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Abstract 1 

The spectrum of light that an animal sees – from ultraviolet to far red light – is governed by the 2 

number and wavelength sensitivity of a family of retinal proteins called opsins. It has been 3 

hypothesized that the spectrum of light available in an environment influences the range of 4 

colors that a species has evolved to see. However, invertebrates and vertebrates use 5 

phylogenetically distinct opsins in their retinae, and it remains unclear whether these distinct 6 

opsins influence what animals see, or how they adapt to their light environments. Systematically 7 

utilizing published visual sensitivity data from across animal phyla, we found that terrestrial 8 

animals are more sensitive to shorter and longer wavelengths of light than aquatic animals, and 9 

that invertebrates are more sensitive to shorter wavelengths of light than vertebrates. Controlling 10 

for phylogeny removes the effects of habitat and lineage on visual sensitivity. Closed and open 11 

habitat terrestrial species have similar spectral sensitivities when comparing across the Metazoa, 12 

and deep water animals are more sensitive to shorter wavelengths of light than shallow water 13 

animals. Our results suggest that animals do adapt to their light environment, however the 14 

invertebrate-vertebrate evolutionary divergence has limited the degree to which animals can 15 

perform visual tuning.   16 
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Keywords: visual tuning, light environment, ciliary opsin, rhabdomeric opsin, λmax 17 

 18 

1. Introduction 19 

Animals use vision for many tasks, including finding prey, avoiding toxic animals and plants, 20 

identifying predators, assessing mate quality, and navigating their environment [1–5]. In many 21 

cases, the objects of interest to the animal need to be distinguished from the background [6,7]. For 22 

example, food that does not contrast with the background is harder for foragers to detect than food 23 

that does contrast with the background [8–12]. Signals that contrast with background colours and 24 

patterns are also used for mating displays [13–18]. Furthermore, many species' body colour 25 

patterns have evolved to be simultaneously cryptic to predators while conspicuous to intended 26 

receivers [19–21]. Finally, contrasting colours can improve animals' ability to learn the meaning 27 

of signals, as when chicks learn more quickly to avoid bitter, aposematically coloured food 28 

[2,3,22].  29 

 30 

An animal's ability to detect visual information depends upon the colour and amount of light in its 31 

habitat, otherwise known as the light environment [6,23,24]. For example, red and blue light are 32 

filtered out by chloroplasts, lending forests and estuarine environments a yellow-green cast [24–33 

26]. Likewise, the water column progressively filters red and UV light [23,24].  Animals' signalling 34 

behaviours, choice of microhabitat, and visual physiology are thus expected to co-evolve to suit 35 

their light environment [6]. 36 

 37 

Sighted species' photoreceptors (the light-absorbing neurons which enable vision) are theorized to 38 

have undergone adaptation to best absorb the light most often present in their environments [23]. 39 
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This process, called visual tuning, is made possible by both filtering pigments [27–35] and 40 

differences in the amino acid sequence or 3-dimensional shape of photosensitive proteins called 41 

opsins [23]. Visual tuning has been found to shift wavelengths of maximum sensitivity in species 42 

as diverse as birds, fish, and mammals [23,36,45,46,37–44]. Although the effect of light 43 

environment on vision has been extensively studied in fish [47,48], a systematic study of visual 44 

tuning in terrestrial animals has not yet occurred; neither have terrestrial animals been 45 

systematically compared  to aquatic species. Both aquatic and terrestrial animals are found in a 46 

variety of light environments, and multiple phyla have independently made the water-to-land 47 

habitat transition. Additionally, studies of animals which transition from aquatic larvae to 48 

terrestrial adults have found that these species change their visual pigment expression patterns in 49 

a manner that matches their changing light environment [49–53]. Understanding whether 50 

phylogeny constrains the extent of visual tuning, particularly during these water-to-land 51 

transitions, is critical for understanding the evolutionary ecology of animal vision. 52 

 53 

If opsin tuning faces phylogenetic constraints, the evolutionary history of animal vision may have 54 

shaped the degree to which different phyla have adapted to their light environments. The types of 55 

opsins differ between chordates and other phyla [54]. Chordates use c-opsins in cilia-bearing 56 

photoreceptors to transduce photons into vision, while non-chordate animals use r-opsins in 57 

rhabdomere-bearing photoreceptors; no animals have been identified that use both c- and r-type 58 

photoreceptors for vision [55]. Phylogenetic analyses reveal that c- and r-opsins diverged 400 59 

million years ago and were likely both present in the urbilaterian, with r-opsins closely related to 60 

the melanopsins used by chordates for non-visual tasks [55]. The r-opsin/ c-opsin divergence may 61 

have given rise to different degrees of tuning between chordates and non-chordates. 62 
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 63 

The diverse habitats in which animals live, combined with the long evolutionary history of visual 64 

pigments, leads to several questions. First, have transitions from aquatic to terrestrial habitats 65 

influenced the spectra of light that animals can see? And, are differences in the spectra that animals 66 

can see associated with the c-opsin/ r-opsin divergence? Second, do animals that live in visual 67 

environments that filter red and blue light, such as closed-canopy forests and estuarine habitats, 68 

see colours more similarly to each other than to open terrestrial or freshwater aquatic 69 

environments, in which colours are less (if at all) strongly filtered? And, if there is an effect of 70 

habitat greenness, is this effect outweighed by phylogeny? 71 

 72 

To answer these questions, we performed a phylogenetically weighted systematic analysis of the 73 

maximum and minimum wavelength of visual sensitivity, as well as the range of visual sensitivity, 74 

across animals. 75 

 76 

(2) Materials and method 77 

Paper selection: We conducted Google Scholar searches in October 2017 and January 2018. Our 78 

first search used the search pattern “visual pigment” OR opsin OR “absorbance spectrum” “λ 79 

max” -human -man -men -woman -women -“Homo sapiens” -disease -regeneration. We 80 

conducted a second Google Scholar search using the search pattern visual pigment, opsin 81 

sensitivity, absorbance spectrum. For both searches, we excluded citations and patents. 82 

 83 
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We reviewed candidate articles using a three-step process. First, we screened by title and abstract 84 

to identify original research articles and review papers that examined animal visual physiology. 85 

We then screened articles to determine if they used microspectrophotometry, electrophysiology, 86 

pigment extraction, or in vitro mRNA expression followed by spectrophotometry, and that they 87 

measured visual sensitivity or visual pigment absorption from at least two animals. Finally, we 88 

only kept articles which used animals that were wild-caught or reared in full-spectrum light 89 

conditions, to avoid any effects of artificial lighting on visual sensitivity [56,57].  90 

 91 

For review articles, we determined whether the authors had included measurements of the mean 92 

wavelength of peak sensitivity (λmax) of some population in the article’s figures or tables. We 93 

downloaded the corresponding primary sources and filtered them using the process described 94 

above.  95 

 96 

Visual pigment sensitivity data: We recorded the following data for each species of each paper that 97 

passed our filters: 1) mean wavelength of peak sensitivity (λmax) for each visual pigment measured; 98 

2) number of animals measured (n); 3) standard deviation of the mean λmax (SD) (when available); 99 

and 4) where animals were caught (when available). We calculated sampling error for visual 100 

pigments when possible. 101 

 102 

Habitat data: We used standardized data sources to classify each species by habitat. Sources 103 

included field guides [58–60], public databases (BugGuide, <bugguide.net>, Butterflies and Moths 104 

of North America, <butterfliesandmoths.org>, FishBase <fishbase.org>, SealifeBase 105 
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<sealifebase.org>, IUCN Redlist <iucnredlist.org>) and online encyclopaedias including Animal 106 

Diversity Web (<animaldiversity.org>) and Encyclopedia of Life (<eol.org>). After first 107 

classifying species as terrestrial or aquatic, we then defined terrestrial sub-habitats: rainforest, 108 

forest, woodland, shrubland, grassland, and desert. We recategorized these habitats into three 109 

habitat types based on canopy density. Rainforest and temperate forest were designated as “closed” 110 

habitats. Woodland was considered to have “intermediate” canopy density  [25]. Shrubland, 111 

grassland, and desert were classified as "open" habitats.  112 

 113 

Aquatic habitats included river, stream, pond, lake, coastal, estuarine, open-water marine, bottom-114 

dwelling marine, abyssopelagic, abyssodemersal, bathypelagic, and bathydemersal habitats. We 115 

recategorized these habitats into two habitat types based on salinity. River, stream, pond, and lake 116 

habitats were considered "freshwater" habitats; while coastal, estuarine, open-water marine, and 117 

bottom-living marine habitats were "marine" habitats. Animals considered "coastal" were those 118 

described as living in water along the coast, near shore, or in estuaries. We also recategorized these 119 

habitats into two habitat types based on whether light was abundant or not. Abyssopelagic, 120 

abyssodemersal, bathypelagic, and bathydemersal habitats receive little or no sunlight due to their 121 

depth in the water column and were considered "lightless" habitats. Species that were considered 122 

by our sources as deep-water species were also considered species that lived in "lightless" habitats. 123 

All other habitats were considered "lit" habitats. Finally, we used FishBase, SealifeBase or field 124 

guides to identify the minimum and maximum depths for each species. We then used these data to 125 

calculate average depth per species (Daverage = (Dmax+Dmin) *2-1). 126 

 127 
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Phylogenetic control:  128 

To control for the effect of evolutionary relatedness on visual sensitivity we built a phylogenetic 129 

tree of all animals in our analysis (see the electronic supplementary material: figure S1). We used 130 

the function tnrs_match_names in the R package rotl [61] to acquire data from the Open Tree of 131 

Life database (<tree.opentreeoflife.org>) for each of the species represented in our regression, and 132 

to generate a phylogenetic tree using default arguments and excluded species flagged as incertae 133 

cedis; i.e., with uncertain phylogenetic position (25 species) and species which had no sequencing 134 

data in the Open Tree of Life database (6 species). We created an induced subtree with the resulting 135 

data using the function tol_induced_subtree in the package rotl.  136 

 137 

Trees produced using rotl are unrooted, without branch lengths, and sometimes with unresolved 138 

polytomies. We used the R packages phytools [62] and ape [63] to resolve these issues. We used 139 

the root function in ape to root the tree using Saccharomyces cerevisiae (ottid: 5262624) from 140 

<tree.opentreeoflife.org>) as the outgroup. We computed branch lengths using the compute.brlen 141 

function in ape with default arguments. Finally, we randomly resolved polytomies using the 142 

multi2di function in ape with default parameters. Subtrees of the primary tree were constructed as 143 

needed using the drop.tips function in ape. 144 

 145 

Statistical Analyses:  146 

To determine whether longest λmax, shortest λmax, and range of λmax followed the normal 147 

distribution, we used the shapiro.test function in R. To determine whether the variances of longest 148 
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λmax, shortest λmax, and range of λmax differed between broad habitat type (aquatic or terrestrial) or 149 

lineage (invertebrates or vertebrates) we used levene.test function in R. 150 

 151 

To determine whether there was an effect of broad habitat type or lineage on the longest λmax, 152 

shortest λmax, and range of λmax, we used the glm function in R to construct generalized linear 153 

models with the formula λmax ~ broad habitat * lineage. 154 

  155 

To determine whether phylogeny could explain extant differences in longest λmax, shortest λmax, 156 

and range of λmax between broad habitat type or lineage, we constructed phylogenetically 157 

controlled linear models using the phylolm function in the phylolm [64] package for R with the 158 

formula λmax ~ broad habitat * lineage with a bootstrap of 100. Since we had to exclude 31 species 159 

from our phylogenetic tree, we first ran the glm described above with the trimmed data set, and 160 

then compared those results to the results of our phylolm models. For these models, we used the 161 

overall phylogenetic tree and our trimmed dataset. 162 

 163 

We then subset our overall dataset for terrestrial animals and aquatic animals, re-tested for normal 164 

distributions and variances, and conducted a set of statistical analyses specific to terrestrial or 165 

aquatic animals. To determine whether there was an effect of terrestrial habitat type (closed, 166 

intermediate, or open) or lineage on longest λmax, shortest λmax, and range of λmax, we used the glm 167 

function with the formula λmax ~ terrestrial habitat type * lineage. However, since there were only 168 

2 species that were intermediate habitat specialists, and they had similar visual spectra to those in 169 

closed canopies, we combined closed and intermediate habitat treatments into a single treatment, 170 
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closed_intermediate, and re-ran the generalized linear models described above using the new 171 

habitat treatment levels (closed_intermediate vs open). 172 

 173 

We examined the effects of depth and habitat on visual sensitivities of aquatic animals. To 174 

determine whether there were effects of minimum, maximum, or average depth of habitat on 175 

longest λmax, shortest λmax, and range of λmax among aquatic species, we constructed linear models 176 

using the lm command with the formula λmax ~ depth. To determine whether phylogeny could 177 

explain extant differences in minimum, maximum, or average depth of habitat among longest λmax, 178 

shortest λmax, and range of λmax among aquatic species, we first re-ran the linear models without 179 

the species excluded from our phylogenetic tree, and then constructed phylogenetically controlled 180 

linear models using the phylolm function in the phylolm package for R with the formula λmax ~ 181 

depth with a bootstrap of 100. For these models, we used a subtree of our overall phylogenetic tree 182 

(see above), which omitted all terrestrial species. 183 

 184 

Finally, we subset our overall dataset for open terrestrial animals and non-deep water aquatic 185 

animals (both freshwater and coastal) and conducted the following analyses. To assess whether 186 

the visual systems of animals in open terrestrial habitats were more similar to the visual systems 187 

of animals in open water habitats (coastal or freshwater) than those of closed terrestrial habitats 188 

we compared the longest λmax, shortest λmax, and range of λmax, of species in coastal-aquatic, 189 

freshwater-aquatic, terrestrial-closed, and terrestrial-open habitats using the kruskal.wallis 190 

function in R. Following this, we performed a  pairwise (Steel-Dwass) test using the dscfAllPairs 191 

function in the R package PCMCRplus [65]. To determine whether phylogeny could explain extant 192 
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differences in longest λmax, shortest λmax, and range of λmax between animals living in these four 193 

habitat types we re-ran the above analyses only using species in our phylogenetic tree, and then 194 

constructed phylogenetically controlled linear models using the phylolm function in the phylolm 195 

package for R with using the following formula with a bootstrap of 100: λmax ~ coastal-aquatic + 196 

freshwater-aquatic + terrestrial-closed and λmax ~ coastal-aquatic + freshwater-aquatic + terrestrial-197 

open.  198 

 199 

(3) Results  200 

Our dataset included 1,114 opsins from 446 species, extracted from a total of 156 articles (See the 201 

electronic supplementary materials: table S1). Of these, 868 opsins were recorded from 355 aquatic 202 

species, and 246 opsins were recorded from 91 terrestrial species. Our data were not normally 203 

distributed (Shapiro-Wilk test: longest λmax: p < 0.05, W = 0.94; shortest λmax: p < 0.05, W = 0.83; 204 

range of λmax: p < 0.05, W = 0.70). Shortest, but neither longest nor range of λmax were found to 205 

have equal variances when compared across broad habitat and lineage (Levene's test: longest λmax: 206 

p = 0.16, t = 1.74; shortest λmax: p < 0.05, t = 25.28; range of λmax: p < 0.05, t = 21.62).  207 

 208 

(a) Terrestrial species were maximally sensitive to longer wavelengths of light than aquatic 209 

species 210 

Terrestrial species were maximally sensitive to longer wavelengths of light than aquatic species, 211 

independent of opsin type (GLM, n=433: habitat p = 3.83*10-8, t = 5.600, lineage p = 0.309, t = -212 

1.019; interaction: p = 0.595, t = -0.532; λmax longest long-wavelength terrestrial species: 535±41.6 213 
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nm, aquatic species: 506±30.6 nm, invertebrate species: 513±38.9 nm, vertebrate species: 214 

512±33.0 nm) (figure 1a).    215 

 216 

(b) Terrestrial species saw shorter wavelengths of light than aquatic species 217 

Terrestrial species were maximally sensitive to shorter wavelengths of light than aquatic species, 218 

but there was a significant interaction between habitat and lineage: aquatic vertebrate species were 219 

more sensitive to short wavelengths than aquatic invertebrate species, but terrestrial invertebrate 220 

species were more sensitive to short wavelengths that terrestrial vertebrate species. Additionally, 221 

invertebrates trended towards seeing short wavelengths of light (GLM, n = 433: habitat p =  0.045, 222 

t = -2.012, lineage p = 0.051, t = 1.960, interaction: p = 2.34*10-3; t = -3.061;  λmax shortest short-223 

wavelength terrestrial species: 442±79.2 nm, aquatic species: 476±39.3 nm; invertebrate species: 224 

466±70.2 nm, vertebrate species: 471±41.3 nm) (figure 1b).  225 

 226 

(c) Terrestrial species and invertebrates saw a larger range of colours than aquatic species 227 

and vertebrates  228 

Terrestrial species saw a larger range of colours than aquatic species. In addition, there was a 229 

significant interaction between habitat and lineage: aquatic invertebrates saw a narrower range of 230 

colours than aquatic vertebrates, but terrestrial invertebrates saw a broader range of colours than 231 

terrestrial vertebrates (GLM, n = 443: habitat p = 2.51*10-6, t = 4.772, lineage p = 0.03, t = -2.184, 232 

interaction: p = 0.00261; t =2.232; λmax range terrestrial species:  92±85.6 nm, aquatic species: 233 

30.9±51.6 nm; invertebrate species: 47.2±80.4 nm, vertebrate species: 40.7±56.7 nm) (figure 1c). 234 
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(d) Accounting for phylogeny removes the effect of habitat and lineage on visual pigment 235 

sensitivity  236 

When we ran our analyses with only the subset of species included in our phylogenetic tree, we 237 

found that we lost the effect of lineage on the range of visual pigment sensitivity but did not lose 238 

the effect of lineage on the longest or shortest wavelengths of maximum sensitivity (see the 239 

electronic supplementary materials: tables S2 and S3). With this in mind, we controlled for 240 

phylogeny. Controlling for phylogeny removed the effect of habitat and lineage on longest λmax, 241 

shortest λmax and range of λmax (table 1). 242 

Table 1. No effect of habitat or lineage on visual sensitivity following phylogenetic control. 
Variable Longest λmax Shortest λmax λmax Range 

p t SE p t SE p t SE 
Habitat 0.257 -1.13 11.4 0.439 0.774 17.0 0.226 -1.211 21.7 
Lineage 0.953 0.058 12.5 0.940 0.075 18.5 0.978 -0.028 23.7 

Habitat * Lineage 0.474 -0.72 20.3 0.214 -1.25 30.1 0.552 0.596 38.6 
 243 

(e) Forest-woodland and open habitat species have similar spectral sensitivities 244 

There was no effect of tree canopy openness on λmax, shortest λmax, and range of λmax (table 2; see 245 

the electronic supplementary materials: figure S2, table S4 and table S5). 246 

   247 

Table 2. Effect of habitat greenness on shortest λmax. P-values are above diagonal; q-values are 
below diagonal. Numbers in bold are statistically significant.  

p 
q Coastal 

Forest + 
Intermediate Freshwater 

Open 
Terrestrial 

Mean 
(nm) 

SD 
(nm) 

Coastal -- 5.75*10-7 0.903 3.92*10-6 254.4 55.2 
Forest + Intermediate -7.54 -- 2.62*10-5 0.24 470.4 68 

Freshwater -0.970 -6.49 -- 1.92*10-5 261.1 56.5 
Open Terrestrial -8.26 -2.64 -7.034 -- 423.5 82.1 
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(f) Average and maximum depth, but not minimum depth, influenced sensitivity to blue but 248 

not red light  249 

Species living at deeper average depth had longer shortest λmax than shallow-living species (p = 250 

0.046, t = 2.03; see the electronic supplementary material: figure S3a). Additionally, species 251 

living at a deeper maximum depth had shortest λmax that were longer than shallow-living species 252 

shortest λmax (p = 0.033, t = 2.18; electronic supplementary material: figure S4). Average depth 253 

and minimum depth did not affect species' longest λmax or range of λmax, and there was no effect 254 

of maximum depth on spectral sensitivity (electronic supplementary material: figures S3b-c and 255 

S5). Controlling for phylogeny removes the effect of average depth on shortest λmax (phylolm: t = 256 

-4.688*10-1
, p = 0.641).  257 

 258 

(g) Animals in coastal and freshwater habitats saw shorter wavelengths while animals in 259 

forest+intermediate or open-canopy habitats saw longer wavelengths 260 

We found that coastal animals' and freshwater animals’ shortest λmax were shorter than both 261 

forest+intermediate animals' shortest λmax and open terrestrial animals' shortest λmax (omnibus test: 262 

p = 1.359*10-12, χ2 = 53.296, df = 3, pair-wise comparisons:  table 2; figure 2). We also found that 263 

forest+intermediate animals' longest λmax and open terrestrial animals' longest λmax were longer 264 

than freshwater animals' and coastal animals’ longest λmax (omnibus test: p = 1.19*10-14, χ2 = 67.92,  265 

df = 3; pairwise comparisons: table 3 and figure 2). 266 

  267 
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(h) Open terrestrial animals had a broader visual range than coastal animals 268 

We found that open terrestrial animals had a larger range (longest λmax – shortest λmax) than coastal 269 

animals, but all other habitat groups were statistically similar (omnibus test: p = 0.03366, χ2 = 270 

8.6931, df = 3; pairwise comparisons: table 4). 271 

 272 

(i) Accounting for lineage removed the effects of water and dissolved particles on visual 273 

pigment sensitivity 274 

Controlling for phylogeny removed the effect of habitat greenness on shortest λmax, longest λmax, 275 

and λmax range (table 5), even when we accounted for the species absent from our phylogenetic 276 

tree (see the electronic supplementary material: tables S6 – S8). 277 

  278 

Table 3. Effect of habitat greenness on longest λmax. P-values are above diagonal; q-values are 
below diagonal. Numbers in bold are statistically significant. 

p 
q Coastal 

Forest + 
Intermediate Freshwater 

Open 
Terrestrial 

Mean 
(nm) 

SD 
(nm) 

Coastal -- 1.72*10-7 0.77 6.23*10-10 297.3 72.4 
Forest + Intermediate -7.82 -- 7.54*10-6 0.22 547.1 17.7 

Freshwater -2.40 -6.85 -- 2.77*10-5 314.3 73.8 
Open Terrestrial -9.14 -2.71 -7.73 -- 534.1 49.1 

Table 4. Effect of habitat greenness on λmax range. P-values are above diagonal; q-values are 
below diagonal. Numbers in bold are statistically significant.  

p 
q Coastal 

Forest + 
Intermediate Freshwater 

Open 
Terrestrial 

Mean  
(nm) 

SD  
(nm) 

Coastal -- 0.239 0.411 0.0497 42.88 70.2 
Forest + Intermediate -2.65 -- 0.827 0.756 76.63 72.6 

Freshwater -2.18 -1.21 -- 0.561 53.26 69.3 
Open Terrestrial -3.64 -1.40 -1.84 -- 110.6 98.9 
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 279 

 280 

(4) Discussion 281 

 282 

(a) The transition from aquatic to terrestrial habitats has influenced animal vision 283 

We found that terrestrial species see longer long-wavelength light and a larger range of colours 284 

overall compared to aquatic species. Few other studies have broadly investigated the effect of 285 

animals' evolutionary transitions between aquatic and terrestrial habitats on colour vision. 286 

However, transitions from aquatic to terrestrial life stages that lead to the development of different 287 

visual abilities can indicate whether differences between terrestrial and aquatic lifestyles 288 

themselves necessitate different strategies for perceiving the world [49]. Such studies have been 289 

conducted within single species: for example, in several species of dragonflies, adults have short 290 

wavelength-shifted vision, express more visual pigments than larvae, and have dorsal eye regions 291 

specialized to detect shorter wavelengths of light refracted from the sky [49,50]. Similar types of 292 

visual shifts have been observed in southern leopard frogs [66]. Just as animal development 293 

favours the expression of environmentally matched opsins over an intra-generational timescale, 294 

our results suggest that evolutionary adaptation favours the use of environmentally matched opsins 295 

over an inter-generational timescale. 296 

Table 5. Loss of effect of habitat greenness on visual sensitivity following phylogenetic 
correction. Comparisons shown are those found significant in tables 2 – 4. 

Comparison Dependent variable t p SE 
Coastal vs forest + intermediate Shortest λmax -0.576 0.566 253.78 

Coastal vs open terrestrial Shortest λmax -0.490 0.625 251.87 
Freshwater vs open terrestrial Shortest λmax -0.445 0.658 254.04 

Coastal vs open terrestrial Longest λmax -1.37 0.174 164.14 
Forest + intermediate vs freshwater Longest λmax -1.74 0.0847 166.79 

Freshwater vs open terrestrial Longest λmax -1.69 0.0941 165.55 
Open terrestrial vs coastal λmax Range -0.397 0.692 255.87 
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 297 

The results of our terrestrial vs. aquatic models are congruent with the visual tuning hypothesis, 298 

that animal visual systems undergo adaptation to best detect the light most often present in their 299 

environments [23]. Terrestrial animals are exposed to a dynamic range of colours that changes 300 

throughout the day, including both short and long-wavelength light, as well as ultraviolet light in 301 

large forest gaps and open environments [25,26]. By contrast, aquatic animals, which we found to 302 

be less sensitive to long-wavelength and ultraviolet light, live in environments that are exposed to 303 

relatively less long-wavelength and ultraviolet light [24]. Absent phylogenetic controls, our 304 

regressions suggest that animals are likely to be maximally sensitive to colours most often present 305 

in their environment, and insensitive to colours likely to be absent. 306 

 307 

(b) Canopy coverage does not influence visual tuning 308 

We found that animals which live in densely forested environments do not differ in their visual 309 

sensitivities from animals that live in open, prairie-like habitats. Although the forest light 310 

environment directly beneath the canopy is dominated by middle wavelengths (i.e., greens and 311 

yellows) under most conditions [25,26], spatial and temporal variations in forest light's spectral 312 

qualities may require forest animals to possess visual sensitivities similar to those of animals living 313 

in open habitats. 314 

 315 

Additionally, animals may choose to use light microhabitats which are suitable to their current 316 

visual physiology. Endler and Théry observed that forest birds use areas in which they are most 317 

conspicuous to advertise to potential mates [67]. Some species also modify their habitats to 318 
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improve the visibility of their visual displays. For example, male golden-collared manakins clean 319 

the arenas they use to court females; the background of a cleaned arena contrasts better with male 320 

manakins' plumage than the background of the forest surrounding the arena [68]. Arena cleaning 321 

also seems to improve white-bearded manakins' ability to detect predators [69]. In such cases, 322 

evolution may be driving site preferences which match vision rather than driving vision to match 323 

site preferences, a complete reversal of the mechanism being investigated in our study.  324 

 325 

(c) The ciliary/rhabdomeric opsin divergence may impact the colours that animals can see 326 

We found that animals that use rhabdomeric opsins for vision see a broader range of wavelengths 327 

of light than animals that use ciliary opsins for vision. Many animals that use rhabdomeric 328 

photoreceptors for vision, especially arthropods, have opsins that are maximally sensitive to 329 

ultraviolet light [31,70–75]. By contrast, comparatively few animals that use ciliary photoreceptors 330 

for vision have opsins that are maximally sensitive to UV light, although several species of birds 331 

and fish are sensitive to ultraviolet light [40,76–78]. Additionally, many mammals that utilize high 332 

acuity colour vision and whose short wavelength sensitive photoreceptors are sensitive to UV light, 333 

have corneas that selectively filter UV, inhibiting their ability to see those wavelengths [79,80]. 334 

Both ciliary and rhabdomeric opsins are thought to have been present in the urbilaterian, the 335 

common ancestor of all modern animals save sponges, cnidarians, placozoans, and ctenophores 336 

[55]. The emergence in chordates of ciliary opsins for vision rather than photoentrainment 337 

represents a singular event, one that may have also heralded differences in visual perception 338 

associated with reduced sensitivity to short wavelengths of light. 339 

 340 
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(d ) Phylogeny outweighs the effect of habitat 341 

We found that the effects of habitat upon the spectrum of light animals can see were reduced once 342 

we controlled for phylogenetic history. These findings differ from those of studies looking at 343 

individual animal clades. For example, a 2018 survey of ray-finned fish found that species living 344 

at depth have reduced chromacy even after controlling for phylogeny [47]. Similarly, a historic 345 

study of cottoid fish in Lake Baikal found that there was a correlation between λmax and habitat 346 

depth [81]. While studies of marine mammals found that species that forage near the surface have 347 

visual pigments that resemble those of terrestrial mammals while those that foraged at depth had 348 

visual pigments with amino acid substitutions that shifted the λmax towards shorter wavelengths 349 

[82]. We found that, when expanding to include multiple clades – both chordates and non-350 

chordates – a similar pattern emerged: terrestrial species had broader sensitivity to light and more 351 

sensitivity to long wavelengths of light compared to aquatic animals. However, these effects are 352 

lost once we account for phylogeny. This loss of an effect might be because the historical 353 

divergence between the visual pigments used by vertebrates and invertebrates is an important 354 

limiting factor on the degree to which visual pigments can accommodate for light environment, 355 

something that would not be detected in analyses limited to vertebrates. 356 

 357 

The effect of the c-opsin/ r-opsin divergence is lost once we account for phylogeny in our analyses, 358 

but since this transition happened once and maps onto the metazoan phylogenetic tree, this loss of 359 

effect might be expected. Outside of this transition, opsin evolutionary history such as mutation 360 

biases may account for the effect of phylogeny on visual ability in our analysis. Retinal is 361 

covalently bonded to opsin via a Schiff base and the charge of the amino acid residues near the 362 

Schiff base influence the ability of retinal to change conformation and  λmax of the associated opsin 363 
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[83,84], which has  been experimentally confirmed using directed mutagenesis [37,85,86]. Future 364 

research should consider whether there are inherent differences in the electronic charge of the 365 

binding pocket between ciliary and rhabdomeric type opsins. Additionally, studies examining 366 

whether non-opsin means of visual tuning, including the differential absorption of light by 367 

screening pigments, differ between animals which use ciliary and rhabdomeric opsins and which 368 

live in the same light environment may prove particularly illuminating. 369 

 370 

(e) Conclusions 371 

Here we used visual sensitivity data from nearly 450 animal species and 3 phyla to conduct a 372 

systematic survey of the effects of habitat light on the colours animals can see. We found that 373 

terrestrial animals and aquatic animals possess different ranges of spectral sensitivity from each 374 

other, but that evolutionary processes such as the c-opsin/r-opsin divergence may have limited 375 

chordates' ability to tune their opsins to short-wavelength light. Additionally, the eyes of animals 376 

living in terrestrial habitats are not specifically tuned to forest canopy cover. Future research 377 

should consider whether inherent differences between chordate and non-chordate opsin amino acid 378 

sequences, or downstream neural signalling, are responsible for the evolutionary limitations to 379 

visual tuning.  380 
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Figure 1. Effect of coarse habitat and lineage on mean visual pigment sensitivity, prior to 
phylogenetic control. A. Shortest opsin: Aquatic invertebrates: n = 78, µ = 485.3 nm; Aquatic 
vertebrates: n = 273 µ = 473.0 nm; Terrestrial invertebrates: n = 43, µ = 430.1 nm; Terrestrial 
vertebrates: n = 39, µ = 456.1 nm. B. Longest opsin: Aquatic invertebrates: n = 78, µ = 503.3 
nm; Aquatic vertebrates: n = 273, µ = 507.6 nm; Terrestrial invertebrates: n = 43, µ = 530.3 nm; 
Terrestrial vertebrates: n = 39, µ = 539.1 nm. C. Opsin range: Aquatic invertebrates: n = 78, µ 
= 18.0 nm; Aquatic vertebrates: n = 273, µ = 34.6 nm; Terrestrial invertebrates: n = 43, µ = 
100.2 nm; Terrestrial vertebrates: n = 39, µ = 83.0 nm. *: p < 0.05. 
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Figure 2. Effect of habitat greenness on visual sensitivities. A. Longest opsin: forest + 
intermediate: n = 14, µ = 547.1 nm, sd = 17.71 nm; coastal: n = 40, µ = 297.3 nm, sd = 72.42 
nm; freshwater: n = 23, µ = 314.3 nm, sd = 73.77 nm; open terrestrial: n = 22, µ = 534.1 nm, sd 
= 49.09 nm; B. Shortest opsin: forest + intermediate: n = 14, µ = 470.4 nm, sd = 60.00 nm; 
coastal: n = 40, µ =  254.4 nm, sd = 55.16 nm; freshwater: n = 23, µ = 261.1 nm, sd = 56.52 nm; 
open terrestrial: n = 22, µ = 423.4 nm, sd = 82.06 nm C. Opsin range: forest + intermediate: n = 
14, µ = 76.63 nm, sd = 72.61 nm; coastal: n = 40, µ = 742.88 nm, sd = 70.15 nm; freshwater: n 
= 23, µ  = 53.26 nm, sd = 69.30 nm; open: n = 22, µ = 110.6 nm, sd = 98.82 nm. *: p < 0.05. 
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