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Tetraplegia from spinal cord injury leaves many patients paralyzed below the neck, leaving them unable to perform most 

activities of daily living. Brain-machine interfaces (BMIs) could give tetraplegic patients more independence by directly 

utilizing brain signals to control external devices such as robotic arms or hands. The cortical grasp network has been of 

particular interest because of its potential to facilitate the restoration of dexterous object manipulation. However, a network 

that involves such high-level cortical areas may also provide additional information, such as the encoding of speech. Towards 

understanding the role of different brain areas in the human cortical grasp network, neural activity related to motor 

intentions for grasping and performing speech was recorded in a tetraplegic patient in the supramarginal gyrus (SMG), the 

ventral premotor cortex (PMv), and the somatosensory cortex (S1). We found that in high-level brain areas SMG and PMv, 

grasps were well represented by firing rates of neuronal populations already at visual cue presentation. During motor 

imagery, grasps could be significantly decoded from all brain areas. At identical neuronal population sizes, SMG and PMv 

achieved similar highly-significant decoding abilities, demonstrating their potential for grasp BMIs. During speech, SMG 

encoded both spoken grasps and colors, in contrast to PMv and S1, which were not able to significantly decode speech.These 

findings suggest that grasp signals can robustly be decoded at a single unit level from the cortical grasping circuit in human. 

Data from PMv suggests a specialized role in grasping, while SMG’s role is broader and extends to speech. Together, these 

results indicate that brain signals from high-level areas of the human cortex can be exploited for a variety of different BMI 

applications. 

Keywords: brain machine interfaces, single-unit recording, grasp decoding, speech decoding, supramarginal gyrus, ventral 

premotor cortex 

Introduction 

The ability to grasp and manipulate everyday objects is 

a fundamental skill, required for most daily tasks of 

independent living. Functional loss of this ability, due to 

partial or complete paralysis from a spinal cord injury 

(SCI), can irrevocably degrade an individual’s 

autonomy. People with tetraplegia have consistently 

rated recovery of hand and arm function as the highest 

priority for increasing their quality of life (Anderson, 

2004),(Snoek et al., 2004). Brain-machine interfaces 

(BMI) could give tetraplegic individuals greater 

independence by directly recording neural activity from 

the brain and decoding these signals to control external 

devices such as a robotic arm or hand (Aflalo et al., 

2015). Intracortical BMI’s use microelectrode arrays to 

capture the action potentials of individual neurons with 

a high signal to noise ratio (SNR) and high spatial 

resolution (Nicolas-Alonso and Gomez-Gil, 2012). If 

placed in brain areas of the grasp circuit in human, 
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these devices are well suited to extract the neuronal 

signals supporting the control of a high-dimensional 

prosthetic hand (Collinger et al., 2013).  

In this work, we will evaluate the encoding of grasp 

motor imagery in human supramarginal gyrus (SMG), a 

sub region of the posterior parietal cortex (PPC), the 

ventral premotor cortex (PMv) and the primary sensory 

cortex (S1). These brain areas are key components of 

the cortical grasp circuit. PPC and PMv each process 

complex cognitive processes, like goal and end-target 

directed signals (Aflalo et al., 2015), and low level 

trajectory and joint-angle motor commands, as M1 

(Andersen et al., 2014), (Schaffelhofer and Scherberger, 

2016). Decoding movement intentions from upstream 

brain areas such as PPC and PMv, instead of decoding 

individual finger movements from M1, may allow for 

more rapid and intuitive control of a grasp BMI 

(Andersen et al., 2014),(Andersen et al., 2019). S1 

processes incoming sensory feedback signals from the 

peripheral nervous system. While it is not thought to 

participate in grasp planning per se, it processes 

proprioceptive signals during movement (Goodman et 

al., 2019), which could be exploited for a grasp BMI.  

The grasp circuit was first identified in a non-human 

primate model (NHP), a network of cerebral pathways 

involved from visual object presentation to grasp 

execution. During an object manipulation task, neurons 

in anterior intraparietal cortex (AIP), a sub-region of 

PPC, and F5 (a PMv analog in NHP) have both shown 

selectivity for object features, such as size, shape and 

orientation (Murata et al., 1997), (A. Murata et al., 

2000),(Sakata, 1995),(Taira, 1998). In contrast to M1, 

information about the attempted grasp can already be 

decoded during cue presentation with high accuracy, 

implicating a role in motor planning (Carpaneto et al., 

2011), (Townsend et al., 2011), (Michaels and 

Scherberger, 2017), (Schaffelhofer and Scherberger, 

2016). In human electrophysiological studies, some of 

these results have been replicated in AIP, 

demonstrating the ability to decode grasp planning and 

intention while a human participant performed motor 

imagery of one of five cued grasps (Klaes et al., 2015). 

However, it remains to be seen if an analogous 

relationship exists between pre-clinical results in NHP 

F5 and human PMv. 

The supramarginal gyrus (SMG) has been hypothesized 

as a region specialized for complex tool use, 

evolutionarily evolving from a duplicate region of NHP 

AIP (Orban and Caruana, 2014). Functional magnetic 

resonance imagining (fMRI) studies have shown 

activation of SMG during observed tool use, a finding 

which could not be replicated in presumed analogous 

anatomical regions of cortex in NHP (Peeters et al., 

2009). Other studies confirmed SMG activity modulates 

during grasping and manipulation of objects (Sakata, 

1995), reaching (Filimon et al., 2009), and tool use 

(Gallivan et al., 2013) (Orban and Caruana, 2014), 

(McDowell et al., 2018), (Reynaud et al., 2019). 

Additionally, one study demonstrated SMG’s 

involvement in both the planning and execution of 

(pantomimed) tool use (Johnson-Frey, 2004). These 

characteristics highlight SMG’s rich potential as a 

source of grasp related neural signals in human cortex, 

which could be exploited for BMI control of a 

prosthetic hand. Furthermore, transcranial magnetic 

stimulation (TMS) and fMRI studies have extensively 

documented SMG’s involvement in language 

processing (Stoeckel et al., 2009), (Sliwinska et al., 

2012), (Oberhuber et al., 2016) and verbal working 

memory (Deschamps et al., 2014). This evidence 

suggests SMG could be involved in many high-level 

processes, such as speech, indicating its potential value 

for a variety of different BMI applications. 

Recent studies in S1 indicate its potential as a target 

site for BMI applications in patients with tetraplegia. 

Human and NHP studies have demonstrated decoding 

of hand kinematics during executed hand gestures 

(Branco et al., 2017) and before contact during object 

grasping (Okorokova et al., 2020), respectively. These 

results suggest that neural signals could also be present 

during imagined movement (Zhang et al., 2017). 

Furthermore, modulation of S1 neurons during motor 

imagery of reaching has been demonstrated for the 

same participant whose data underlies this work (Jafari 

et al., 2020). If grasping motor imagery can be robustly 

decoded, a single implant in S1 could allow for a 

bidirectional BMI, able to decode grasp intentions and 

utilize electrical stimulation to evoke somatosensations 

(Armenta Salas et al., 2018).  
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In this work, a tetraplegic participant performed motor 

imagery of several different grasps, while 

neurophysiological responses were captured from 

three implant sites using recording microelectrode 

arrays, the supramarginal gyrus, the ventral premotor 

cortex and the primary sensory cortex. We evaluated 

the decodability of these imagined grasps in the 

context of evaluating suitability for BMI applications. To 

explore each regions’ role in other high-level cognitive 

tasks, the participant performed verbal speech of 

names of grasps, and names of colors. We 

hypothesized that grasp motor imagery would 

modulate activity in all three brain areas, while SMG 

would show higher neuronal modulation during speech 

than PMv and S1, due to its involvement in visual word 

recognition and phonological processing (Oberhuber, 

Cerebral Cortex, 2016).   

Methods  

Participant and Implants 

A tetraplegic participant was recruited for an IRB- and 

FDA-approved clinical trial of a brain-machine interface 

and he gave informed consent to participate. The 

participant suffered a spinal cord injury at cervical level 

C5 two years prior to participating in the study. The 

targeted areas for implant were left ventral premotor 

cortex (PMv), supramarginal gyrus (SMG), and primary 

somatosensory cortex (S1). For more information about 

implant location, see (Armenta Salas et al., 2018) . To 

identify exact implant sites within these regions, the 

participant performed imagined reaching and grasping 

tasks during fMRI, described in (Aflalo, Kellis et al., 

2015). In November 2016, the participant underwent 

surgery to implant one 96-channel multi-electrode 

array (Neuroport Array, Blackrock Microsystems, Salt 

Lake City, UT) in SMG and PMv each, and two 7 x 7 

sputtered iridium oxide film - tipped microelectrode 

arrays with 48 channels each in S1. 

Data collection 

Recording began two weeks after surgery and 

continued one to three times per week. Data for this 

work were collected between 2017 and 2019. 

Broadband electrical activity was recorded from the 

NeuroPort arrays using Neural Signal Processors 

(Blackrock Microsystems, Salt Lake City, UT). Analog 

signals were amplified, bandpass filtered (0.3-7500 Hz), 

and digitized at 30,000 samples/sec. To identify 

putative action potentials, these broadband data were 

bandpass filtered (250-5000 Hz), and thresholded at -

4.5 the estimated root-mean-square voltage of the 

noise. Waveforms captured at these threshold 

crossings were then spike sorted by assigning each 

observation to a putative single neuron, and the rate of 

occurrence of each "unit", in spikes/sec, are the data 

underlying this work. Units with firing rate <1.5 Hz were 

excluded from all analyses. To allow for meaningful 

analysis of individual datasets, recording sessions 

where high levels of noise prevented us from isolating 

more than three units on an array were excluded. This 

resulted in the removal of three PMv datasets. The 

rounded average number of recorded units per session 

was 55 +/- 17 for SMG, 12 +/- 9 for PMv, and 119 +/- 48 

for S1.  

Experimental Task   

We implemented a task that cued five different grasps 

with visual images taken from the “Human Grasping 

Database” (Feix et al., 2016) to examine the neural 

activity related to imagined grasps in SMG , PMv and 

S1. The grasps were selected to cover a range of 

different hand configurations and were labeled 

“Lateral”, “WritingTripod”, ”MediumWrap”, 

“PalmarPinch”, and “Sphere3Finger” (Figure 1A). 

Go task:  Each trial consisted of four phases, referred to 

in this paper as ITI, cue, delay and action (Figure 1B). 

The trial began with a brief inter-trial interval (2 sec), 

followed by a visual cue of one of the five specific 

grasps (4 sec). Then, after a delay period (gray circle 

onscreen; 2 sec), the participant was instructed to 

imagine performing the cued grasp with his right 

(contralateral) hand (Go condition; green circle on 

screen; 4 sec). Three datasets had a longer action 

phase. For these, only data from the first four seconds 

of the action phase were included in the analysis.  

Go/No-Go task: In a Go/No-Go variation of this task, the 

participant was presented with either a green circle (Go 

condition) or a red circle (No-Go condition) after the 

delay, with instruction to imagine performing the cued 

grasp as normal during the Go condition, and to do 
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nothing for the No-Go condition. In both variations of 

the task, conditions and grasp types were 

pseudorandomly interleaved and balanced with eight 

trials collected per combination (Figure 1B).  

Spoken Grasps task: A speaking variation of the task 

was constructed with the same task design outline 

above, but instead of performing motor imagery during 

the action phase, the participant was instructed to 

speak aloud the name of the grasp. Spoken Colors task: 

Another variation of this speaking task used five 

different colors instead of five grasps, and the 

participant was instructed to say the name of the color 

during the action phase (Figure 5A,B). On each session 

day, “Go task”, a “Spoken Grasps task” and a “Spoken 

Colors task” was performed, to allow comparisons 

between tasks. 

Table 1 illustrated the number of recording sessions for 

each task variation. 

The participant was situated 1 m in front of a LED 

screen (1190 mm screen diagonal), where the task was 

visualized. The task was implemented using the 

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997; 

Kleiner et al, 2007) extension for MATLAB (MATLAB. 

(2018). 9.7.0.1190202 (R2019b). Natick, 

Massachusetts: The MathWorks Inc.).  

Neural Firing Rates  

Firing rates of sorted units were computed as the 

number of spikes that occurred in 50ms bins, divided 

by the bin width, and smoothed using a Gaussian filter 

with kernel width of 50ms to form an estimate of the 

instantaneous firing rates (spikes/sec). For the Go 

condition, 40 trials (8 repetitions of 5 grasps) were 

recorded per block. For the No-Go condition, two 

consecutive blocks of 40 trials (4 repetitions of 5 Go 

and 5 No-Go grasps) were recorded and combined, to 

accommodate the participant with shorter tasks.  

Linear regression analysis 

To identify units that exhibited selective firing rate 

patterns (or tuning) for the different grasps, linear 

regression analysis was performed in two different 

ways: 1) step by step in 50ms time bins to allow 

assessing changes in neuronal tuning over the entire 

trial duration 2) averaging the firing rate of specified 

time windows during cue (1.5s) and action phase (2s), 

allowing to compare tuning between both phases. The 

model returns a fit that estimates the firing rate of a 

unit based on the following variables:  

FR = βo + β1X1 + β2X2 + β3X3 + β4X4 + β5X5  

Where FR corresponds to the firing rate of that unit, 

and β corresponds to the estimated regression 

coefficients. A 48 x 5 indicator variable, X, indicated 

which data corresponded to which grasp. The first 8 

rows were the average firing rate of the ITI phase, and 

indicated the offset term βo, or baseline condition. 

These rows had only zeros. The next 40 rows indicated 

the trial data, for example, if the first trial was “Lateral” 

(grasp 1), it would have a 1 in column 1, and zeros in all 

other columns.  

In this model, β symbolizes the change of firing rate 

from baseline for each grasp. A student’s t –test was 

performed to test the hypothesis of β = 0. A unit was 

defined as tuned if the hypothesis could be rejected (p 

< 0.05, t-statistic). This definition allows for tuning of a 

channel to zero, one, or multiple grasps during 

different time points of the trial.  

Linear regression significance testing 

To assess significance of unit tuning, a null dataset was 

created by repeating linear regression analysis 1000 

times with shuffled labels. Then, different percentile 

levels of this obtained null distribution were computed 

and compared to the actual data. Data higher than the 

95th percentile of the null - distribution was denoted *, 

higher than 99th percentile was denoted **, and higher 

than 99.9th percentile was denoted ***. 

        Task 

Area  

Go 

task 

Go/No-

Go task 

Spoken 

Grasps 

Spoken 

Colors 

SMG 6 9 5 5 

PMV 6 6 5 5 

S1 6 7 5 5 

 
Table 1 Number of recorded sessions for each task variation 
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Classification 

Using the neuronal firing rates recorded in this task, a 

classifier was used to evaluate how well the set of 

grasps could be differentiated during each phase. For 

each session and each array individually, naïve Bayes 

classification was performed, assuming an identical 

diagonal covariance matrix for each group. These 

assumptions, compared to a full diagonal covariance 

matrix, resulted in best classification accuracies. 

Classifiers were trained using averaged data from each 

phase, which were either 2s (ITI, delay) or 4s (cue, 

action). We applied principal component analysis (PCA) 

and selected the 10 highest principal components 

(PC’s), or PCs explaining more than 90% of the variance 

(whichever was higher), for feature selection on the 

training set. This feature selection method allowed us 

to compare if there was a correlation between the 

number of tuned units and classification accuracy, 

without selecting tuned units as features. The unit yield 

in PMv was generally lower than in SMG and S1, 

however, significant classification accuracies were still 

obtained with a limited number of features.  Between 

12 and 21 PCs were used in SMG, 6 and 16 in PMv, and 

18 and 27 in S1. Leave one out cross-validation was 

performed to estimate decoding performance. A 95% 

confidence interval was computed by the student's t 

inverse cumulative distribution function. 

Classification performance significance testing 

To assess the significance of classification performance, 

a null dataset was created by repeating classification 

1000 times with shuffled labels. Then, different 

percentile levels of this null distribution were 

computed and compared to the mean of the actual 

data. Mean classification performances higher than the 

95th percentile were denoted *, higher than 99th 

percentile were denoted **, and higher than 99.9th 

percentile were denoted ***. 

Neuron dropping curve and cross phase classification 

The neuron dropping curve represents the evolution of 

the classification accuracy based on the number of 

units used to train and test the model. All available 

units were used for all brain areas. Simultaneously to 

the neuron dropping analysis, cross-phase classification 

was performed to investigate how well a model trained 

on data of the cue phase can predict data of the action 

phase, and vice-versa. Classification with eightfold 

cross validation was performed for each subset of units 

(or features) selected for classification. First, one of the 

features was randomly selected, and the classification 

 

Figure 1 Neurons in posterior parietal cortex and ventral premotor cortex encode grasps. A) Grasp images from the “Human 
Grasping Database” (Feix et al., 2016)  were used to cue motor imagery in a tetraplegic human. The task was composed of an inter-
trial interval (ITI), a cue phase displaying one of the grasp images, a delay phase and an action phase. The action phase was 
composed of intermixed Go trials (green), during which the participant performed motor imagery and No-Go trials (red), during 
which the participant rested. B) Example smoothed firing rates of neurons in SMG and PMv during Go (left) and No-Go (right) trials. 
The plots show the smoothed average firing rate of two example units (solid line, shaded area 95% bootstrapped c.i.) for 8 trials of 
each grasp, with vertical lines representing the beginning of each phase. 
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accuracy on cue and action phase was computed with a 

model trained on either the action phase or the cue 

phase. Then, a new subset of two random features was 

selected, and classification accuracy was again 

computed. This was performed until all features were 

added. PCA was performed on the dataset. To avoid 

overfitting by using more features than observations 

(40), the maximum number of principal components 

used was 20. The process was repeated 100 times, and 

the average prediction accuracy with 95% confidence 

interval (bootstrapping) was plotted against the 

number of neurons. 

Results  

Grasp representation in SMG, PMv and S1 was 

characterized by implementing a task that cued a 

human participant to imagine five different grasps with 

visual images taken from the “Human Grasping 

Database” (Feix et al., 2016) (Figure 1A). The task 

contained four phases: an inter-trial interval (ITI), a cue 

phase, a delay phase, and an action phase, during 

which the participant performed motor imagery. In the 

Go variation of the task, motor imagery was performed 

during each action phase. In a Go/No-Go variation of 

the task, the action phase was composed of randomly 

intermixed Go trials and No-Go trials resulting in 10 

experimental conditions (5 grasps x 2 action phases). 

This control allowed to verify that activity during the 

action phase was motor-related, and the participant 

can control motor imagery at will. We evaluated the 

brain regions’ potential for grasp BMI in two ways; 

firstly, by quantifying grasp tuning in the neuronal 

population and secondly, by assessing how well 

individual grasps were decodable from each area. We 

found that if large enough neuronal populations are 

present, both SMG and PMv show high grasp 

selectivity, making them noteworthy candidates for 

grasp BMI implantation sites. We also evaluated each 

region’s role during language processing. While our 

data indicates PMv is selectively active during grasping, 

SMG is highly engaged during speech production, 

pointing towards its potential application in a speech 

BMI.  

As results were quantitatively similar during Go trials in 

both the Go and Go/No-Go variation of the task, 

neurons were pooled over both tasks for all session 

days (see Table 1), resulting in 819 SMG Go units, 504 

SMG No-Go units, 146 PMv Go units, 78 PMv No-Go 

units, 1551 S1 Go units, and 948 S1 No-Go units.  

Smoothed firing rates of example units for SMG and 

PMv during the Go/No-Go version of the task displayed 

neuronal modulation to the grasp “Sphere3Finger” in 

Figure 1B. Motor imagery evoked a strong response 

during the action phase of Go trials compared to the 

action phase of No-Go trials, where firing rate 

decreased back to baseline activity. This example SMG 

unit also showed an increase of firing rate during cue 

presentation, while the example PMv unit only showed 

an increase during action phase, providing examples of 

neurons previously labeled from NHP recordings 

studies as visuo-motor (tuned during both cue and 

action phase) and motor unit (tuned only during action 

phase) (Akira Murata et al., 2000), (Carpaneto et al., 

2011),(Klaes et al., 2015).  

After establishing individual neural firing rate 

modulation during motor imagery of different grasps, 

we quantified the entire neuronal population’s 

selectivity for each grasp. To compare selective neural 

activity within task stimuli presentation (image cue, Go-

trial action phase, No-Go trial action phase), we 

determined the duration of selective (or tuned) activity 

of the neural population during each phase. In this 

context, tuning of a neuron to a grasp was determined 

by fitting a linear regression model to the firing rate in 

50ms time bins. The p value associated with the 

coefficient estimate to each grasp was computed, and  
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Figure 2 Population analysis of grasp tuning A) Percentage of tuned channels to grasps for Go trials in 50ms time bins in SMG, PMv 
and S1 over the trial duration. The gray lines represent cue and action analysis windows for figures B,C and D. B) Same as A) for No-
Go trials. C) Stacked percentage of units tuned for each grasp in ITI, cue phase and action phase window during Go trials. Significance 
was calculated by comparing data (right bar) to a shuffle distribution (striped lines, left bar). D) Same as C) for No-Go trials.  E) 
Stacked percentage of units tuned to one, two, three, four and five grasps during cue phase and action phase analysis window during 
Go trials. Significance was calculated as described previously. F) Same as E) for No-Go trials. G) Overlap of tuned units between cue 
and action analysis window during Go trials for SMG and PMv. 
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units that had significant p-values (< 0.05) to at least 

one grasp were defined as tuned.  

SMG, PMv and S1 show significant tuning to grasp 

during motor imagery  

Population analysis revealed two main peaks of 

activation, one at the cue presentation and another 

during action phase (Figure 2A). During Go trials, the 

highest percentage of tuned units during cue 

presentation was in SMG (54.8%), achieving its peak 

50ms earlier than PMv (41.1%). A decreased but 

sustained activity during the delay phase then led to a 

new rise during the action phase (39.0% for PMv, 

37.4% for SMG). For S1, a minor increase in the number 

of tuned units was observed during action phase, but 

not during cue presentation.  

During No-Go trials, neuronal activity peaked similarly 

during cue and delay phase, but then decreased around 

1s after start of the action phase. This increase could 

indicate the formation of a motor plan during the cue 

phase, and a brief period of activity during the action 

phase when this plan was canceled (Figure 2B, No-Go 

trials, action phase).  

The identified peaks of activity were selected to 

compute individual grasp tuning. Time windows 

incorporating the peaks began 250ms after the start of 

either cue or action phase (to account for processing 

latencies), and were respectively 1.5s and 2s long (gray 

lines, top of Figure 2A,B). Unlike the onset of the visual 

cue during the cue phase, it is not possible to measure 

the exact start time of motor imagery during action 

phase. Thus a longer time window (2s vs 1.5s) was 

included in our analysis of the action phase. To assess if 

grasp tuning was significant, results were compared to 

a shuffled condition, where grasp labels were randomly 

reassigned (see methods).  

Tuning was significant during Go-trial peak activity for 

all brain areas (Figure 2C). As expected, tuning was not 

significant in the ITI condition. During cue phase, 

results were significant in SMG and PMv, but not 

significant in S1. During action phase, no significance 

was found during No-Go trials for all brain areas (Figure 

2D). These results highlight grasp-dependent neuronal 

activity during cue presentation in SMG and PMv, and 

during action phase of Go trials in all brain areas.  

How many different grasps was each individual unit 

able to represent? Results were consistent across all 

brain areas with the majority of units tuned to one 

grasp (Figure 2E). In SMG and PMv, more units were 

tuned to multiple grasps, demonstrating mixed grasp 

encoding within the population. As before, results were 

significant during cue presentation in SMG and PMv, 

during Go-trial action phase in all brain areas, but not 

during ITI, nor during No-Go trial action phase (Figure 

2E,F). 

Similar to previous analysis methodologies (Murata et 

al., 1997), (Sakata, 1995),(Taira, 1998) (Klaes et al., 

2015), we separated tuned units into three categories: 

those tuned during cue phase (“visual units”), those 

tuned during Go-trial action phase (“motor- imagery 

units”) and those tuned during both (“visuo-motor 

units”) . As only SMG and PMv showed significant 

tuning during the cue phase, this analysis excluded S1 

activity. All three neuron types were found. SMG has a 

higher percentage of units tuned during cue 

presentation than PMv (75% vs. 58% of all tuned units) 

which explains a higher overlap of tuned units (47% vs 

39%), indicating that cue presentation and motor 

imagery are more similarly processed in SMG than in 

PMv (Figure 2G). 

SMG, PMv and S1 show significant classification 

accuracy during grasp motor imagery  

To assess each brain region’s potential use for BMI 

applications, we evaluated decodability of individual 

imagined grasps using a Naïve bays classification 

model. A different model was built for each session 

day. Principal component analysis (PCA) was applied to 

the dataset (see methods), and leave-one-out 

classification was performed to compute classification 

accuracy. To test for significance, results were 

compared to a null distribution obtained by shuffling 

the labels before classification (see methods).   
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Significant motor imagery decoding was observed in all 

brain areas (Figure 3A). Black dots indicate individual 

session results; red dots indicate averaged shuffled 

results. Mean +/- 95% confidence interval (c.i.) was 

computed over individual session. Significant 

classification accuracies were obtained for cue, delay 

and Go-action phase in SMG (p < 0.001), cue (p < 0.01), 

delay (p < 0.05), and Go-action phase (p < 0.001) in 

PMv, and Go-action phase (p < 0.5) in S1. For No-Go 

trials, significant classification accuracies were obtained 

in cue and delay phase for SMG (p < 0.001, p < 0.01), 

and cue phase in PMv (p < 0.05), but not action phase 

(Figure 3C). Importantly, these results mirror the 

findings in Figure 2C,D, indicating that significant grasp 

tuning can predict significant classification accuracies. A 

confusion matrix averaged over all sessions of Go-trials 

in SMG and PMv during action phase suggests that all 

grasps can be decoded (Figure 3B,D).  

 

Figure 3 Grasps can be significantly decoded in all brain areas during motor imagery.  A) Go trials classification accuracy: 
Classification was performed for each session day individually using leave-one out cross-validation (black dots). 95% c.i. for the 
session mean was computed. Significance was evaluated by comparing actual data results to a shuffle distribution (averaged shuffle 
results = red dots, * = p < 0.05, ** = p < 0.01, *** = p < 0.001) B) Error matrix during Go-trial action phase for SMG, averaged over all 
session days. C) Same as A) for No-Go trials. D) Same as B) for PMV. 
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SMG and PMv show high generalizability of grasp 

encoding in the neural population 

We addressed generalizability of grasp encoding in the 

neural population via two analyses, cross-phase 

classification and stability across different population 

sizes.  

Cross-phase classification looked at similarities of 

neural processes across cue and action phases. We 

trained a classification model on a subset of the data of 

one phase (e.g. cue phase), and tested it on two 

different subsets taken from the cue and action phase. 

If a model trained on the cue phase does not generalize 

to the action phase, this suggests distinct neural 

processes are being observed. However, if the model 

generalizes well, common cognitive processes may be 

occurring in both phases.  

 

 

Figure 4 SMG and PMV show high generalizability of grasp encoding in neuronal populations A-C) A neuron dropping curve was 
performed in SMG, PMv and S1 over 100 repetitions of eight-fold cross validation. The analysis was performed once by training the 
model on the cue phase and applying it on both cue and action phase (Train: Cue phase), and once by training it on the action phase 
and applying it on both cue and action phase (Train: Action phase). The mean classification accuracy with bootstrapped 95% c.i. was 
plotted.  D) To compare decoding performance between different brain areas, the first 140 units of each brain areas were plotted 
together. The number of units needed to obtain 80% classification accuracy during cue phase and action phase was calculated. SMG 
and PMv results were similar, with less units needed for classification during action phase compared to cue phase.  
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How much could classification accuracy improve if we 

had a bigger pool of neurons to record from 

simultaneously? A neuron dropping analysis tracks how 

classification accuracy evolves as units are removed or 

added to the pool of predictors. To avoid overfitting, 

the first 20 principal components were used as features 

for classification. The analysis was performed 

separately for each of the implanted brain regions, over 

100 repetitions of eight-fold cross-validation. As 

explained previously, one dataset was compiled from 

training on cue phase and evaluating on both cue and 

action phase, and another dataset from training on the 

action phase, and evaluating over both cue and action 

phases (see methods). 

Results of both analyses are represented in Figure 4. 

SMG and PMv show strong shared activity between cue 

and action phase. When training on cue phase, and 

testing on cue and action phase, we observe that the 

model generalizes very well in SMG, with overlapping 

95% bootstrapped confidence intervals that diverge 

only at high unit count. In PMv, the generalization is a 

bit lower, but shows similar trends, while decoding 

remains at chance level for S1 (Figure 4A,B,C Train: Cue 

Phase). However, when training on the action phase, 

and evaluating on the cue phase, lower generalization 

of the model is observed in SMG and PMv (Figure 4 

A,B,C Train: Action Phase). 

During the action phase, SMG peaks at 99% decoding 

accuracy when all recorded units are included in the 

analysis (Figure 4A). In S1, decoding accuracy during 

action phase peaks around 32%, even when the pool of 

available neurons increases (Figure 4C). As PMv did not 

reach its peak decoding accuracy due to fewer number 

of units recorded (Figure 4B), performance of SMG and 

PMv at same population levels was compared directly. 

Figure 4D depicts the number of features needed to 

obtain 80% classification accuracy during cue (left) and 

action (right) phase. During cue phase, 94 units in SMG 

and 86 units in PMv were needed. During action phase, 

80% classification accuracy was obtained with 50 units 

in SMG, and 63 units in PMv. These results 

demonstrate that SMG’s and PMv’s potential for the 

decoding of grasps is comparable, and that if a higher 

neuronal population were available to record from 

simultaneously, excellent grasp classification results 

can be expected in both brain areas.  

SMG significantly decodes spoken grasps and colors 

To explore SMG, PMv and S1’s role in a different 

cognitive processing task, the participant was 

instructed to perform verbal speech instead of motor 

imagery during action phase. By comparing each 

region’s evoked activity between these two cognitive 

processes, we aimed to find evidence for language 

processing activity at the single unit level. During each 

session day, a “Motor Imagery” (or Go task, see 

methods), a “Spoken Grasps” and a “Spoken Colors” 

version of the task was run. During the “Motor 

Imagery”, grasp motor imagery was performed during 

action phase. In the “Spoken Grasps” version of the 

task, the participant was instructed to say aloud the 

name of the visually cued grasp, instead of performing 

motor imagery during action phase. In the “Spoken 

Colors” version of the task, the participant was cued 

with visual depictions of colors, and said aloud the 

name of the color during the action phase (Figure 

5A,B).   

Classification results during the action phase 

corroborate SMG’s involvement during language 

processing (Figure 5C) (Oberhuber et al., 

2016)(Deschamps et al., 2014) (Stoeckel et al., 2009). 

During motor imagery, SMG, PMv and S1 show 

significant classification accuracy. However, during 

speech production, only SMG shows significant results, 

both for spoken grasp names, and spoken colors.  

We inspected if units in SMG were tuned (using linear 

regression) during motor imagery, speech of grasps, 

and/or speech of colors, and represented the results in 

a Venn diagram (Figure 5D). This analysis allows us to 

probe if the output modality (speech vs. motor 

imagery), or the semantic content (grasps vs. colors) 

was more similarly represented in the neuronal data. 

While most units were tuned during the three tasks 

(29.1%), a higher overlap of tuned units was shown 

between the speech conditions (26.9%), than between 

speech and motor imagery condition (12.1%). These 

results suggest that the output modality is more 

similarly encoded than the semantic content.  
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Discussion 

In this work, we demonstrated that motor imagery of 

five unique grasps was well represented by the firing 

rates of neuronal populations, and could be decoded 

significantly above chance level in the supramarginal 

gyrus (SMG), the ventral premotor cortex (PMv), and 

the primary sensory cortex (S1). SMG and PMv 

encoded grasp information both during cue 

presentation and during motor imagery with similar 

neuronal activity patterns. Equal numbers of units in 

the neuronal populations of SMG and PMv showed 

comparably excellent grasp encoding capabilities, 

demonstrating high potential for grasp BMI 

applications in both areas. Spoken names of five grasps 

and five colors were decodable in SMG, indicating a 

potential site for speech BMI synthesizer applications.  

To demonstrate the participant had volitional control of 

motor imagery during the action phase, and observed 

activity was not due to some external factor, 

interleaved No-Go trials served as a control. During No-

Go trials in the action phase, unit tuning was not 

significantly different from a shuffled distribution 

(Figure 2D,F), and classification was not significantly 

different from chance (Figure 3A). While a non-

 

Figure 5 SMG encodes speech. A control task was performed, where speech instead of motor imagery was studied during the action 
phase. A) Grasps images and color images were used to cue speech in a tetraplegic human. B) The task was composed of an inter-trial 
interval (ITI), a cue phase displaying the image of one of the grasp or colors, a delay phase and an action phase. During the action 
phase, the participant was instructed to say out loud the name of the cued grasp or color. C) Classification was performed for each 
session day individually using leave-one out cross-validation (black dots). 95% c.i. for the session mean was computed. Results during 
the action phase are shown. SMG, PMv, and S1 showed significant classification results when motor imagery was performed. Only 
SMG showed significant classification results during spoken grasps and spoken colors. D) Overlap of tuned channel during the action 
phase between “Motor Imagery”, “Spoken Grasps” and “Spoken Colors” task. While most units were tuned during all tasks, (29.1%), 
there was a higher overlap of units tuned both during color and grasp speech (26.9%), than during grasp speech and grasp motor 
imagery (12.1%), and color speech and grasp motor imagery (9.9%). 
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significant peak in tuning was observed in Figure 2B 

(No-Go trials action), this activity likely represented 

grasp-independent modulation of the firing rate. As the 

participant was only instructed to perform or abort 

motor imagery at the beginning of the action phase, 

formation of a motor plan might have already occurred, 

requiring a certain processing times to cancel. Similar 

effects have been observed in PPC when choosing one 

effector (saccade or reaches), while the other get 

canceled (Cui and Andersen, 2007).  However, as 

different grasps are not decodable during No-Go action 

phase (Figure 3A, No-Go trials action phase), it might 

be evidence for the participant actively canceling motor 

plans, an important feature for a grasp BMI 

applications.  

S1 encodes imagined grasps significantly, but does not 

improve with population size 

Decoding grasp intentions in the same brain area 

where sensations can be elicited would allow for the 

design of a bidirectional BMI device that requires fewer 

implantation sites. Microstimulation of this 

participants’ S1 array resulted in sensations over arm 

and hand area (Armenta Salas et al., 2018). In our work, 

S1 grasp motor imagery classification was significant 

(Figure 3A). However, performance did not improve 

with increased population sizes as much as SMG and 

PMv (Figure 4D). Several reasons might explain this 

behavior. Firstly, no actual movement was performed, 

likely decreasing the occurrence of proprioceptive 

signals. Secondly, the task design might have only 

weakly engaged the neural populations we recorded 

from, as the electrode implant mostly covered the 

contralateral arm area (Armenta Salas et al., 2018). A 

different task, that involved the arm by reaching to 

grasp an object, could have elicited stronger neuronal 

activity (Jafari et al., 2020). Thirdly, units in S1 showed 

mostly grasp independent increase in activity 

compared to baseline (Figure 2C,E), opening up the 

possibility that the grasps were not different enough to 

evoke stronger decoding abilities in S1.  

SMG and PMv show significant activity during visual 

cue presentation of grasps   

SMG demonstrated a faster rise of activity at cue 

presentation than PMv (Figure 2A,B). Similar results 

between PPC and ventral premotor cortex have been 

shown in NHP (Schaffelhofer and Scherberger, 2016). 

This observation supports the hypothesis that SMG 

relays planning information to PMv through anatomical 

connections (Ramayya et al., 2010),(Koch et al., 2010). 

We found units encoding each of the five grasps (Figure 

2A). Furthermore, we identified units that were only 

active during cue phase (visual), units only active during 

action phase (motor), and units active during both 

(visuo-motor), as seen in NHP and human studies (Akira 

Murata et al., 2000), (Carpaneto et al., 2011),(Klaes et 

al., 2015),(Schaffelhofer et al., 2015) (Figure 2G).  

Evidence for mixed visual and motor activity during 

action phase  

While human participants can self-report strategies 

employed while performing internal cognitive tasks, 

cue processing and motor imagery do not have 

independently observable behavioral outputs. 

Therefore, multiple explanations for synchronized 

neural activity observed during these tasks are 

plausible. During cue presentation, an increase in 

neural activity could represent visual feature extraction 

of the presented cue (visual processes). Alternatively, 

activity could be independent of visual input and 

represent planning activity of the cued grasp (motor 

processes). Additionally, activity could be memory or 

semantic, as the participant remembers the instructed 

grasp (cognitive processes). Finally, a combination of all 

these processes might be at play. While proving a 

definitive answer to this question is beyond the scope 

of this paper, performing cross-phase classification 

between the cue and action can help identify similar or 

distinct cognitive processes within the observed data. 

Cross-phase classification found similar neuronal 

activity in cue and action phase in both SMG and PMv 

(Figure 4A,B). This agrees with our finding of 

overlapping neuronal populations tuned during both 

cue and action phase (Figure 2G). One explanation for 

these similarities could be the participant performing 

“visual imagery” rather than motor imagery during 

action phase, by recalling a mental image of the grasp 

(Figure 4A,B Train: Cue Phase). Cue phase activity can 

partly be explained during action phase (classification 

performance 80% SMG, 55% PMv) (Figure 4A,B Train: 
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Action Phase), but neuronal activity unique to action 

phase exists (classification performance 99% SMG, 89% 

PMv). This generalization from the cue to action phase 

is not bidirectional (from action to cue phase), 

therefore we argue this additional information during 

the action phase is likely motor.  

Good generalization of the model to both phases when 

training on the cue phase could indicate that cue phase 

activity has motor components as well as visual. While 

AIP is assumed to extract visual features of objects 

during cue and delay phase, PMv has been speculated 

to represent planning activity of the grasp. Neurons in 

NHP ventral premotor area F5 have demonstrated 

higher neuronal modulation during cue and planning 

phase when different objects were grasped with 

different grasps, rather than different objects grasped 

with the same grasp. This evidence demonstrates that 

the planned hand shape, and not only visual object 

features, can modulate neuronal firing during cue and 

delay phase in the grasp circuit (Schaffelhofer and 

Scherberger, 2016). Similar effects might be at play in 

our observed data.   

Cue phase activity could represent semantic or memory 

processing, i.e. the abstract concept of each cued 

grasp. During tool use, SMG is hypothesized to 

integrate the appropriate grasp type with the 

knowledge of how to use the tool (Osiurak and Badets, 

2016; Vingerhoets, 2014), which requires access to 

semantic information. As our current task design does 

not allow the differentiations of these cognitive 

processes, further experimentation is necessary. For 

instance, cueing grasps with non-visual sensory cues 

and observing if cue phase activity is still present, might 

allow the dissociation between visual, motor and 

semantic processes, and help clarify the roles of SMG 

and PMv in the human grasp circuit.  

When analyzing SMG and PMv for their potential for 

grasp BMI applications, both performed similarly.  

While SMG displays stronger encoding of grasps than 

PMv on a session-to-session basis (Figure 3A), these 

results are likely due to the small number of units we 

were able to record from the PMv array on individual 

days. The neuron dropping analysis illustrates when 

identical neuronal population are present, SMG and 

PMv have similar decoding abilities (Figure 4D).  

SMG encodes speech 

During speech, SMG and PMv showed vastly different 

results. Spoken words (both grasp names and colors) 

were decodable equally or better than only motor 

imagery of grasps in SMG. In contrast, PMv and S1 

showed neither significant classification of spoken 

grasp names nor spoken colors (Figure 5C). These 

results could indicate that SMG processes semantics, 

regardless of the performed task. However, in a 

different analysis (Figure 5D), neuronal population 

tuning was more similar for output modality (speaking 

of colors and speaking of grasps) than for semantics 

(motor imagery of grasps and speaking of grasps), 

hinting that other cognitive processes are at play. As 

spoken color names were also decodable, SMG’s role is 

not confined to only action verbs. These results are 

evidence for a larger role of SMG in language 

processing, and indicate SMG as a candidate implant 

site for a speech BMI (Andersen et al., 2014).  

Conclusion 

In this paper, we demonstrated grasps were well 

represented by firing rates of neuronal populations in 

human SMG and PMv during cue presentation. During 

motor imagery, individual grasps could be significantly 

decoded in all brain areas. SMG and PMv achieved 

similar highly-significant decoding performances, 

demonstrating their viability for a grasp BMI. During 

speech, SMG achieved significant classification 

performance, in contrast to PMv and S1, which were 

not able to significantly decode individual spoken 

words. 

These findings suggest that grasp signals can be 

robustly decoded at a single unit level from the cortical 

grasping circuit in human. Our data suggests PMv has a 

specialized role in grasping, while SMG’s role is broader 

and extends to language processing. Together, these 

results indicate that brain signals from high-level areas 

of the human cortex can be exploited for a variety of 

different BMI applications, and further demonstrate 

the potential for BMIs to provide increased 

independence for people living with tetraplegia. 
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