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Abstract

The brain encodes the statistical regularities of the environment in a task-specific yet flexible
and generalizable format. Here, we seek to understand this process by converging two paral-
lel lines of research, one centered on sensorimotor timing, and the other on cognitive mapping
in the hippocampal system. By combining functional magnetic resonance imaging (fMRI) with
a fast-paced time-to-contact (TTC) estimation task, we found that the hippocampus signaled be-
havioral feedback and sensorimotor learning in each trial along with reward-processing regions.
Critically, these hippocampal learning signals generalized across tested intervals and accounted
for the trial-wise regression-to-the-mean biases in TTC estimation. This suggests that the capacity
of the hippocampus to generalize supports the rapid encoding of temporal context even on short
time scales in a behavior-dependent manner. Our results emphasize the central role of the hip-
pocampus in statistical learning, positioning it at the core of a brain-wide network balancing task
specificity vs. generalization for flexible behavior.
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Introduction1

When someone throws us a ball, we can anticipate its future trajectory, its speed and the time it2

will reach us. These expectations then inform the motor system to plan an appropriate action to3

catch it. Generating expectations and planning behavior accordingly builds on our ability to learn4

from past experiences and to encode the statistical regularities of the tasks we perform. At the5

core of this ability lies a continuous perception-action loop, initially proposed for sensorimotor6

systems (e.g. Wolpert et al. (2011)), which is now at the heart of many leading theories of brain7

function including active inference (Friston et al., 2016), predictive coding (Huang & Rao, 2011) and8

reinforcement learning (Daw & Dayan, 2014).9

Critically, to effectively guide behavior in a dynamic environment, the brain needs to balance three10

primary objectives. First, it needs to capture the specific aspects of the task that inform the rel-11

evant behavior (e.g. the remaining time to catch the ball). Second, it needs to generalize from a12

limited set of examples to novel and noisy situations (e.g. by inferring how fast previous balls flew13

on average). Third, the sensorimotor representations that guide the behavior need to be updated14

flexibly whenever feedback about our actions becomes available (e.g. when we catch or miss the15

ball), or when task demands change (e.g. when someone throws us a frisbee instead). Herein, we16

refer to these objectives as specificity, generalization and flexibility. While these are all fundamen-17

tal principles underlying human cognition broadly, how the brain forms task representations that18

balance these three objectives remains unclear.19

Here, we approach this question with a new perspective by converging two parallel lines of re-20

search centered on sensorimotor timing and hippocampal-dependent cognitive mapping. Specifi-21

cally, we test how the human hippocampus, an area implicated in memory formation on long time22

scales (days to weeks), may support the formation and flexible updating of sensorimotor-task rep-23

resentations even on short time scales (milliseconds to seconds). We do so by characterizing the24

relationship between hippocampal learning signals and behavioral performance in a fast-paced25

timing task, which is traditionally believed to be hippocampal-independent. We propose that the26

capacity of the hippocampus to generalize across task details (Behrens et al., 2018; Momennejad,27

2020; Whittington et al., 2020) situates it at the core of a brain-wide network balancing specificity28

vs. generalization in real time as the relevant behavior is performed.29

An optimal behavioral domain to study these processes is sensorimotor timing (Gershman et al.,30

2014; Petter et al., 2018). This is because prior work suggested that timing estimates indeed rely31

on learning temporal task regularities based on prior experiences (Wolpert et al., 2011; Jazayeri &32

Shadlen, 2010; Acerbi et al., 2012; Chang & Jazayeri, 2018). Crucially, however, timing estimates are33

not always accurate. Instead, they reflect a trade-off between specificity and generalization, which34

is expressed in systematic behavioral biases. Estimated intervals regress towards the mean of the35

distribution of tested intervals (Jazayeri & Shadlen, 2010), a well-known effect that wewill refer to as36

the regression effect (Petzschner et al., 2015). The regression effect suggests that the brain encodes37

a probability distribution of possible intervals rather than the exact information obtained in each38

trial (Wolpert et al., 2011). Timing estimates therefore depend not only on the interval tested in a39

trial, but also on the temporal context (i.e., the intervals tested in all other trials). This likely helps to40

predict and generalize to future scenarios and to adapt behavior accordingly (Jazayeri & Shadlen,41

2010; Acerbi et al., 2012; Roach et al., 2017).42

Importantly, the hippocampusproper codes for time and temporal context on various scales (Howard,43

2017) and it has been shown to process behavioral feedback in decision-making tasks (Shohamy &44

Wagner, 2008), pointing to a role in feedback learning. Moreover, the hippocampal formation has45
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been implicated in generalizing the structure of a task away from the individual features that were46

tested (Kumaran, 2012; Schlichting & Preston, 2015; Schapiro et al., 2017; Wikenheiser et al., 2017;47

Behrens et al., 2018; Schuck & Niv, 2019; Whittington et al., 2020; Peer et al., 2021), providing a uni-48

fied account for its many proposed roles in navigation (Burgess et al., 2002), memory (Schiller et al.,49

2015; Eichenbaum, 2017) and decision making (Kaplan et al., 2017; Vikbladh et al., 2019). We pro-50

pose that the capacity of the human hippocampus to generalize supports the encoding of temporal51

context, which manifests as the regression effect in behavioral performance. It does so by forming52

an integrated representation of intervals that is continuously updated in a feedback-dependent53

manner. Using functional magnetic resonance imaging (fMRI) and a sensorimotor timing task, we54

here test this proposal empirically.55

Results56

In the following, we present our experiment and results in four steps. First, we introduce our task,57

which built on the estimation of the time-to-contact (TTC) between a moving fixation target and a58

visual boundary, as well as the behavioral and fMRI measurements we acquired. On a behavioral59

level, we show that participants’ timing estimates systematically regress towards the mean of the60

tested intervals. Second, we demonstrate that hippocampal fMRI activity and functional connec-61

tivity tracks the behavioral feedback participants received in each trial, revealing a link between62

hippocampal processing and timing-task performance. Third, we show that this hippocampal feed-63

back modulation reflects improvements in behavioral performance over trials and signals learning64

in real time. Fourth, we show that these hippocampal learning signals were independent of the65

specific interval that was tested and reflected the magnitude of the behavioral regression effect66

in each trial. These results are consistent with the proposed role of the hippocampus in rapidly67

encoding task regularities for generalization in the time domain.68

Notably, for each of the hippocampal main analyses, we also performed whole-brain voxel-wise69

analyses to uncover the larger brain network at play. We found that in addition to the hippocam-70

pus, regions typically important for sensorimotor timing and reward processing signaled learning71

in our task, particularly the striatum. Follow-up analyses further revealed a striking distinction72

in TTC-specific and TTC-generalized learning signals between striatal sub-regions. We conclude73

by discussing the potential neural underpinnings of these results and how the hippocampus may74

contribute to solving the trade-off between task specificity and generalization in concert with this75

larger brain network.76

Time-to-contact (TTC) estimation task77

We monitored whole-brain activity using fMRI with concurrent eye tracking in 34 participants per-78

forming a TTC task. This task offered a rich behavioral read-out and required sustained attention in79

every single trial. During scanning, participants visually tracked a fixation target, which moved on80

linear trajectories within a circular boundary. The targetmoved at one of four possible speed levels81

and in one of 24 possible directions (Fig. 1A, similar to Nau et al. (2018a)). The sequence of tested82

speeds was counterbalanced across trials. Whenever the target stopped moving, participants esti-83

mated when the target would have hit the boundary if it had continued moving. They did so while84

maintaining fixation, and they indicated the estimated TTC by pressing a button. Feedback about85

their performance was provided foveally and instantly with a colored cue. The received feedback86

depended on the timing error, i.e. the difference between objectively true and estimated TTC (Figs.87

1B), and it comprised 3 levels reflecting high, middle and low accuracy (Fig. 1C). Because timing88
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judgements typically follow the Weber-Fechner law (Rakitin et al., 1998), the feedback levels were89

scaled relative to the ground-truth TTC of each trial. This ensured that participants were exposed90

to approximately the same distribution of feedback at all intervals tested (Figs. 1C, S1B). After a91

jittered inter-trial interval (ITI), the next trial began and the target moved into another direction92

at a given speed. The tested speeds of the fixation target were counterbalanced across trials to93

ensure a balanced sampling within each scanning run. Because the target always stopped moving94

at the same distance to the boundary, matching the boundary’s retinal eccentricity across trials,95

the different speeds led to four different TTCs: 0.55, 0.65, 0.86 and 1.2 seconds. Each participant96

performed a total of 768 trials. Please see Methods for more details.97

Figure 1: Visual tracking and Time-To-
Contact (TTC) estimation task. A) Task
design. In each trial during fMRI scan-
ning, participants fixated a target (phase
1), which startedmoving at one of 4 possi-
ble speeds and in one of 24 possible direc-
tions for 10◦ visual angle (phase 2). After
the target stopped moving, participants
kept fixating and estimated when the fix-
ation target would have hit a boundary
5◦ visual angle apart (phase 3). After
pressing a button at the estimated TTC,
participants received feedback (phase 4)
according to their performance. Feed-
back was scaled relative to target TTC. B)
Task performance. True and estimated
TTC were correlated, showing that partic-
ipants performed the taskwell. However,
they overestimated short TTCs and un-
derestimated long TTCs. Their estimates
regressed towards the grand-meanof the
TTC distribution (horizontal dashed line),
away from the line of equality (diago-
nal dashed line). C) Feedback. On aver-
age, participants received high-accuracy
feedback on half of the trials (also see
Fig. S1B). BC) We plot the mean and SEM
(black dots and lines) as well as single-
participant data as dots. Feedback levels
are color coded.

Analyzing the behavioral responses revealed that participants performed the task well and that98

the estimated and true TTCs were tightly correlated (Fig. 1B; Spearman’s rho = 0.91, p = 2.2x10−16).99

However, participants’ responses were also systematically biased towards the grand mean of the100

TTC distribution (0.82 seconds), indicating that shorter durations tended to be overestimated and101

longer durations tended to be underestimated. We confirmed this in all participants by examining102

the slopes of linear regression lines fit to the behavioral responses (Fig. S1C). These slopes differed103

from 1 (veridical performance; Fig. 1B, diagonal dashed line; one-tailed one-sample t test, t(33) =104

−19.26, p = 2.2x10−16, d = −3.30,CI : [−4.22,−2.47]) as well as from 0 (grand mean; Fig. 1B, horizontal105

dashed line; one-tailed one-sample t test, t(33) = 21.62, p = 2.2x10−16, d = 3.71,CI : [2.79, 4.72]) and106

clustered at 0.5. Moreover, the slopes also correlated positively with behavioral accuracy across107

participants (Fig. S1D; Spearman’s rho = 0.794, p = 2.1x10−08), consistent with previous reports108

(Cicchini et al., 2012). Notably, the regression effect we observed in behavior has been argued to109

show that timing estimates indeed rely on the latent task regularities that our brain has encoded110
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(e.g. Jazayeri & Shadlen (2010)). It may therefore reflect a key behavioral adaptation helping to111

generalize from current experiences to future scenarios (Roach et al., 2017). Visualizing the timing112

error over trials and scanning runs further showed that participants’ task performance improved113

over time (Fig. S1E; linear mixed-effects model with run as fixed effect and participants as the error114

term, F(3) = 3.2944, p = 0.024, ε2 = 0.06,CI : [0.00, 0.13]), which suggests they were learning over the115

course of the experiment.116

Behavioral feedback predicts hippocampal activity in the subsequent trial117

Importantly, learning is expected to occur right after the value of the performed action became118

apparent, which is when participants received feedback. As a proxy for learning, we analyzed how119

activity in each voxel reflected the feedback participants received in the previous trial. Using amass-120

univariate general linear model (GLM), we modeled the three feedback levels with one regressor121

each (high, medium, low) plus additional nuisance regressors (see methods for details). We then122

contrasted the beta weights estimated for high-accuracy vs. low-accuracy feedback and examined123

the effects on group-level averaged across runs.124

Figure 2: Feedback on the previous trial (n-1) modulates network-wide activity and hippocampal connectivity in subsequent
trials (n). A) Voxel-wise analysis. Activity in each trial was modeled with a separate regressor as a function of feedback re-
ceived in the previous trial. Insert zooming in on hippocampus added. B) Independent regions-of-interest analysis for the
anterior (ant.) and posterior (post.) hippocampus. We plot the beta estimates obtained for the parametric modulator mod-
eling trial-wise activity as a function of feedback in the previous trial. Negative values indicate that smaller errors, and
higher-accuracy feedback, led to stronger activity. Depicted are the mean and SEM across participants (black dot and line)
overlaid on single participant data (coloureddots). Activity in the anterior hippocampus ismodulated by feedback received in
previous trial. Statistics reflect p<0.05 at Bonferroni-corrected levels (*) obtained using a group-level two-tailed one-sample
t-test against zero. C) Feedback-dependent hippocampal connectivity. We plot results of a psychophysiological interactions
(PPI) analysis conducted using the hippocampal peak effects in (A) as a seed. AC) We plot thresholded t-test results at 1mm
resolution overlaid on a structural template brain. MNI coordinates added. Hippocampal activity and connectivity is modu-
lated by feedback received in the previous trial.

In both our regions-of-interest (ROI) analysis and a voxel-wise analysis, we found that hippocampal125

activity could be predicted by the feedback participants received just before the trial had started126

(Figs. 2A, B). Higher-accuracy feedback resulted in overall stronger activity in the anterior section127

of the hippocampus (Figs. 2B, S2A; two-tailed one-sample t tests: anterior HPC, t(33) = −3.80, p =128
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5.9x10−4, p f we = 0.001, d = −0.65,CI : [−1.03,−0.28]; posterior HPC, t(33) = −1.60, p = 0.119, p f we =129

0.237, d = −0.27,CI : [−0.62, 0.07]). Moreover, the voxel-wise analysis revealed similar feedback-130

related activity in the thalamus and the striatum (Fig. 2A). Note that there was no systematic re-131

lationship between subsequent trials on a behavioral level (Fig. S1A; two-tailed one-sample t test;132

t(33) = 1.03, p = 0.312, d = 0.18,CI : [−0.17, 0.52]; see methods for details) and that the direction of133

the effects differed across regions (Fig 2A), speaking against potential feedback-dependent biases134

in attention. Instead, these results are consistent with the notion that hippocampal activity signals135

feedback learning in real time.136

Feedback-dependent hippocampal functional connectivity137

Having established that hippocampal activity reflected feedback in the TTC task, we reasoned that138

its activitymay also show systematic co-fluctuationswith other brain regions aswell. To test this, we139

estimated the functional connectivity of a 4 mm radius sphere centered on the hippocampal peak140

main effect (x=-32, y=-14, z=-14) using a seed-based psychophysiological interaction (PPI) analysis141

(see methods). We reasoned that larger timing errors and therefore low-accuracy feedback would142

result in stronger learning compared to smaller timing errors and high-accuracy feedback, a re-143

lationship that should also be reflected in the functional connectivity between the hippocampus144

and other regions. We specifically tested this using the PPI analysis by contrasting trials in which145

participants performed poorly compared to those trials in which they performed well.146

We found that hippocampal activity co-fluctuatedwith activity in regions thatwere likely task-relevant,147

including the primary motor cortex, the parahippocampus and medial parietal lobe as well as the148

cerebellum (Fig. 2C). These co-fluctuations were stronger when participants performed poorly in149

the previous trial.150

Hippocampal activity reflects behavioral feedback in current trial151

The results presented so far indicate that hippocampal activity and functional connectivity reflect152

feedback received in the previous trial. Next, to test if the activity in this region also predicted the153

performance in the current trial, we conducted a GLM analysis in which we parametrically modeled154

the time course of each voxel and trial as a function of the feedback received at the end of the trial.155

We again performed ROI-based and voxel-wise analyses for our regressors-of-interest (Figs. 3A, B),156

finding that the hippocampus indeed signaled the performance in the current trial (Figs. 3B, S2A;157

two-tailed one-sample t tests: anterior HPC, t(33) = −5.92, p = 1.2x10−6, p f we = 2.4x10−6, d = −1.02,CI :158

[−1.45,−0.60]; posterior HPC, t(33) = −4.07, p = 2.7x10−4, p f we = 5.4x10−4, d = −0.70,CI : [−1.09,−0.32])159

in addition to the feedback received in the previous trial (Fig. 2). Notably, our whole-brain analysis160

revealed similar effects in the striatum, thalamus, cerebellum, motor cortex, insula as well as the161

frontal eye fields (Fig. 3A).162

Each trial comprisedmultiple distinct phases, ranging from tracking themoving target over estimat-163

ing the TTC to receiving feedback. To characterize the potentially dynamic relationship between ac-164

tivity and TTC-task performance in detail, we repeated the voxel-wise analysis for each trial phase165

separately (Fig. S3). Wemodelled each phase with a distinct regressor in a new GLM, finding strong166

differences between the trial phases in most of the observed areas. The hippocampus was again167

most strongly modulated when participants received feedback (Fig. S3). While the results obtained168

for the three phases are not independent due to the inherent temporal-order effects within each169

trial (Fig. 1A), they nevertheless suggest that the relationship between activity in each area and170

the behavioral outcome in the TTC-task is dynamic. Moreover, the fact that the hippocampus was171
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Figure 3: Brain regions signalling behavioral feedback in current trial. Activity in each trial was modeled parametrically as a
function of the feedback received at the end of the trial. A) Voxel-wise analysis. We plot thresholded t-test results at 1 mm
resolution overlaid on a structural template brain. MNI coordinates and insert zooming in on the hippocampus added. A
large network of regions signalling TTC performance included the hippocampus, striatum and cerebellum. B) Independent
regions-of-interest analysis for the anterior (ant.) and posterior (post.) hippocampus. We plot the beta estimate obtained
for the parametric modulator modeling trial-wise activity as a function of task performance. Negative values indicate that
smaller errors, and higher-accuracy feedback, led to stronger activity. Depicted are the means and SEM across participants
(black dot and line) overlaid on single participant data (coloured dots). Statistics reflect p < 0.05 at Bonferroni-corrected
levels (*) obtained using a group-level two-tailed one-sample t-test against zero.

most strongly modulated in the feedback phase is again consistent with a role in rapid sensorimo-172

tor learning.173

These results show that the hippocampus, along with other regions, signals the feedback received174

in the previous and current trial. Critically, this is the case even though the actual feedback received175

was independent across trials (Fig. S1A; two-tailed one-sample t test; t(33) = 1.03, p = 0.312, d =176

0.18,CI : [−0.17, 0.52]; see methods). This suggests that these current and past-trial effects rest at177

least partially on independent variance in the fMRI signal.178

Hippocampal activity explain accuracy and biases in task performance179

Two critical open questions remained. First, did the observed feedback modulation actually reflect180

learning and therefore behavioral improvements over trials? Second, was the information that was181

learned specific to the interval that was tested in a given trial, likely serving task specificity, or was182

independent of the tested interval, potentially serving generalization? To answer these questions183

in one analysis, we used a GLM modeling activity not as a function of feedback received in the184

previous trial (Fig. 2) or current trial (Fig. 3), but as a function of the difference in feedback between185

trials (Fig. 4). Specifically, we modeled with two separate parametric regressors the improvements186

in TTC task performance across subsequent trials (regressor 1: TTC-generalized learning) as well187

as the improvements over subsequent trials in which the same TTC interval was tested (regressor188

2: TTC-specific learning). We again accounted for nuisance variance as before, and we contrasted189

trials in which participants had improved versus the ones in which they had not improved or got190

worse (see methods for details).191

We found both TTC-specific and TTC-generalized learning activity throughout cortical and subcor-192

tical regions. Distinct areas engaged in either one or in both of these processes (Figs. 4A, S4).193

Crucially, we found that hippocampal activity signaled behavioral improvements independent of194

the TTC intervals tested. This effect was localized to the posterior section of the hippocampus (Fig.195

4B, S2A; one-tailed one-sample t tests; TTC-generalized: anterior HPC, t(33) = 0.36, p = 0.360, p f we =196

1, d = 0.06,CI : [−0.28, 0.40], posterior HPC, t(33) = 2.81, p = 0.004, p f we = 0.017, d = 0.48,CI : [0.12, 0.85];197

TTC-specific: anterior HPC, t(33) = 0.57, p = 0.285, p f we = 1, d = 0.10,CI : [−0.24, 0.44], posterior HPC,198

t(33) = 1.29, p = 0.103, p f we = 0.413, d = 0.22,CI : [−0.12, 0.57]). We then again estimated the functional199

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.08.03.454928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454928
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

Figure 4: Distinct cortical and subcortical networks signal learning of TTC-specific and TTC-generalized task information. A)
Left panel: Visual depiction of parametricmodulator design. Two regressors per runmodeled the improvement in behavioral
performance since the last trial independent of the tested TTC (Regressor 1: TTC-generalized) or the improvement since
the last trial when the same target TTC was tested (Regressor 2: TTC-specific). Right panel: Voxel-wise analysis results for
TTC-specific and TTC-generalized regressors. We plot thresholded t-test results at 1mm resolution at p < 0.05 whole-brain
Family-wise-error (FWE) corrected levels overlaid on a structural template brain. Insert zooming in on hippocampus andMNI
coordinates added. B) Independent regions-of-interest analysis for the anterior (ant.) and posterior (post.) hippocampus.
We plot the beta estimates obtained for TTC-generalized in orange and TTC-specific regressors in blue. Depicted are the
mean and SEM across participants (black dot and line) overlaid on single participant data as dots. Statistics reflect p<0.05 at
Bonferroni-corrected levels (*) obtained using a group-level one-tailed one-sample t-test against zero.

connectivity profile of the hippocampal main effect using a PPI analysis (sphere with 4mm radius200

centered on the peak voxel at x=-30, y=-24, z=-18), revealing co-fluctuations in multiple regions201

including the putamen and the thalamus that were specific to behavioral improvements (Fig. S5).202

These results suggest that the hippocampus updates information that is independent of the target203

TTC. In our task, an efficient way of generalizing across TTCs is to bias one’s responses towards the204

mean of the TTC distribution, which corresponds to the regression effect that we observed on a205

behavioral level (Figs. 1B, S1C). Given the hippocampal feedback modulation and learning effects206

we reported above, we hypothesized that hippocampal activity should also reflect themagnitude of207

the regression effect in behavior. To test this in a final analysis, wemodeled the activity in each trial208

parametrically either as a function of performance (i.e. the absolute difference between estimated209

and true TTC) or as a function of the strength of the regression effect in each trial (i.e. the absolute210

difference between the estimated TTC and the mean of the tested intervals). Voxel-wise weights211

for these two regressors were estimated in two independent GLMs (see methods for details).212

Our analyses showed that trial-wise hippocampal activity increased with better TTC-task perfor-213

mance (Figs. 5A, B; two-tailed one-sample t tests; anterior HPC, t(33) = −4.85, p = 2.9x10−5, p f we =214

5.8x10−5, d = −0.83,CI : [−1.24,−0.44]; posterior HPC, t(33) = −2.88, p = 0.007, p f we = 0.014, d =215

−0.49,CI : [−0.86,−0.14]), consistent with the previously reported feedback modulation (Fig. 3).216

In addition, however, and as predicted, it also reflected how strongly participants’ TTC estimates217

regressed towards the mean of the sampled intervals (Figs. 5A, B; two-tailed one-sample t tests;218

anterior HPC, t(33) = −5.55, p = 3.6x10−6, p f we = 1.1x10−5, d = −0.95,CI : [−1.37,−0.55]; posterior219

HPC, t(33) = −1.06, p = 0.295, p f we = 0.886, d = −0.18,CI : [−0.53, 0.16]). Notably, similar effects were220

observed in prefrontal and posterior cingulate areas (Fig. 5A).221
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Figure 5: TTC-task performance vs. behavioral regression effect. A) Voxel-wise analysis. We plot thresholded F-test results
for the task-performance regressor and the regression-to-the-mean regressor at 1 mm resolution overlaid on a structural
template brain. MNI coordinates added. Distinct networks reflect task performance and the magnitude of the regression
effect. B) Independent regions-of-interest analysis for the anterior (ant.) and posterior (post.) hippocampus. We plot the
beta estimates obtained for each participant for each of the two regressors. Negative values indicate a linear increase be-
tween hippocampal activity and either task performance (blue dots) or the magnitude of the regression effect (orange dots).
Depicted are the mean and SEM across participants (black dot and line) overlaid on single participant data (blue and orange
dots). Statistics reflect p<0.05 at Bonferroni-corrected levels (*) obtained using a group-level two-tailed one-sample t-test
against zero.

Eye tracking: no relevant biases in viewing behavior222

To ensure that our results could not be attributed to systematic error patterns in viewing behavior,223

we analyzed the co-recorded eye tracking data of our participants in detail. After data cleaning (see224

methods), we used Kruskal-Wallis tests to control for differences in fixation accuracy across speed225

levels (Fig. S6A; χ(2) = 0.61, p = 0.895, ε2 = 0.005,CI : [0.00, 0.06]) and received-feedback levels (Fig.226

S6B; χ(2) = 0.190, p = 0.909, ε2 = 0.002,CI : [0.00, 0.10]). Moreover, we examined the relationship227

of the fixation error with TTC-task performance (Fig. S6C; Spearman’s rho = 0.17, p = 0.344) as well228

as with the behavioral regression effect (Fig. S6C; Spearman’s rho = 0.26, p = 0.131). None of these229

control analyses suggested that biased patterns in viewing behavior could hinder the interpretation230

of our results.231

Discussion232

This study investigated how the brain extracts the statistical regularities of a sensorimotor timing233

task in a feedback-dependent manner. We specifically focused on the hippocampus, due to its234

known role in temporal coding and learning, asking how hippocampal processing may support235

behavioral flexibility, specificity and generalization. Moreover, we explored the larger brain-wide236

network involved in balancing these objectives. To do so, we monitored human brain activity with237

fMRI while participants estimated the time-to-contact between amoving target and a visual bound-238

ary. This allowed us to analyze brain activity as a function of task performance and as a function239

of the improvements in performance over time. We found that hippocampal activity as well as240

functional connectivity reflected the feedback participants received during this task, and its activity241

followed the performance improvements in a temporal-context-dependent manner. Unlike other242

regions such as the caudate, it signaled sensorimotor learning independent of the specific intervals243

tested and its activity reflected trial-wise behavioral biases towards the mean of the sampled inter-244

vals. In what follows, we discuss our results in the context of prior work on timing behavior and245

on hippocampal spatiotemporal coding. Moreover, we elaborate on the domain-general nature246

of hippocampal-cortical interactions and of the learning mechanisms that potentially underlie the247

effects observed in this study.248
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Spatiotemporal coding in the hippocampus249

The hippocampus encompasses neurons sensitive to elapsed time (Paton & Buonomano, 2018;250

Eichenbaum, 2014; Umbach et al., 2020). These cells might play an important role in guiding tim-251

ing behavior (Nobre & van Ede, 2018), which potentially explains why hippocampal damage or252

inactivation impairs the ability to estimate durations in rodents (Meck et al., 1984) and humans253

(Richards, 1973). Our results are in line with these reports, showing that hippocampal fMRI activity254

also reflects participants’ TTC estimation ability (Figs. 3, 5). They are also in line with other human255

neuroimaging studies suggesting that the hippocampus bridges temporal gaps between two stim-256

uli during trace eyeblink conditioning (Cheng et al., 2008), and that it represents duration within257

event sequences (Barnett et al., 2014; Thavabalasingam et al., 2018, 2019). Our results speak to the258

above-mentioned reports by revealing that the hippocampus is an integral part of a widespread259

brain network contributing to sensorimotor learning of intervals in humans (Figs. 2,3,4,5,S3,S4,S5).260

Moreover, they demonstrate a direct link between hippocampal activity, the feedback participants261

received and the behavioral improvements expressed over time (Fig. 4), emphasizing its role in262

feedback learning. Critically, the underlying learning process must occur in real-time when feed-263

back is presented, suggesting that it plays out on short time scales. Notably, the human hippocam-264

pus is neither typically linked to sensorimotor timing tasks such as ours, nor is its activity considered265

to reflect temporal relationships on such short time scales. Instead, human hippocampal process-266

ing is often studied in the context of much longer time scales (Schiller et al., 2015; Eichenbaum,267

2017), which showed that it may support the encoding of the progression of events into long-term268

episodic memories (Deuker et al., 2016; Montchal et al., 2019; Bellmund et al., 2021) or contribute269

to the establishment of chronological relations between events in memory (Gauthier et al., 2019,270

2020). Intriguingly, the mechanisms at play may build on similar temporal coding principles as271

those discussed for motor timing (Yin & Troger, 2011; Eichenbaum, 2014; Howard, 2017; Palombo272

& Verfaellie, 2017; Nobre & van Ede, 2018; Paton & Buonomano, 2018; Bellmund et al., 2020, 2021;273

Shikano et al., 2021; Shimbo et al., 2021).274

Our task can be solved by estimating temporal intervals directly, but also by extrapolating themove-275

ment of the fixation target over time, shifting the locus of attention towards the target boundary276

(Fig. 1). The brain may therefore likely monitor the temporal and spatial task regularities in parallel.277

Participants’ TTC estimates were further informed exclusively by the speed of the target, which in-278

herently builds on tracking kinematic information over time, which may explain why TTC tasks also279

engage visual motion regions in humans (de Azevedo Neto & Amaro Júnior, 2018). While future280

studies could tease apart spatial and temporal factors explicitly, our results are in line with both281

accounts. For example, the hippocampus and surrounding structures represent maps of visual282

space in primates, which potentially mediate a coordinate system for planning behavior, integrat-283

ing visual information with existing knowledge and to compute vectors in space (Nau et al., 2018;284

Bicanski & Burgess, 2020). These visuospatial representations are perfectly suited to guide atten-285

tion and therefore the relevant behaviors in our task (Aly & Turk-Browne, 2017), which could be286

tested in the future akin to prior work using a similar paradigm (Nau et al., 2018a).287

The role of feedback in timed motor actions288

Importantly, our results neither imply that the hippocampus acts as an "internal clock", nor do we289

think of it as representing action sequences or coordinating motor commands directly. Rather,290

its activity may indicate the feedback-dependent updating of encoded information more generally291

and independent of the task that was used. The hippocampal formation has been proposed as a292

domain-general learning system (Kumaran, 2012; Schlichting & Preston, 2015; Chersi & Burgess,293
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2015; Schapiro et al., 2017; Wikenheiser et al., 2017; Behrens et al., 2018; Vikbladh et al., 2019;294

Geerts et al., 2020; Momennejad, 2020), which may encode the structure of a task abstracted away295

from our immediate experience. In contrast, the striatum was proposed to encode sensory states296

or actions, supporting the learning of task-specific (egocentric) information (Chersi & Burgess, 2015;297

Geerts et al., 2020). Together, the two regions may therefore play an important role in decision298

making in general also in other non-temporal domains.299

Consistent with these ideas, we observed that striatal and hippocampal activity was modulated300

by behavioral feedback received in each trial (Figs. 2, 3). Similar feedback signals have been pre-301

viously linked to learning (Schönberg et al., 2007; Cohen & Ranganath, 2007; Shohamy & Wagner,302

2008; Foerde & Shohamy, 2011;Wimmer et al., 2012) and the successful formation of hippocampal-303

dependent long-termmemories in humans (Wittmann et al., 2005). Moreover, hippocampal activity304

is known to signal learning in other tasks (Doeller et al., 2008; Foerde & Shohamy, 2011; Dickerson305

&Delgado, 2015; Wirth et al., 2009; Schapiro et al., 2017; Kragel et al., 2021). Here, we show a direct306

relationship between such rapid learning signals and ongoing timing behavior, and we show that307

receiving behavioral feedback modulates widespread brain activity (Figs. 2, 3), which potentially308

reflects the involvement of these areas in the coordination of reward behavior observed earlier309

(LeGates et al., 2018). These regions include those serving sensorimotor functions, but also those310

encoding the structure of a task or the necessary value functions associated with specific actions311

(Lee et al., 2012).312

The present study further demonstrates that activity in the hippocampus co-fluctuates with activity313

in other likely task-relevant regions in a task-dependentmanner. We observed such co-fluctuations314

in the striatum and cerebellum, often associated with reward processing and action coordination315

(Bostan & Strick, 2018; Cox & Witten, 2019), the motor cortex, typically involved in action planning316

and execution, as well as the parahippocampus and medial parietal lobe, often associated with317

visual-scene analysis (Epstein & Baker, 2019). This may indicate that behavioral feedback also af-318

fects the functional connectivity profile of the hippocampus with those domain-selective regions319

that are currently engaged in the ongoing task.320

What might be the neural mechanism underlying feedback-learning in our task? Prior work has321

shown that hippocampal, frontal and striatal temporal receptive fields scale relative to the tested322

intervals, and that they re-scale dynamically when those tested intervals change (MacDonald et323

al., 2011; Gouvêa et al., 2015; Mello et al., 2015; Wang et al., 2018). This may enable the encoding324

and continuous maintenance of optimal task priors, which keep our actions well-adjusted to our325

current needs. We speculate that such receptive-field re-scaling also underlies the learning effects326

discussed here, which likely build on both local and network-wide re-weighting of functional con-327

nections between neurons and entire regions. Consistent with this idea and the present results,328

receptive-field re-scaling can occur on a trial-by-trial basis in the hippocampus (Shikano et al., 2021;329

Shimbo et al., 2021) but also in other regions such as the striatum (Mello et al., 2015; Gouvêa et al.,330

2015; Wang et al., 2018).331

A trade-off between specificity and generalization?332

So far, we discussed how the brain may capture the temporal structure of a task and how the333

hippocampus supports this process. However, how do we encode specific task details while still334

forming representations that generalize well to new scenarios? In other words, how does the brain335

encode the probability distribution of the intervals we tested optimally without overfitting? Our336

behavioral and neuroimaging results suggest that this trade-off between specificity and general-337
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ization is governed by many regions, updating different types of task information in parallel (Fig.338

4A). For example, hippocampal activity reflected performance improvements independent of the339

tested interval, whereas the caudate signaled improvements specifically over those trials in which340

the same TTC was tested. In the putamen, we found evidence for both processes (Fig. S4B). This341

suggests that different regions encode distinct task regularities in parallel to form optimal sensori-342

motor representations to balance specificity and generalization.343

Notably, our results make a central prediction for future research. We anticipate that participants344

with stronger learning-related activity in the hippocampus should be able to generalize better to345

new scenarios, for example when new intervals are tested. While we could not test this prediction346

directly in our study, we did test for a link to a related phenomenon, and that is the regression347

effect we observed on the behavioral level. We found that TTC estimates regressed towards the348

mean of the sampled intervals in all participants (Figs. 1B, S1C), an effect that is well known in349

the timing literature (Jazayeri & Shadlen, 2010) and other domains (Petzschner & Glasauer, 2011;350

Petzschner et al., 2015). This regression effect likely supports generalization (Roach et al., 2017), be-351

cause time estimates are biased towards the mean of the tested intervals, and because the mean352

will likely be close to the mean of possible future intervals. We therefore hypothesized that this353

effect is grounded in the activity of the hippocampus, because it plays a central role in generaliza-354

tion in other non-temporal domains (Kumaran, 2012; Schlichting & Preston, 2015; Schapiro et al.,355

2017; Momennejad, 2020). Our analyses revealed that this was indeed the case. We found that356

hippocampal activity followed the magnitude of the regression effect in each trial (Fig. 5), poten-357

tially reflecting the temporal-context-dependent learning of the grandmean of the tested intervals358

(Jazayeri & Shadlen, 2010).359

In addition, our voxel-wise results showed that striatal subregions only tracked how accurate partic-360

ipants’ responses were, not how strongly they regressed towards the mean (Fig. 5A). This dovetails361

with literature on spatial-navigation (Doeller et al., 2008; Chersi & Burgess, 2015; Goodroe et al.,362

2018; Gahnstrom & Spiers, 2020; Geerts et al., 2020; Wiener et al., 2016), showing that the striatum363

supports the reinforcement-dependent encoding of locations relative to landmarks, whereas the364

hippocampusmay help to encode the structure of the environment in a generalizable andmap-like365

format. This matches the functional differences observed here in the time domain, where caudate366

activity reflects the encoding of individual details of our task such as the TTC intervals (Figs. 4A, S4A,367

B), while the hippocampus generalizes across TTCs to encode the overall task structure (Figs. 4A,368

B, S4A).369

Conclusion370

In sum, we combined fMRI with time-to-contact estimations to show that the hippocampus sup-371

ports the formation of task-specific yet flexible and generalizable sensorimotor representations372

in real time. Hippocampal activity reflected trial-wise behavioral feedback and the behavioral im-373

provements across trials, suggesting that it supports sensorimotor learning even on short time374

scales. The observed feedback-learning signals generalized across tested intervals, and they ex-375

plained the regression-to-the-mean biases observed on a behavioral level, which suggests that the376

hippocampus may encode temporal context in a behavior-dependent manner. We show that it377

does so even in a fast-paced timing task typically considered to be hippocampal-independent. Our378

results show that the hippocampus supports rapid and feedback-dependent sensorimotor learn-379

ing, making it a central component of a brain-wide network balancing task specificity vs. general-380

ization for flexible behavior in humans.381
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Methods403

Participants404

We recruited 39 participants for this study (16 females, 19-35 years old). Five participants were405

excluded: one participant did not comply with the task instructions; one was excluded due to a fail-406

ure of the eye-tracker calibration; three participants were excluded due to technical issues during407

scanning. A total of 34 participants entered the analysis. The study was approved by the regional408

committee formedical and health research ethics (project number 2017/969) in Norway and partic-409

ipants gave written consent prior to scanning in accordance with the declaration of Helsinki (2008).410

Task411

Participants performed two tasks simultaneously: a smooth pursuit visual-tracking task and a time-412

to-contact estimation task. The visual tracking task entailed fixation at a fixation disc thatmoved on413

predefined linear trajectories with one of four speeds: 4.2◦/s, 5.8◦/s, 7.5◦/s and 9.1◦/s. Upon reach-414

ing the end of such a linear trajectory, the dot stoppedmoving until the second task was completed.415

This second task was a time-to-collision (TTC) estimation task in which participants indicated when416

the fixation target would have hit a circular boundary if it had continued moving. This boundary417

was a yellow circular line surrounding the target trajectory with 10◦ radius. Participants gave their418

response by pressing a button at the anticipated moment of collision. They performed this task419

while still keeping fixation, and the individual linear trajectories were all of the same length (10◦420

visual angle), leading to four target TTC durations of 1.2s, 0.88s, 0.67s and 0.55s tested in a counter-421

balanced fashion across trials. After the button press, participants received feedback for 1 second422

informing them about the accuracy of their response. When participants overestimated the TTC,423

half of the fixation disc closest to the boundary changed color (orange or red) as a function of re-424

sponse accuracy (medium or low, respectively). When participants underestimated the TTC, half of425

the fixation disc further away from the boundary changed color. When participants were accurate,426

two opposing quadrants of the fixation disc would turn green. This allowed us to present feedback427

at fixation while keeping the number of informative pixels matched across feedback levels. To cal-428

ibrate performance feedback across different TTC durations, the precise response window widths429

of each feedback level scaled with the speed of the fixation target. The following formula was used430

to scale the response window width: d ± ((k ∗ d)/2) where d is the target TTC and k is a constant431

proportional to 0.3 and 0.15 for high and medium accuracy, respectively. This ensured that partici-432

pants received approximately the same feedback for tested TTCs despite the known differences in433

absolute performance between target TTCs due to inherent scalar variability (Gibbon, 1977). When434

no response was given, participants received low-accuracy feedback (two opposing quadrants of435

the fixation dot turned red) after a 4 seconds timeout. After the feedback, the disc remained in its436

last position for a variable inter-trial interval (ITI) sampled randomly from a uniform distribution437

between 0.5 seconds and 1.5 seconds. Following the end of the ITI, the dot continued moving in a438

different direction. In the course of 768 trials, each target TTC was sampled 192 times. We sampled439

eye-movement directions with 15◦ resolution, leading to an overall trajectory that was star-shaped,440

similar to earlier reports (Nau et al., 2018a). The full trajectory was never explicitly shown to the441

participants.442

Behavioral analysis443

Participants indicated the estimated TTC in each trial via button press. In line with previous work444

(Jazayeri & Shadlen, 2010), participants tended to overestimate shorter durations and underesti-445
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mate longer durations (Fig. 1B). In order to quantify this behavioral effect we extracted the slope446

value of a linear regression line fit between estimated and target TTCs separately for each partici-447

pant. A slope of 1 would indicate that participants performed perfectly accurately for all intervals.448

A slope of 0 would indicate that participants always gave the same response independent of the449

tested interval, fully regressing to the mean of the sampled intervals. Two separate one-tailed450

one-sample t tests (against 1 or 0) were performed to corroborate that participants’ slope values451

regressed towards the mean of the sampled TTCs (Fig. S1C). A Spearman’s rank-order correla-452

tion tested if slope values correlated with the percent of high accuracy trials (Fig. S1D), to further453

demonstrate that participants relied to different degrees on both, the target TTCs and the mean454

of the sampled TTCs, in order to achieve an optimal performance tradeoff. As a measure of be-455

havioral performance, we computed the absolute TTC-error defined as the absolute difference in456

estimated and true TTC for each target-TTC level. Participants received feedback after each trial457

corresponding to the absolute TTC error of that trial. On average, 46.9% (σ = 9.1) of trials were of458

high accuracy, 31.2% (σ = 3.9) were of medium accuracy and 21.1% (σ = 9.8) were of low accuracy459

(Fig. 1C). Moreover, we found that this feedback distribution was indeed similar across target-TTC460

levels as planned (Fig. S1B). To control that there was no systematic and predictable relationship461

between subsequent trials on a behavioral level, we estimated the n-1 Pearson autocorrelation be-462

tween feedback values received on each trial and then performed a two-tailed one-sample t-test463

on group level against zero using the extracted correlation coefficients from each participant (Fig.464

S1A). To further test participants’ performance improvements over time, we used a linear mixed-465

effects model with run as predictor, absolute TTC-error as the dependent variable and participants466

as the error term (Fig. S1E).467

Imaging data acquisition & preprocessing468

Imaging data were acquired on a Siemens 3T MAGNETOM Skyra located at the St. Olavs Hospi-469

tal in Trondheim, Norway. A T1-weighted structural scan was acquired with 1mm isotropic voxel470

size. Following EPI-parameters were used: voxel size=2mm isotropic, TR=1020ms, TE=34.6ms, flip471

angle=55◦, multiband factor=6. Participants performed a total of four scanning runs of 16-18 min-472

utes each including a short break in the middle of each run. Functional images were corrected for473

head motion and co-registered to each individual’s structural scan using SPM12 (www.fil.ion.ucl474

.ac.uk/spm/). We used the FSL topup function to correct field distortions based on one image ac-475

quired with inverted phase-encoding direction (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup).476

Functional images were then spatially normalized to the Montreal Neurological Institute (MNI)477

brain template and smoothed with a Gaussian kernel with full-width-at-half-maximum of 4 mm478

for regions-of-interest analysis or with 8 mm for whole-brain analysis. Time series were high-pass479

filtered with a 128 s cut-off period. The results of all voxel-wise analyses were overlaid on a struc-480

tural T1-template (colin27) of SPM12 for visualization.481

Regions of interest definition and analysis482

Regions-of-interest masks for different brain areas were generated for each individual participant483

based on the automatic parcellation derived from FreeSurfer’s structural reconstruction (https://484

surfer.nmr.mgh.harvard.edu/). The ROIs used in the present study include the Hippocampus485

as main area of interest (Fig. S2A) as well as the Caudate Nucleus, Nucleus Accumbens, Thala-486

mus, Putamen, Amygdala and Globus Pallidum (Fig. S2B). The hippocampal ROI was manually seg-487

mented following previous reports into its anterior and posterior sections based on the location488

of the uncal apex in the coronal plane as a bisection point (Poppenk et al., 2013). We did this be-489
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cause prior work suggested functional differences between anterior and posterior hippocampus490

with respect to their contributions tomemory-guided behavior (Poppenk et al., 2013). All individual491

ROIs were then spatially normalized to theMNI brain template space and re-sliced to the functional492

imaging resolution using SPM12. All ROI analyses were conducted using 4mm spatial smoothing.493

All ROI analyses described in the following were conducted using the following procedure. We494

extracted beta estimates estimated for the respective regressors of interest for all voxels within495

a region in both hemispheres, averaged them across voxels within that region and hemispheres496

and performed one-sample t-tests on group level against zero as implemented in the software R497

(https://www.R-project.org).498

Brain activity as a function of current-trial performance feedback499

Weused amass-univariate general linearmodel to analyze the time courses of all voxels in the brain500

as a function of feedback received at the end of each trial. The model included onemean-centered501

parametric modulator per run with three levels reflecting the feedback received in each trial. The502

feedback itself was a function of TTC error in each trial (high accuracy = 0, medium accuracy = 0.5503

and low accuracy = 1). In addition, we added three nuissance regressors per run modeling ITIs,504

button presses, and periods of rest. These regressors were convolved with the canonical hemody-505

namic response function of SPM12. Moreover, the model included the six realignment parameters506

obtained during pre-processing as well as a constant term modeling the mean of the time series.507

We estimated weights for all regressors and conducted a t-test against zero using SPM12 for our508

feedback regressors of interest on the group level (Fig. 3A). Importantly, positive t-scores indicate509

a positive relationship between fMRI activity and TTC error and hence with poor behavioral perfor-510

mance. Conversely, negative t-scores indicate a negative relation between the two variables and511

hence better behavioral performance.512

In addition to the voxel-wise whole-brain analyses described above, we conducted independent513

ROI analyses for the anterior and posterior sections of the hippocampus (Fig. S2A). Here, we tested514

the beta estimates obtained in our first-level analysis for the feedback regressor of interest (Fig. 3B).515

See section "Regions of interest definition and analysis" for more details.516

Brain activity as a function of trial phase517

To examine the relation between brain activity and behavioral performance in a trial in more detail,518

we repeated the univariate analysis explained above for each phase of the trial. Three regressors519

modelled themain effects of trial phase. Three additional parametric regressorsmodeled the feed-520

back effect on the activity during the tracking phase, the TTC estimation phase and the feedback521

phase in one GLM. In addition, we again added regressors modeling the ITI’s, button presses and522

periods of rest to themodel as well as head-motion regressors and a constant term as before. Each523

run was modeled separately. On the group-level, we again used SPM12 to perform t-tests against524

zero using the weights estimated for the feedback regressors of interest for each trial phase (Fig.525

S3).526

Brain activity as a function of performance feedback on the previous trial527

To examine how feedback modulates activity in the subsequent trial, we used a GLM analysis to528

model the activity of each voxel and trial as a function of feedback received in the previous trial. The529

GLM included three regressors modeling the feedback levels, one for ITIs, one for button presses530

and one for periods of rest, which were all convolved with the canonical hemodynamic response531
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function of SPM12. In addition, the realignment parameters and a constant termwere again added.532

On the group level, we then contrasted the weights obtained for the low error vs. high error re-533

gressors and tested for differences using t-tests implemented in SPM12 (Fig. 2A).534

Additionally, we again conducted ROI analyses for the anterior and posterior sections of the hip-535

pocampus (Fig. S2A) following the sameprocedure as described earlier (section "Regions of interest536

definition and analysis"). Here, we tested beta estimates obtained in the first-level analysis for the537

feedback-in-previous-trial regressor of interest (Fig. 2B).538

Hippocampal functional connectivity as a function of previous-trial performance feedback539

We conducted a psychophysiological interactions (PPI) analysis to examine whether hippocampal540

functional connectivity with the rest of the brain depended on the participant’s performance on541

the previous trial. To do so, we centered a sphere onto the group-level peak effects within the542

HPC using main-effect GLM described in the previous section. The sphere was 4mm in radius543

and was centered on the following MNI coordinates: x=-32, y=-14, z=-14. The GLM included a PPI544

regressor, a nuisance regressor accounting for the main effect of past-trial performance, and a545

nuisance regressor explaining variance due to inherent physiological signal correlations between546

theHPC and the rest of the brain. The PPI regressorwas an interaction term containing the element-547

by-element product of the task time course (effects due to past-trial performance) and the HPC548

spherical seed ROI time course. The estimated beta weight corresponding to the interaction term549

was then tested against zero on the group-level using a t-test implemented in SPM12 (Fig. 2C). This550

revealed brain areas whose activity was co-varying with the hippocampus seed ROI as a function551

of past-trial performance (n-1).552

Brain activity as a function of improvements in behavioral performance across trials553

We used a GLM to analyze activity changes associated with behavioral improvements across tri-554

als. One regressor modelled the main effect of the trial and two parametric regressors modeled555

the following contrasts: trials in which behavioral performance improved vs. trials in which behav-556

ioral performance did not improve or got worse relative to the previous trial. These regressors557

modeled the behavioral improvements either relative to the previous trial, and therefore indepen-558

dently of TTC (likely serving generalization), or relative to the previous trial in which the same target559

TTC was presented (likely serving specificity). These two regressors reflect the tests for target-TTC-560

generalized and target-TTC-specific learning, respectively. Improvement in performance was de-561

fined as receiving feedback of higher valence than in the corresponding previous trial. The same562

nuisance regressors were added as in the other GLMs and all regressors except the realignment563

parameters and the constant termwere convolvedwith the canonical hemodynamic response func-564

tion of SPM12. On the group level, we tested the two parametric regressors of interest against zero565

using a t-test implemented in SPM12, effectively contrasting trials in which behavioral performance566

improved against trials in which behavioral performance did not improve or got worse relative to567

the respective previous trials (Fig. 4A). All runs were modeled separately.568

Moreover, we again conducted ROI analyses for the anterior and posterior sections of the hip-569

pocampus (Fig. S2A) following the same procedure as described earlier (see section "Regions of570

interest definition and analysis"). Here, we tested beta estimates obtained in the first-level analy-571

sis for the TTC-specific and TTC-generalized learning regressors using one-tailed one-sample t-tests572

(Fig. 4B). In addition, to test which specific subcortical regions were involved in these processes, we573

conducted post-hoc ROI analyses for subcortical regions after the whole-brain results were known574

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.08.03.454928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454928
http://creativecommons.org/licenses/by-nc-nd/4.0/


18

(Fig. S4B; one-tailed one-sample t tests; TTC-specific: caudate: t(33) = 5.95, p = 5.6x10−7, p f we =575

3.4x10−6, d = 1.02,CI : [0.61, 1.45], nucleus accumbens: t(33) = 4.41, p = 5.2x10−5, p f we = 3.1x10−4, d =576

0.76,CI : [0.38, 1.15], globus pallidus: t(33) = 7.05, 2.3x10−8, p f we = 1.4x10−7, d = 1.21,CI : [0.77, 1.67],577

putamen: t(33) = 8.07, p = 1.3x10−9, p f we = 7.7x10−9, d = 1.38,CI : [0.92, 1.88], amygdala: t(33 = 1.78, p =578

0.042, p f we = 0.255, d = 0.30,CI : [−0.04, 0.66], thalamus: t(33) = 2.61, p = 0.007, p f we = 0.007, d = 0.45,CI :579

[0.09, 0.81]; TTC-generalized: caudate: t(33) = −0.67, p = 0.746, p f we = 1, d = −0.11,CI : [−0.46, 0.23], nu-580

cleus accumbens: t(33) = 1.82, p = 0.039, p f we = 0.235, d = 0.31,CI : [−0.04, 0.66], globus pallidus: t(33) =581

7.06, p = 2.2x10−8, p f we = 1.3x10−7, d = 1.21,CI : [0.77, 1.68], putamen: t(33) = 6.21, p = 2.6x10−7, p f we =582

1.6x10−6, d = 1.06,CI : [0.65, 1.50], amygdala: t(33) = 4.25, p = 8.3x10−5, p f we = 4.9x10−4, d = 0.73,CI :583

[0.35, 1.12], thalamus: t(33) = 4.05, p = 1.5x10−4, p f we = 8.9x10−4, d = 0.69,CI : [0.32, 1.08]). The subcorti-584

cal ROIs (Fig. S2B) were based on the FreeSurfer parcellation as described in the section "Regions585

of interest definition and analysis".586

Hippocampal functional connectivity as a function of TTC-generalized learning587

To examine which brain regions whose activity co-fluctuated with the one of the hippocampus dur-588

ing TTC-generalized learning, we again conducted a PPI analysis similar to the one described earlier.589

A spherical seed ROI with a radius of 4mmwas centered around the hippocampal group-level peak590

effect (x=-30, y=-24, z=-18) observed for the TTC-generalized learning regressor described above.591

The GLM included a PPI regressor and two nuisance regressors accounting for task-related effects592

from our contrast of interest (Behavioral improvements vs. no behavioral improvements) as well593

as physiological correlations that could arise due to anatomical connections to the hippocampal594

seed region or shared subcortical input. On the group-level, we then tested the weights estimated595

for our PPI regressor of interest against zero using a t-test implemented in SPM12. This revealed596

areas whose activity co-fluctuated with the one of the hippocampus as a function TTC-generalized597

feedback learning (Fig. S5A).598

Moreover, we conducted independent ROI analyses for subcortical regions as described in the599

section "Regions of interest definition and analysis". Here, we tested the beta estimates obtained600

for the hippocampal seed-based PPI regressor of interest (Fig. S5B; one-tailed one-sample t tests:601

caudate: t(33) = 1.06, p = 0.149, p f we = 0.894, d = 0.18,CI : [−0.16, 0.53], putamen: t(33) = 2.79, p =602

0.004, p f we = 0.026, d = 0.48,CI : [0.12, 0.84], globus pallidus: t(33) = 2.52, p = 0.008, p f we = 0.050, d =603

0.43,CI : [0.08, 0.79], amygdala: t(33) = 2.60, p = 0.007, p f we = 0.041, d = 0.45,CI : [0.09, 0.81], nucleus604

accumbens: t(33) = −1.14, p = 0.869, p f we = 1, d = −0.20,CI : [−0.54, 0.15], thalamus: t(33) = 2.71, p =605

0.005, p f we = 0.032, d = 0.46,CI : [0.11, 0.83]).606

Brain activity as a function of behavioral performance and as a function of the behavioral607

regression effect608

To examine the neural underpinnings governing specificity and generalization in timing behavior in609

detail, we analyzed the trial-wise activity of each voxel as a function of performance in the TTC task610

(i.e. the difference between estimated and true TTC in each trial) and as a function of the regression611

effect in behavior (i.e. the difference between the estimated TTC and the mean of the sampled612

intervals, which was 0.82 s). To avoid effects of potential co-linearity between these regressors, we613

estimated model weights using two independent GLMs, which modeled the time course of each614

trial with either one of the two regressors. In addition, we again accounted for nuisance variance615

as described before, and all regressors except the realignment parameters and the constant term616

were convolved with the canonical HRF of SPM12. After fitting the model, we used the weights617

estimated for the two regressors to perform voxel-wise F-tests using SPM12, revealing activity that618
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was correlated with these two regressors independent of the sign of the correlation (Fig. 5A). In619

addition, we again performed ROI analyses using two-tailed one-sample t-tests for the anterior and620

posterior hippocampus (Figs. S2A, 5B).621

Eye tracking: Fixation quality does not affect the interpretation of our results622

We used an MR-compatible infrared eye tracker with long-range optics (Eyelink 1000) to monitor623

gaze position at a rate of 500 hz during the experiment. After blink removal, the eye tracking data624

was linearly detrended, median centered, downsampled to the screen refresh rate of 120 hz and625

smoothed with a running-average kernel of 100 ms. Kruskal-Wallis tests were used in order to test626

for potential biases in fixation error across speeds (Fig. S6A) or across feedback levels (Fig. S6B).627

Moreover, we tested if differences in fixation error could either explain individual differences in628

the regression effect, or individual differences in absolute TTC error in behavior using Spearman’s629

rank-order correlations (Fig. S6C).630
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Supplementary Material800

Figure S1: Behavioral analyses. A) No autocorrelation in the behavioral feedback over trials. The feedback in one trial did not
predict feedback in the following trial. Displayed values correspond to the Pearson n-1 correlation coefficient. B) Feedback
distributions for all speed levels. Participant’s received approximately the same feedback for all speed levels/target TTCs.
C) Behavioral regression effect. We plot linear regression-line slopes predicting estimated TTCs as a function of target TTCs
for each participant. A slope of 1 indicates perfect performance. A slope of 0 indicates that participants always gave the
same response independent of the target TTC. We found that the slope coefficients clustered at around 0.5, suggesting that
participants’ responses were biased towards themean of the sampled intervals. ABC) Depicted are themean and SEM across
participants (black dot and line) overlaid on single participant data (dots). D) Performance trade-off between the regression
effect and TTC accuracy. Participants with higher TTC accuracy exhibited a weaker regression effect, reflected in larger
regression-line slopes (same data as in C). Each dot represents a single participant. Regression line (black) and SEM (gray
shade) were added. ACD) Participants were color coded. E) TTC task performance over time. Left panel: Across-trial-average
performance over scanning runs. Right panel: task performance over trials. We plot the mean (black line) and SEM (shaded
area) across participants. Run identity color coded. Participants’ task performance improved over time.
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Figure S2: Regions of interest (ROIs). A) Anterior and posterior hippocampal ROIs. B) Subcortical regions-of-interest (ROIs)
for the nucleus accumbens, the amygdala, the thalamus, the caudate, the putamen and the pallidum. AB) ROIs shown for a
sample participant superimposed onto the skull-stripped structural T1-scan of that participant. These masks were created
using FreeSurfer’s cortical and subcortical parcellation.
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Figure S3: Trial-phase specific relationship between brain activity and behavior. We repeated the voxel-wisemass-univariate
general linear model analysis for performance in the current trial (Fig. 2) for each of the three trial phases individually. This
included the tracking phase (in which the fixation target moved), the TTC-estimation phase (in which the fixation target
had stopped and participants estimated the TTC) and the feedback phase (in which participants received feedback about
how accurately they had estimated the TTC). We plot thresholded t-test results at 1mm resolution overlaid on a structural
template brain. Positive t-scores indicate a positive relationship between brain activity and TTC-error.
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Figure S4: Distinct networks support TTC-specific and TTC-generalized feedback learning. A) Voxel-wisemass-univariate GLM
results for TTC-generalized and TTC-specific parametric regressors. We plot thresholded t-test results at 1mm resolution.
Activity maps were overlaid on a structural template brain. Positive t-scores indicate a relationship between brain activity
and the updating of either TTC-specific or TTC-generalized information respectively. B) ROI-analysis results for subcortical
regions for TTC-generalized (orange dots) and TTC-specific regressors (blue dots). Depicted are the mean and SEM across
participants (black dot and line) overlaid on single participant data. Statistics reflect p<0.05 at Bonferroni-corrected levels
(*) obtained using a group-level one-tailed one-sample t-test against zero.
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Figure S5: TTC-generalized hippocampal connectivity. A) Regions of interest analysis for subcortical regions estimated using
a Psychophysiological-interactions (PPI) analysis conducted using the hippocampal effect in Fig.4A as a seed. Positive beta
estimates indicate that functional connectivity between each ROI and the hippocampal seed depended on howmuch partic-
ipants TTC-task performance improved across trials. Depicted are the mean and SEM across participants (black dot and line)
overlaid on single participant data for the nucleus accumbens, the amygdala, the caudate, the globus pallidum, the puta-
men and the thalamus. Statistics reflect p<0.05 at Bonferroni-corrected levels (*) obtained using a group-level one-tailed
one-sample t-test against zero. B) Whole-brain voxel-wise t-test results for the TTC-generalized hippocampal connectivity
overlaid on a structural template brain at 1mm resolution. MNI coordinates added.
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Figure S6: Eye tracking analyses. A) Fixation error over speed. There were no significant differences in fixation error across
speed levels/target TTC’s. B) Fixation error over TTC-task performance. There were no significant differences in fixation
error across TTC-task performance levels. C) No correlation of the behavioral regression-to-the-mean effect or TTC-task per-
formance with fixation error. Fixation quality does not affect the interpretation of the imaging results presented in this
study. Each dot represents a single participant. Participants were color coded. Regression line (black) and standard error
(gray shade). AB) Group-level mean and SEM depicted as black dot and line overlaid on single participant data.
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