Supplementary Information

Intratumoral delivery of engineered recombinant modified vaccinia virus Ankara expressing Flt3L and OX40L generates potent antitumor immunity through activating the cGAS/STING pathway and depleting tumor-infiltrating regulatory T cells

Ning Yang^{1#}, Yi Wang^{1#}, Shuaitong Liu¹, Joseph M. Luna³, Gregory Mazo¹, Adrian Tan⁴, Tuo Li⁴, Jiahu Wang⁵, Wei Yan⁶, John Choi⁶, Anthony Rossi^{1,2}, Jenny Zhaoying Xiang⁴, Charles M. Rice³, Taha Merghoub^{2,7,8}, Jedd D. Wolchok^{2,7,8}, and Liang Deng^{1,2,8*}

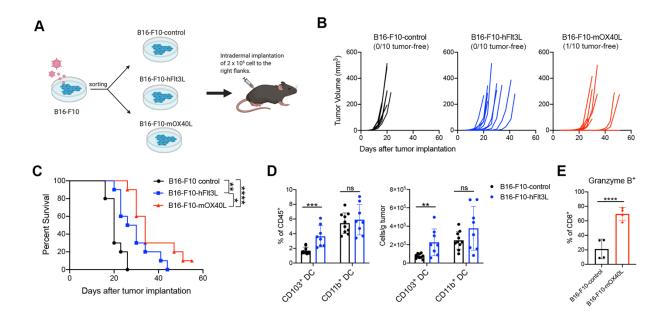
¹Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

²Weill Cornell Medical College, New York, NY 10065

³The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065

⁴Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, 10065, USA

⁵Genvira Biosciences, Ottawa, ON K1V 1C1, Canada


⁶IMVAQ Therapeutics, Sammamish, WA, 98021, USA

⁷Immuno-oncology service, Human Oncology and Pathogenesis Program; Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA

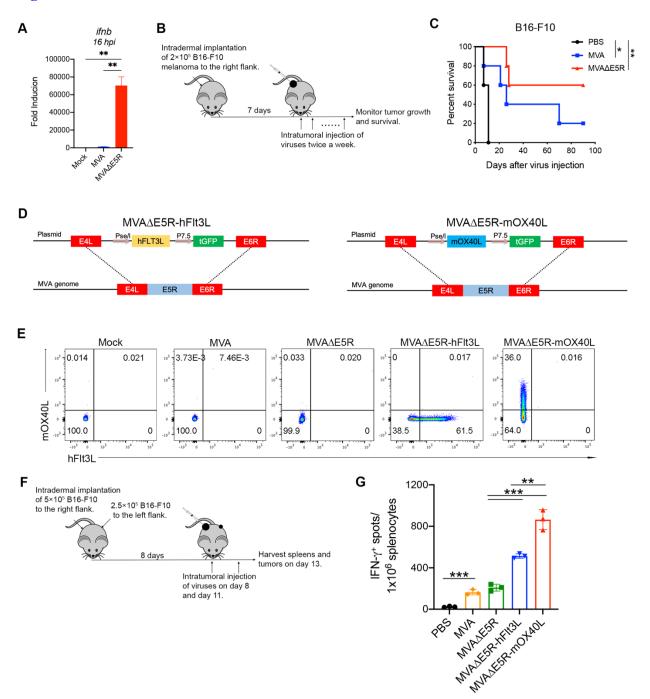
⁸Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY *corresponding author. Mailing address for Liang Deng: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065. Email: dengl@mskcc.org. [#] These two authors contributed equally to this work.

This file contains:

- Supplementary Figure 1
- Supplementary Figure 2
- Supplementary Figure 3
- Supplementary Figure 4
- Supplementary Figure 5
- Supplementary Figure 6
- Supplementary Table 1

Figure S1. Overexpression of human Flt3L or murine OX40L on B16-F10 tumor cells enhances immunogenicity of the tumors.

(A) B16-F10 were transduced with retrovirus to generate hFlt3L or mOX40L-expressing stable cell lines. C57BL/6J mice were intradermally implanted with 2 x 10^5 B16-F10-hFlt3L, B16-F10-mOX40L or B16-F10 control cells.


(B) Tumor growth curve (n=10).

(C) Kaplan-Meier survival curve (n=10; *P < 0.05, **P < 0.01, ****P < 0.0001, Mantel-Cox test).

(D) Percentages and absolutes number of $CD103^+$ DCs and $CD11b^+$ DCs in B16-F10-hFlt3L or

B16-F10-control tumors. Data are means \pm SD (*n*=8 or 10; ***P* < 0.01, ****P* < 0.001, t test).

(E) Percentages Granzyme B⁺ CD8⁺ and Granzyme B⁺ CD4⁺ in B16-F10-hFlt3L or B16-F10control tumors. Data are means \pm SD (n=4; ****P < 0.0001, t test).

Figure S2. Incremental engineering of MVA with deletion of E5R gene and expression of human Flt3L or murine OX40L improves antitumor effects.

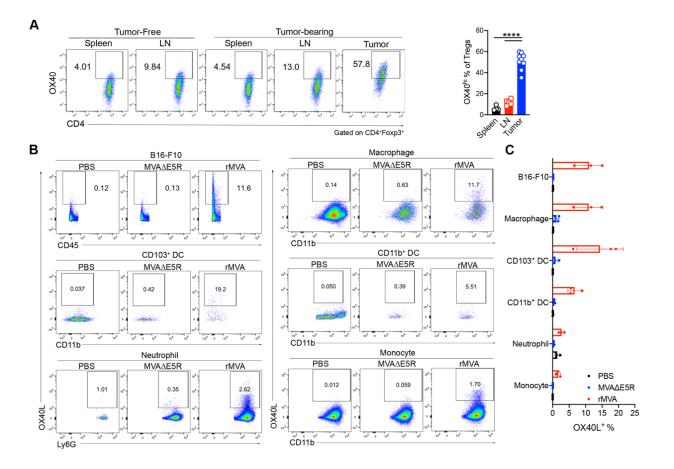
(A) Relative mRNA expression levels of *Ifnb* in BMDCs infected with MVA or MVA Δ E5R. Data are means \pm SD (n=3; **P < 0.01, *t test*).

(B) Schematic diagram of IT MVA, MVA Δ E5R or PBS in a unilateral B16-F10 melanoma implantation model.

(C)Kaplan-Meier survival curve of mice treated with MVA, MVA Δ E5R or PBS in a unilateral B16-F10 implantation model (*n*=10; **P* < 0.05, ***P* < 0.01, Mantel-Cox test).

(D) Schematic diagrams for the generation of MVA Δ E5R-hFlt3L or MVA Δ E5R-mOX40L through homologous recombination.

(D) Representative flow cytometry plots of expression of hFlt3L or mOX40L by MVA,

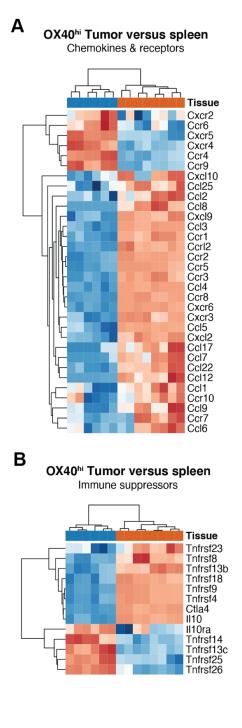

MVAAE5R, MVAAE5R-hFlt3L, MVAAE5R-mOX40L or mock-infected BHK21 cells.

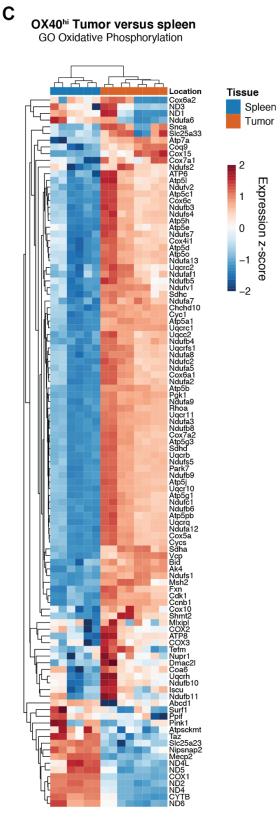
(E) Representative flow cytometry plots of expression of hFlt3L or mOX40L by MVA,

MVAAE5R, MVAAE5R-hFlt3L, MVAAE5R-mOX40L or mock-infected BHK21 cells.

(F) Schematic diagram of IT MVA, MVA Δ E5R, MVA Δ E5R-hFlt3L, MVA Δ E5R-mOX40L or PBS in a bilateral B16-F10 melanoma implantation model.

(G) IFN- γ^+ splenocytes from MVA, MVA Δ E5R, MVA Δ E5R-hFlt3L, MVA Δ E5R-mOX40L or PBS-treated mice. Data are means \pm SD (n=3; *P < 0.05, ***P < 0.001, *t test*).




Figure S3. OX40 expression on T cells in lymphoid organs and in tumors and OX40L expression in tumors and tumor-infiltrating cells after IT rMVA.

(A) Representative flow cytometry plots of OX40 expression on CD4⁺Foxp3⁺ T cells in the spleens, lymph nodes or tumors from naïve or B16-F10 tumor-bearing mice.

(B) Representative flow cytometry plots of OX40L expression on B16-F10 tumor cells or myeloid cells in the tumors injected with MVA Δ E5R, rMVA or PBS as control.

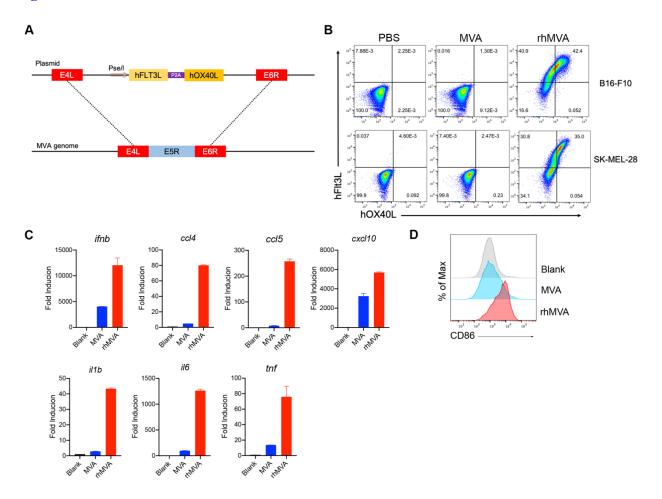
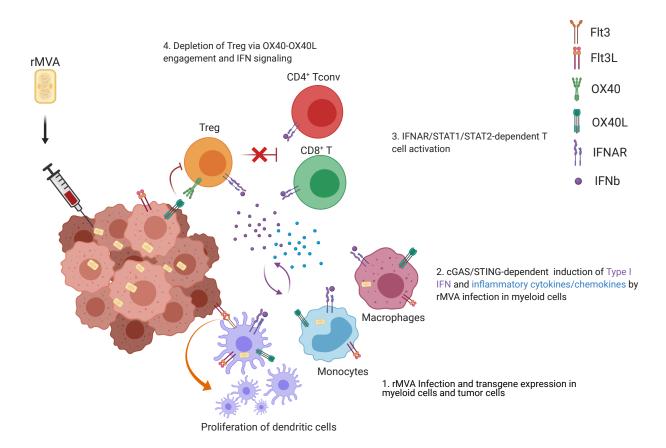

(C) Percentages of OX40L⁺ B16-F10 cells or myeloid cells in the tumors. Data are means \pm SD ($n=3\sim5$).

Figure S4. Heatmaps of differential gene expression in OX40^{hi} Tregs isolated from tumors vs. those from spleens.

- (A) Differential gene expression of chemokines and chemokine receptors
- (B) Differential gene expression of immune suppressive genes
- (C) Differential gene expression of genes involved in oxidative phosphorylation.


Figure S5. Clinical candidate rhMVA induces innate immunity and promotes maturation of human monocyte-derived DCs (moDCs).

(A) Schematic diagram for the generation of rhMVA through homologous recombination.

(B) Representative flow cytometry plots of expression of hFlt3L or hOX40L by rMVA-infected B16-F10 cells and SK-MEL-28 cells.

(C) Relative mRNA expression levels of *ifnb*, *ccl4*, *ccl5*, *cxcl10*, *il1b*, *il6* and *tnf* in moDCs infected with MVA or rhMVA.

(D) Mean fluorescence intensity of CD86 expressed by MoDCs infected with MVA or rhMVA.

Figure S6. Working model. IT injection of rMVA results in the infection of tumor-infiltrating myeloid cells, including macrophages, monocytes, and dendritic cells, as well as tumor cells. This leads to the activation of cGAS/STING-mediated cytosolic DNA-sensing pathway and the production of type I IFN and cytokines and chemokines that are important for CD8⁺ and CD4⁺ T cell proliferation and activation (as indicated by Granzyme B, TNF, and IFN- γ expression). Flt3L expression of the tumor microenvironment facilitates the proliferation of CD103⁺ DCs in the tumors. OX40L expression by myeloid cell populations and tumor cells results in the depletion of OX40^{hi} Tregs infiltrating the tumors via OX40L-OX40 ligation, which is promoted by type I IFN. This leads to the blunting of their inhibition on tumor-specific effector CD4⁺ and CD8⁺ T cells. Taken together, IT delivery of rMVA results in the alteration of tumor immunosuppressive microenvironment through activation of innate immunity and boosting of antitumor T cells by depletion of OX40^{hi} regulatory T cells.

Species	Gene	Direction	Sequence
Mouse	ccl4	Forward	5'-GCCCTCTCTCTCCTCTTGCT-3'
	ccl4	Reverse	5'-CTGGTCTCATAGTAATCCATC-3'
	ccl5	Forward	5'-GCCCACGTCAAGGAGTATTTCTA-3'
	ccl5	Reverse	5'-ACACACTTGGCGGTTCCTTC-3'
	cxcl10	Forward	5'-GTCAGGTTGCCTCTGTCTCA-3'
	cxcl10	Reverse	5'-TCAGGGAAGAGTCTGGAAAG-3'
	cxcl9	Forward	5'-GGAACCCTAGTGATAAGGAATGCA-3'
	cxcl9	Reverse	5'-TGAGGTCTTTGAGGGATTTGTAGTG-3'
	ifna	Forward	5'-CCTGTGTGATGCAGGAACC-3'
	ifna	Reverse	5'-TCACCTCCCAGGCACAGA-3'
	ifnb	Forward	5'-TGGAGATGACGGAGAAGATG-3'
	ifnb	Reverse	5'-TTGGATGGCAAAGGCAGT-3'
	GAPDH	Forward	5'-ATCAAGAAGGTGGTGAAGCA-3'
	GAPDH	Reverse	5'-AGACAACCTGGTCCTCAGTGT-3'
	ccl4	Forward	5'- AAAACCTCTTTGCCACCAATACC-3'
	ccl4	Reverse	5'- GAGAGCAGAAGGCAGCTACTAG-3'
Human	cxcl10	Forward	5'-ATTTGCTGCCTTATCTTTCTG-3'
	cxcl10	Reverse	5'-TCTCACCCTTCTTTTTCATTGTAG-3'
	ifnb	Forward	5'-GCACTGGCTGGAATGAGACT-3'
	ifnb	Reverse	5'-CCTTGGCCTTCAGGTAATG-3'
	il6	Forward	5'-AATTCGGTACATCCTCGACGG-3'
	il6	Reverse	5'-TTGGAAGGTTCAGGTTGTTTTCT-3'
	tnf	Forward	5'-AATAGGCTGTTCCCATGTAGC-3'
	tnf	Reverse	5'-AGAGGCTCAGCAATGAGTGA-3'
	GAPDH	Forward	5'-ATCAAGAAGGTGGTGAAGCA-3'
	GAPDH	Reverse	5'-GTCGCTGTTGAAGTCAGAGGA-3'

Table S1. Primers for Real-time PCR