (Fig. 5F). Fig. 5E shows the shape evolution from619

a flat patch to a successful bud with pinched neck. Fig. 5D shows the signed projection of the bending force620

onto the vertex normal,
∫
f bi =

∫
~f
b

i · ~ni, at T = 15.5 We can see an “effective line tension” driven by the621

heterogeneous spontaneous curvature which constricts the neck. This phenomenon is theoretically explored622

in detail by Alimohamadi et al. (58).623

For our third model, based on the prior observations that protein phase separation on surfaces can lead624

5Outward-pointing angle-weighted normal; the same applies to the interfacial line tension.

Movie 6: Animated time series simulation of budding driven by interfacial line tension, shown by Fig. 5G-I. The color map indicates the

signed projection of the line tension force onto the surface normal and t represents the numerical time. Available on GitHub: https:
//github.com/RangamaniLabUCSD/2020-Mem3DG-Applications/blob/master/examples/videos/compressed/patch_eta_1.mp4
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Movie 7: Animated time series simulation of protein aggregation on a dendritic spine (Fig. 6B). The color map shows the or-

der parameter for protein density, φ ∈ (0, 1), and t represents the numerical time. Available on GitHub: https://github.com/
RangamaniLabUCSD/2020-Mem3DG-Applications/blob/master/examples/videos/compressed/spine_1.mp4

to a line tension (131), we incorporate a Ginzburg-Landau interfacial energy into the system,625

Ed =
1

2

∑
fijk

η

∫
‖∇~θ

φ‖2ijk → 1

2

∫
M
η‖∇~θ

φ‖2 dA. (28)

where η, referred to as the Dirichlet energy constant, governs the strength of the energy penalty, and ∇~θ
φ is626

the discrete surface gradient of protein density profile. The term is similar to previousmodelling efforts by Elliott627

and Stinner (78) and Ma and Klug (77) using FEM; because we use the protein phase separation as a prior,628

we exclude the double-well term which models the thermodynamics of phase-separation, and incorporate only629

the Dirichlet energy component that penalizes the heterogeneity of membrane composition.630

Defined as the slope of the linearly interpolation of φ on faces of the mesh, fijk, the discrete surface

gradient of the protein density is,

∇~θ
φi =

1

2Aijk

∑
ei∈N(fijk)

φi~e
⊥
i , (29)

where following illustration in Fig. 1C, ~ei is the vector aligned with the halfedge ei, with its length of li, and (·)⊥631

represents a 90° counterclockwise rotation in the plane of fijk. The resulting line tension force
∫
~f
d
is then the632

shape derivative of the Dirichlet energy, ∇~rEd, which acts to minimize the region with sharp heterogeneity.633

The detailed derivation of the shape derivative is elaborated in Appendix C.3, where we follow the formulaic634

approach by taking geometric derivatives of basic mesh primitives shown in Eq. (49). Fig. 5G-I and Movie 6635

show the trajectory where we used control bending rigidity, κc = κb, and the additional interfacial line tension,636

η = 5× 10−4 µm · nN. We find that the interfacial line tension, jointly with the bending force, lowers the system637

energy and help the formation of a spherical bud (Fig. 5I, H). Fig. 5G shows the snapshot (t = 7) with the638

color map representing the signed normal projection of the interfacial line tension that acts to constrict the639

neck. These examples of endocytic bud formation help to illustrate the utility of Mem3DG and the accompanying640

theoretical framework. Since physical parameters are assigned on a per-vertex basis, it is straightforward641

to incorporate heterogeneity such as the nonuniform bending rigidity and spontaneous curvature. In smooth642

theory and its derived discrete mesh models, when membrane is heterogeneous, it is required to decompose643

the force separately in normal and tangential direction (40, 65); In contrast, the general derivation of the dis-644

crete bending force following the formalism of DDG permits modeling membrane with heterogeneous material645

properties without any modification to its formulation (Section 2.3.3). The introduction of Dirichlet energy and646

line tension force serves to highlight the relative ease to extend the modelled physics.647

3.3 Protein aggregation on the realistic mesh of a dendritic spine648

Table 3: Parameters used in Section 3.3

Parameters Values

φ0 0.1

κc 0nN·µm
H̄c 10µm−1

B 3nN−1·µm−1·s−1

η 0.01 µm·nN
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Figure 6: Protein aggregation on a realistic dendritic spine geometry. A) Mesh of the dendritic spine and its boundary elements. B)

Trajectory of protein evolution and components of system energy. C) Mean curvature of the geometry. The normal component of

D) the bending force at t = 0, E) the line tension force produced by the equilibrium protein distribution, and F) the difference in the

bending force profile produced by final protein distribution as opposed to the initial distribution.

While the prior examples have focused on the mechanical response of the membrane given a bound649

protein distribution, we can also model the inverse problem. Given the membrane shape, how do curvature-650

sensing proteins diffuse in the plane of the membrane and distribute over the domain? And how does the651

resultant protein distribution influence the stresses of the system? To model the protein dynamics, we use652

three terms corresponding to protein binding, curvature sensitivity, and lateral diffusion.653

To model the binding of proteins to the membrane, we assume that the energy of adsorption, ε, is constant654

and uniform across the surface such that the discrete adsorption energy is,655

Ea = ε
∑
i

∫
φi, (30)

where φi is an order parameter representing the area density of protein at each vertex. Taking the derivative656

with respect to φ, referred to as the chemical derivative,657

µai = −∇φEa = −
∫
ε, (31)

we obtain the adsorption component of the chemical potential. To account for protein curvature-sensitivity,658

we find the chemical potential of the bending energy,659

µbi = −∇φEb =

∫
[2κi(Hi − H̄i)∇φH̄i − (Hi − H̄i)

2∇φκi], (32)

where we assume that ∇φκi = κc, and ∇φH̄i = H̄c where κc and H̄c are constant parameters defined in660

Section 3.2. The first term of Eq. (32) is the shape mismatch penalty; considering the binding of a rigid protein661

which induces a significant spontaneous curvature change, if the curvature of membrane is far from this new662

spontaneous curvature, then the shape mismatch between the membrane and proteins will prevent binding.663

Alternatively, if the protein is more flexible, a shape mismatch results in a small energetic penalty. The second664

term of Eq. (32) endows the protein with curvature sensitive binding.665

23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 31, 2021. ; https://doi.org/10.1101/2021.10.30.466618doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.30.466618


The in-plane diffusion of the protein is accounted for by the chemical derivative of the smoothing Dirichlet666

energy, Ed,667

µdi = −∇φEd = −
∫
η∆sφi, (33)

where η is the same Dirichlet energy constant introduced in Eq. (28). The total chemical potential captures668

the bending, adsorption and diffusion components. A mobility rate constant, B, determines the time scale of669

the chemical response,670

φ̇ = Bµ = B(µb + µa + µd). (34)

We investigate the influence of curvature dependent binding to a realistic dendritic spine geometry which671

was reconstructed from electron micrographs and curated using GAMer 2 (Fig. 6A) (32). The mean curvature672

of the spine geometry is shown Fig. 6C. We isolate the effect of curvature-dependent binding by assuming673

that the shape of the spine is fixed and impose Dirichlet boundary conditions at the base on the spine to fix674

the protein concentration, φ = 0.1 (Fig. 6A).675

Starting from a homogeneous protein distribution, φ0 = 0.1, Fig. 6B and Movie 7 show the evolution of676

the protein distribution and a trajectory of the system energy. Note that for simplicity, we have turned off the677

adsorption energy term since it only shifts the basal protein-membrane interactions which will also be set by the678

Dirichlet boundary condition. Mem3DG constrains the range of φ ∈ (0, 1) using the interior point method (114).679

Due to the curvature sensitivity of the protein, illustrated by the snapshots (Fig. 6B, T = 350) representing the680

final protein distribution, the protein aggregates towards regions of high curvature (e.g., on the spine head).681

Although the proteins can reduce the bending energy by modulating the local bending modulus and spon-682

taneous curvature, the protein distribution at equilibrium does not cancel out the bending energy. We expect683

that the Dirichlet energy term, which limits φ to be smooth across the geometry, restricts the protein from further684

aggregating to the extent required to cancel out the bending energy. The components of forces on the initial685

and final configurations of the spine are compared in Fig. 6D-F. The initial homogeneous protein distribution686

has no line tension forces and a bending force shown in Fig. 6D. After the protein distribution reaches steady687

state, line tension appears in response to membrane heterogeneity Fig. 6E. We hypothesize that, similar to688

Section 3.2, the line tension constricts the neck of the spine and helps to support the cup-like structures in the689

spine head. While in most regions the distribution of proteins reduces the force, several regions experience690

increased stress Fig. 6F. Note that the magnitude of the forces generated by proteins in this model are orders691

of magnitude smaller than the initial bending force. Thus, this example demonstrates that Mem3DG can be used692

on meshes imported from realistic geometries of cellular substructures.693

3.4 Membrane dynamics with full mechanochemical feedback694

Table 4: Parameters used in Section 3.4 for models with full mechanochemical feedback

Parameters Values

φ0 0.1

κc 0nN·µm
H̄c 10µm−1

KV 0.5 nN·µm
KA 1nN·µm−1

B 3nN−1·µm−1·s−1

ε −1× 10−3 nN·µm
η 0.1 µm·nN
V̄ 2.91, 3.95, 4.99 µm3

24

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 31, 2021. ; https://doi.org/10.1101/2021.10.30.466618doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.30.466618


Figure 7: Modeling budding from a vesicle driven by the full mechanochemical feedback of membrane–protein interactions. A)

Validation of the exactness of the discrete forcing with respect to the discrete energy. The terms correspond to forces from bending

fb, tension-area fs, pressure-volume fp, Dirichlet fd, and protein binding fa. µd, µb, and µa are the chemical potential of diffusion,

bending, and binding respectively. B) The time trajectory of budding dynamics in hypertonic, isotonic, and hypotonic osmotic condition.

C) The final snapshot of the system configuration under hypertonic, isotonic, hypotonic condition. D) Similar geometries to those

shown in C) have been observed in experiments by Saleem et al. (59).

Movie 8: Animated time series simulation of the hypertonic case shown in Fig. 7B-C. The color map shows the order parameter

for protein density, φ ∈ (0, 1), and t represents the numerical time. Available on GitHub: https://github.com/RangamaniLabUCSD/
2020-Mem3DG-Applications/blob/master/examples/videos/compressed/bud_hyper_1.mp4

Movie 9: Animated time series simulation of the isotonic case shown in Fig. 7B-C. The color map shows the order parameter for

protein density, φ ∈ (0, 1), and t represents the numerical time. Available on GitHub: https://github.com/RangamaniLabUCSD/
2020-Mem3DG-Applications/blob/master/examples/videos/compressed/bud_iso_1.mp4
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In this section, we will demonstrate the use of Mem3DG to model the complete mechanochemical feedback of695

a protein-membrane system. For the following simulations, not only can proteins bind in a curvature-dependent696

manner, the membrane can also deform leading to a feedback loop. We have introduced all of the force terms697

in previous sections except the shape derivative of the adsorption energy,698 ∫
~f
a

i = −∇~rEa = −2εφi

∫
~H i, (35)

which accounts for the change in the area of protein coverage (i.e., expanded coverage if ε < 0).699

Revisiting the claim that all discrete forcing is exact with respect to the discrete energy, we validate by700

examining the convergence of the forcing terms with respect to the size of perturbation to the system con-701

figuration, ε (Fig. 7A). This is based on the leading order expansion done in Eq. (24), which concludes that702

the forcing terms are exact if their rate of convergence is at least 2nd order. Shown in Fig. 7A, this is true for703

all forcing terms; note that since the adsorption energy, Ea, is a linear function with respect to φ, µa can be704

determined to the machine precision for all perturbation sizes. A meaningful discrete-smooth comparison of705

all terms in the energy and forcing similar to Section 2.5.4 requires the analytical solutions of the bending force706

and interfacial line tension arising from the spatially heterogeneous membrane properties, which to the best707

of our knowledge, are not available. In Section 3.2, we introduced a heterogeneous membrane composition708

as a static property. By prescribing the protein density profile, we are able to get hints about how to form709

membrane buds from a patch. Here we lift this assumption and simulate the dynamics of osmotic pressure-710

driven budding from a vesicle. The dynamics couples the protein-membrane mechanochemical feedback and711

includes protein binding and diffusion introduced in Section 3.3. The expressions of discrete free energy and712

forcings do not change but we allow the membrane configuration and protein density to interact and evolve713

simultaneously.714

We start each simulation from a sphere with a uniform protein concentration, ϕ = ϕ0 = 0.1. We consider715

the evolution of the system in different osmotic conditions: hyper-, iso-, and hypotonic. Additional parameters716

for these simulations are given in Table 4. Fig. 7B shows plots of the mechanical, ‖~f‖2L2
, and chemical re-717

sponse, ‖µ‖2L2
, along with the protein density, (φmax + φmin)/2, over the trajectory for each osmotic condition.718

Note that under hypo- and isotonic conditions, the system reaches (quasi) steady state where both the shape719

and protein distribution stabilize, while in hypertonic solution, the system continues to experience strong me-720

chanical force and protein mobility, which we expect to drive further morphological changes of the membrane721

beyond our simulation stopping point. Fig. 7C shows the final snapshot of each simulation across the os-722

motic conditions with the protein density represented by the color map. In hypertonic conditions, the osmotic723

pressure provides sufficient perturbations to membrane morphology, which initializes the positive feedback724

loop between membrane curvature generation and protein aggregation; This mechanochemical feedback725

jointly promotes the outward bending of the membrane and results in the bud formation (Fig. 7C–hyper and726

Movie 8). Under isotonic and hypotonic conditions, the osmolarity does not permit the large change in volume727

required to form spherical buds with small neck radius. In hypotonic condition, the pressure-tension balance728

provides substantial stability to the initial spherical configuration. In comparison, in the isotonic condition, the729

comparable competition between the chemical and mechanical response leads to a patterned protein distri-730

bution and an undulating morphology (Fig. 7C–hypo and Movie 9). This example illustrates the possibility to731

utilize Mem3DG to model a full mechanochemical feedback between membrane and protein. Although we do not732

intend to replicate the exact experimental conditions and assumptions, the geometries obtained from these733

simulations resemble the shapes obtained by Saleem et al. (59) who investigated budding from spherical734

vesicles under differing osmotic conditions (Fig. 7D) (59).735

4 Summary736

In this work, we introduce a new perspective for constructing a 3D membrane mechanics model on discrete737

meshes. The goal of our approach is to close the gap between existing discrete mesh based models(60,738

84–94, 97, 98) and the smooth theory. Specifically, we seek to advance the discussion behind the choice of739

algorithmic approaches for computing geometric values required for the discrete energy and force (65, 87,740
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95). We start by writing a discrete energy, Eq. (3), mirrorring the spontaneous curvature model. Then using741

the perspective of DDG, we show that there is a formulaic approach for deriving the corresponding discrete742

force terms based on fundamental geometric vectors. By identifying geometric invariants and grouping terms,743

the resulting discrete forces have exact correspondence to the traditional smooth theory. This helps us to744

facilitate the comparison between smooth and discrete contexts enabling new geometric perspectives and745

understanding of numerical accuracy. Moreover, the discrete force terms are functions of readily accessible746

geometric primitives, and the formulation is amenable for efficient implementation and extension.747

We have produced a reference software implementation called Mem3DG. Using Mem3DG, we validate our the-748

ory by reproducing the solutions to the classical shape transformations of a spherical and tubular vesicle. We749

further demonstrate the derivation and incorporation of additional physics terms to model protein-membrane750

interactions. Following our formulaic approach using DDG, we derived the discrete analog of various physics751

such as the interfacial line tension, surface-bulk adsorption, protein lateral diffusion, and curvature-dependent752

protein aggregation. To exemplify all the introduced physics, the full mechanochemical coupling between the753

membrane shape and protein density evolution results in protein localization, pattern formation, and budding.754

These examples serve to highlight the extensibility of the framework, which does not require the introduction755

of coordinates and advanced tensor calculus commonly needed to solve problems on arbitrary manifolds.756

The software implementation Mem3DG was designed to facilitate coordination between theoretical modeling757

and wet-experiments; and we hope to support the modeling of scenes with well resolved protein-membrane758

interactions such as in the electron tomograms (133). We expect that as the advances in biophysical modeling759

and membrane ultrastructure imaging progresses, Mem3DG will emerge as a useful tool to test new hypothesis760

and understand cellular mechanobiology.761
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Appendices768

A Supplemental figures769

Figure A.1: A symmetric metastable state with two beads instead of single larger bead is observed, prior to collapsing to the solution

shown in Fig. 4C – high tension

Figure A.2: Steiner’s formula in continuous and discrete geometry: chain of smooth and discrete shape derivatives of integrated

geometric measurements.

B Rationale for integrated measures in discrete contexts770

The rationale for why an integrated measurement in discrete contexts is the natural counterpart to pointwise771

measures in smooth contexts can be demonstrated by considering the curvature of a discrete polygonal curve.772

If we attempt to define the curvature, C, of the discrete polygonal curve in a naïve pointwise manner, following773

the procedure in smooth settings, we will find zero curvature along edges and infinite curvature (owing to774
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the discontinuity) on vertices. Thus the traditional view of curvature from smooth manifolds reveals no useful775

information about the geometry of the discrete curve. We must find another geometric relationships which can776

translate between smooth and discrete contexts to maintain the geometric connection.777

One candidate relationship from differential geometry for smooth objects, is the equivalence of the inte-778

grated curvature and the turning angle ψ (i.e., the total angle by which the tangent vector of the curve turns779

over some domain l). Returning to the discrete context, we can seek to preserve this relationship between780

the integrated curvature and turning angle by finding a compatible definition. Since the discrete turning angle,781

ψi, between two connected edges of the discrete polygonal curve is well-defined, we can set the “discrete”782

curvature,
∫
C, of a vertex, vi, to be783 (∫

C

)
i

≡ ψi. (36)

We note that the notation for the discrete curvature,
(∫
C
)
i
is used only in this illustrative example; in the784

remainder of the text, we will omit the parenthesis and use the simplified notation,
∫
Ci. To make sense of the785

integral over a discrete object, additional care must be taken to represent the curvature from a distributional786

sense (99). This is related to traditional approximation methods, such as the point allocation method, which787

bridges a smooth and discrete problem by convoluting the smooth problem with impulse functions (e.g., the788

Dirac delta function) at a finite number of locations (115).789

As we have shown, integrated geometric measurements enable us to preserve geometric relationships790

(from smooth contexts) for discrete objects, and are thus preferred over pointwise definitions. Nevertheless,791

we often require a pointwise discrete measurement for use in algorithms and visualization. An integrated792

measurement can be converted to a meaningful pointwise discrete measurement by normalizing the value793

over a domain. For the discrete polygonal curve, the domain can be the dual vertex length, li (i.e., the discrete794

analog of l). li is given by half of the sum lengths of the two incident edges. A pointwise curvature on the795

vertex vi is then given by,796

Ci =

∫
Ci/li = ψi/li. (37)

Another rationale for using an integrated value for a discrete geometric measurement, is that we can arrive797

at the same definition from multiple perspectives. Returning to the definition of the curvature of a polygonal798

curve, without introducing the turning angle, we can arrive at the same result by adopting the Steiner view799

(99, 134)6. In the Steiner view, we replace the sharp vertices with a smooth circular arc with radius ε such that800

the discrete geometry is made smooth such that the curvature is well-defined everywhere. As the only curved801

section, every circular arc has a discrete (integrated) curvature,802 ∫
C =

∫
arc

C ds = Carclarc =
1

ε
(εψ) = ψ, (38)

where Carc = 1/ε is the curvature of the circular arc, and larc = εψ is the arc length. We see that in the Steiner803

view, the integrated curvature is still equivalent to the turning angle. Following similar logic, other discrete804

definitions are described in Section 2.2 and the DDG literature (99, 100).805

C Discrete shape and chemical derivatives of discrete energy806

C.1 Halfedge on a triangulated mesh807

A scalar measure on an edge is symmetric with respect to index permutation; For example, the scalar mean808

curvature (Eq. (8)),809 ∫
Hij =

∫
Hji =

lijϕij

2
. (39)

6We will use the Steiner view to define the discrete curvature of a surface in Section 2.2
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Figure C.1: Schematics for halfedge on a triangulated mesh.

However, as we will show in detail in the following sections, this symmetry does not apply to vector measures,810

which compose the discrete shape derivative of the energy. For example, the corresponding mean curvature811

vector,812 ∫
~H ij 6=

∫
~Hji. (40)

To highlight the directionality of vector quantities and disambiguate the notation, here we review the concept813

of halfedge on a triangulated mesh. Given any non-boundary edge, eij , on a manifold mesh, there exits814

two associated halfedges, eij and eji (Fig. C.1). This convention leads to an oriented (counterclockwise)815

halfedge loop on each triangle face and subsequently a well-defined 1) 90° counterclockwise rotation of the816

halfedge in the plane of the face (e.g., elj → e⊥lj), and 2) face normal (outward) based on the right hand817

rule Fig. C.1. Beside being able to differentiate vector/scalar measures, the concept of halfedge is widely818

adopted data structure for managing connected graph, or meshes, for which we refer the reader to the broader819

literature (109, 135).820

C.2 Deriving the bending force as the shape derivative of bending energy821

The geometric derivatives of mesh primitives, including edge length, l, dihedral angle, ϕ, vertex dual area, A,
are given as

∇~ri lij =
~eji
lij
, (41a)

∇~riϕij =
1

lij
(cot∠ijk~nijk + cot∠ijl~nilj), (41b)

∇~riϕjk = − 1

ljk
(cot∠ijk + cot∠ikj)~nijk = −

ljk
2Aijk

~nijk, (41c)

∇~riAi =
1

3

∑
fijk∈N(vi)

∇~riAijk =
1

6

∑
eij∈N(vi)

(cot∠ikj + cot∠ilj)~eji, (41d)

∇~riAj =
1

3

∑
fijk∈N(eij)

∇~riAijk =
1

6
(~e⊥jk +~e

⊥
lj), (41e)

where ~nijk is the unit normal vector of the face fijk, ~eji is the vector aligned with the halfedge, eji, with its822

length of lij . The indices and nomenclature in Eq. (41b), Eq. (41c) and Eq. (41e) are illustrated in the diamond823

neighborhood (Fig. C.1) and those of Eq. (41d) are illustrated in the fan neighborhood (Fig. 1A).824
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To simplify the expression and provide more structure for the subsequent discrete variation, it is convenient

to define some fundamental curvature vectors,∫
2 ~H ij =

1

2
(∇~riAijk +∇~riAijl) =

1

4
(~e⊥jk +~e

⊥
lj) (42a)∫

~Kij =
1

2
ϕij∇~ri lij (42b)∫

~Sij,1 =
1

2
lij∇~riϕij =

1

2
(cot∠ijk~nijk + cot∠ijl~nilj) (42c)∫

~Sij,2 =
1

2

(
ljk∇~riϕjk + ljl∇~riϕjl + lji∇~riϕji

)
= −1

2
(cot∠jki~nijk + cot∠ilj~nilj), (42d)

where the mean curvature vector,
∫
~H, results from area gradient; Gaussian curvature vector,

∫
~K, and the825

Schlafli vector,
∫
~S, consists of the two components of the variation of total mean curvature, 1

2

∑
eij
lijϕij . The826

asymmetry of vector quantities in Eq. (42) under index permutation (Eq. (40)) arises from the vertex we take827

the shape derivative with respect to (i.e., vi, or vj); because of the asymmetry, we can associate each Schlafli828

vector with a unique halfedge. Similar to the translation from edge values to vertex value (Eq. (9)), we can829

also translate the halfedge value to vertex value by summing all halfedge values over the fan neighborhood,830 ∫
(·)i =

∑
eij∈N(vi)

∫
(·)ij . (43)

Note that unlike translating edge values, there is no prefactor 1/2 for translating halfedge values because

each halfedge is uniquely associated with one vertex. The translated curvature vectors on a vertex cane

compared against vertexwise smooth analytical solutions as benchmarked in Section 2.5.4. Now we have

all of the elements needed to derive the derivatives of the discrete Willmore bending energy. Because the

discrete energy is locally supported by the vertex, vi, and its 1-ring neighbors, vj ∈ N(vi), we can separate

them into the “diagonal” term, and “off-diagonal” term,∫
~f
b

i = −∇~riEb = −∇~ri

(∑
i

κi(Hi(~r)− H̄i)
2Ai(~r)

)
= −∇~ri

[
κi(Hi − H̄i)

2Ai

]︸ ︷︷ ︸
diagonal

−
∑

vj∈N(vi)

∇~ri
[
κj(Hj − H̄j)

2Aj

]
︸ ︷︷ ︸

off-diagonal

. (44)

Using the derivatives of geometric primitives in Eq. (41), we can assemble the derivatives of local pointwise

mean curvature for both the “diagonal” term,

∇~riHi =
1

4

∑
eij∈N(vi)

∇~ri
lijϕij

Ai

=
1

4Ai

∑
eij∈N(vi)

(
ϕij∇~ri lij + lij∇~riϕij

)
− Hi

Ai
∇~riAi

=
1

Ai

∑
eij∈N(vi)

1

2

(∫
~Kij +

∫
~Sij,1

)
− 2

3
Hi

∫
~H ij ,

(45)

and for the “off-diagonal” term,

∇~riHj =
1

4

∑
ejk∈N(vj)

∇~ri
ljkϕjk

Aj

=
1

4Aj

(
ljk∇~riϕjk + ljl∇~riϕjl + ϕji∇~ri lji + lji∇~riϕji

)
− Hj

Aj
∇~riAj

=
1

2Aj

(∫
~Kij +

∫
~Sij,2

)
− 4

3
Hj

∫
~H ij .

(46)
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When written in the halfedge form, factoring out the fundamental curvature vectors introduced in Eq. (42), we

obtain the discrete bending force as∫
~f
b

i =
∑

eij∈N(vi)

−
[
κi(Hi − H̄i) + κj(Hj − H̄j)

] ∫
~Kij

+

[
1

3
κi(Hi − H̄i)(Hi + H̄i) +

2

3
κj(Hj − H̄j)(Hj + H̄j)

] ∫
2 ~H ij

−
[
κi(Hi − H̄i)

∫
~Sij,1 + κj(Hj − H̄j)

∫
~Sij,2

]
.

(47)

C.3 Deriving the line tension and diffusion as the shape and chemical derivatives of the831

Dirichlet energy832

Since the discrete Dirichlet energy is constructed on the triangular face and therefore does not involve any

neighborhood, we simplify the notation by adopting the convention illustrated in Fig. 1C. The gradient of protein

density is given by the slope of the fitted plane over the vertexwise protein density, which is piecewise constant

for each face,

∇~θ
φi =

1

2Aijk

∑
~ek∈N(fijk)

φk~e
⊥
k , (48)

where we adopt the counterclockwise convention (e.g. ~ek = ~eji) and (·)⊥ represents a 90° counterclockwise833

rotation in plane of the face, fijk.834

C.3.1 Line tension from the shape derivative of the Dirichlet energy835

Substituting the definition of the discrete gradient into the Dirichlet energy (Eq. (28)), we expand the energy in

terms of mesh primitives, whose geometric derivatives are given in Eq. (41). Additional formulae are needed

to compute the geometric derivatives of the outer angles of the triangle (Fig. 1C)

∇~ri∠k =
~n× ~ej
‖~ej‖2

(49a)

∇~ri∠j =
~n× ~ek
‖~ek‖2

(49b)

∇~ri∠i = −(∇~ri∠k +∇~ri∠j), (49c)

which arise from the calculation of the L2 norm of the gradients as the result of vector inner product. When

combined, the geometric derivatives for the quadratic gradient term is

∇~ri
〈∑

φk~e
⊥
k ,
∑

φk~e
⊥
k

〉
=

+ φkφk~ek − 2φjφj~ej

+ 2φjφi‖~ei‖
(
−êj cos∠k + ‖~ej‖∇~ri(cos∠k)

)
+ 2φiφk‖~ei‖

(
êk cos∠j + ‖~ek‖∇~ri(cos∠j)

)
+ 2φjφk

(
−êj‖~ek‖ cos∠i + ‖~ej‖êk cos∠i + ‖~ej‖‖~ek‖∇~ri(cos∠i)

)
(50)

Then we can get the final shape derivative by combining the area gradient, or the mean curvature vector836

(Eq. (42)).837
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C.3.2 Surface diffusion from the chemical derivative of the Dirichlet energy838

In the case where we are evolving the protein distribution, we need the chemical derivative of the Dirichlet839

energy. Before we look into the discrete case, we can first tackle the problem in the smoooth setting, which840

is a classic textbook example. Using the Green’s first identity, or integration by parts on a 2-manifold,841 ∫
M
(ψ∆sϕ+∇~θ

ψ · ∇~θ
ϕ)dA =

∮
∂M

ψ∇~θ
ϕ · ~ndS, (51)

and ignoring the boundary term at the right hand side, we arrive at an alternative expression for the Dirichlet842

energy,843

Ed =
1

2

∫
M
η‖∇~θ

φ‖2 dA = −1

2

∫
M
ηφ∆sφ dA. (52)

The same procedure can be followed in the discrete case. The discrete Dirichlet energy (Eq. (28)) can be844

written in matrix form,845

Ed =
1

2
ηφ>G̃

>
T̃ G̃φ (53)

where G̃ is the gradient tensor which maps scalar value on vertices to vector values on faces, and T̃ =846

diag(Aface) is the |f | × |f | diagonal matrix with entries corresponding to the area of each mesh triangle face.847

Through integration by parts on a discrete geometry, the discrete Dirichlet energy can be equivalently ex-848

pressed as849

Ed =
1

2
ηφ>L̃φ, (54)

which is a quadratic form with respect to the cotangent Laplacian matrix, L̃ (99, 100). The chemical derivative850

of the Dirichlet energy, or the diffusion potential, is851

µd = −∇φEd = −η
∫

∆sφ = −ηL̃φ. (55)

In other words, the chemical gradient flow of the Dirichlet energy is the diffusion equation. Note that L̃ =852

G̃
>
T̃ G̃, G̃

>
is referred to as the discrete divergence operator that maps face vectors to scalars on ver-853

tices (135).854

D Discrete-smooth comparison on spheroid855

The smooth-discrete comparison is done on the spheroid with the parametrization,

(x, y, z) = (a cosβ cos θ, a cosβ sin θ, c sinβ) , (56)

where a = 1, b = 0.5, β is the parametric latitude and θ is the azimuth coordinate. All geometric measurements856

of the smooth geometry used for benchmarking were obtained using the symbolic algbra software Sympy. The857

corresponding discrete measurements are computed using Mem3DG, whose input spheroid mesh is mapped858

from a subdivided icosphere. The subsequent error norms for local measurements are computed based on859

definitions used in Section 2.4.860

E Mesh regularization and mesh mutation861

E.1 Mesh mutation862

Mesh mutation and refinement in combination with vertex shifting are the default methods to ensure that863

the mesh remains well-conditioned and well-resolved during simulation. Mesh mutations include edge flip-864

ping, collapsing, and splitting, changes the connectivity of the mesh. Vertex shifting moves the vertex to the865
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Figure E.1: Pointwise magnitude comparison of continuous and discrete measurements: A) scalar mean curvature, B) scalar Gaus-

sian curvature, C) (scalar) bi-Laplacian term ∇H based on cotan formula, D) vector mean curvature, E) vector Gaussian curvature,

and F) (vector) bi-Laplacian term based on Schlafli vector. Note that the result of the cotangent Laplacian approach in C) produces

a scalar result while our approach using the Schlafli vector in F) is a vector result, thus their direct comparison is not meaningful.

Figure E.2: Pointwise directional comparison of continuous and discrete measurements: discrete vertex normal based on A) volume

gradient, ∇~rV , mean curvature vector, ~H, and Gaussian curvature vector, ~K, and B) Schlafli vector, H~S

34

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 31, 2021. ; https://doi.org/10.1101/2021.10.30.466618doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.30.466618


barycenter of the fan neighborhood without changing the mesh topology (Fig. 1A). Mem3DG has a suite of pos-866

sible criteria to initiate mesh mutation. Here we list the most important ones: 1) flip the edge of non-Delaunay867

diamond neighborhood (Fig. 1B), 2) collapse the shortest edge in a skinny triangle face, 3) split the edge with868

high (geodesic) curvature. For additional details please refer to the software documentation.869

For practical use, although mesh mutation introduces additional complexity in data writeout and computa-870

tional costs associated with varying (usually growing) mesh size, it nevertheless provides a robust algorithm871

to ensure good mesh quality needed for valid discrete-smooth comparisons (Section 2.5.4) in static frames.872

For dynamical simulation, mesh mutations introduce an arbitrary interpolation of state variables, such as the873

position, velocity and protein density. Rigorous study on how to interpolate these quantities to ensure the874

conservation of energy, momentum, and mass, remains to be done. Similarly, the interpolation used in this875

study introduce discontinuities of curvature and can create jumps in forces; This is particularly severe for terms876

with higher order derivatives such as the biharmonic term in bending force (Eq. (22)).877

E.2 Mesh regularization878

Mesh regularization can be used when mesh mutations are not desired. The regularization force consists of

three weakly enforced constraining forces, including the edge (length), ~f
e
, face (area), ~f

f
, and conformality

(angle), ~f
c
, regularization forces,

~f
e

i = −Ke

∑
eij∈N(vi)

(lij − l̄ij)

l̄ij
∇~ri lij , (57a)

~f
f

i = −Kf

∑
fijk∈N(vi)

(Aijk − Āijk)

Āijk
∇~riAijk, (57b)

~f
c

i = −Kc

∑
eij∈N(vi)

(λij − λ̄ij)

λ̄ij
∇~riλij , (57c)

which are in the order of strongest to weakest. The length-cross-ratio, λij = lilljk/lkiljl is a measure of879

discrete conformality on triangulated mesh, where the indices is illustrated in Fig. 1A-B (136). Regularization880

forces require the input of a reference value for geometric measures, l̄, Ā, and λ̄, which can be derived from881

a well-conditioned reference mesh (usually the initial input mesh for the simulation). The intensity of each882

regularization force is controlled with parameters Ke, Kf , and Kc.883

For practical use, regularization constraints should be minimally imposed because of their impact on sys-884

tem dynamics. In the worst case regularization constraints can prevent the optimizer from reaching an energy885

minima. Thus a good practice is to start a simulation in with no, conformality, face area, and finally edge length886

regularization, and subsequently raise the intensity/type of constraints based on the mesh quality desired. We887

do not recommend imposing constraints stronger than the face areal constraints, ~f
f
.888
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