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Changes in extracellular ion concentrations are known to
modulate neuronal excitability and play a major role in con-
trolling the neuronal firing rate, not just during the healthy
homeostasis, but also in pathological conditions such as
epilepsy. The microscopic molecular mechanisms of field
effects are understood, but the precise correspondence be-
tween the microscopic mechanisms of ion exchange in the
cellular space of neurons and the macroscopic behavior of
neuronal populations remains to be established. We derive
amean fieldmodel of a population ofHodgkin–Huxley type
neurons. This model links the neuronal intra- and extra-
cellular ion concentrations to the mean membrane poten-
tial and the mean synaptic input in terms of the synaptic
conductance of the locally homogeneous mesoscopic net-
work and can describe various brain activities includingmulti-
stability at resting states, as well as more pathological spik-
ing and bursting behaviors, and depolarizations. The results
from the analytical solution of the mean field model agree
with the mean behavior of numerical simulations of large-
scale networks of neurons. The mean field model is analyti-
cally exact for non-autonomous ion concentration variables
and provides a mean field approximation in the thermody-
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namic limit, for locally homogeneous mesoscopic networks
of biophysical neurons driven by an ion exchange mecha-
nism. These results may provide the missing link between
high-level neural mass approaches which are used in the
brain network modeling and physiological parameters that
drive the neuronal dynamics.
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1 | INTRODUCTION

Different brain activities including perception, cognition, and several neurodegenerative disorders put forward the
notion of understanding the brain dynamics as a large-scale complex system. Most of these activities can not be
explained at the microscopic or single-cell level, rather they emerge through complex interactions between different
regions of the brain with diverse neuronal activity. A common paradigm for studying the large-scale brain dynamics
is through whole-brain network models [1], where regional populations interact through the white matter tracts. The
local activity in this case is represented by neuronal mass models [2], which coupled together through the noise and
the delays [3, 4] give rise to the emergent activity that can be linked to the neuroimaging signals [5]. The observable
properties (variables) in the population level of a large-scale ensemble are generally explained by statistical physics
formalism of mean-field theory which has been applied to neuronal dynamics to obtain several neural mass models to
describe a range of local brain activities ([6], [7], [8], [9]). As such, these have shown to have individualized predictive
value for resting state activity [10, 11], or for seizure generation and propagation in epilepsy [12], even if the latter
was based on fully phenomenological model for the seizure onset and offset [13]. Regional heterogeneity improves
the predictive value of whole-brain models in epilepsy, where it is informed by the clinical hypothesis [14], but also
during data-driven fitting of the resting state [15]. The common roadblock here is that the used neuronal masses do
not allow for direct expression of specific cytoarchitecural properties, which are becoming more available [16].

There is a significant gap in state of art literature in terms of the relationship between population-level behavior
of the neuronal networks and the driving mechanism of neuronal dynamics that is the ion exchange at the cellu-
lar level. The mechanism of ion exchange in neuronal systems was first described by the famous Hodgkin–Huxley
equations [17]. However, the assumption of constant intra- and extracellular ion concentrations in these equations
became an issue for debate, especially in the mammalian brain. As a consequence, several studies investigated the
role of the extracellular micro environment in pathological behaviors ([18]; [19]; [20]) as well as the cellular control of
micro-environmental factors in modulating neuronal behavior ([19], [21]). Earlier studies ([19], [20], [21]) found that
the reversal potentials of various ion species and their intra- and extracellular concentrations regulate the intrinsic
excitability of neuronal networks. In the ion exchange mechanism of neuronal systems, the extracellular potassium
concentration ([K+ ]o ) and intracellular sodium concentration ([N a+ ]i ) both change and are slowly balanced by the
glia. In this process the increase in [K+ ]o increases the potassium reversal potential and consequently the neuronal
excitability, whereas the increase in [N a+ ]i reduces the sodium reversal potential and the influx of sodium into the cell.
These transient changes in [K+ ]o are responsible for an overall fluctuation in excitability and spontaneous neuronal



Bandyopadhyay et al. 3

activity ([22], [23], [21]).

Themammalian brain is a complex system comprising billions of neurons; thus, the computation of whole brain dy-
namics from the single neuron perspective exceeds the capacity of most modern super computers. Also, various brain
imaging techniques measure the neuronal activities of brain regions to indicate the average activity of some neuronal
ensembles. Since modeling the whole brain activity is impractical, developing a statistical physics based analytical
framework of the population response (average behavior of large-scale neuronal ensembles) utilizing macroscopic or
mesoscopic measures of network activity or mean field models for neuronal dynamics is essential. This approach has
been experimentally validated in that different brain regions show similar responses to a given stimulus (for exam-
ple different sensory regions of the cortex respond similarly to a given input) or to brain information processing and
encoding, each of which requires coordinated activity and a high degree of redundancy among large ensembles of
neurons. In this context, some phenomenological neuron models have been studied to understand the macroscopic
dynamics of neuronal populations ([24]) or to provide statistical descriptions of neuronal networks ([6], [2], [25], [26]).
In addition, several investigators addressed the macroscopic dynamics by using some statistical population measures,
especially the firing rate, which measures the mean spike emission rate in a population ([27], [28], [1], [29], [13], [30],
[5], [31], [32]). Some recent state-of-the-art studies also combined local neuronal dynamics with statistical descrip-
tions in terms of the mean membrane potential and the firing rate in quadratic integrate-and-fire (QIF) neurons ([25],
[33], [26]). Neural mass models and large scale brain dynamics models are also used for analyzing and identification
of chaos in brain signal, epileptic seizure transmission, phase oscillation, evolution of network synchrony and several
other problems ([34], [35], [36], [37], [38], [39], [40], [41], [42], [43]).

In spite of all these studies, as far as we are aware, no theory has linked macroscopically observable features
of a large network of spiking neurons, with complex ion exchange dynamics. In this paper we approximated com-
plex ion exchange dynamics by a step-wise QIF model by including two slow timescale biophysical variables. We
demonstrated that the distribution of the neurons’ membrane potentials could be described by a Lorentzian ansatz
(LA). The continuity equation was solved to give rise to a mean field model with the same probability distribution
of membrane potentials as the LA. The mean field model is exact for non-autonomous ion concentration variables
and provides a mean field approximation within the thermodynamic limit, i.e., for a locally homogeneous mesoscopic
network. Hence, we developed a mean field approximation for an all-to-all coupled network of heterogeneous neu-
rons to approximately capture the behavior of ion exchange-driven neuronal dynamics. Moreover, considering some
distributions of heterogeneous input current, we obtained a mean field approximation, described as a set of ordinary
differential equations that fully described the macroscopic states of the recurrently connected spiking neurons.

2 | MATERIAL AND METHODS

The membrane potential of a single neuron in the brain is generally driven by an ion exchange mechanism in intracellu-
lar and extracellular space. The concentrations of potassium, sodium, and chlorine in the intracellular and extracellular
space along with the active transport pump (N a+/K+ pump) in the cell membrane of neurons generate input currents
to a neuron cell that drive the electrical behavior of a single neuron in terms of its membrane potential. The ion
exchange mechanism in the cellular microenvironment, including local diffusion, glial buffering, ion pumps, and ion
channels, has been mathematically modeled based on conductance-based ion dynamics to reflect the resting state
and seizure behaviors in single neurons ([21], [44], [45]). The mechanism of ion exchange in the intracellular and extra-
cellular space of the neuronal membrane is represented schematically in Figure 1. This biophysical interaction and ion
exchange mechanism across the membrane of a neuron cell can be described as a Hodgkin–Huxley type dynamical
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F IGURE 1 Schematic diagram of the ion channel mechanism in extracellular and intracellular space in the brain.

process, represented by the following dynamical system.

dV

d t
= − 1

Cm
(JC l + JN a + JK + Jpump )

dn

d t
=
n∞ (V ) − n

τn

d∆[K+ ]i
d t

= − γ
wi
(Jk − 2Jpump )

d [K+ ]g
d t

= ε ( [K+ ]bath + β∆[K+ ]i − {[K+ ]0,o + [K+ ]g })

(1)

This model represents the ion exchange mechanism of a single conductance-based neuron in terms of membrane po-
tential (V ), the potassium conductance gating variable (n), intracellular potassium concentration variation (∆[K+ ]i ) and
extracellular potassium buffering by the external bath ([K+ ]g ). This mechanism considers ion exchange through the
sodium, potassium, calcium-gated potassium, intracellular sodium, and extracellular potassium concentration gradi-
ents and leak currents. The intrinsic ionic currents of the neuron along with the sodium–potassium pump current and
potassium diffusion regulate the concentrations of the different ion concentrations. The Nernst equation was used
to couple the membrane potential of the neuron with the concentrations of the ionic currents. This mechanism gives
rise to a slow-fast dynamical system in which the membrane potential (V ) and potassium conductance gating variable
(n) constitute the fast subsystem and the slow subsystem is represented in terms of the variation in the intracellular
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potassium concentration (∆[K+ ]i ) and extracellular potassium buffering by the external bath ([K+ ]g ) (in (1)); where
input currents due to different ionic substances and pump are represented as follows: ([21], [45]):

JN a = (gN a,l + gN am∞ (V )h (n)) (V − 26.64l og (
[N a+ ]o
[N a+ ]i

))

JK = (gK ,l + gK n) (V − 26.64l og (
[K+ ]o
[K+ ]i

))

JC l = gC l (V + 26.64l og ( [C l
− ]o

[C l − ]i
))

Jpump = ρ
1

1 + exp ( 21−[N a
+ ]i

2 )
1

1 + exp (5.5 − [K+ ]o )

(2)

The conductance functions are represented as follows:

n∞ (V ) =
1

1 + exp ( −19−V18 )

m∞ (V ) =
1

1 + exp ( −24−V12 )

h (n) = 1.1 − 1

1 + exp (−8(n − 0.4))

(3)

In this model the concentration of chloride ion is invariant and the extracellular and intracellular concentrations of
potassium, sodium, and chlorine ions are represented in terms of these state variables as follows:

∆[N a+ ]i = −∆[K+ ]i

∆[N a+ ]o = −β∆[N a+ ]i

∆[K+ ]o = −β∆[K+ ]i

[N a+ ]i = [N a+ ]0,i + ∆[N a+ ]i

[N a+ ]o = [N a+ ]0,o + ∆[N a+ ]o

[K+ ]o = [K+ ]0,o + ∆[K+ ]o + [K ]g

[C l − ]o = [C l − ]0,o , [C l − ]i = [C l − ]0,i

(4)

The biophysically relevant values of the parameters could be obtained from several previous studies and from in
vivo and in vitro experiments ([21], [45]). Those that we used for the simulation are shown in Table-1.

3 | MEAN FIELD APPROXIMATION OF COUPLED NEURONS

The next aim was to develop a mean field model for a heterogeneous population of the all-to-all coupled biophysical
neurons described by (1) within the thermodynamic limit, i.e., when the number of neurons N → ∞. To consider the
impact of other spiking neurons in a network on a single neuron through the synaptic input current, first the synaptic
kinetics needed to be modeled. The basic mechanism of synaptic transmission can be described as the mechanism
by which a neurotransmitter is released into the synaptic cleft as a result of an influx of calcium through presynaptic
calcium channels as the presynaptic pulse (spike) depolarizes the synaptic terminal. The neurotransmitter plays a cru-
cial role in opening the postsynaptic channels, which causes the flow of the ionic current across the membrane. This
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Parameters symbols values

Membrane capacitance Cm 1nF

Gating time constant τn 4S−1

Chloride conductance gC l 7.5nS

Maximal potassium conductance gK 22nS

Maximal sodium conductance gN a 40nS

Potassium leak conductance gK ,l 0.12nS

Sodium leak conductance gN a,l 0.02nS

Intracellular volume ωi 2160µ m

Extracellular volume ωo 720µ m

Intra/extra cellular volume ratio β =
ωi
ωo

3

Concentration changes time constant γ 0.04S−1

Diffusion time constant ε 0.001S−1

Maximal Na/K pump current ρ 250pA

External bath of K [K+ ]bath 8mM

Initial concentration of Extracellular K [K+ ]0,o 4.8 mM

Initial concentration of Intracellular K [K+ ]0,i 130 mM

Initial concentration of Extracellular Na [N a+ ]0,o 138 mM

Initial concentration of Intracellular Na [N a+ ]0,i 16 mM

concentration of Extracellular Cl [C l − ]0,o 112 mM

concentration of Intracellular Cl [C l − ]0,i 5 mM

TABLE 1 List of parameters and their values used for the simulation

mechanism is often represented by phenomenological models, which assume that the normalized synaptic conduc-
tance gs yn (t ) from 0 to 1 rises instantaneously at the time of the kth pulse (spike), t k and consequently undergoes an
exponential decay with some rate constant τ . This mechanism is traditionally modeled by the following differential
equation

τ
dgs yn (t )
d t

=
N∑
j=1

[−gs yn (t ) + δ (t kj − t ) (1 − gs yn (t )) ] (5)

The solution can be written as gs yn (t ) =
∑N
j=1 [

t−t k
j
τ e

t−t k
j
τ ] ([46], [47]). Here, δ (t ) is the Dirac delta function, and t k

j

represents the time of the kth pulse (spike) of the jth neuron. Then, the synaptic input current is given as follows:

Is yn = k gs yn (t ) (V − E ) (6)
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whereV is the postsynaptic potential; E is the potential, termed the synaptic reversal potential, at which the direction
of the net current flow reverses; and represents the maximum conductance of the synapse. At this point we approx-
imated the four-dimensional dynamics in 1 to a three-dimensional system in order to represent the fast subsystem
in terms of membrane potential alone. This allowed us to represent the probability distribution of V in terms of a
single fast variable V and to use consequent mathematical formalism to solve the mean field behavior of the large
network of neurons. This was done by eliminating the second fast variable from the system by averaging dV

d t over
n , i.e., replacing dV

d t = f (V , n,∆[K+ ]i , [K+ ]g ) with dV
d t = 1

lim sup n−lim inf n
∫ lim sup n
lim inf n f (V , n,∆[K+ ]i , [K+ ]g )dn , where

f (V , n,∆[K+ ]i , [K+ ]g ) represents the right-hand side of theV dynamics in 1. We modeled the average of n as

〈n 〉 =
{

n∞ (V ),∆[K+ ]i > α
2.0 + 0.02〈V 〉,∆[K+ ]i ≤ α

}

where α = kα + µ1 ( [K+ ]bath − k0) + µ2 ( [K+ ]bath − k0)2 with kα = −0.8825, µ1 = −0.3965, µ2 = 0.0075, k0 = 11.5.
Applying this averaging method and substituting 〈n 〉 into the current terms

IN a = (gN a,l + gN am∞ (V )h ( 〈n 〉)) (V − 26.64l og (
[N a+ ]o
[N a+ ]i

))

IK = (gK ,l + gK 〈n 〉) (V − 26.64l og (
[K+ ]o
[K+ ]i

))

IC l = JC l = gC l (V + 26.64l og ( [C l
− ]o

[C l − ]i
))

Ipump = Jpump = ρ
1

1 + exp ( 21−[N a
+ ]i

2 )
1

1 + exp (5.5 − [K+ ]o )

we obtained the 3-dimensional averaged dynamical model for 1 as follows

dV

d t
= − 1

Cm
(IC l + IN a + IK + Ipump )

d∆[K+ ]i
d t

= − γ
wi
(Ik − 2Ipump )

d [K+ ]g
d t

= ε ( [K+ ]bath + β∆[K+ ]i − {[K+ ]0,o + [K+ ]g })

(7)

Hence, we obtained the system of the following set of ordinary differential equations to describe the microscopic
population state of the ion exchange driven network of biophysical neurons:

dV

d t
= − 1

Cm
(IC l + IN a + IK + Ipump ) + Jgs yn (t ) (Vj − Ej ) + ηj

d∆[K+ ]i
d t

= − γ
wi
(Ik − 2Ipump )

d [K+ ]g
d t

= ε ( [K+ ]bath + β∆[K+ ]i − {[K+ ]0,o + [K+ ]g })

; j = 1, 2, ...,N (8)
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where J is the global coupling coefficient, ηj is the heterogeneous quenched external input, and Ej is the synaptic
reversal potential of jth neuron. For the thermodynamic limit N →∞, (8) has the following form

dV

d t
= − 1

Cm
(IC l + IN a + IK + Ipump ) + Jgs yn (t ) (V − E ) + η

d∆[K+ ]i
d t

= − γ
wi
(Ik − 2Ipump )

d [K+ ]g
d t

= ε ( [K+ ]bath + β∆[K+ ]i − {[K+ ]0,o + [K+ ]g })

(9)

The dV
d t equation in (9) is modeled as a stepwise quadratic function based on the nullcline geometry of themicroscopic

state of the membrane potentialV and the dynamics of the biophysical population of neurons {Vj } : j = 1, 2, ...,N is
hence represented as the following step wise quadratic function of {Vj }.

dVj

d t
=

{
b1 {(Vj − d1,j )2 + I1,j + Jgs yn (t ) (Vj − Ej ) };[Vj ≥ s
b2 {(Vj − d2,j )2 + I2,j + Jgs yn (t ) (Vj − Ej ) };[Vj < s

}

For a homogeneous population within the thermodynamic limit N →∞ this can be represented by removing the index
as follows:

dV

d t
=

{
b1 {(V − d1)2 + I1 + Jgs yn (t ) (V − E ) };[V ≥ s
b2 {(V − d2)2 + I2 + Jgs yn (t ) (V − E ) };[V < s

}
(10)

Here the terms I1 and I2 are functions of ∆[K+ ]i and [K+ ]bath but are independent of V and are given as follows:

I1 =
ψ1
b1
(∆[K+ ]i − k0) +

a1
b1

+ η, I2 =
ψ2
b2
(∆[K+ ]i − k0) +

a2
b2

+ η (11)

Here d1, d2 and a2 are functions of [K+ ]bath and a1 which, in turn, is function of∆[K+ ]i and [K+ ]bath . The parameters
b1, b2, and s , are constants estimated from the nullclines geometry of system (1) as follows:
d1 = q1 + r11 ( [K+ ]bath − k0) + +r12 ( [K+ ]bath − k0)2, d2 = q2 + r21 ( [K+ ]bath − k0) + r22 ( [K+ ]bath − k0)2,
a2 = q3 +λ1 ( [K+ ]bath − k0) +λ2 ( [K+ ]bath − k0)2, a1 = a2 + (ψ2 −ψ1) (∆[K+ ]i − k0) − b1 (s − d1)2 + b2 (s − d2)2 with the
parameter values s = −37, b1 = −0.50, b2 = 0.11, k0 = 11.5, r11 = 0.45, r12 = −0.50, r21 = 2.5, r22 = −0.1, λ1 = 30.0, λ2 =
−0.05, q1 = −25.2, q2 = −56.0, q3 = −72.5,ψ1 = 50.0,ψ2 = 112.5. The validity of the fit of these parameters is shown in
Figure 2.

Also, η in the (11) refers to the heterogeneous quenched component, which represents the heterogeneity in
the network of neurons and is distributed according to some probability distribution, say g (η) . For the mean field
approximation in the thermodynamic limit N → ∞, let us denote ρ (V ,∆[K+ ]i , [K+ ]bath , η, t )dV as the fraction of
neurons with a membrane potential betweenV andV + dV where η is the random variable heterogeneity parameter
(heterogeneous input current), which could be considered to be distributed according to the probability distribution
g (η) . Then, the total voltage density can be written as

∫ ∞
−∞ ρ (V ,∆[K

+ ]i , [K+ ]bath , η, t )g (η)dη. This setup leads to the
continuity equation

δt ρ + δV [
dV

d t
ρ ] = 0 (12)

It should be noted here that the approximation of (1) by (7) by removing n from the system through the averaging
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t [ms] t [ms] t [ms] t [ms] t [ms] t [ms]

HH neuron HH neuron

F IGURE 2 Dependence of dVd t [mV] on n : (a) dVd t [mV] for different values of n in cyan and the average trajectory
in red. (b) Approximation of dVd t [mV] for different values of ∆[K+ ]i [mol \m3]: original functions in red and

approximations in blue. (c) Approximation of dVd t [mV] for different values of [K+ ]bath [mol \m3]: original functions in
red and approximations in blue. (d-e) Simulation of the dynamics: time series ofV [mV] (in red), n (in blue), ∆[K+ ]i
[mol \m3] (in green), and [K ]g [mol \m3] (in black): from the left original 4D system (1st column), 3D approximation
(2nd column), 3D stepwise QIF approximation (3rd column); for (d) [K+ ]bath = 6.5, (e) [K+ ]bath = 26.5. (f) Frequency

of oscillation: for the original 4D model in red; for the reduced 3D model in green; for the stepwise QIF
approximation in blue.

method is an intermediate approximation, which ensures the integrability of the ρ and allowed us to solve the conti-
nuity (12). However, we reused the functional forms in the mean field equation as in (1) and continued this through
the solution of the continuity equation. This resulted in retaining the original dynamic behavior of the system, and the
intermediate approximation allowed us to derive the mean field equation analytically. At this point adiabatic reduction
was applied to the slow variables, and the differential equation representing theV dynamics along with the coupling
term was considered to be involved with only theV , η, and t variables. This reduced theV dynamics ( dVd t equation) in
(9) to a function ofV and t only for each value of η. Consequently, we could consider ρ as a function of onlyV , η, and
t (as similar methodologies were applied in different literature like [48], [49]). Therefore, we denoted the right-hand
side of theV dynamics as a function f (t ,V , η) and represent it as follows:
dV
d t = −

1
Cm
(IC l + IN a + IK + Ipump ) + Jgs yn (t ) (V − E ) + η = f (t ,V , η)

That reduces (12) to δρ
δt + f (t ,V )

δρ
δV = −fV (t ,V )ρ which is a first order quasi-linear PDE, could be solved by the

Lagrange method using the Lagrange subsidiary equation

d t

1
=

dV

f (t ,V ) =
dρ

−fV (t ,V )ρ
(13)

where fV (t ,V ) represents the derivative of f with respect toV . Integrating from last two ratios we got an independent
solution in which ρ is proportional to 1

f (t ,V ) , i.e., ρ ∝
1

f (t ,V ) . Hence, the trivial solution of the continuity equation (12)
has the functional form ρ0 (V ,∆[K+ ]i , [K+ ]bath , η, t ) ∝ ( dVd t )

−1 that is inversely proportional to their time derivative
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for each value of η.

ρ (V ,∆[K+ ]i , [K+ ]bath , η, t ) =


K1
b1{(V−d1 )2+I1}

;[V ≥ s
K2

b2{(V−d2 )2+I2}
;[V < s

 (14)

Here k1 and k2 are constants, so that the integral becomes one. Since I1, I2, d1 and d2 are functions of [K+ ]bath
and ∆[K+ ]i within the thermodynamic limit N → ∞, the differential equation for the membrane potential can be
represented as

dV

d t
=

{
b1 { [V − y (η,∆[K+ ]i , [K+ ]bath , t ) ]2 + [x (η,∆[K+ ]i , [K+ ]bath , t ) ]2 };[V ≥ s
b2 { [V − y (η,∆[K+ ]i , [K+ ]bath , t ) ]2 + [x (η,∆[K+ ]i , [K+ ]bath , t ) ]2 };[V < s

}
(15)

And the probability density function ρ can be written as

ρ (V ,∆[K+ ]i , [K+ ]bath , η, t ) =


K1
b1{ [V−y (η,∆[K+ ]i , [K+ ]bath ,t ) ]2+[x (η,∆[K+ ]i , [K+ ]bath ,t ) ]2}

;[V ≥ s
K2

b2{ [V−y (η,∆[K+ ]i , [K+ ]bath ,t ) ]2+[x (η,∆[K+ ]i , [K+ ]bath ,t ) ]2}
;[V < s

 (16)

Since for each values of η ,
∫ ∞
−∞ ρdV = 1, we found solutions for constants k1 = b1x

π and k2 = b2x
π which reduces

the relevant dynamics to a lower dimensional space and the solution of (12) converges to some Lorentzian type
function independently of the initial condition. Then, the corresponding conditional probability can be expressed as
a Lorentzian ansatz (LA) ([25], [26]), as follows:

ρ (V ,∆[K+ ]i , [K+ ]bath , η, t ) =
1

π

x (η,∆[K+ ]i , [K+ ]bath , t )
[V − y (η,∆[K+ ]i , [K+ ]bath , t ) ]2 + [x (η,∆[K+ ]i , [K+ ]bath , t ) ]2

(17)

Here, y (η,∆[K+ ]i , [K+ ]bath , t ) is related to themeanmembrane potential of each value of η. 〈V (η,∆[K+ ]i , [K+ ]bath , t ) 〉 =∫ ∞
−∞ ρ (V , η,∆[K

+ ]i , [K+ ]bath , t )V dV = v (η,∆[K+ ]i , [K+ ]bath , t ) , (say)
=
∫ ∞
−∞

1
π

x (η,∆[K+ ]i , [K+ ]bath ,t )
[V−y (η,∆[K+ ]i ,[K+ ]bath ,t ) ]2+[x (η,∆[K+ ]i , [K+ ]bath ,t ) ]2

V dV = x
π

∫ ∞
−∞

V−y+y
(V−y )2+x2 dV = x

π

∫ ∞
−∞ [

V−y
(V−y )2+x2 dV+

y

(V−y )2+x2 dV ] =

x
π lim
R→∞

[ 1
2
l og ( [R − y ]

2 + x2

[−R − y ]2 + x2
) + y

x
[t an−1 (R ) − t an−1 (−R ) ] ]

i.e., v (η,∆[K+ ]i , [K+ ]bath , t ) = y (η,∆[K+ ]i , [K+ ]bath , t ) [taking the P.V. of the Cauchy integral] and

v (t ) =
∫ ∞

−∞
y (η,∆[K+ ]i , [K+ ]bath , t )g (η)dη (18)

Now, we solved the continuity equation (12) with LA ((17))

δt ρ =
1

π

[ (V − y )2 + x2 ] ¤x − x [−2(V − y ) + 2x ¤x ]
[ (V − y )2 + x2 ]2

=
1

π

¤xV 2 − 2(y ¤x + x ¤y )V + ( [y 2 − x2 ] ¤x − 2x y ¤y )
[ (V − y )2 + x2 ]2

(19)

Here overdot represents the derivative with respect to time. We took the rate of change of the membrane potential
as (10) and obtained

δV ( ¤V ρ) = ¥V ρ + ¤V δV (ρ) =

1
π
(2b1 (V−d1Jgs yn )x
[ (V−y )2+x2 ] − 2x ¤V (V−y )

π [ (V−y )2+x2 ]2 ;[V ≥ s
1
π
(2b2 (V−d2Jgs yn )x
[ (V−y )2+x2 ] − 2x ¤V (V−y )

π [ (V−y )2+x2 ]2 ;[V < s

 =
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[2b1d1x−2b1x y−Jgs yn x ]V 2+2[b1x3+b1x y2−b1d21 x−b1I1x+Jgs ynEx ]V+[ (Jgs yn−2b1d1 ) (x
2+y2 )x+2(b1d21+b1I1−Jgs ynE )x y+(y

2−x2 ) ¤x−2x y ¤y ]
π [ (V−y )2+x2 ]2

[2b2d2x−2b2x y−Jgs yn x ]V 2+2[b2x3+b2x y2−b2d22 x−b2I2x+Jgs ynEx ]V+[ (Jgs yn−2b2d2 ) (x
2+y2 )x+2(b2d22+b2I2−Jgs ynE )x y+(y

2−x2 ) ¤x−2x y ¤y ]
π [ (V−y )2+x2 ]2

Hence, equating continuity equation (12) for being an identity, that is only if all the coefficients of the powers of
V are zero, we get (from the coefficient ofV 2 = 0)

¤x =
{
[2b1 (y − d1) + Jgs yn ]x ;[V ≥ s
[2b2 (y − d2) + Jgs yn ]x ;[V < s

}
(20)

From the coefficient ofV = 0 we get{
b1x

3 + b1x y
2 − b1d 21 x − b1I1x + Jgs ynEx − y ¤x + x ¤y = 0;[V ≥ s

b2x
3 + b2x y

2 − b2d 22 x − b2I2x + Jgs ynEx − y ¤x + x ¤y = 0;[V < s

}

⇒ ¤y =
{
b1 [ (y − d1)2 + I1 − x2 ] + Jgs yn (y − E ) ;[V ≥ s
b2 [ (y − d2)2 + I2 − x2 ] + Jgs yn (y − E ) ;[V < s

}
(21)

This leads to the constant term to be zero and we obtained the mean field model, as follows:{
¤x = [2b1 (y − d1) + Jgs yn ]x , ¤y = b1 [ (y − d1)2 + I1 − x2 ] + Jgs yn (y − E ) ;[V ≥ s
¤x = [2b2 (y − d2) + Jgs yn ]x , ¤y = b2 [ (y − d2)2 + I2 − x2 ] + Jgs yn (y − E ) ;[V < s

}

This pair of equations can be represented by a single complex valued equation, as follows:

δtω (η,∆[K+ ]i , [K+ ]bath , t ) =
{
i b1 [ (i ω + d1)2 + I1 ] + Jgs yn [i ω + 2y − E ];[V ≥ s
i b2 [ (i ω + d2)2 + I2 ] + Jgs yn [i ω + 2y − E ];[V < s

}
(22)

where ω (η,∆[K+ ]i , [K+ ]bath , t ) = x (η,∆[K+ ]i , [K+ ]bath , t ) + i y (η,∆[K+ ]i , [K+ ]bath , t ) and real and complex compo-
nents of (22) represent the dynamics of y and x respectively.

Moreover, if we consider the distribution of the heterogeneous input current η to be a Lorentzian distribution
with half-width ∆ and location of the center be η, i.e. :

g (η) = 1

π

∆

(η − η)2 − ∆2
(23)

Then, the residue theorem can be applied to compute the integral in (18) over the closed contour in the complex
η-plane. It should be noted that the assumption of g (η) as a Lorentzian distribution leads to the conclusion that
v (t ) and x (t ) could be computed by Cauchy residue theorem with the value of ω at η = η − i∆, i.e., at the pole
of the Lorentzian distribution (23) in the lower half of η-plane: x (∆[K+ ]i , [K+ ]bath , t ) + i y (∆[K+ ]i , [K+ ]bath , t ) =
ω (η − i∆,∆[K+ ]i , [K+ ]bath , t ) . Thus evaluating (23) at η = η − i∆ we obtained the mean field model of membrane
potential in terms of two coupled differential equations, as follows:{

¤x = b1 (∆ + 2x (v − d1)) + Jgs ynx , ¤v = b1 [ (v − d1)2 + η + I1 − x2 ] + Jgs yn (v − E ) ;[v ≥ s
¤x = b2 (∆ + 2x (v − d2)) + Jgs ynx , ¤v = b2 [ (v − d2)2 + η + I2 − x2 ] + Jgs yn (v − E ) ;[v < s

}
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Hence, the 4-dimensional mean field equation with ∆[K+ ]i becomes the following:

dx

d t
=

{
[b1 (∆ + 2x (v − d1)) + Jgs ynx ;[V ≥ s
[b2 (∆ + 2x (v − d2)) + Jgs ynx ;[V < s

}
dv

d t
=

{
b1 [ (v − d1)2 + η + I1 − x2 ] + Jgs yn (v − E ) ;[V ≥ s
b2 [ (v − d2)2 + η + I2 − x2 ] + Jgs yn (v − E ) ;[V < s

}
d∆[K+ ]i

d t
= − γ

wi
(Ik (v ) − 2Ipump )

d [K+ ]g
d t

= ε ( [K+ ]bath + β∆[K+ ]i − {[K+ ]0,o + [K+ ]g })

(24)

Herev denotes themeanmembrane potential, x is a phenomenological variable, and intracellular potassium concentra-
tion variation and extracellular potassium buffering by the external bath are denoted by ∆[K+ ]i and [K ]g respectively.
It should be noted that here the phenomenological variable x and its dynamics only depend upon v by construction.
So, technically, the dynamical system in (24) could be characterized by only one fast variable v . Consequently, with
only one fast variable the dynamics cannot demonstrate fast oscillations but only the envelope of the oscillations,
as demonstrated in Figure 3. Therefore, the spike train and tonic spike features in the corresponding regime of the
dynamics, which are characterized by sharp oscillations in the v and n dimensions alone, are lost through averaging
out n from the system (1).

HH

t [ms] t [ms] t [ms]

F IGURE 3 Simulation of the dynamics: (a) Time series ofV [mV] (1st row), n (2nd row), ∆[K+ ]i [mol \m3] (3rd
row), and [K ]g [mol \m3] (4th row): from the left original 4D system (in black), 3D approximation (in blue), 3D

stepwise QIF approximation (in red); (b) 3D Phase space withV [mV], n , and ∆[K+ ]i [mol \m3] for three models with
the original 4D model in black, for the reduced 3D model in blue, and for the stepwise QIF approximation in red; for

[K+ ]bath = 11.5.

Moreover, the variable n represents the probability of channel opening, and in principle, the expected probability
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of channel opening is proportional to the synaptic conductance. Therefore, at this point we defined the normalized
synaptic conductance gs yn as cn within the thermodynamic limit. This also allowed us to replace the step-wise QIF
approximation by the original functional forms in the mean field model, as (10) is an approximation of (9) in the first
place. Here we can replace the step-wise quadratic functions in (10) by the original function from (9), including the
synaptic conductance variable n . Hence, the final mean field approximation is a five-dimensional dynamical system as
follows:

dx

d t
=

{
b1 (∆ + 2x (v − d1)) + cJnx ;[V ≥ s
b2 (∆ + 2x (v − d2)) + cJnx ;[V < s

}
dv

d t
=

{
− 1
Cm
(JC l + JN a + JK + Jpump ) − b1x2 + η + cJn (v − E ) ;[V ≥ s

− 1
Cm
(JC l + JN a + JK + Jpump ) − b2x2 + η + cJn (v − E ) ;[V < s

}
dn

d t
=

( 1

1+exp ( −19−V18 )
) − n

τn

d∆[K+ ]i
d t

= − γ
wi
(Ik (v ) − 2Ipump )

d [K+ ]g
d t

= ε ( [K+ ]bath + β∆[K+ ]i − {[K+ ]0,o + [K+ ]g })

(25)

If we consider the inhibitory and excitatory group of neurons, the corresponding mean field approximation can be
written as follows:

dx

d t
=

{
b1 (∆ + 2x (v − d1)) + (ci + ce )Jnx ;[V ≥ s
b2 (∆ + 2x (v − d2)) + (ci + ce )Jnx ;[V < s

}
dv

d t
=

{
− 1
Cm
(JC l + JN a + JK + Jpump ) − b1x2 + η + ci Jn (v − Ei ) + ce Jn (v − Ee ) ;[V ≥ s

− 1
Cm
(JC l + JN a + JK + Jpump ) − b2x2 + η + ci Jn (v − Ei ) + ce Jn (v − Ee ) ;[V < s

}
dn

d t
=

( 1

1+exp ( −19−V18 )
) − n

τn

d∆[K+ ]i
d t

= − γ
wi
(Ik (v ) − 2Ipump )

d [K+ ]g
d t

= ε ( [K+ ]bath + β∆[K+ ]i − {[K+ ]0,o + [K+ ]g })

(26)

Where Ee and Ei are the synaptic reversal potentials of the excitatory and inhibitory groups of neurons.

4 | RESULT AND DISCUSSION

In this paper we have derived a mean-field approximation of locally homogeneous network of Hodgkin–Huxley type
neurons (HH neuron) with heterogeneous quenched external input η (25, and 26). The appropriateness of mean-field
approximation is validated by comparing the simulation results of the large network of coupled HH neurons with
the mean-field model (26) which appears to be quite robust under stochasticity and different type of distribution of
heterogeneous quenched external input η (Figure-4). Our model demonstrates different types of spiking and burst-
ing behavior as well as resting-state (Figure-6) and multistability in the distinct regime of external potassium bath
([K+ ]bath ). These kinds of neuronal activities are quite observable in large-scale brain dynamics which by the means
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of this novel mean-field model get connected with the ion exchange mechanism and the ion concentration states
in the cellular space. The bifurcation analysis of the mean-field model is carried out to identify relevant parameter
regime which is responsible for different types of spiking and bursting behavior, resting-state, and multistability fea-
tures in the mean-field model (Figure-5). Furthermore, it is observed that even if in the resting state (healthy) network
certain kinds of external stimulus current could generate transient neuronal bursts (in terms of transition between
upstate and downstate) which are validated by co-simulation of the large network of coupled HH neurons and the
mean-field model (Figure-7). This result could be quite significant in terms of explaining the neuronal activities during
brain stimulation.

The simulation of Hodgkin–Huxley type single neuron dynamics (1) driven by an ion exchange mechanism, has
revealed that the parameter [K+ ]bath is the most important parameter for describing the dynamics. Previous studies
showed that changing the value of the concentration of the external potassium bath is responsible for qualitative
changes in the dynamical behavior of a single neuronal system [45], particularly discovering that in the parameter
regime [K+ ]bath = [6.01, 6.875] multistability occurs.

Reproducing the bifurcation analysis by a numerical continuation revealed two stable fixed points and a stable
focus in this regime for [K+ ]bath . We also observed aHopf bifurcation at [K+ ]bath = 7.68. At higher values of [K+ ]bath
he stable fixed-point behavior of the dynamics changes into limit cycle behavior and the dynamics shows the bursting
characteristics of neurons. The single neuronmodel was also shown to be able to produce different dynamic behaviors
of single neuronal activity, such as epileptic bursts, status epilepticus, resting state, etc. In this study we developed
a mean-field dynamics system based on a biophysical single neuron model (1) to describe the network behavior of
biophysical neurons within the thermodynamic limit.

To be able to apply convenient mathematical (analytical) methods in this study, the velocity of the membrane
potential of a single neuron described by (1) was approximated as a stepwise quadratic function because geometrically
it resembles a combination of two inverted parabolas. The validity of this approximation is shown in Figure 2 where
the time derivative ofV in (1) is compared with that of a stepwise quadratic approximation. The appropriateness of
the approximation of the membrane potential dynamics is represented for different values of the other state variables
and parameters, such as n , ∆[K+ ]i , and [K+ ]bath in Figures 2(a), 2(b), and 2(c), respectively.

The approximation of the membrane potential dynamics as a stepwise quadratic function allowed us to apply
analytical approaches and to solve the corresponding continuity equation to derive the mean field of a locally homo-
geneous mesoscopic network of biophysical neurons. Figures 2(d) and 2(e) and Figure 3(a) demonstrate the validity
of the stepwise QIF approximation of the original dynamics for different values of [K+ ]bath in terms of the simulation
of the corresponding dynamics. These figures show that approximating the stepwise QIF captures the behavior of
the original 4-dimensional dynamics for the entire biophysical range of [K+ ]bath . Figure 3(b) illustrates the method
for averaging the variable in a 3-dimensional phase space portrait and demonstrate that averaging the variable n (5)
and the subsequent stepwise QIF approximation ((10) with no coupling or J = 0) still preserve the slow dynamics is
shown with 3-dimensional phase space portraits of each of the neurons for [K+ ]bath = 11.5. In Figure 2(f) the fre-
quencies of these three dynamics are compared for entire range of [K+ ]bath to demonstrate that, though there is a
small frequency mismatch between these approximations, the overall stepwise QIF approximation captured the slow
dynamic behavior of the original complex biophysical process described in (1) qualitatively as well as quantitatively.
These allowed us to apply a Lorentzian distribution for the membrane potential and to develop the mean field approx-
imation of a heterogeneous network of biophysical neurons driven by ion exchange dynamics coupled all-to-all via
conductance-based coupling (8).

When ∆[K+ ]i is non-autonomous, the mean field model captures the exact frequency of the oscillation as it is
analytically derived by substituting the LA into the continuity equation (12). This is demonstrated in Figure 4(a) for
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(a) Non-autonomous slow variables (c) Lorentzian heterogeneity

(d) Gaussian heterogeneity (e) Stochastic noise (low heterogeneity) (f) Stochastic noise (high heterogeneity)

-100

0

0

500

-50

0

0.5

1.0

0.0

0.5

-2.5

2.5

10

5

0 4000 8000 12000
t [ms]

Δ
[K

+
] i

[K
+
] g

n
FR

v
in

d
e
x

V

-100

0

500

0

-50

0

0.5

1.0

0.0

0.5

-2.5

0.0

0

5

0 4000 8000 12000

in
d

e
x

V
v

FR
n

Δ
[K

+
] i

[K
+
] g

t [ms]

-100

0

500

0

-50

0

0.5

1.0

0.0

0.5

-2.5

0.0

5

0

0 4000 8000 12000
t [ms]

Δ
[K

+
] i

[K
+
] g

n
FR

v
in

d
e
x

V

-100

0

0

500

-50

0

0.5

1.0

0.0

0.5

-2.5

0.0

0

5

0 4000 8000 12000
t [ms]

Δ
[K

+
] i

[K
+
] g

n
FR

v
in

d
e
x

V

(b)
(b1) Network of 4D HH neurons

field model

(b3) Difference (b1) - (b2)
0

1

2

-0.2

-0.1

0.0

0.1

0.2

0

1

2

3

4

Δ
/J

5 10 15 20 25 30

[K+]bath

Δ
/J

Δ
/J

3

4

0

1

2

3

4

0.0

0.1

0.2

0.3

0.4

(b2) 5D mean

-100

0

500

0

-50

0

0.0

1.0

0.0

0.5

-5

0

-5

5

0 5000 10000 15000 20000
t [ms]

in
d

e
x

V
v

FR
n

Δ
[K

+
] i

[K
+
] g

F IGURE 4 Simulations of networks of neurons with the mean field model: V [mV] for the network nodes in the
first row (in red); scatter of the firing neurons in the second row; v [mV] for the mean field in the third row (in black);
firing rate of the mean field model in the fourth row; n in the fifth row: network nodes in magenta and mean field in
black; ∆[K+ ]i [mol \m3] in the sixth row: network nodes in blue and mean field in black, and [K ]g [mol \m3] in the

seventh row: network nodes in green and mean field in black, for [K+ ]bath = 12.5, J = 4: (a) Non-autonomous
∆[K+ ]i for ∆

J = 3.0, with ∆[K+ ]i as in 26; (c) Lorentzian distribution of heterogeneity η for ∆
J = 1.0; (d) Gaussian

distribution of heterogeneity η for ∆
J = 4.0, with stochastic white noise η; (e) ∆J = 2.0 and (f) ∆J = 3.0. (b) Frequencies

(represented by the color code) of the network of coupled HH neurons as a function of [K+ ]bath and relative
half-width of heterogeneity ∆

J in the first row (b1), frequencies (represented by the color code) of the mean field
model as a function of [K+ ]bath and relative half-width of heterogeneity ∆

J in the second row (b2), difference
between frequencies (represented by the color code) from the network of coupled HH neurons and 5D-mean field

model in the third row: for (b3) J = 4.

a non-autonomous ∆[K+ ]i taken as a sinusoidal function. When ∆[K+ ]i is autonomous (function of state variables
only), the mean field model is a mean field approximation, which encounters a frequency mismatch with the locally
homogeneous mesoscopic network of biophysical neurons described in (1). Figure 4(c) illustrates the validity of the
mean field approximation by a simulated plot from the network of biophysical neurons and the plot of the mean field
approximation described in (26). The frequencies of the mean field model and the network of biophysical neurons
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F IGURE 5 Bifurcation diagram of the mean field model: (a) v [mV] and ∆[K+ ]i [mol \m3] are represented against
[K+ ]bath [mol \m3], (b) v [mV] is represented against [K+ ]bath [mol \m3], the stable fixed points are shown by black
lines whereas the unstable fixed points are represented by dotted lines. The maximum and minimum values of the

limit cycle are shown by black dotted lines in between the two bifurcation values are shown by red marks.
Multistability in the mean field model at [K+ ]bath = 7.65 (healthy regime) :(c) time series for healthy state

([K+ ]bath = 7.65) demonstrating the up and down states, up state in blue and down state in red. (d)
Three-dimensional phase space in v ,∆[K+ ]i , and [K ]g dimensions for the up and down states: the black marks

denote the fixed points in the up and down state. Multistability in the mean field model at [K+ ]bath = 11.5 and 18.5
(bursting regime): (e) time series for the up and down states: epileptic state in violet, bursting in blue, up states in
pink, and red for different values of [K+ ]bath . (f) Three-dimensional phase space in v ,∆[K+ ]i , and [K ]g dimensions
for the up and down states (bursting): the black marks denote the fixed points up states, while the blue and violet

phase space trajectories shows the bursting, and epileptic state.

again encounter a slight mismatch, which is illustrated in Figure 4(b) for different values of relative heterogeneity ∆/J .
The frequency of oscillation of the network of neurons, the mean field approximation, and their relative differences
are represented in Figures 4(b1), 4(b2), 4(b3), respectively, with respect to [K+ ]bath and relative heterogeneity ∆/J .
This provides evidence that the mean field approximation can capture the network behavior of the large network of
neurons quite efficiently in that the relative difference between the frequency of the network of neurons and the
mean field approximation is less than 10% for almost the entire regime of relative heterogeneity and [K+ ]bath .

The simulation of the mean-field model along with the network of single neurons demonstrates that the mean-
field approximation is quite robust in terms of the distribution of heterogeneity, as illustrated in Figure 4(d), with a
Gaussian distribution of heterogeneity rather than the LA. Moreover, the simulations of a network of single neurons
with stochastic white noise reveal that the mean-field model (deterministic) was in agreement with and approximately
matched the network of stochastic single neurons for the small variances associated with white noise Figure 4(e), but
as the variance increased, the agreement was reduced and eventually for higher variances the similarity was destroyed
as the network simulations of stochastic neurons became more and more noisy (Figure 4(f)).
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F IGURE 6 Qualitative mode of behavior of the mean field model: time series v [mV] (in red), n (in blue), ∆[K+ ]i
[mol \m3] (in green), and [K ]g [mol \m3] (in black) are demonstrated for the following patterns of activity: (a) Spike
train at [K+ ]bath = 8.5, (b) Tonic spiking (TS) at [K+ ]bath = 10.5, (c) Bursting at [K+ ]bath = 14.5, (d) Seizure-like event
(SLE) at [K+ ]bath = 18.5, (e) Status epilepticus (SE)-like event at [K+ ]bath = 24.5, (f) Depolarization block (DB) at

[K+ ]bath = 25.5.

The simulation of the mean-fields dynamics reveals that [K+ ]bath serves as a bifurcation parameter of the dy-
namics. Scanning through its values in the biophysical range changes the behavior of the dynamics from a stable
fixed point to an oscillatory limit cycle type of behavior and back to a stable fixed point. To carry out the bifurcation
analysis, numerical continuation was applied, and we found that a Hopf bifurcation exists at [K+ ]bath = 7.68 and a
reverse Hopf bifurcation could be found at [K+ ]bath = 25.02. In between these two values of [K+ ]bath , the dynamics
manifests an oscillatory limit cycle behavior, whereas outside of this range the dynamics of the system shows a stable
fixed-point behavior.

Figure 5 presents the 3-dimensional bifurcation diagram (Figure 5(a)) in v and ∆[K+ ]i with respect to [K+ ]bath ,
and the 2-dimensional projections (Figure 5(b)) in the v dimension for the mean-fields model (26), indicating the
Hopf bifurcation. However, multistability behavior was found in this model for [K+ ]bath > 5.971. The existence
of multistability in the mean field dynamics is demonstrated in Figure 5. Figure 5(c), and Figure 5(e) illustrates the
time series of the dynamics for healthy ([K+ ]bath = 7.65), and bursting ([K+ ]bath = 11.5, 18.5) states respectively.
whereas Figure 5(d), and Figure 5(f) represent the phase space trajectories for corresponding healthy, and bursting
states. Together, they indicate the up state, down state, and epileptic state for different values of [K+ ]bath . When
[K+ ]bath is smaller than the Hopf bifurcation, the downstate is found to be a stable fixed-point, which destabilizes into
spiking, and bursting behaviors and gradually into epileptic bursts at the bifurcation. On the other hand, the upstate
emerges at [K+ ]bath = 5.971, which is a stable fixed point of the five-dimensional system (25, and 26). However, if
the fast subsystem is decoupled and the slow variables are considered to be parameters, the fast subsystem in the
upstate undergoes bifurcation, demonstrating a limit cycle, a stable spiral, and a stable fixed point as the value of the
slow variable decreases.
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The model can also demonstrate different neural activities, as demonstrated in Figure 6. For different regimes of
[K+ ]bath the mean-field model is capable of producing a large set of brain activities, such as a spike train (Figure 6(a)),
tonic spiking (Figure 6(b)), bursting (Figure 6(c)), a seizure-like event (Figure 6(d)), a status epilepticus (SE)-like event
(Figure 6(e)), and a polarization block (Figure 6(f)).

Figure 7 represents the effect of a external stimulus current (homogeneous for each network node) on the network
of neurons in fixed point regime (healthy regime) at [K+ ]bath = 6.75 and the network behavior is compared with the
mean field model for the same external stimulus current. For better understandingV for some representative network
nodes are also presented by sorting the network nodes according to the heterogeneous component η. It is observed
that due to the external stimulus the electrical behavior of the neuronal network could switch between up and down
states and could emit transient bursts even in the healthy regime. These results are in agreement with experimental
results of brain stimulation. Emission of transient bursts are shown for external stimulus current with square wave
type external current (Figure 7(a)) and sinusoidal type external current (Figure 7(b)).
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(a) Square wave external stimulus current (b) Sinusoidal external stimulus current

(c) (d)

F IGURE 7 Transition between up and down states with external stimulus current in fixed point (healthy) regime
[K+ ]bath = 6.75 [mol \m3]. Simulations of networks of neurons with the mean field model: V [mV] for the network
nodes in the first row; scatter of the firing neurons in the second row; v [mV] for the mean field in the third row; the
external input current [mA] (homogeneous for each node and the same external current is added to the mean field
model) in the fourth row; n in the fifth row; ∆[K+ ]i [mol \m3] in the sixth row, and [K ]g [mol \m3] in the seventh
row. The color of the variables in the network of neuron are sorted according to the heterogeneous component η

(shown in the color bar) and variables from the mean field model are plotted in black.V [mV] from some
representative network nodes are plotted in last four rows. Effect of addition of an external stimulus current is

shown for (a)square wave type external current, (b) sinusoidal type external current
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5 | CONCLUSION

In this study we developed a biophysically inspired mean field model for an all-to-all connected, locally homogeneous
mesoscopic network of Hodgkin–Huxley type neurons. The Lorentzian ansatz makes the mean-field approximation to
be analytically tractable, and from the simulation of a network of such neurons it is evident that the mean field model
captures the dynamic behavior of the network, while being quite robust for different distributions of heterogeneity.
This model relates the mechanism of the biophysical activity of ion exchange and ion channels to the phenomenology
of the whole brain dynamics. Also, it demonstrates that the coexistence of resting state brain dynamics and epileptic
seizures depends on different states of biophysical quantities and parameters. It is observed that even within the
healthy regime different kind of stimulus current, which could be external stimuli or input from some other brain re-
gions could generate transient spiking and bursting activity in different brain regions. Intracellular and extracellular
potassium concentrations act as an adaptation (a biophysical regulation that changes the electrical activity of neurons
acting on a relatively slow time scale) and relate the slow scale biophysical mechanism in the brain to the fast scale
mean field activity of the membrane potential. The model demonstrates different neural activities, such as the exis-
tence of up states and down states during the healthy parametric regimes. Increasing the excitability on the other
hand leads to appearance of spike trains, tonic spiking, bursting, seizure-like events, status epilepticus -like events,
and depolarization block. Our mean-field derivation aggregates a large group of brain behaviors into a single neural
mass model, with direct correspondence to biologically relevant parameters. This paves the road for brain network
models with bottom-up regional heterogeneity that stems from the structural data features.
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