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SUMMARY 

Single-cell omics data can characterize multifaceted features of massive cells and 

bring significant insights to biomedical researches. The accumulation of single-cell 

data provides growing resources for constructing atlases for all cells of a human 

organ or the whole body. The true assembly of a cell atlas should be cell-centric 

rather than file-centric. We proposed a unified information framework enabling 

seamless cell-centric data assembly and developed a human Ensemble Cell Atlas 

(hECA) as an instance. hECA version 1.0 assembled scRNA-seq data across 

multiple studies into one orchestrated data repository. It contains 1,093,299 labeled 

cells and metadata from 116 published human single-cell studies, covering 38 human 

organs and 11 systems. We invented three methods of applications based on the 

cell-centric assembly: “In data” cell sorting enables targeted data retrieval in the full 

atlas with customizable logic expressions; The “quantitative portraiture” system 

provides a multi-view presentation of biological entities (organs, cell types, and 

genes) of multiple granularities; The customizable reference creation allows users to 

use the cell-centric assembly to generate references for their own cell type 

annotations. Case studies on agile construction of user-defined sub-atlases and “in 

data” investigation of CAR-T off-targets in multiple organs showed the great potential 

of cell-centric atlas assembly.  
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INTRODUCTION 

Cells are the basic structural and functional units of the human body.  Different types 

of cells that reside in different tissues and organs of the human body could be 

characterized by their various molecular features, especially transcriptomic features. 

Building molecular atlases at single-cell resolution of all cell types in the human body 

in health or disease can provide basic references for future biomedical studies. The 

HCA (Human Cell Atlas) and the HuBMAP (Human BioMolecular Atlas Program) 

(Regev et al., 2017; Snyder et al., 2019) are two major efforts for building such 

references, among several other projects aimed at similar or related goals. These big 

consortiums have involved labs worldwide in generating and organizing data (Arazi 

et al., 2019; Azizi et al., 2018; Bayraktar et al., 2020; Chevrier et al., 2017; Cillo et al., 

2020; Corridoni et al., 2020; Fernandez et al., 2019; Grubman et al., 2019; Vieira 

Braga et al., 2019; Villani et al., 2017; Wang et al., 2020a). 

 

The rapid development and democratization of single-cell technologies has propelled 

a wave of single-cell studies. Massive amounts of single-cell transcriptomic data 

were pouring to the public. The data from these studies have covered all major adult 

human organs (e.g., Aizarani et al., 2019; Bayraktar et al., 2020; Guo et al., 2018; 

Han et al., 2020; Litviňuková et al., 2020; Pellin et al., 2019), key developmental 

stages (e.g., Asp et al., 2019; Cao et al., 2020; Cui et al., 2019; Guo et al., 2020; 

Kernfeld et al., 2018; Park et al., 2020; Zhong et al., 2018), samples from healthy 

donors and disease patients (e.g., Grubman et al., 2019; Reyfman et al., 2019; Wang 

et al., 2020a; Zhang et al., 2020). Most single-cell studies have generated data for 

their specific scientific questions rather than for building atlases. But these scattered 

public single-cell data suggests an alternative approach of building cell atlases in a 

bottom-up “shot-gun” manner if data can be assembled from multiple sources. 

 

Assembling data of massive amount cells from multiple sources into an ensemble 

atlas, rather than just collecting and indexing the data files from the sources, has 

many technical and conceptual challenges (Chen et al., 2021b). Firstly, single-cell 

omics data describes the abundances and occurrences of a large variety of 

molecules and molecular events in many single cells. The data dimensionality and 

volume requires very wide and long sample-by-feature tables for storage. Traditional 

relational databases fail to hold data of such sizes. Special infrastructure adaptable 
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for storage and efficient retrieval of single-cell data is needed. Secondly, a universal 

indexing scheme for cells in the human body is lacking. At the macroscopic level, 

cells can be indexed by their anatomic and spatial arrangements such as organs and 

regions. But the microscopic location of each single cell is not determined or 

destined. There can be multiple factors or properties that may be used to index the 

cells at different granularity for different study purposes. It is not feasible trying to 

form one fixed coordinate system to index all cells in an atlas. In addition, current 

annotation of cell type labels in the literature are not consistent. A standard 

vocabulary system for fine-grained cell identity annotation is still lacking. A unified 

information framework is needed to tackle these challenges (Chen et al., 2021b). 

 

We developed human Ensemble Cell Atlas (hECA) as an instance of such unified 

information framework. In hECA v1.0, we collected the single cell transcriptomic data 

of 1,093,299 cells from 116 published datasets, covering 38 human organs and 146 

cell types. hECA realized the cell-centric assembly of these data into a unified data 

repository with a special storage engine we called uGT or unified Giant Table. It has 

the capacity to contain all possible attributes that could be used as indexes of the 

cells besides the transcriptomic data. The “assembly” of a cell atlas is the unified 

storage and organization of all the information, rather than an ordering of the cells 

with a fixed coordinate system. Such cell-centric assembly allows for multiple ways of 

indexing the cells in the atlas. Along with uGT is a unified Hierarchical Annotation 

Framework (uHAF) we developed for hECA. Annotating with uHAF made cell type 

labels from different datasets comparable and consistent. We also developed an API 

named ECAUGT (pronounced “e-caught”) for efficient retrieval of cells in the atlas. 

With these technologies, we developed three new schemes for comprehensive use 

of the assembled atlas: (1) “in data” cell sorting for selecting cells from the virtual 

human body of the assembled cells using flexible combinations of logic expressions, 

(2) a “quantitative portraiture” system for representing the full information of genes, 

cell types, and organs, and (3) “customizable reference creation” for users to 

customize their own references for cell type annotation tasks. Case examples on the 

agile construction of specific sub-atlases and in data investigation of drug of-targets 

throughout the whole body showed that the hECA opens many new possibilities in 

biomedical research using the assembled cell atlas.   
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RESULTS 

Overview of hECA v1.0  

Unlike genomes, elements in cell atlases cannot be indexed or arranged in a simple 

linear order or in a deterministic 3D coordinate system. There are many possible 

ways of logical arrangements of cells at multiple granularities. The assembly of a cell 

atlas should convey the multifaceted nature of the data and allow users to search 

with customized conditions between different indexing methods. 

 

We reasoned that the ideal cell atlas assembly should be: all cells and their 

multifaceted indexing coordinates should be deposited in one data system; the data 

system should support flexible searching using any indexing criteria thus enabling 

viewing and utilizing the atlas at multiple possible angles and resolutions. The system 

should be "cell-centric" in the sense that cells rather than datasets or files are the 

basic unit of data deposit, organization and retrieval.  

 

We developed such a system called human Ensemble Cell Atlas or hECA by 

assembling single-cell RNA-seq data collected from scattered literature. The data 

origins include large projects such as the Human Cell Landscape (Han et al., 2020) 

and Allen Brain Atlas (Sunkin et al., 2013), as well as smaller datasets in many other 

publications (details of the data sources are given in Table S1). We collected and 

processed the data as described in STAR Methods. The current version (hECA v1.0) 

contains data of 1,093,299 cells covering 38 human organs and 11 systems 

(integumentary, endocrine, urinary, cardiovascular, lymphatic, nervous, respiratory, 

digestive, muscular, reproductive, and skeletal systems). All cells were annotated 

with a unified framework of 146 cell type labels (see Data S1). Table 1 summarizes 

the numbers of collected cells in each organ. 

 

Table 1. Summary of cells collected in the organs in hECA v1.0 

# Organ # of cells # Organ # of cells 

1 Adipose 1,362 20 Oesophagus 87,947 

2 Adrenal gland 15,065 21 Ovary 6,927 

3 Bladder 3,980 22 Pancreas 26,566 

4 Blood 29,514 23 Placenta 9,926 
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5 Bone marrow 8,671 24 Pleura 19,695 

6 Brain 214,314 25 Prostate 2,445 

7 Bronchi 12,553 26 Rectum 5,718 

8 Colon 22,919 27 Rib 5,907 

9 Duodenum 3,743 28 Skin 6,618 

10 Eye 47,275 29 Spinal cord 4,483 

11 Gallbladder 14,733 30 Spleen 15,806 

12 Heart 210,597 31 Stomach 22,187 

13 Ileum 3,132 32 Testis 13,210 

14 Intestine 41,851 33 Thymus 4,516 

15 Jejunum 4,198 34 Thyroid 12,599 

16 Kidney 45,368 35 Ureter 2,205 

17 Liver 26,475 36 Uterine tube 6,496 

18 Lung 90,521 37 Uterus 8,096 

19 Muscle 26,029 38 Vessel 9,652 

 

The overall conceptual structure of hECA is illustrated in Figure 1. It is an instance of 

the ideal unified information framework that are required for cell atlas assembly 

(Chen et al, 2021b). It composes of three key components: a unified Giant Table 

(uGT), a unified Hierarchical Annotation Framework (uHAF) and an API ECAUGT for 

retrieving data. uGT is a unified storage system that is technically unbounded in both 

rows and columns for future increases of cell numbers and feature dimensions. The 

basic storage of hECA is flattened to a millions by billions giant table (designed scale, 

in hECA v1.0 it’s 43,878 by 1,093,299). All features and metadata (any related 

information such as tissue origin, donor description, data source, etc. see STAR 

Methods for complete list) of every single cell are stored together. This unified 

storage strategy allows instant access of all information of every cell, enables flexible 

ways of retrieving, analyzing and comparing data, and breaks the boundary of data 

sources while preserving the original information. uHAF is a structured knowledge 

graph serving as the underlying index system for hECA. This structure organizes 

data into a hierarchy, provides perspectives for presenting relations and interactions 

between entities while preserving space for future knowledge and data growth. We 

provided quantitative portraits of all existing entities on this structure and a tree-view 

filter of the structure for cell sorting.  ECAUGT is a multi-functional API (application 

programming interface) for manipulating data in hECA. Based on it we built hECA as 

a highly interactive system with both graphical user interface and command line 
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tools. Users can access both data and structured annotations with these interfaces 

for downstream applications. The web interface has provided useful tools for 

browsing, visualizing, summarizing and analyzing pre-selected or user-selected data 

in hECA. Advanced users can write codes with the API for more sophisticated re-

organization and deeper analyses of the data. Details of uGT, uHAF and ECAUGT 

are given in STAR Methods.  

 

Based on these technologies and the assembled data, we invented three novel ways 

of using cell atlases for comprehensive biomedical investigations. We developed an 

“in data” cell sorting technology that takes the assembled atlas as a virtual human 

body to select cells from with advanced logic conditions. We developed a 

“quantitative portraiture” system for representing biological entities involved in the 

atlas from multiple angles in a holographic manner instead of only using a few 

marker genes. For the basic application of using cell atlas data to annotate users’ in-

house data, we provided the feature of customizable reference creation. Users can 

define their own logic combinations to select and organize cells in hECA to form the 

reference for their specific queries. 

 

 

Figure 1. Overview of hECA. Scattered data are assembled into the ensemble cell atlas using 

a unified information framework. The framework includes uGT, uHAF and ECAUGT. They 

made hECA the first cell-centric assembled cell atlases with structured indexing and support 

for combinatorial searching. Based on these features, three novel functions were built on 

hECA: “in data” cell sorting, quantitative portraiture and customizable reference creation. 
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In data cell sorting enables comprehensive virtual cell experiments as a 

new research paradigm 

Cell sorting is a fundamental technique in cell biology. The “in data” cell sorting is an 

innovative virtual cell experiment scheme we introduced in hECA facilitated by cell-

centric organization of data. In data cell sorting allows users to select any cell of 

interest in the atlas according to any feature of the cell. When the data in the atlas 

provides sufficient coverage on all major tissues, organs and cell types of the human 

body, the cell-centric assembled cell atlas becomes a virtual human body. To 

precisely pinpoint the required cells from the virtual body, the criteria are expressed 

as a combination of logic expressions, such as desired expression range of one or 

multiple genes, required organs, tissue origins or developmental stages, donor’s 

gender and age, etc. This sorting scheme has higher flexibility, resolution and finer 

granularity than traditional cell sorting on in vivo or in vitro samples. The sorting 

dimensions is not restricted by several surface markers as for flow cytometry, but cab 

be extended to precisely measuring tens of thousands of features. The source 

materials for the sorting is not restricted by samples collected in one study, but 

extended to all cells with desired properties from various studies in the whole atlas. 

Designing cell experiments becomes a matter of writing a code of logic expression 

for searching hECA. This opens the new paradigm in cell biology: in data cell sorting 

followed by in silico computational experiments. This “in data experiment” paradigm 

will facilitate scientists to conduct investigations in the data space beyond the 

limitations in traditional in vivo or in vitro experiments. 

 

In data cell sorting can be implemented on the hECA interactive web interface or 

using the Python package ECAUGT. Here we show an example of the sorting: to sort 

for all T cells in the heart with normalized expression of gene PTPRC greater than 

0.5 and that of CD3D or CD3E greater than 0.5, users can simply type the logic 

expression in python: 

rows_to_get = ECAUGT.query_cells("organ==Heart && cell_type == T cell", 

include_children=TRUE)  

gene_condition = ECAUGT.seq2filter("PTPRC > 0.5 && (CD3D>=0.5 || CD3E>=0.5)")  

ECAUGT.get_columnsbycell_para(rows_to_get = rows_to_get, cols_to_get=['CD3E','PTPRC'], 

col_filter=gene_condition 

and hECA will return the selection results (of around 210,000 cells in current version) 

in about 190 seconds.  
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This example shows the logical clarity, convenience and efficiency of in data cell 

sorting. By contrast, the typical cell sorting workflow composed of multiple filtering 

steps is more complicated. To obtain the regulatory T cells (Treg) from certain type of 

human tissue sample, a researcher needs to use the marker protein PTPRC (also 

known as CD45) to distinguish immune cells (PTPRC+) from other lineages of cells 

(PTPRC-), use CD3 to select the T cells (PTPRC+ and CD3+) from the PTPRC+ 

cells, and then use CD4, IL2RA (also known as CD25), and FoxP3 markers to filter 

out other T cells and get the Treg cells. The types of cells that can be selected 

depend on the availability and identifiability of surface markers of the cells under 

study, and the discriminating power of the flow cytometry technology. This sorting 

practice is much lengthy and time-consuming than the in data sorting. And in data 

sorting can apply many selection criteria that may not be possible for flow cytometry. 

With growing coverage of hECA, researchers can conduct all kinds of pre-

experiments with in data cell sorting to accelerate research loop. 

 

Another advantage of in data cell sorting is swift multi-step iteration. Users can jump 

back and forth in sorting steps to make comparison and achieve optimal result. They 

can adjust sorting criteria based on analysis of previous steps, without bother waiting 

for another experiment loop. For users to have a quick overview of sorted cells, we 

provided a real-time analysis function on the web interface. The real-time analysis 

includes the following properties of the selected cell group: 1) cell type composition in 

all and every organ; 2) expression distribution of interested gene across cell types 

and organs; 3) pseudo-FACS simulating a real FACS to show relative expression 

level between any two interested genes. Users can conduct next step of cell sorting 

based on the results of real-time analysis, without the trouble of downloading and 

locally analyzing the whole dataset. We provided five examples of utilizing in data cell 

sorting, three of them are done with web interface, the other two are shown in 

ECAUGT with vignette and detailed explanations (see STAR Methods).  

 

We conducted two case examples on leveraging the potential of in data cell sorting: 

1) agile construction of atlases of particular cell types; 2) off-target prediction of 

targeted therapy. These cases demonstrated in details of how hECA can be used to 

conduct comprehensive studies of cells across the human body in an unprecedented 

way. 
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Case study 1: agile construction of a draft T-cell metabolic landscape 

In the first case example, we built a draft T-cell sub-atlas to show the power of hECA 

in agile construction of cell landscapes across studies. This case also shows how to 

compare the metabolic activity heterogeneities between different organs/cell types in 

a high-throughput way from the public data.  

 

T lymphocyte is an essential cell type in human immune system. They adapt to 

multifarious microenvironments as they circulate through or reside in human body. 

Their differentiation, activation and quiescence are regulated by diverse metabolites 

in local microenvironment (Buck et al., 2015; Chapman et al., 2020; Shyer et al., 

2020; Yin et al., 2019). Recent studies reported that microbial bile acid metabolites 

promoted the generation of regulatory T cells in the intestine, which is associated 

with inflammatory bowel disease (IBD) (Campbell et al., 2020; Hang et al., 2019; 

Song et al., 2020), suggesting that targeting metabolic pathways of T cell activation 

and differentiation may improve therapeutic outcomes of IBD patients (Li et al., 

2021). Comprehensive survey of the metabolism of T cells across multiple organs is 

crucial for better understanding intrinsic responses of T cells to microenvironment 

changes, but in vivo or in vitro experiments on multiple organs are not easy. Xiao et 

al proposed a computational pipeline to study the metabolic landscape of cells from 

single-cell transcriptomic data (Xiao et al., 2019). The cell-centric assembly of cells of 

all types in all organs in hECA allowed us to conduct in data study on T cell 

metabolism across all organs, instead of searching through datasets scattered in the 

literature.    

 

Using ECAUGT, we first sorted all cells in uGT with label “T cell” and associated 

names (such as “CD4 T cell”, “CD8 T cell”, “Activated T cell”, etc.) across all organs 

(Figure S1A). To include cells that might be annotated to other cell types, we also 

searched for cells with normalized expression values of PTPRC, CD3D or CD3E 

greater than 0.5 across all organs (Figure S1B, S1C). Then we filtered the cells by 

the expression of a list of negative markers such as COL1A1, CD79A (the full list 

provided in Table S4). We conducted clustering analysis on cells from the same 

organs, and obtained a series of candidate clusters in each organ (Figure 2A). We 

removed clusters with low expression levels of CD3D, CD3E or CD3G as they are 

unlikely to be T cells. After these steps in hECA, we built an agile cell atlas of T cells 

across 18 organs (lung, pancreas, blood, liver, muscle, thymus, jejunum, rectum, 
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colon, kidney, gallbladder, stomach, thyroid, intestine, spleen, bone marrow, eye, and 

vessel). 

 

The following experiment are downstream analysis performed out of hECA to prove 

the viability of the constructed T cell atlas. To assign accurate annotations to the cells 

in the T cell atlas, we performed hierarchical clustering using signature genes CD4, 

CD8A and CD8B, and divided the cells into 6 subgroups of 3 major groups (Figure 

S2A). The three major groups are CD4+, CD8+ and double-negative (CD4- and 

CD8-) T cells (Figure S2B). For the CD4+ and CD8+ groups, we further annotated 

the cells as resident memory T cells, central memory T cells, effector memory T cells, 

naïve T cells, cytotoxic T cells, etc. according to the positive markers listed in Table 

S5. Figures 2B, 2C show the UMAP of the CD4+ and CD8+ T cells with the subtype 

annotations and with the organ origin of the cells, respectively. Figure 2D shows the 

gene expression signatures of the identified T cell subtypes. For the double-negative 

cluster, we marked them as “T cells” without further analysis as there might be cells 

false negatives in CD4 or CD8 expression due to possible dropout events in scRNA-

seq data.  
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Figure 2. The agile creation of a draft T-cell metabolic landscape across multiple organs from 

hECA. (A) Workflow of the in data cell sorting from hECA to build the agile T cell atlas. (B) 

Subtypes of selected T cells displayed on UMAP. DN T: Double negative T cell, CD8+ Tc: 

CD8+ Cytotoxic T cell, CD8+ Trm: CD8+ resident memory T cell, CD4+ Th1: CD4+ T helper 

cell type 1, CD4+ Tem: CD4+ effector memory T cell, CD4+ Tcm: CD4+ central memory T cell. 

(C) Organ origins of selected T cells organ origin displayed on UMAP. (D) Gene expression 

signatures of the identified T cell subtypes. (E-F) Heatmaps showing z-scores of activity 

scores of major metabolic pathways of the T cell subtypes in multiple organs. (E) for CD4+ T 

cells and (F) for CD8+ T cells. Each row in the heatmap corresponds to one selected term in 

the KEGG metabolism pathway database, and each column corresponds to one T cell 

subcluster.  
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For a sketchy study on the metabolic landscape of T cells across multiple organs, we 

evaluated each cell’s metabolic activity scores with GSVA, which produced 

comparable values across multiple clusters or datasets and alleviated possible batch 

effects in the data from multiple sources (Hänzelmann et al., 2013). The genes of the 

metabolic pathways are derived from KEGG (Kanehisa et al., 2020) and Xiao et al.’s 

work (Xiao et al., 2019). A heatmap of the obtained draft metabolic landscape of T 

cells of their activity scores of all major metabolic pathways across the human body 

are shown in Figures 2E and 2F. Such landscapes can help to reveal different 

metabolic patterns across organs. For example, we found organ-level metabolic 

variations in lungs from the metabolic activities of organ-level CD4+ T cell clusters in 

Figure 2E and those of the organ-level CD8+ T cell clusters in Figure 2F. For CD4+ 

T cells, we observed lung-enriched metabolic pathway activations in the pathways of 

riboflavin metabolism, terpenoid backbone biosynthesis, TCA cycle, oxidative 

phosphorylation, sulfur metabolism, and D-Glutamine and D-glutamate metabolism 

(row blocks 1 & 2 of the lung-origin T cell clusters in Figure 2E). Similar enrichments 

can also be observed in the lung-origin CD8+ T cell clusters in Figure 2F.  

 

These observations deserve further investigations. They showcased the potential of 

cross-organ in data cell experiments enabled by hECA which are otherwise hard to 

conduct in traditional experiment settings. 

 

Case study 2: in data discovery of side effects in targeted therapy 

In the second case example, we utilized in data cell sorting to investigate possible 

off-target effects in cancer therapy. This case study shows hECA’s potential 

application in investigating human diseases. 

 

A great part (~97%) of cancer drugs tested in clinical trials failed to get approval from 

FDA, mainly due to their insufficient efficacy or unexpected toxicities to organs where 

drugs were not designed to take effect (Lin et al., 2019). Off-target effects are usually 

not easy to observed on animal models. Prediction of cellular toxicities across the 

whole body can significantly reduce improper clinical trials and increase efficiency of 

new drugs discoveries. This is a typical scenario where we should conduct in data 

experiment on the virtual human body of cells to test drugs before clinical trials on 

human patients.  
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In previous research, computational investigation of off-target effects or neurotoxicity 

effects of targeted therapy took multiple steps. Researchers first chose a group of 

organs as suspects of side effects based on existing knowledge. They need to review 

the literatures to search for single-cell datasets in which cells in the suspected 

organs have highly-expressed target genes of the candidate drug. Then they will 

evaluate the effect of the drug on the phenotype of these cells and therefore on the 

phenotype of the organs. This is a typical setting of traditional “meta-analysis”. Parker 

et al found that CD19+ mural cells in the human brain were potential off-tumor 

targets of CAR-T therapy in this way (Parker et al., 2020). They first noticed from 

previous literature that CD19 CAR-T therapy could introduce neurologic adverse 

reactions. Then they collected 3 single-cell datasets of human brain: prefrontal cortex 

(Zhong et al., 2018), forebrain (La Manno et al., 2018) and ventral forebrain (La 

Manno et al., 2016). After applying standard reprocessing on each dataset, they 

manually annotated cells by comparing highly enriched genes to known cell-type 

markers. They observed on the UMAP a small population of cells in the first dataset 

expressed both CD19 and CD248 (a marker for mural cells). They further identified 

that these cells were pericytes and verified them in all three datasets. This type of 

meta-analysis depends much on the existing hints or guesses on possible off-target 

organs and involves heavy efforts on data collection and reprocessing.  

 

 

We followed the example of Parker’s work (Parker et al., 2020) to study the possible 

off-target effects of CAR-T therapy in a more automatic way using hECA. CD19 is a 

common target of CAR-T therapy treating B-cell lymphoma (Wei et al., 2019). 

Neurological toxicity is one of the major side-effects (Rubin et al., 2019). To study 

why this toxicity occurs and whether other organs might be affected by CAR-T 

therapy, we used a filtering criterion on CD19 expression for in data cell sorting in 

hECA. Totally 2,566 CD19+ cells passed the filter (Figure 3B). This therapy aims to 

target malignant B cells for curing lymphoma. But B cells and plasma B cells only 

compose ~53% of the selected CD19+ cells (Figure 3C, Figure S4, Table S6). The 

other cells in the selected group include endothelial cells, microglia and neurons in 

the brain, cardiomyocytes and fibroblasts in the heart and lung, enterocytes in the 

rectum, etc. (Figure 3D, Figure S4, Table S6). They all have the potential of 

suffering from off-targets of the therapy. This result explained why encephalopathy 

was often observed and cells constructing vessels were targeted by the drug (Parker 
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et al., 2020). Our results also suggest that there is possible toxicity on the circulatory 

system and digestive system, which can also be validated by reports in the literature 

(Yáñez et al., 2019).  

 

CD22 is another popular target when designing CAR-T therapy for lymphoma (Wei et 

al., 2019). Similarly, we used in data cell sorting in hECA and obtained 8,724 cells 

with CD22 expressed (Figure 3E). In addition to B cells (Figure 3F, Figure S5, Table 

S7), this group contains oligodendrocytes and excitatory neurons in the brain, 

cardiomyocytes and fibroblasts in the heard, macrophage, mast cells and monocytes 

in the lung, and neutrophils in the testis, etc. (Figure 3G, Figure S5, Table S7). 

These observations provide significant clues for systematic investigation on the 

potential side effects of targeted therapy.  

 

 

Figure 3. In data experiments with hECA facilitating discoveries of side effects of targeted 

drugs. (A) The diagram of using in data cell sorting to predict targets and off-targets of 

targeted therapy. Red dots and blue dots in the human body represent the target effected 

sites and side effected sites, respectively. The red and blue dots in the UMAP represent the 

treatment effected cells and side effected cells, respectively. (B) Visualization of CD19+ cells 

(expression>0.1) in UMAP, colored by organ origins of cells. CD19 is the target gene of the 

targeted therapy. (C) Visualization of CD19 expression levels of those CD19+ cells. (D) 

Visualization of CD79A expression levels of those CD19+ cells. CD79A is a marker for B 

cells. (E) Visualization of CD248 expression levels of those CD19+ cells. CD248 is a marker 
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for pericytes. (F) Visualization of CD22+ (expression>0.1) cells in UMAP, colored by organ 

origin of cells. CD22 is the target gene of the targeted therapy. (G) Visualization of CD22 

expression levels of those CD19+ cells. (H) Visualization of CD79A expression levels of those 

CD22+ cells. CD79A is a marker for B cells. (I) Visualization of OLIG2 expression levels of 

those CD22+ cells. OLIG2 is a marker for oligodendrocytes. The color bars in (C-E) represent 

expression levels of CD19, CD79A and CD248, and the color bars in (G-I) represent 

expression levels of CD22, CD79A and OLIG2, respectively, with colors grey to red indicating 

expression low to high. The red and blue ellipses in (D-E) and (H-I) line out the target affected 

cells and off-target affected cells, respectively. 

 

This case study provided more than an example, but a systematic approach of 

conducting meta-analysis with in data cell sorting in a more efficient and effective 

way based the cell-centric assembly of massive single-cell data in hECA. For any 

specific target gene, cells that highly express the gene can be found through in data 

cell sorting, no matter which original datasets the cells are from. A profile of cellular 

distribution of all major human organs that contain the found cells can be built, which 

highlights suspected organs that might be the off targets of the drug. Detailed 

analyses can be further applied on the possible effects of the drug on the phenotypes 

of the cells by checking on the consequences of the expression change of the target 

gene on downstream gene expression, signaling pathways, metabolisms, 

interactions with other cells, etc. Quantitative analysis then can be applied on the cell 

compositions and cell-cell interactions in the suspected organs to evaluate the 

possible physiology or pathology effects. Users can adopt this approach and apply to 

any target cell types they want to investigate. 

 

Quantitative portraiture of genes, cell types and organs 

The above sections illustrated how users can explore and exploit hECA with the 

flexible and cell-centric in data cell sorting engine. To better describe whole vivid 

pictures of the biological entities in hECA, we further developed a “quantitative 

portraiture” system. The system contains a set of quantitative portraits of the 

biological entities, including organs, cell types, and genes for all quantifiable 

characteristics at multiple angles. We portrayed them in the web interface at all 

possible levels and aspects so that users can get a comprehensive understanding of 

the whole system, all elements in it and their relationships. This is an upgraded 

approach from the current approach of using “snapshots” of marker genes to 

describe a cell type. In the current version, we portrayed 38 organs, 146 cell types 
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and 43,878 genes in hECA v1.0 with the currently available data. With the growing 

coverage and quality of data assembled into hECA in the future, the portraiture 

framework will lead to “holographic” macroscopic and microscopic views of genes, 

cells, tissues and organs of the human body. 

 

In gene portraits, we showed the expression distribution of a gene in each selected 

organ or cell type, providing a quick overview and organ-wise or cell type-wise 

comparison of genes of interests. We also included basic information about the gene, 

links to GeneCard, NCBI, Ensemble and Wikigene pages of the gene. The design of 

gene portraits borrowed the idea from the “gene skyline” of ImmGen 

(http://rstats.immgen.org/Skyline/skyline.html), a famous project that collect 

immunological data and profile gene expression signatures. In the portrait page of 

gene PTPRC (Figure S5), for example, the basic information of the gene is firstly 

shown, including the gene’s full name Protein Tyrosine Phosphatase Receptor Type 

C, some of the aliases, its location on the chromosome, etc. A panel “Known as 

markers of” provides information about cell types in which the gene is highly 

expressed. Users can browse the distribution of the gene’s expression level, grouped 

by the uHAF organ tree or cell type tree. The gene portraits in hECA present several 

major improvements compared with the gene skyline. Firstly, a distribution instead of 

only mean value of expression levels is provided for each gene in each cell type or 

organ. Besides the function of exhibiting relative expression strength between cell 

groups, expression distributions show more information like the percentage of cells 

that express the gene, or heterogeneity within a cell type which may indicate 

potential sub-types. Secondly, hECA gene portraits cover a wider breadth of cell 

types, while the data of gene skyline are restricted in immune cells. Furthermore, 

hECA portraits are based on the uHAF annotation. This allows the portraits to be 

updated timely with the expansion of uHAF when more data are assembled.  

 

hECA cell type portraits include the organ origin of a certain cell type, marker genes 

in the cell type, view of the cell type in embedding space and the position of the cell 

type in the uHAF tree (Figure S6). A cell type is mainly characterized by two types of 

information: organs that contain the cell type, and the expression patterns of genes 

that are specific to the cell type. hECA v1.0 portrayed 146 of the 416 cell types 

organized by the hECA hierarchy with the current data availability. On the hECA 

website, users can type in the name to search for a cell type or to click along the tree 
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of cell types to display the cell type portrait. It includes the distribution of the cell type 

across organs, shown as the number of cells of this type collected in the organs, the 

list of marker genes with their characteristic expression ranges in the cell type, and a 

2D PCA, UMAP or DensMAP visualization (McInnes and Healy, 2018; Narayan et al., 

2021; Pearson, 1901) of the cells colored by the organ of the cells or the expression 

of a certain gene in the cells.  

 

hECA organ portraits include a organ’s cell type composition, embedding view of cell 

types in the organ, and a tree view of its position in uHAF (Figure S7). An organ is 

usually characterized by its anatomic and physiological features, but the full 

portraiture of an organ should include its full cellular and molecular features at 

multiple resolutions. The basic cellular information is the relative composition of cell 

types in the organ and in its different anatomical parts. The basic molecular 

information is the gene expression patterns in the organ as a whole and in its 

different parts, spatial locations, and at different physiological statuses. In the 

embedding viewer, we show the feature map of each gene in 2D visualization, 

showing the relationship of certain genes, cell types and organs. The current 

coverage and quality of the data are still far from fully characterizing the entities in an 

unbiased manner. Therefore, current portraits can only reflect information in the 

collected data rather than the complete biological picture. But the portraiture 

framework provides a comprehensive approach leading to the complete picture when 

more and more data are assembled into hECA. 

 

It should be noted that most current single-cell sequencing technologies undergo 

some kind of cell selection before sequencing. For cells that are selected, the 

sampling efficiencies for different cell types are also not uniform (Baran-Gale et al., 

2017; Phipson et al., 2017; Tung et al., 2017). There are many technical reasons that 

may cause biases in the measured gene expression values even in the same 

experiment, let alone across different experiments (Chen and Zheng, 2018; Miao et 

al., 2018; Miao and Zhang, 2016; Soneson and Robinson, 2018). Therefore, it is 

unrealistic to expect full portraits of genes, cell types or organs with high reliability 

and fidelity based on the currently available data. The hECA quantitative portraiture 

system provides a framework presenting the full information of biological entities, and 

sets a goal for future ideal cell atlases.  
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Customized reference creation for automatic cell type classification 

Every cell in hECA has standard identity labels chosen from the uHAF. Users can 

transfer these identity labels to their own datasets with well-designed classifiers. 

Many computational tools for automated cell type identification have emerged, as 

described in (Pasquini et al., 2021). These classification methods rely on a good 

selection of reference datasets to perform good label transfer because the cell 

composition in the reference data may lead to differences in annotation results. For 

instance, when studying hematopoietic development, feeding a classifier with a 

reference containing only hemocytes will reduce misclassification.   

 

In hECA, the in data cell sorting web and programming interfaces can help users 

create customized references using flexible creation criteria. We also provided a list 

of pre-created reference datasets organized by organs, which is available at 

http://eca.xglab.tech/#/cellTypeList . Note that the current curated references from 

hECA may not be complete in the cell type composition due to the insufficient data 

coverage and biased sampling strategy.  

 

DISCUSSION 

We presented hECA, a cell-centric assembled human cell atlas based on collection 

of data scattered in the literatures. hECA was empowered by a unified information 

framework providing structured indexes and combinatorial searching facility. The cell-

centric assembly provides three novel applications for the atlas that could be difficult 

for file-centric data collections: 1) a new experiment paradigm “in data” cell sorting 

that enables efficient selection of cells that meet combinations of multiple logic 

conditions, 2) a “quantitative portraiture” system for holographic characterization of 

biological entities, and 3) a customizable reference generation function for automatic 

annotation of users’ query cells. Although the current data is far from providing 

sufficient and uniform coverage to major human organs, example applications based 

on hECA v1.0 already demonstrated the revolution that such cell-centric assembled 

cell atlas can bring to biomedical research beyond the possibility of single-cell 

studies or file-centric atlas collections.  
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There have been several efforts for gathering, collecting and archiving single-cell 

data. Those “data integrations” are at the dataset level rather than cell level: Data of 

cells from different studies and sub-studies are archived as separated files rather 

than merged into a single database; Databases are used to manage or index the 

metadata of the datasets instead of the individual cells. The typical way to use these 

resources is to find specific datasets from the list and download the corresponding 

data files to users’ local computer for in-house analyses. They provided useful 

resources for many studies. But it is not convenient or efficient if users need to utilize 

data across multiple datasets in a more comprehensive manner. Tasks such as 

evaluating the expression of a certain gene among multiple organs or studying 

cellular emigrant route need researchers to process dozens of datasets separately. 

These tasks need cell-centric assembly of data across studies and datasets. There 

has been no such reported effort yet for assembling massive single-cell data of 

multiple studies into a unified repository. The question of possible underlying 

information structures to organize and annotate all cells in an atlas has not been 

sufficiently studied. The unified information framework we developed in hECA 

provides promising solution for cell-centric assembly of cell atlas with existing data. 

 

Although the number of cells in hECA v1.0 is still very small and the coverage of 

organs and cell types is very limited, case studies using this primary version already 

showed the advantage of cell-centric atlas assembly especially the power of in data 

experiments enabled by the assembly. The customizable annotation reference shows 

the other way of utilizing in data cell sorting. The proposed gene, cell type and organ 

portraitures provide a powerful framework for characterizing the full information of 

biological entities in a quantitative manner. Up to now, all single-cell data that have 

been ever generated for human cells are still only a tiny fraction of all human cells, 

and the data are also under the influence of multiple types of noises and biases. 

Therefore, the current portraits can only reveal properties of the collected data but 

cannot be expected of high fidelity for the underlying biology. However, keeping this 

reality in mind, users can already use these portraits as handy tools for exploring 

properties of genes, cell types and organs from a more complete view than traditional 

views. With the rapid advancement in data depth, coverage and quality, the portraits 

will provide multiple-scale holographic views of all biological entities in the human 

body.    
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Several upstream processing issues that are crucial for the construction of cell 

atlases, such as normalization and correction for possible batch effects. Non-uniform 

sampling of cells and of expressed genes is another issue that may poison global 

analyses of atlas data. In building hECA, we followed the currently widely accepted 

protocols for the upstream processing of collected data. We are fully aware that 

these issues are far from perfectly solved yet, either in our own work or in the 

community. But we choose to not stuck by those issues but to work on the key 

questions in assembling and utilizing the data. These two types of questions are 

orthogonal and we should not wait till the ideal solution of the low-level processing 

problems to study the assembly and advanced application problems. On the other 

hand, the assembling and utilization of hECA can help to pinpoint what downstream 

analyses are more sensitive to pre-processing and what are not. From the case 

examples, we can see that although expressions of genes measured in separated 

experiments are not precisely comparable due to possible batch effects, in data cell 

sorting on the rough expression of some genes can already reveal important organ-

specific patterns and can help to discover organs that are more prone to side effects 

of targeted therapy. If necessary, more advanced reprocessing methods can be 

applied on the selected data and optimized for the specific downstream scientific 

investigation. This is more feasible than trying to find general optimal solutions in 

data preprocessing without a specific aim in the downstream study.   
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KEY RESOURCES TABLE 

RESOURCE SOURCE IDENTIFIER 

Deposited Data 

hECA database  This paper http://eca.xglab.tech/  

ECAUGT This paper https://pypi.org/project/ECAUGT/  

Software and Algorithms 

Seurat (Stuart et al., 2019) https://github.com/satijalab/seurat  

biomaRt (Smedley et al., 
2009) 

https://bioconductor.org/packages/release/bioc/
html/biomaRt.html  

plotly - https://github.com/plotly/plotly.py  

KEGG (Kanehisa et al., 
2020) 

https://www.genome.jp/kegg/  

ontologyIndex (Greene et al., 
2017) 

https://cran.r-
project.org/web/packages/ontologyIndex/index.
html  

GSVA (Hänzelmann et al., 
2013) 

https://www.bioconductor.org/packages/release
/bioc/html/GSVA.html   

Other   

uHAF macroscope 
ontology 

This paper https://github.com/XuegongLab/hECA  

uHAF microscope 
ontology 

This paper https://github.com/XuegongLab/hECA  

uHAF macro-micro 
map 

This paper https://github.com/XuegongLab/hECA  

uHAF marker reference This paper https://github.com/XuegongLab/hECA  
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HGNC gene symbol list This paper https://github.com/XuegongLab/hECA  

GeneSymbolUniform 
toolkit 

This paper https://github.com/XuegongLab/hECA   

CellMarker (Zhang et al., 2018) http://biocc.hrbmu.edu.cn/CellMarker/  

The Human Protein 
Atlas 

(Uhlén et al., 2015) https://www.proteinatlas.org/  

PanglaoDB (Franzén et al., 
2019) 

https://panglaodb.se  

 

 

RESOURCE AVAILABILITY 

Lead contact  

Further information and requests for resources should be directed to and will be 

fulfilled by the Lead Contact, Xuegong Zhang (zhangxg@tsinghua.edu.cn). 

Materials availability 

This study did not generate new unique reagents. 

Data and code availability 

hECA database can be found in http://eca.xglab.tech/. 

ECAUGT for database query can be found at https://pypi.org/project/ECAUGT/  

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

References to original studies that generated the single-cell transcriptome datasets 

analyzed in this work can be found in Table S1. 

 

METHOD DETAILS 

Dataset collection 

In the first version of hECA (v1.0), we present an atlas of 1,093,299 cells from 116 datasets 
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belonging to 21 published studies (Asp et al., 2019; Chen et al., 2021a; Cui et al., 2019; 

Gaublomme et al., 2019; Han et al., 2020; Kinchen et al., 2018; Lake et al., 2018; Lukowski et 

al., 2019; Madissoon et al., 2019; Menon et al., 2019; Parikh et al., 2019; Plasschaert et al., 

2018; Renthal et al., 2018; Sunkin et al., 2013; Venteicher et al., 2017; Vieira Braga et al., 

2019; Voigt et al., 2019; Wang et al., 2020a; Wang et al., 2020b; Zhong et al., 2020; Zhong et 

al., 2018), details provided in Table S1. We introduced hECA as an instance for cell-centric 

assembly of cell atlas by collecting all accessible human single cell data into a unified atlas, 

regardless of the technology, platform, researcher, study design or other factors in data 

generation. Toward this goal, we selected 20 peer-reviewed studies in hECA v1.0, preferably 

studies with high throughput in cell numbers and coverage of multiple healthy organs. These 

studies covered 38 organs and spanned the developmental stages from fetal to adult. In 

hECA v1.0 we only include transcriptomic data of healthy doners, but future versions will 

cover multi-omics data as well as data of disease samples.  

 

In each of the studies, we collected the expression matrix of every dataset in the study. In 

addition, we collected all the descriptive information in study level and dataset level, and 

analysis results of the cells in the original papers. They are referred as metadata in hECA. 

Metadata includes the following information if available: sample organ, sample tissue, 

anatomical region, subregion, donor ID, donor gender, donor age or developmental stage, 

sequencing technology and original annotations that are the assigned cell type label of each 

cell in the original study. The completeness of metadata and annotations vary among 

datasets according to original studies. 

 

Processing of data matrixes 

The collected datasets were processed for integration into uGT. The 116 datasets we 

collected in hECA v1.0 are all single-cell gene expression profiles, and every profile was 

transformed into gene by cell matrix, with each row representing a gene and each column 

representing a cell. For those expression value in log scale, we performed the value 

transformation back to raw values.  

 

For the purpose of integrating data into uGT, we unified the gene names for all datasets. For 

datasets identifying gene with Ensembl ID, we used the R package biomaRt (Smedley et al., 

2009) to convert Ensembl ID into gene symbol. Then the gene symbols of different datasets 

were unified with an in-house built toolkit: we compared gene symbols in the datasets to the 

list of 43,878 HUGO Gene Nomenclature Committee (HGNC) approved symbols (see “HGNC 

gene symbol list” in https://github.com/XuegongLab/hECA), all previous, withdrawn and alias 

symbols were converted into HGNC approved symbols. Genes that are in the list but not 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.07.21.453289doi: bioRxiv preprint 

https://github.com/XuegongLab/hECA
https://doi.org/10.1101/2021.07.21.453289


sequenced in any dataset were filled with zeros. After processing, every expression matrix 

was with 43,878 genes as rows. 

 

For datasets that have cell type annotations in the original study, the original annotations 

were kept and stored in column “original_name” in the uGT. Regardless of the original 

annotations, we performed clustering analysis and annotation in each dataset with Seurat 

v3.2 (Stuart et al., 2019). We implemented a standard processing procedure for each dataset: 

We created a Seurat object from the expression matrix, conducted quality control to filter out 

genes and cells, selected variable genes, conducted normalization, scaling, dimensional 

reduction and cell clustering. The parameters for quality control and cell filtering were 

determined specifically for each dataset following the original studies or following the tutorial 

of Seurat. The parameter for cell clustering is determined based on the consistency with 

original cell clustering results. Then the analysis pipeline of Seurat was performed to get cell 

cluster-specific expressed genes. After the quality control, we got a total of 1,093,299 cells 

from 116 datasets.  

 

uGT: a unified giant table for assembling cell atlases 

To support online "cell-centric" data assembly, we implemented the unified giant data table 

(uGT) using the NoSQL database technology (Stonebraker, 2010; Wang et al., 2017) to store 

data from multiple studies into one cloud repository. In this version of uGT implementation, we 

used the Tablestore distributed data storage service provided by Alibaba Cloud. The unified 

giant table supports storing and searching cells with dataset-associated attributes like organ, 

gender, donor age, study DOI number, and cell-specific features like cell type and ~104 gene 

expression levels. 

 

The key difference between uGT's NoSQL database and the traditional databases is that uGT 

used column-based storage. Popular implementations of traditional SQL databases have a 

rigid width limit for each data item. For example, the limit on the number of columns is 1000 

for Oracle™ and 4096 for MySQL™, which has already reached the theoretical upper limit 

(MySQL, 2021; Oracle, 2021). Obviously, the number of features of each cell exceeds this 

limit by several magnitudes.  In addition, searching high-dimensional data is difficult because 

even if one or two columns are used for data selection, all columns are retrieved by the 

computer. However, in column-based NoSQL databases, the column retrieving activity is 

restricted to the associated columns, which greatly promotes the searching efficiency, 

although the insertion and update of data become difficult. 

 

With such a design, uGT can store and query almost millions of features of mixed data types 
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for any number of cells if enough storage was given. It can further support more features 

when features from other omics data are ready to be integrated. 

Uploading data to uGT 

The uGT accepts preprocessed data submission via authorized API. In this version, the data 

were depth-adjusted and log-normalized and followed one consistent format that is ready for 

uploading. We uploaded 1,093,299 cells to the uGT in total. Every cell is a row with a unique 

identifier (column “cid”), followed by 43,878 columns of genes expression values and 17 

columns of metadata (columns “user_id”, “study_id”, “cell_id”, “organ”, “region”, “subregion”, 

“seq_tech”, “sample_status”, “donor_id”, “donor_gender”, “donor_age”, “original_name”, 

“cl_name”, “uhaf_name”, “tissue_type”, “cell_type”, and “marker_gene”) describing dataset-

level information and cell-level information.  

 

ECAUGT: the data access interface of uGT  

Based on the Tablestore python SDK, we developed a command line tool “ECAUGT” 

(pronounced as “e-caught”) to query data from hECA for advanced users to implement in data 

cell sorting. Users can query the cells with the provided query conditions and download the 

selected data of these cells. For example, the combinatorial query of “all T cell subtypes 

located in the heart with PTPRC positive and CD3D or CD3E positive” can be written as the 

following logic expression:  

(organ==Heart) && (cell_type == T cell) && (PTPRC > 0.5) && (CD3E >= 0.5) 

hECA will return all cells that satisfy these conditions in a single downloadable file to users for 

further analysis. Information about the particular studies of the cells will also be provided to 

the users. Table S2 provides the syntax of the logic expressions in ECAUGT. 

Function “query_cells()” will query cells with conditions on the columns of metadata and 

provide a user-friendly interface, with which users can combine multiple conditions into a 

logical expression in a structured string with logical operators ‘&&’ (for logical operation AND), 

‘||’ (for logical operation OR), and ‘!’ (for logical operation NOT). Then “query_cells()” will 

return the cid list of the queried cells. Function “get_columnsbycell ()” will allow users to 

download data with this id list. Users can select columns of interest and add gene conditions 

in this function with the similar interface by “query_cells()”. The “get_columnsbycell ()” can 

provide downloaded data in two forms: a python list, where each element represents a cell, or 

a pandas.DataFrame object. User can choose the form they want with the parameter 

“do_transform”. We also provide the parallel acceleration version with similar interface by 

“get_columnsbycell_para()”. Function “get_all_rows()” will provide the cid list of all cells in 

uGT and can be convenient when user require information of the whole hECA. Function 

“get_column_set()” receives a cid list and will provide all unique values in the selected column 

of these cells.  
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For users without much programming background, we provided a lightweight command line 

tool “Cell_Download” to download data from hECA. Users first query cells in the website 

interface of hECA and download a cell id list file. Then “Cell_Download” only need one-line 

command to assign the input and output path and will automatically download all columns of 

the selected cells in the id list and save the result in four files: a .csv file “metadata.csv” for 

columns of metadata, a .npz file for sparse expression matrix, and two .csv files for the row 

names and column names of this matrix. “ECAUGT” is available on 

https://pypi.org/project/ECAUGT  and can be installed with PyPI. Full documentation of 

ECAUGT could be found at http://eca.xglab.tech/ecaugt/index.html.   

 

Constructing the unified hierarchical cell annotation framework (uHAF) 

To assemble cells into an atlas so that cell annotations from different studies can be aligned, 

we designed an index and coordinate system, uHAF. The uHAF is a structured framework we 

designed for the and hierarchical indexing and annotation of organ origin and cell types in 

hECA. We unified the information of anatomical structures, source organs, and cell types into 

a unified hierarchical knowledge graph. Users can assign annotations at multiple granularities 

with uHAF, depending on the quality of the data to be labeled. 

 

We defined two types of entities using a controlled vocabulary, composing two subgraphs in 

uHAF. Entities in the “macroscopic subgraph” include system, organ, anatomical region and 

subregion information (see “uHAF macroscopic ontology” in https://github.com/XuegongLab/ 

hECA/tree/main/UHAF). Entities in the “microscopic subgraph” include annotations of cells 

on their histological types (epithelial tissue, connective tissue, muscle tissue and nerve tissue) 

and cell types or subtypes determined by molecular features (see “uHAF microscopic 

ontology” in https://github.com/XuegongLab/hECA/tree/main/UHAF). We defined two types 

of edges in the uHAF graph, “part of” and “is a”, to represent the hierarchical relations among 

the entities, and an extra “connect to” type of edge to tag attributes of the entities. For 

example, there is a “part of” edge from the entity “left ventricle” to the entity “heart”, and there 

is an “is a” edge from the entity “inhibitory neuron” to the entity “neuron”. If a cell type present 

in certain organs, there are “part of” connections from cell type nodes to organ nodes, 

indicating the cell type composition of a macroscopic entity. For example, the entity “T cell” 

has a “part of” connection with the entity “left ventricle”, as well as “part of” connections to 

other anatomical units that have T cells in their tissues. We listed all the connection observed 

in our collected data of hECA v1.0 in “uHAF macro-micro map” (https://github.com/ 

XuegongLab/hECA/tree/main/UHAF). 

 

The entities in the macroscopic and the microscopic subgraph are organized in a hierarchical 
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DAG (directed acyclic graph) structure by manually surveying the canonical human anatomy 

structure and cell type names from classical medical textbooks including Junqueira's Basic 

Histology: Text & Atlas (Mescher, 2016), Histology and Embryology (in Chinese) (Tang and 

Zhang, 2013), Systematic Anatomy (in Chinese) (Bai and Ying, 2015), Histology and 

Embryology (in Chinese) (Li and Zeng, 2018) as well as several public studies and databases 

(Franzén et al., 2019), followed by confirmation and refinement from medical experts. We 

then organized the macroscopic and the microscopic subgraphs into ontologies by the 

protégé tool (https://protege.stanford.edu/).  

 

The microscopic entities are attached with attributes “marker reference” consisting of marker 

genes by the “connect to” edges (see “uHAF marker reference” in https://github.com/ 

XuegongLab/hECA/tree/main/UHAF ). We manually collected  these marker genes that are 

often used in articles. For cell types whose marker genes were not given in the original 

studies, we surveyed for markers from multiple sources including PanglaoDB 

(https://panglaodb.se/) 

(Franzén et al., 2019), the Human Protein Atlas (https://www.proteinatlas.org/)(Uhlén et al., 

2015), and CellMarker (http://biocc.hrbmu.edu.cn/CellMarker/)(Zhang et al., 2018) to 

replenish the marker references. Such processes were implemented iteratively to curate the 

final marker references. The references will be continuously updated along with the release of 

new versions of hECA.  

 

We provided the uHAF related files at https://github.com/XuegongLab/hECA. 

 

Cell identity assignment  

We assigned an identity label from the uHAF to every single cell collected. Each cell in hECA 

is annotated with two entities of the uHAF, one macroscopic and one microscopic. The 

annotation can be of different levels in the two hierarchies, depending on the information 

provided by the original data and the specificity of the marker genes. 

uHAF name assignment  

For each Seurat cluster, we identified the cluster-specific differentially expressed genes 

(DEGs) by FindAllMarkers function. We referred to the marker reference to determine the cell 

type labels, and use the top ranked DEGs to further annotate the subtypes. We first 

determined the most general labels among the four tissue types (epithelial tissue, connective 

tissue, muscle tissue, nerve tissue), and then chose the deepest child cell type on which 

markers can be used to support the cell type assignment in the uHAF. In this way, we 

annotate each cluster “organ-tissue_type-cell_type-markers”, indicating the macroscopic and 

microscopic level of the cluster. For cells that cannot be annotated based on available 
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information, we named them as “Unclassified”. This label produced from uHAF is called 

“uHAF_name”. Table S3 listed the entity combinations that have been used in annotating the 

existing data in the current version of hECA. Users can use the uHAF to annotate their query 

cells in the same way.  

Mapping uHAF names to Cell Ontology terms  

We downloaded the basic Cell Ontology (Bard et al., 2005; Diehl et al., 2016) terms from CL 

website (Cell Ontology - Summary | NCBO BioPortal (http://bioontology.org)), retained 

“Preferred Label”, “Definitions” and “Parents” (Table), and used the “Preferred Label” for CL 

term assignment. We converted the “uHAF_name” to “cl_name” by a combined strategy: We 

preferably used the Cell Ontology terms with the exact matching of the whole string of 

“cell_type”. For the “cell_type” that did not appear in the Cell Ontology terms, we further 

searched their parent “cell_type” in our uHAF until the Cell Ontology term is matched 

completely. For the remaining “cell_type”s, we manually determined the most similar Cell 

Ontology terms by ontologyIndex R package (Greene et al., 2017). If no term was found after 

these steps, we labeled them as “none” (see Table S3). 

 

Generation of quantitative portraits 

We designed a portraiture system as a systematic way to characterize the full properties of 

biological entities of all levels in hECA. There are three major types of biological entities in 

hECA: organs (including sub-organs), cell types (including subtypes) and genes. A full 

quantitative portrait of a biological entity is its holographic picture of the entity at anatomical, 

cellular and molecular levels. However, both the quality and quantity of the currently available 

data in hECA are far from constructing such full portraits. Therefore, the quantitative portraits 

in hECA v1.0 only illustrated the idea of the portraiture system using the available information. 

They reflect more about the characteristics of the collected data of and related to each entity, 

rather than about the biological truth of the entity.  

 

Organ portraits: a portrait of an organ is composed of 3 major parts: the cell composition 

viewer, the cell embedding viewer, and the organ hierarchy viewer. The cell composition 

viewer shows the counts and fractions of cell types observed in one organ’s datasets. It is 

notable that statistics in the organ portraits only reflect the counts/fractions of the collected 

cells, not the true counts/percentages of cell types in an organ. The embedding viewer 

visualizes cells of an organ with a 2-dimensional scattergram (UMAP/PCA/DensMAP for 

users to choose). This viewer supports coloring embedded cells by their cell types, 

sequencing technologies, original studies, and any given gene’s expression level. The organ 

hierarchy viewer shows the position of the organ in the uHAF macroscopic annotation 

system. 
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Cell type portraits: The cell type portrait depicts cells belong to the same cell types/subtypes 

across all organs, and is composed of 4 major parts: cell distribution, marker genes, 2D 

visualization and taxonomy relationship with other cell types. The cell distribution part 

describes the relationship of this cell type with organs, with bar plots showing the organ origin 

of cells in numbers and proportions. The marker gene part provides a table with genes highly 

expressed in this cell type, which were defined by comparing gene expression level with all 

other cell types using Seurat v3.2. We filtered out genes with adjusted p-value larger than 

0.05 or expressed in fewer than 25% cells in this cell type, and showed top 50 genes with 

highest log fold-changes. In 2D visualization part, we plotted an interactive scatter plot 

showing the distribution and landscape of cells in this cell type. Embedded cells can be 

colored with their organs, sequencing technologies, original studies, and any given gene’s 

expression level. Like organ portraits, we also showed the cell type’s hierarchical relationship 

with other uHAF cell types. 

 

Gene portraits: The portrait of a gene is composed of 2 major parts: basic gene information 

and gene expression distribution. In the basic gene information part, for each gene, we 

collected the full name of gene, the position where the gene is on the genome, commonly 

used aliases of the gene, and description that introduce the basic function of the gene. The 

“known as marker of” section denote cell types that highly express this gene, which is 

calculated by comparing the expression level of the gene in a cell type with it in other cells. 

For the gene expression distribution part, we first performed data normalization of all cells in 

uGT using function NormalizeData in Seurat v3.2. For each gene, we present its distribution 

in an organ or in a cell type by drawing a ridge plot. The ridge plot is fitted by expression 

value of the gene in the organ or cell type, while zero-value are truncated before fitting. The 

median expression level and non-zero percentage are also provided on the ridge plot. 

 

The hECA website 

We provided two portals for users to access hECA. One is a computer programing portal for 

users to access the data and do in data cell experiment using the ECAUGT package. The 

portal is at https://pypi.org/project/ECAUGT/. It is powerful but requires users to be 

comfortable with some programming skills. The other portal is a website at 

http://eca.xglab.tech/ with graphic user interface (GUI) that enables both browsing hECA at all 

levels and searching the data for in data cell experiments. ECAUGT can also be accessed 

from the website portal.  

 

The interactive functions of the hECA website (http://eca.xglab.tech/) are divided into four 

parts: “Cell sorting”, “uHAF cells”, “uHAF organs” and “gene portraits”, plus a link to the 

“ECAUGT” portal. Users can browse these functions anonymously, but signing in is needed to 
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get the full service.  

 

“Cell sorting” is the graphical interface for in data cell sorting in hECA v1.0. It supports flexible 

multi-step cell selection with all kinds of filters regarding to cell features (gene, cell type in 

uHAF, organ in uHAF and other metadata). Filters can be combined with basic logic operators 

(AND, OR, NOT) to form complex logic expressions. Users can have a quick view of the 

selected data with real-time statistical analysis and visualization of the organ origin and cell 

type composition, and can adjust the sorting criteria accordingly if necessary. For more in-

depth analysis, we provide the organ-wise cell type composition and gene expressions across 

cell types or organs and pseudo-FACS visualization of expression correlation between any 

two genes. Cell sorting processes can be saved to users’ collections for future reference. 

After users selected their interested cell groups, a cid list can be downloaded for further data 

query with ECAUGT. Examples of in data cell sorting and vignettes are provided in the home 

page of hECA website. 

 

Cell types and organs are organized in uHAF DAG in hECA. The “uHAF cells” entry provides 

an interactive tree visualization of the cell types’ hierarchical relationships, which is the 

microscopic subgraph of uHAF. The “uHAF organ” entry provides the view of the macroscopic 

subgraph of uHAF. Each cell type or organ is assigned with a unique uHAF ID with a brief 

description. We provide portraits for cell types with data available in the current version. 

Users can click “view details” to check the cell type portraits which include information of 

original organs, marker genes and embedding view of the cell types. The plots can be colored 

by the organs, expression level of selected gene, sequencing platform or the original study. 

The organ portraits provide information of cell type composition (as reflected by the current 

data), similar embedding views, anatomy relationships and position in the uHAF.  

 

The “gene portraits” entry allows users to select any particular gene and visualize the 

distribution of the gene in all organs and cell types (as reflected by the currently available 

data). The basic information includes the distribution of non-zero expression values in the 

organs and cell types, and the proportion of non-zero values (%Expr). Users should keep in 

mind the fact that the current scRNA-seq data are quite noisy and suffer from dropout events 

when using the information. The gene portraits also provide basic information of the gene 

collected from public databases and links to the corresponding pages at Genecard, NCBI, 

Ensembl and Wikigenes. 
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SUPPLENMENTAL INFORMATION 

Table S1. Source datasets of hECA v1.0. Related to Table 1. 

Table S2. Syntax of the logic expressions of ECAUGT in uGT. Related to Figure 1. 

Table S3. uHAF annotation produces uHAF_name. Related to Figure 1. 

Table S4. Details of case study 1: Negative markers for T cells. Related to Figure 2. 

Table S5. Details of case study 1: Positive markers for T cells. Related to Figure 2. 

Table S6. Details of case study 2: Organ and cell type table of CD19+ cells. Related to 

Figure 3. The number of CD19 expressed cells from each cell type and each organ. Red 

and blue highlights were treatment effect and side effect respectively. 

Table S7. Details of case study 2: Organ and cell type table of CD22+ cells. Related to 

Figure 3. The number of CD22 expressed cells from each cell type and each organ. Red 

and blue highlights were treatment effect and side effect respectively. 

Data S1. Organ cellular composition. Related to Table 1. Each page shown one organ 

and its cell type composition. The cell number and percentage were shown for each cell 

type. Database query was performed using the function “get_column_set()” of package 

ECAUGT to extract the cells for each cell type, and each cell type per organ was counted 

by “express.treemap()” function in “ploty” python package. 

Figure S1. Filtering candidate T cell subpopulations. Related to Figure 2. (A) A UMAP 

showing the within-organ clustering results. (B) The general T cell markers' expressions 

(CD3D, CD3E, CD3G). (C) Per-cluster marker gene expressions. 

Figure S2. CD4/CD8 T cell population definition. Related to Figure 2. (A) A heatmap 

showing the hierarchical clustering results based on the CD4/CD8A/CD8B genes. Other 

T cell signature genes are also listed on the heatmap. (B) Split view of CD4 positive T 

cells, CD8 positive T cells, and double-negative T cells (Note that sequencing dropouts 

caused some falsely recognized double-negative T cells). 

Figure S3. Cell type and organ distribution of CD19 expressed cells. Related to Figure 

3. The number of CD19 expressed cells from different organs (A) and cell types (B). 

Visualization of CD19 expressed cells in UMAP labeling organs (C) and cell types (D). 

Figure S4. Cell type and organ distribution of CD22 expressed cells. Related to Figure 

3. The number of CD22 expressed cells from different organs (A) and cell types (B). 

Visualization of CD22 expressed cells in UMAP labeling organs (C) and cell types (D). 

Figure S5. Example gene portrait page of PTPRC. Related to Figure 1. Basic 

information about PTPRC and distribution of expression level grouped by organs are 
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shown in the “About the Gene” and “Gene Expression Profiling” panel, respectively. 

Users can select which gene to visualize and group by either organ or cell types in the 

“Select a Gene” panel. 

Figure S6. Example cell type portrait page of Fibroblast. Related to Figure 1. A brief 

description of Fibroblast is provided under the title. “Original organs” section shows the 

number and proportion of fibroblast cells in each organ. “Marker genes” section lists the 

differentially expressed genes in fibroblast and their characteristic expression ranges. 

“Embedding viewer” section visualizes the distribution of cells on 2D DensMAP space, 

colored by organs. It also provides 2D PCA and UMAP visualization of cells colored by 

sequencing technology, data source or expression level of certain gene. “Position on 

uHAF" marks the position of Fibroblast on the unified hierarchical annotation framework 

(uHAF). 

Figure S7. Example organ portrait page of Brain. Related to Figure 1. A brief description 

of Brain is provided under the title. “Cell type composition” section shows the number and 

proportion of brain cells in each cell type. “Embedding viewer” section visualizes the 

distribution of cells on 2D UMAP space, colored by cell types. It also provides 2D PCA 

and DensMAP visualization of cells colored by sequencing technology, data source or 

expression level of certain gene. “Anatomy relationship” shows the brain belongs to the 

nervous system and is related to eye and skin. “Position on uHAF" marks the position of 

Brain on the unified hierarchical annotation framework (uHAF). 
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