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Abstract 10 

Summary: Accurately identifying cell-types is a critical step in single-cell sequencing analyses. 11 

Here, we present marker-based automatic cell-type annotation (MACA), a new tool for 12 

annotating single-cell transcriptomics datasets. We developed MACA by testing 4 cell-type 13 

scoring methods with 2 public cell-marker databases as reference in 6 single-cell studies. MACA 14 

compares favorably to 4 existing marker-based cell-type annotation methods in terms of 15 

accuracy and speed. We show that MACA can annotate a large single-nuclei RNA-seq study in 16 

minutes on human hearts with ~290k cells. MACA scales easily to large datasets and can broadly 17 

help experts to annotate cell types in single-cell transcriptomics datasets, and we envision 18 

MACA provides a new opportunity for integration and standardization of cell-type annotation 19 

across multiple datasets. 20 

Availability and implementation: MACA is written in python and released under GNU 21 

General Public License v3.0. The source code is available at https://github.com/ImXman/MACA. 22 
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Contact: Yang Xu (yxu71@vols.utk.edu), Sikander Hayat (hayat221@gmail.com) 23 

 24 

1 Introduction 25 

Identifying constituent cell-types in a single-cell dataset is fundamental to understand the 26 

underlying biology of the system. Many computational methods have been proposed to 27 

automatically label cells, and a benchmark study shows that a standard Support Vector Machine 28 

(SVM) classifier outperforms most other sophisticated supervised methods and can achieve high 29 

accuracy in cell-type assignment (Abdelaal, et al., 2019). However, due to lack of ground-truth 30 

in most single cell studies, supervised classification approaches are not feasible and may not be 31 

generalized for new single cell studies with different experimental designs. Therefore, 32 

unsupervised clustering approaches are still the predominant options for single-cell data analysis 33 

(Lähnemann, et al., 2020). Unsupervised approaches usually require human assistance in both 34 

defining clustering resolution and manual annotation of cell-types. This results in cell-type 35 

annotation being time-consuming and less reproducible due to human inference. As more single 36 

cell studies are available, summarizing markers identified in these studies to construct a marker 37 

database becomes an alternative approach for automatic cell-type annotation. For example, 38 

PanglaoDB (Franzén, et al., 2019) and CellMarker (Zhang, et al., 2019) are two marker 39 

databases that summarize markers found in numerous single cell studies and cover a broad range 40 

of major cell-types in human and mouse. Also, NeuroExpresso (Mancarci, et al., 2017) is a 41 

specialized database for brain cell-types. Taking advantage of those databases for robust cell-42 

type identification, we present MACA, a marker-based automatic cell-type annotation method 43 

and show how MACA automatically annotates cell-types with high speed and accuracy. We 44 

envision MACA as an aid for cell-type annotation to be used by both experts and non-experts. 45 
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 46 

2 MACA implementation 47 

MACA takes as input expression profiles measured by single cell or nuclei RNA-seq 48 

experiments. MACA calculates two cell-type labels for each cell based on 1) an individual cell 49 

expression profile and 2) a collective clustering profile. From these, a final cell-type label is 50 

generated according to a normalized confusion matrix (Figure 1a). MACA first computes cell-51 

type scores for each cell, using a scoring method based on a marker database or user-defined 52 

marker lists. The scoring method uses the raw gene count to calculate a cell-type score for each 53 

cell, according to gene markers of this cell-type. This results in converting a gene expression 54 

matrix to cell-type score matrix. Then, MACA generates a label (Label 1) for each cell by 55 

identifying the cell-type associated with the highest score. Independently, using the matrix of 56 

cell-type scores as input, the Louvain community detection algorithm (Blondel, et al., 2008) is 57 

applied to generate Label 2, which is a clustering label to which a cell belongs. Since the number 58 

of cell types is usually unknown, MACA tries clustering at greater resolution to over-cluster cells 59 

into many small but homogeneous groups. 60 

Both Label 1 and Label 2 serve complimentary functions. Label 1 is assigned on a per-cell basis 61 

which may result in incorrectly annotating many cells due to noisiness in the maximum cell-type 62 

score for each cell. This may occur when the putative cell-type feature is covered up by ambient 63 

RNAs from dominant cell-types (Pliner, et al., 2019).  On the other hand, Label 2 is likely to 64 

suffer from a common problem in single cell RNA-seq clustering analysis, where cells may share 65 

the same dominant features, even though they have been clustered into different groups because 66 

of subtle differences. Additionally, results from a clustering analysis can often vary since 67 
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clustering is non-deterministic. Due to its dependence on user’s decisions, mostly the choices of 68 

clustering resolution and neighborhood size. 69 

To address these issues, MACA combines Label 1 and Label 2 to get a comprehensive cell-type 70 

annotation by mapping Label 2 to Label 1 through a normalized confusion matrix. In the 71 

confusion matrix �, ��,� represents the number of cells that were clustered as the ��� cluster in 72 

Label 2 and labeled as the ��� cell-type in Label 1. The basic assumption of mapping Label 2 to 73 

Label 1 through a confusion matrix is that cells with the same clustering label (Label 2) should 74 

have the same cell-type label (Label 1). Ideally, if cells were identified to be in the same cluster, 75 

they should all share the same cell-type, and this cell-type has the highest score for cells in that 76 

cluster. However, in real data, this is rarely the case, as we argued above. Therefore, using a 77 

confusion matrix, we look for consensus between Label 1 and Label 2, by searching for the 78 

highest cell-type score in each cluster. Here, we compute the normalized confusion matrix �� 79 

through dividing confusion matrix � by the size of the cluster: ��,� �
��,�

∑ ��,�
�
���

, and we search for 80 

column number with the largest value for each row (Figure 1b). If ��	�
��,�� � 0.5, the ��� 81 

cluster would be assigned as the ��� cell-type, as more than 50% of cells in the ��� cluster are 82 

labeled as the ���  cell-type (Case 1). For cases where ��	�
��,�� � 0.5, it is likely that cell 83 

identities of some cells were covered up by ambient RNAs from dominant cell-types (Case 2). 84 

Therefore, MACA records significant or at least the top-3 cell-types for each cell in the ��� 85 

cluster based on cell-type scores. To find significant cell-types for each cell, we get a distribution 86 

of scores of all cell-types for each cell and define those cell-types as significant if their z-scores > 87 

3. If the number of significant cell-types is less than 3, we would keep the top-3 cell-types. 88 

Doing this can retrieve more potential cell-type labels for this cluster, and each cell will 89 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2021. ; https://doi.org/10.1101/2021.10.25.465734doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465734
http://creativecommons.org/licenses/by-nc-nd/4.0/


contribute at least 3 candidates into a pool of candidate cell-types for this cluster. Then, MACA 90 

calculates frequency of each candidate cell-type in this pool and assigns the ��� cluster as the 91 

cell-type with the highest frequency if the frequency exceeds half the size of the cluster 92 

(��	�
��,�� � 0.5 ) (Case 2a). Otherwise, the ���  cluster would be labeled as “unassigned” 93 

( ��	�
��,�� � 0.5 ) (Case 2b), which is the case that cells in this cluster do not have an 94 

agreement on which cell-types they belong to. For the choice of 0.5, we will show our 95 

examination in the next Results section. As we mentioned before, clustering-based cell-type 96 

identification largely depends on user’s choice, for example the choices of clustering resolution 97 

and neighborhood size. Therefore, the outcome may vary among different users. To have a more 98 

reproducible outcome, we cluster cells with different clustering parameters to get multiple 99 

clustering assignments (Label 2s). Repeating the procedure of mapping Label 2 to Label 1 will 100 

enable us to get an ensemble annotation through voting, and this ensemble annotation is less 101 

influenced by a single clustering choice (Figure 1c). Using ensemble approach also offers a naïve 102 

way of scoring MACA-based cell-type predictions. Users can set up a threshold to filter cells 103 

whose annotations are less consistent in outcomes of different clustering trials, and we also 104 

provide examinations in the next section to help users choose a reasonable threshold for 105 

annotation with quality. In this study, we generated clusters using Louvain method with 3 106 

different resolutions and 3 different numbers of neighborhood, which results in 9 different 107 

clustering labels (Label 2s). After mapping these 9 Label 2s to Label 1, we generated 9 cell-type 108 

annotations. Then, we used a voting approach to get the final annotations (the highest votes from 109 

the 9 annotations). Users can also increase the number of clustering trials to have a larger voting 110 

pool for annotation ensemble or decrease the number to save computation time. 111 
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Back to converting gene expression matrix to cell-type score matrix, we collected 4 different 112 

scoring methods that were proposed to do the conversion. These scoring methods are either 113 

named by authors, or we named them after the last name of the first author. PlinerScore was a 114 

part of Garnett that was designed to annotate cell-types through supervised classification (Pliner, 115 

et al., 2019). The uniqueness of PlinerScore is the use of TF-IDF transformation to deal with 116 

specificity of a gene marker and a cutoff to deal with issue of free mRNA in single-cell RNA-seq 117 

data. AUCell comes from SENIC, which uses gene sets to quantify regulon activities of single-118 

cell expression data (Aibar, et al., 2017). In this study, AUCell quantifies the enrichment of 119 

every cell-type as an area under the recovery curve (AUC) across the ranking of all gene markers 120 

in a particular cell. This assessment is cell-wise and is different from PlinerScore that requires 121 

transformation of the whole dataset. Both CIM and DingScore simply use the total expression of 122 

all gene markers of a particular cell-type as the cell-type score (Ding, et al., 2020; Efroni, et al., 123 

2015). CIM normalizes the total expression by multiplying a weight that is defined as the number 124 

of expressed gene markers divided by the number of all gene markers of this cell-type. 125 

DingScore, on the other hand, normalizes the total expression of one cell-type by dividing total 126 

expression of all genes. Since some cell-types have a longer list of marker genes than others, 127 

cell-types with more marker genes in the database would have larger cell-type scores. 128 

Normalization in CIM was considered to address this issue. However, PlinerScore and 129 

DingScore were not intentionally designed to cope with unbalanced marker lists. To deal with 130 

this issue, we did a similar processing to normalization in CIM, which is dividing the score of 131 

each cell type by the number of expressed markers in that cell type. However, AUCell is a 132 

completely different approach from the other 3 scoring methods, which does not simply sum up 133 

values of marker genes for a given cell-type. So, we ran AUCell without extra processing for 134 
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returned values. Meanwhile, we show that the number of expressed marker genes in both 135 

PanglaoDB and CellMarker across 6 single cell datasets tested in this study, and we found that 136 

most cell-types in PanglaoDB have expressed marker genes within 0~60, while most cell-types 137 

have less than 10 marker genes expressed in CellMarker (Supplementary Figure S1). For both 138 

PanglaoDB and CellMarker, we can conclude that cell-types with over 100 expressed marker 139 

genes are a minority. 140 

In practice, we build MACA in the analysis pipeline of Scanpy, and MACA takes data in the 141 

format of “anndata” in Python (Wolf, et al., 2018). Expression data are preprocessed through cell 142 

and gene filtering, and transformed by LogNormlization method, the common practice in single 143 

cell analysis. Then, the user provides marker information in the form of Python dictionary, and 144 

MACA transforms gene expression matrix to cell-type score matrix. Next, annotation by MACA 145 

can be summarized into 4 steps as shown in Figure 1: 1) Louvain clustering to generate Label 2; 146 

2) Generating Label 1 via max function; 3) Mapping Label 2 to Label 1 through normalized 147 

confusion matrix; 4) Repeating step 1 to 3 to have ensembled annotation. 148 

 149 

3 Results 150 

The key component for optimal performance of MACA is constructing cell-type scores from the 151 

gene expression matrix. We investigated 4 scoring methods that have been proposed to transform 152 

gene expression matrix to cell-type score matrix (Aibar, et al., 2017; Ding, et al., 2020; Efroni, et 153 

al., 2015; Pliner, et al., 2019), and we tested these methods with 2 public marker databases 154 

(Franzén, et al., 2019; Zhang, et al., 2019) in 6 single cell studies comprised of 3000 to 20000 155 

cells (Baron, et al., 2016; Cui, et al., 2019; Tian, et al., 2019; Vieira Braga, et al., 2019; Wang, et 156 
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al., 2020; Zheng, et al., 2017), which include 3 benchmark datasets (Supplementary Table S1) 157 

(Abdelaal, et al., 2019). To evaluate these annotation outcomes, we used Adjusted Rand Index 158 

(ARI) and Normalized Mutual Information (NMI). Both ARI and NMI are calculated by 159 

measuring similarity or agreement between our annotations and authors’ annotations. For the 3 160 

benchmark datasets, authors’ annotations would be the ground truth label, while authors’ 161 

annotations in the other 3 datasets are at least created under careful investigation. Therefore, use 162 

of ARI and NMI, in this case, is to show how well we can reproduce authors’ outcomes. We 163 

found annotations using PlinerScore with markers in PanglaoDB have the largest agreement with 164 

authors’ annotations for all 6 datasets, in terms of both ARI and NMI (Table 1). Therefore, 165 

MACA uses PanglaoDB with PlinerScore as the main marker database and scoring method, 166 

respectively. When we define if Label 2 agrees with Label 1, we selected 0.5 as the threshold. It 167 

is out of a simple reasoning of whether the half agrees. However, it is possible to set up a less or 168 

more stringent threshold to define the consensus between Label 1 and 2. Thus, we further tested 169 

how different thresholds will affect MACA’s performance. We changed the threshold from 0.2 170 

to 0.9 and performed our test in these 6 datasets. We expect annotations would vary, but 171 

surprisingly, MACA’s performance is quite robust to the choice of this parameter, except that we 172 

observed drops of ARI and NMI in two datasets when using 0.9 as threshold (Supplementary 173 

Table S2). 174 

Next, we seek to compare MACA with other existing marker-based annotation tools. CellAssign 175 

and SCINA are two computational methods that have been proposed for automatic cell-type 176 

assignment (Zhang, et al., 2019; Zhang, et al., 2019). Both methods rely on statistical 177 

interference to compute the probabilities of cell types, which are time- and computation- 178 

intensive. Recently, Cell-ID was released for extraction of gene signature as well as cell-type 179 
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annotation (Cortal, et al., 2021). We also noticed scCATCH and SCSA, which are both cluster-180 

based annotation tools (Cao, et al., 2020; Shao, et al., 2020). Both scCATCH  and SCSA require 181 

identifying differential marker genes for each cluster via a statistical test implemented in Seurat 182 

and then matching identified cluster markers to marker database (Butler, et al., 2018). Here, we 183 

compared MACA with CellAssign, SCINA, Cell-ID, and scCATCH using these 6 single cell 184 

studies and cell markers in PanglaoDB. We tested MACA, CellAssign, SCINA, Cell-ID, and 185 

scCATCH on a workstation with 16-core CPU and 64GB memory. MACA can finish annotation 186 

within 1 minute (cells around 3,000) and less than 2 minutes for a relatively large dataset (cells 187 

up to 20,000 cells). On the datasets used and on our computational resources, scCATCH and 188 

Cell-ID took longer than MACA to compute annotations and ranks as the second and third 189 

fastest. In our hands, SCINA took around 20-minute time to finish annotation for a large dataset, 190 

and CellAssign took the longest time to complete cell-type assignment and failed to annotate 191 

data with > 20,000 cells due to lack of memory (Supplementary Table S3). Because annotation 192 

by scCATCH needs clustering first and differential marker identification is highly affected by 193 

clustering outcome, the investigator will need to do a thorough investigation to make sure that 194 

clustering is not overdone or underestimated. In this study, we reported the highest and the 195 

averaged outcomes of scCATCH in each dataset. Comparing these results with manual 196 

annotations from the authors, we found 1) MACA labels cells had a higher consensus than 197 

CellAssign, SCINA, Cell-ID, and scCATCH, in terms of both ARI and NMI, and 2) MACA and 198 

scCATCH identify similar numbers of cell-types to author’s annotations, while the other 3 199 

methods, especially Cell-ID, report overall more different cell-types (Table 1). The low ARIs 200 

and NMIs of CellAssign and Cell-ID can be counted as results of 1) many “unassigned” cells and 201 

2) exceeding numbers of different cell-types over the numbers reported by authors. It is 202 
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important to note that other methods compared here were run on their default parameters. In 203 

future, parameter tuning of those methods on a computer with higher memory should be carried 204 

out for a comprehensive benchmarking on many datasets. Finally, to better evaluate annotations, 205 

we used a machine learning approach to assess cell-type assignment. Training classifiers was 206 

recently proposed by (Miao, et al., 2020) to assist in finding a good clustering resolution, and we 207 

adopt this idea to evaluate our annotations. Basically, if the annotation is good enough, we can 208 

train a classifier to predict cell type using gene-expression values with high accuracy. Conversely, 209 

if there are many wrong labels, it would be hard for a classifier to make the right decision. We 210 

performed 5-fold cross-validated training, where we split one dataset into 4-fold training set and 211 

1-fold testing set and trained a SVM classifier on the training sets and applied the classifier to 212 

predict labels for the testing set. This procedure repeats 5 times to get a mean accuracy. Instead 213 

of treating authors’ annotations as ground truth, this machine-learning evaluation provides an 214 

independent angle to judge annotation quality. Indeed, MACA achieves high concordance with 215 

authors’ reported annotations and higher mean of accuracies than other methods (Supplementary 216 

Table S4). Of note, high accuracy of SVM classifier is not equal to correctness of annotation. 217 

Meanwhile, ARI and NMI reports similarity between two annotations but cannot reflect the 218 

difference of annotation resolution. For example, MACA may return less cell-types than authors. 219 

Moreover, annotation resolution of MACA highly depends on the number of cell-types in the 220 

marker database, and it is likely that MACA cannot annotate some rare subtypes that do not 221 

show up in the marker database. Here, we used confusion matrix to show how cell-type labels by 222 

MACA are against cell-type labels by authors (Supplementary Figure S2). Take annotation of 223 

human pancreas as an example, cells annotated by MACA as “Pancreatic stellate cells” fall into 224 

3 groups that were annotated by author as “activated stellate cells”, “quiescent stellate cells”, and 225 
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“Schwann cells”, respectively. Since MACA may have a different annotation resolution from the 226 

author’s, we performed a test to show how different annotation resolutions can affect 227 

calculations of ARI and NMI. We included the human kidney (CD10-) data, which has 3 228 

different annotation resolutions by the authors, from 5 major cell-types to 29 intermediate cell-229 

types, and to 50 fine cell-types (Kuppe, et al., 2021). We used MACA to annotate this data and 230 

compared MACA’s annotation with these 3 annotations. We found NMI is more robust to 231 

change of annotation resolution than ARI. It also suggests that a higher ARI reflects similar 232 

resolution between MACA and author. (Supplementary Figure S3). 233 

As we mentioned above, using ensemble approach also offers user an option to filter cells whose 234 

annotations are less consistent in outcomes of different clustering trials. However, it also causes 235 

loss of cells for downstream analysis, like cellular composition analysis. To find a good balance 236 

between having higher annotation quality and keeping most cells for downstream analysis, we 237 

tested threshold of voting from 1/9 to 9/9, where the numerator means the minimum number of 238 

votes required to keep the cell-annotation. With 1/9, all cells will be kept, with 2/9, cells with 239 

annotations with at least 2 votes will be kept, while only cells that have the same annotation 240 

across 9 clustering trials will be considered if threshold is set up as 9/9. We reported the results 241 

across 10 datasets in Supplementary Table S5, and it may provide a reference for user to choose 242 

a threshold that serves user’s need. Of note, we kept all cells in other evaluations. Particularly, all 243 

cells were used in benchmark with other methods. Here, we suggest setting up the threshold as 244 

7/9.  Next, we expect to show that annotation by MACA is applicable for most single cell RNA-245 

seq platforms. We re-annotated PBMC data from a new study by (Ding, et al., 2020). This data 246 

consists of two biological samples from 9 platforms. We found that 1) both PBMC samples have 247 

the same major cell-types, and these 9 platforms can successfully profile them (Supplementary 248 
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Figure S4a), and 2) annotation by MACA shows that all platforms profile similar cellular 249 

components for these two PBMC samples, except CEL-Seq2 (Supplementary Figure S4b). These 250 

results are largely consistent to the original report (Ding, et al., 2020). However, this PBMC data 251 

didn’t come with a ground-truth annotation, we further added the human pancreas data, which 252 

consists of 5 independent studies profiled by 4 different single-cell RNA-seq platforms (Baron, 253 

et al., 2016; Grün, et al., 2016; Lawlor, et al., 2017; Muraro, et al., 2016; Segerstolpe, et al., 254 

2016). Annotation by MACA has 0.929 ARI and 0.908 NMI against author-reported annotation, 255 

and we also observed all major cell-types were revealed across all 4 platforms (Supplementary 256 

Figure S4c). 257 

Finally, we applied MACA to a single-nuclei RNA-seq dataset from all 4 chambers of the human 258 

heart, comprised of ~290k nuclei (Tucker, et al., 2020). MACA could annotate each of the 4 259 

chambers comprising of ~80K cells each in < 6 mins. Annotations by MACA have major 260 

agreement with author’s reported annotations with an average ARI and NMI of 0.63 and 0.76, 261 

respectively (Supplementary Table S6). However, we also found some disagreements exist in 262 

annotation of cells in from left and right atria. Therefore, we investigated disagreement between 263 

MACA’s and author’s annotations, and found the biggest difference stems from disagreement in 264 

assignments for neuronal cells and lymphocytes, which are both small-population cell types in 265 

this dataset (1702 neuronal cells and 1503 lymphocytes out of ~290k). We found neuronal cells 266 

weren’t revealed and author-reported lymphocytes were reported as memory T cells in MACA’s 267 

annotation (Supplementary Table S7a and b). 268 

By default, MACA works with the list marker genes and cell-types present in PanglaoDB, but 269 

users can also input their own gene-lists. A major limitation of MACA is that it can only 270 

annotate cell-types that are pre-defined in the marker reference, but with more marker gene-sets 271 
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becoming available with single-cell sequencing studies, we believe that MACA will be useful to 272 

annotate heterogeneous single-cell datasets. This points us two future directions to improve 273 

MACA. First, with more atlas studies that profile all sorts of biological systems, more refined 274 

markers for small cell populations can be defined, and MACA could reach finer annotation 275 

resolution by integrating markers from these new atlas studies. Second, weights of markers 276 

should be incorporated into the scoring method of MACA, for example marker specificity and 277 

expression strength. However, at the current stage, all markers have equal weights when they 278 

contribute to cell-type scores, and we believe that incorporating marker weights will be 279 

beneficial for accurate annotation. With a more refined marker database and cell-type scoring 280 

method, MACA would rapidly perform integrated annotation across multiple datasets, and this is 281 

very critical for downstream analyses like cellular component analysis across datasets under 282 

different conditions. In fact, we noticed that combining PlinerScore and PanglaoDB to generate 283 

new features has the advantages of correcting batch effects for integrated annotation across 284 

datasets, and we aim to extend the use of MACA to standardization of cell-type annotation 285 

across datasets in the future (see application in integrated annotation on GitHub of MACA). 286 

Finally, we conclude that MACA is a suitable tool for automatic cell-type annotation that can aid 287 

both experts and non-experts in rapid annotation of their single-cell datasets. 288 
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Figure 1 361 

 362 
Figure 1. Schematic workflow of MACA. a, MACA converts gene expression matrix into cell-type score 363 
matrix based on cell marker database. MACA generates Label 1 by using max function and Label 2 364 
by over-clustering all cells into small groups. MACA finally maps Label 2 to Label 1 via confusion 365 
matrix. b, Use of confusion matrix for cell-type annotation. c, In practical implementation, n sets 366 
of clustering parameters are used to generate n Label 2s. Mapping all Label 2s to Label 1 returns multiple 367 
annotations, and MACA ensembles these annotations by voting to generate the final cell-type prediction. 368 
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Table 1 369 

Table 1. Performance of MACA, CellAssign, SCINA, Cell-ID, and scCATACH in 6 scRNA-seq 370 
datasets, measured by ARI and NMI.  8 different settings of MACA include using 4 cell-type scoring 371 
methods (PlinerScore, AUCell, CIM, and DingScore) with 2 marker databases (PanglaoDB and 372 
CellMarker). 373 

ARI PBMC (Zheng et al., 2017) CellBench (Tian et al., 2019) Pancreas (Baron et al., 2016) Heart (Wang et al., 2020) Heart (Cui et al., 2019) Lung (Vieira et al., 2019)

PanglaoDB+PlinerScore 0.95 0.92 0.90 0.71 0.61 0.45

PanglaoDB+AUCell 0.04 0.00 0.78 0.39 0.47 0.29

PanglaoDB+CIM 0.28 0.65 0.90 0.27 0.30 0.33

PanglaoDB+DingScore 0.83 0.74 0.69 0.07 0.44 0.20

CellMarker+PlinerScore 0.38 0.43 0.27 0.57 0.13 0.21

CellMarker+AUCell 0.29 0.52 0.32 0.34 0.09 0.14

CellMarker+CIM 0.24 0.60 0.54 0.56 0.07 0.09

CellMarker+DingScore 0.22 0.55 0.38 0.37 0.19 NA

SCINA 0.46 0.63 0.89 0.13 0.55 0.31

CellAssign NA 0.00 0.89 0.15 0.53 0.26

Cell-ID 0.50 0.17 0.57 0.10 0.49 0.35

scCATCH (best) 0.62 0.56 0.86 0.04 0.14 0.60

scCATCH (average) 0.57 0.40 0.66 0.04 0.05 0.35

NMI PBMC (Zheng et al., 2017) CellBench (Tian et al., 2019) Pancreas (Baron et al., 2016) Heart (Wang et al., 2020) Heart (Cui et al., 2019) Lung (Vieira et al., 2019)

PanglaoDB+PlinerScore 0.89 0.92 0.88 0.59 0.62 0.59

PanglaoDB+AUCell 0.09 0.00 0.79 0.41 0.50 0.31

PanglaoDB+CIM 0.51 0.80 0.88 0.30 0.44 0.40

PanglaoDB+DingScore 0.74 0.85 0.70 0.10 0.47 0.33

CellMarker+PlinerScore 0.44 0.64 0.57 0.51 0.32 0.42

CellMarker+AUCell 0.23 0.67 0.46 0.32 0.33 0.17

CellMarker+CIM 0.49 0.78 0.73 0.41 0.31 0.21

CellMarker+DingScore 0.43 0.73 0.60 0.34 0.33 0.08

SCINA 0.54 0.71 0.84 0.07 0.54 0.46

CellAssign NA 0.06 0.86 0.08 0.51 0.49

Cell-ID 0.67 0.38 0.74 0.08 0.55 0.58

scCATCH (best) 0.77 0.70 0.84 0.05 0.30 0.73

scCATCH (average) 0.75 0.62 0.75 0.04 0.12 0.63

# of cell-types PBMC (Zheng et al., 2017) CellBench (Tian et al., 2019) Pancreas (Baron et al., 2016) Heart (Wang et al., 2020) Heart (Cui et al., 2019) Lung (Vieira et al., 2019)

MACA 8 6 11 8 7 13

SCINA 14 14 17 16 23 41

CellAssign NA 9 17 18 24 31

Cell-ID 33 55 48 35 37 63

scCATCH (best) 9 5 10 3 3 16

Author's annotation 5 5 14 5 9 13
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