
Biological network inference from single-cell multi-omics data using 1 
heterogeneous graph transformer 2 

 3 
Anjun Ma1,2,*, Xiaoying Wang3,*, Cankun Wang1, Jingxian Li3, Tong Xiao2, Juexing Wang4, 4 
Yuzhou Chang1,2, Yang Li1, Yutao Liu3, Shaopeng Gu1, Duolin Wang4, Yuexu Jiang4, Jinpu 5 
Li4, Li Su4, Zihai Li2, Bingqiang Liu3,$, Dong Xu4,$, Qin Ma1,2,$ 6 
 7 
1 Department of Biomedical Informatics, College of Medicine, The Ohio State University, 8 
Columbus, OH, 43210, USA, 9 
2 Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive 10 
Cancer Center, Columbus, OH, 43210, USA,  11 
3 School of Mathematics, Shandong University, Jinan, Shandong, 250100, China,  12 
4 Department of Electrical Engineering and Computer Science, and Christopher S. Bond 13 
Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. 14 
 15 
* These authors contributed equally to the paper as first authors 16 
$ To whom correspondence should be addressed 17 
 18 
Abstract 19 
We present DeepMAPS, a deep learning platform for cell-type-specific biological gene 20 
network inference from single-cell multi-omics (scMulti-omics). DeepMAPS includes both 21 
cells and genes in a heterogeneous graph to infer cell-cell, cell-gene, and gene-gene 22 
relations simultaneously. The graph attention neural network considers a cell and a gene 23 
with both local and global information, making DeepMAPS more robust to data noises. We 24 
benchmarked DeepMAPS on 18 datasets for cell clustering and network inference, and 25 
the results showed that our method outperforms various existing tools. We further applied 26 
DeepMAPS on a case study of lung tumor leukocyte CITE-seq data and observed superior 27 
performance in cell clustering, and predicted biologically meaningful cell-cell 28 
communication pathways based on the inferred gene networks. To improve the feasibility 29 
and ensure the reproducibility of analyzing scMulti-omics data, we deployed a webserver 30 
with multi-functions and various visualizations. Overall, we valued DeepMAPS as a novel 31 
platform of the state-of-the-art deep learning model in the single-cell study and can 32 
promote the use of scMulti-omics data in the community.  33 
 34 
Keywords: Single cell multimodal omics, heterogeneous graph transformer, graph neural 35 
network, multi-head attention framework, biological network, single-cell sequencing data 36 
analysis webserver 37 
 38 
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Main 40 
Single-cell sequencing, such as single-cell RNA sequencing (scRNA-seq) and single-cell 41 
ATAC sequencing (scATAC-seq), reshapes the way of investigating cellular heterogeneity 42 
and brings novel insights in neuroscience, cancer research, immuno-oncology, drug 43 
response, etc1, 2. Individual single-cell modality can only reflect the snapshot of genetic 44 
features and partially depict the peculiarity of cells, leading to characterization biases in 45 
complex biological systems2, 3. To fully capture the intricacy of complex molecular 46 
mechanism and cellular heterogeneity, single-cell multi-omics (scMulti-omics) generate 47 
and quantify multiple modalities in the single-cell level simultaneously, and such 48 
measurements advance various biological studies equipped with robust computational 49 
analysis methods4. 50 
 51 
The existing tools for integrative analyses of scMulti-omics data, e.g., Seurat5, MOFA+6, 52 
Harmony7, and totalVI8, achieve reliable prediction of cell types and states, recover 53 
dropouts in single-modality data analysis, remove batch effects, reveal relationships or 54 
alignment among various modalities, and toward a mechanistic understanding of cell-type-55 
specific gene regulations. However, the cross-talk among cells and different molecular 56 
modalities (e.g., genes and proteins) are usually missing in an independent hypothesis. 57 
Hence, these models lack the ability to infer the underlying biological networks of diverse 58 
cell types and have limited power to elucidate the response of these complex networks to 59 
external stimuli in specific cell types.  60 
 61 
Recently, graph neural network (GNN) shows its unique strength in learning low-62 
dimensional representations of individual cells by propagating neighbor cells’ features and 63 
constructing cell-cell relations in a global cell graph9-12. For example, our in-house tool 64 
scGNN is a novel GNN model that has demonstrated the superior performance of cell 65 
clustering and gene imputation based on the large-scale scRNA-seq data13. Furthermore, 66 
a heterogeneous graph is a multi-relational model which provides a natural representation 67 
framework for integrating scMulti-omics data and learning the underlying cell-type-specific 68 
biological networks.  Moreover, the recent development in the attention mechanism for 69 
modeling and integrating heterogeneous relationships make deep learning models 70 
explainable and enable the inference of cell-type-specific biological networks14, 15. 71 
 72 
To this end, we develop the first-of-its-kind model DeepMAPS (Deep learning-based Multi-73 
omics Analysis Platform for Single-cell data), which is a heterogeneous graph transformer 74 
framework for biological network inference from scMulti-omics data. DeepMAPS 75 
formulates high-level representations of relations among cells and genes in a 76 
heterogeneous graph, with cells and genes as the two disjoint node sets in this graph. 77 
Projecting the features of genes and cells into the same latent space is an effective way 78 
to harmonize the imbalance of different batches and lies a solid foundation of cell 79 
clustering (i.e., node clustering) and the prediction of cell-gene and gene-gene relations 80 
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in a specific cell cluster (i.e., link prediction). Most importantly, the attention mechanism in 81 
this transformer model enhances the biological interpretability and enables the 82 
identification of important gene modules in each cell cluster. Overall, DeepMAPS is an 83 
end-to-end and hypotheses-free framework and provides the first deep learning tool to 84 
infer the cell-type-specific biological networks from scMulti-omics data. 85 
 86 
In this study, we evaluated DeepMAPS on 18 scMulti-omics datasets (including 87 
transcriptomic, epigenomic, and proteomic data) and our method outperformed existing 88 
tools in terms of cell clustering accuracy and biological network inference (i.e., gene 89 
association network and gene regulatory network). Specifically, DeepMAPS shows its 90 
superior power in characterizing cellular heterogeneity since it can pass messages of 91 
neighbor cells and genes to employ the identification of highly important genes in each 92 
cell cluster. To further validate the biological insight inferred from DeepMAPS, we 93 
performed a case study on a lung tumor leukocyte CITE-seq data. By jointly analyzing 94 
gene expression and protein abundance, DeepMAPS accurately identified and annotated 95 
13 cell types based on curated markers, which cannot be fully elucidated by a single 96 
modality. We also proved that the embedding features identified in DeepMAPS capture 97 
the true signals and amplify them when the original signals are weak. Besides, we also 98 
identified biologically meaningful cell-cell communication pathways between dendritic cells 99 
and tissue resident memory CD4 T cells based on the gene network inferred in the two 100 
clusters. We deployed DeepMAPS as a code-free web portal along with Dockers, to 101 
ensure the reproducibility of scMulti-omics data analysis and lessen the programming 102 
burden for biologists who lack sufficient computational skills or resources (Fig. 1).  103 
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Fig. 1. DeepMAPS is a deep learning-based Multi-omics Analysis Platform for Single-cell data. It 105 
allows the joint analysis of multiple scRNA-seq, CITE-seq, and matched single-cell RNA and ATAC-106 
seq data. The core method includes the representation of cell-gene relations via a heterogeneous 107 
graph and a transformer with a graph attention mechanism. DeepMAPS provides interactive and 108 
interpretable graphical representations to deliver cell clusters and various cell-type-specific 109 
biological networks depending on modality types. Eventually, DeepMAPS is delivered as a web 110 
portal to ensure robustness and reproducibility, along with a docker container. Workspace is 111 
committed to being provided for users for job saving and retrieval. DeepMAPS also supports 112 
diverse interpretations include but not limited to joint cell clustering, marker identification, modality 113 
associations, cell-type-specific biological network inference, and functional enrichment. 114 

 115 
Results 116 
Overview of DeepMAPS 117 
There are five steps in DeepMAPS to fulfill the joint analysis of scMulti-omics data (Fig. 2 118 
and Methods). (i) Data is preprocessed by removing low-quality cells and modalities and 119 
then applied with different normalization methods according to specific data types (ii) An 120 
integrated cell-gene matrix will be generated by representing the combined activity of each 121 
gene in each cell. Different data integration methods are applied for different scMulti-omics 122 
data types. (iii) A heterogeneous graph transformer (HGT) model is built to jointly learn the 123 
low-dimensional embedding for cells and genes and generate an attention score to 124 
indicate the importance of a gene to a cell. (iv) Cell clustering and identification of 125 
functional gene modules in each cell cluster based on HGT-learned embeddings and 126 
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attention score. (v) Diverse biological networks, e.g., gene regulatory networks and gene 127 
association networks, are inferred in each cell type.  128 
 129 
To enable the simultaneous learning of joint representatives of cells and genes, we first 130 
generate a cell-gene matrix integrating all heterogeneous information of the input scMulti-131 
omics data. A heterogeneous graph with cell nodes and gene nodes is then constructed, 132 
where a cell-gene edge represents the integrated gene activity score in the matrix, and 133 
the initial embedding of each node is learned from the gene-cell integrated matrix via a 134 
two-layer GNN graph autoencoder. The entire heterogeneous graph is then sent to a graph 135 
autoencoder to learn relations among cells and genes and update the embedding of each 136 
node. Here, DeepMAPS adopts a heterogeneous multi-head attention mechanism to 137 
models both overall topological information (global relationship) and neighbor message 138 
passing (local relationship) on the heterogeneous graph.  139 
 140 
In a HGT layer, each node (either a cell or a gene) will be considered as a target, and 141 
DeepMAPS evaluates the importance of its neighbor nodes and the amount of information 142 
that can be passed to the target based on the synergy of node embedding. As a result, 143 
cells and genes with high positively correlated embeddings are more likely to exchange 144 
messages with each other, thus tending to maximize the similarity and disagreement of 145 
embeddings. To make the unsupervised training process feasible on a large 146 
heterogeneous graph, DeepMAPS is first performed on 50 subgraphs subtracted from the 147 
heterogeneous graph, covering a minimum coverage of 50% of all nodes, to train a shared 148 
parameters between different nodes, which is later been used for testing the whole graph. 149 
As an important training outcome, an attention score will be given to represent the 150 
importance of a gene to a cell. A gene with high attention to a cell implies that the gene is 151 
of relatively much importance for defining cell identity and characterizing cell heterogeneity. 152 
This insight will lead to reliable gene association networks in each cell cluster as the final 153 
output of DeepMAPS. 154 
 155 
We applied the graph-based invariant-sampling method to make DeepMAPS feasible for 156 
handling large-scale heterogeneous graphs16. The basic idea is to keep a separate node 157 
budget for each node type (i.e., cell node and gene node) and to sample an equal number 158 
of nodes per type with a sampling strategy to reduce variance. For an already sampled 159 
node, we will add all its direct neighbors into the corresponding budget and add its 160 
normalized degree to these neighbors, which will then be used to calculate the sampling 161 
probability. Such normalization is equivalent to accumulating the random walk probability 162 
of each sampled node to its neighborhood, avoiding the sampling being dominated by 163 
high-degree nodes. The sampler constructs a number of small subgraphs from the given 164 
giant graph, and these subgraphs can be fed in batches with multiple GPUs. These 165 
distributed training results will be collected to build the whole graph with representations 166 
on the head node. 167 
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 168 
The gene-gene and gene-cell relations predicted via the HGT model can only depict the 169 
co-expression correlations as well as the gene activity in cells in the dataset rather than 170 
reflect the gene module specificity in a cell cluster. Therefore, we build a Steiner Forest 171 
Problem (SFP) model on a sparse heterogeneous graph to identify genes with higher 172 
attention scores and similar embedding features uniquely in a cell cluster. We firstly 173 
construct a sparse weighted heterogeneous graph based on the gene-gene and gene-cell 174 
relations, and then build an SFP model based on this heterogeneous graph and cell 175 
clusters. The gene-gene and gene-cell relations in the optimized solution of the SFP model 176 
mirror the co-expression relations among genes and the specificity of genes to a cell type. 177 
A gene network established from SFP contains genes that are highly associated based on 178 
their gene activities and are of the most important in characterizing the identity of that cell 179 
cluster, which is considered to be cell-type-active. 180 
 181 
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Fig. 2: DeepMAPS framework. (a) The five major steps and graphical illustration in DeepMAPS. 183 
(b) Relations in the heterogeneous graph of cells and genes will be learned in an HGT-based graph 184 
autoencoder. The hyperparameters are first trained in 50 subgraphs and 100 epochs and then 185 
applied to the testing in the whole graph. (c) For each subgraph training and the whole graph testing, 186 
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multiple HGT layers are applied. A toy example with two cells (purple) and two genes (green) are 187 
shown for one HGT layer. The embeddings of the target cell (red) and two neighbor genes (orange 188 
and blue) are separated evenly into three heads. For each head, the HGT layer calculates the 189 
attention score of neighbor genes to the target cell and updates the target’s embedding of this head. 190 
The entire target cell embedding is updated by concatenating all three heads to complete one HGT 191 
layer. 192 

 193 
DeepMAPS achieves superior performances in joint cell clustering and biological 194 
network inference from scMulti-omics data  195 
We collected 18 scMulti-omics datasets, including two multiple scRNA-seq data (Data 1-196 
2), eight CITE-seq data (Data 3-10), and eight matched scRNA-seq and scATAC-seq 197 
(scRNA-ATAC-seq) data measured from the same cell (Data 11-18), to benchmark 198 
DeepMAPS (Supplementary Table S1). Specifically, Data 1-2 and 17-18 have 199 
benchmark annotations provided in the original manuscript. These data cover a number 200 
of cells ranging from 549 to 30,672; an average read depth (consider scRNA-seq data 201 
only) ranging from 2,933 to 645,526; a zero-expression rate (consider scRNA-seq data 202 
only) from 71% to 97% (Fig. 3a). 203 
 204 
To evaluate the performance of joint cell clustering in all three scMulti-omics data types, 205 
we compare  DeepMAPS with four benchmarking tools using default settings, including 206 
Seurat, MOFA+, TotalVI, and Harmony (Methods), in terms of the Average Silhouette 207 
Weight  (ASW) (Fig. 3a) and Adjusted Rand Index (ARI) (Fig. 3b). DeepMAPS was trained 208 
by each scMulti-omics data type and each dataset in an unsupervised way. The one set 209 
of parameter was chosen as default for all datasets in the same data type based on the 210 
grid optimization of hyper-parameter combinations (Supplementary Table 3-5). Results 211 
clearly showed that, in all three scenarios of scMulti-omics data, DeepMAPS distinctly 212 
outperformed the others in most cases. Note that, for Data 2 and 18, though DeepMAPS 213 
did not achieve the best ASW than other tools, its performance regarding ARI comparison 214 
to the benchmark label is the highest. 215 
 216 
We showed UMAP results of cell clustering of Data 17, a cancer cell line data (n=549) with 217 
benchmarked cell labels of scRNA-ATAC-seq data (Fig. 3c). By comparing with the 218 
original cell line labels, we found that DeepMAPS is the only tool that accurately separate 219 
each cell type with minimum mismatches (ARI=0.97), while for Seurat (ARI=0.88) and 220 
MOFA+ (ARI=0.79), either PDX1 or PDX2 population was mistakenly divided into two 221 
clusters and include more mismatches. For datasets without benchmark labels, 222 
DeepMAPS also showed good UMAP visualization than other tools without having mixture 223 
clusters or separated random cells (Fig. 3d). 224 
 225 
To evaluate the robustness of DeepMAPS, we performed a leave-out test on benchmark 226 
datasets. For data with benchmark labels, we first filter cells by removing a cluster of cells 227 
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based on benchmark labels and then perform analysis using DeepMAPS and benchmark 228 
tools; for other datasets, we removed cells based on clusters identified from each tool. 229 
The results showed that DeepMAPS achieved superior performance compared to all other 230 
benchmarking methods (Fig. 3e). Another test was performed on a series of data 231 
simulated for different read depth rates (Fig. 3f). For each testing dataset, the clustering 232 
results of DeepMAPS are consistent with high AWS or ARI, indicating that the message 233 
passing and attention mechanism used in DeepMAPS helped maintain cell-cell relations 234 
and tolerance to read depth. 235 
 236 
We further evaluated the two kinds of biological networks the DeepMAPS can deliver. For 237 
the gene association network (for all scMulti-omics data types), we considered using the 238 
centrality scores and enriched pathways to compare DeepMAPS with IRIS3. IRIS3 is an 239 
in-house tool for the identification of cell-type-specific regulon and gene regulatory network 240 
construction from scRNA-seq data. It has superior performance than other public tools, 241 
such as SCENIC. We also compared our results to the co-expression network constructed 242 
from the whole gene list with significance cutoffs, which is a widely used way in single-cell 243 
studies. Both the average closeness centrality and eigenvector centrality scores of 244 
networks constructed in DeepMAPS showed significantly higher scores than the other two 245 
methods using all 18 benchmark datasets (Fig. 3g-h). Moreover, for the gene regulatory 246 
network constructed from scRNA-ATAC-seq data, we evaluated the number of significantly 247 
enriched pathways in a TF-regulon and in a cell-type-specific regulon (Fig. 3i-j). The 248 
results indicated that DeepMAPS is capable of constructing more compatible and 249 
biologically reasonable gene networks in each cell type and outperformed the other 250 
methods. 251 
  252 
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 253 

Fig. 3: Benchmarking of DeepMAPS in terms of cell clustering and biological network inference. 255 
(a) Benchmarking cell clustering results in all 18 datasets in terms of average silhouette weight 256 
without using benchmark cell labels. Due to the capability, different benchmarking tools were 257 
selected for the comparison. We also show heatmaps to indicate the number of total cells, average 258 
gene expression read depth per cell, and average RNA zero expression rate in each data. (b) 259 
Results comparison on four datasets with benchmarking cell labels in terms of adjusted rand index. 260 
(c) UMAP comparison of Data 17 (with benchmark labels) between DeepMAPS and other tools. 261 
Cluster labels were annotated based on cell correspondence to the original cell label. (d) UMAP 262 
comparison of Data 5 (without benchmark labels) between DeepMAPS and other tools. (e) 263 
Robustness test of DeepMAPS using cell cluster leave-out method for Data 1 (with benchmark 264 
label) and Data 4 (without benchmark label). Details can be found in the Method section. (f) 265 
Robustness test of DeepMAPS to different read depth on Data 1. (g-h) Evaluation and comparison 266 
of gene association network inference of DeepMAPS and other methods. Closeness centrality and 267 
betweenness centrality were used to indicate the compactness and connectivity of networks 268 
inferred from different methods. (i-j) Evaluation and comparison of gene regulatory network 269 
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(regulons) identified in DeepMAPS and IRIS3, based on the number of functional pathways 270 
enriched in a regulon or cell-type-specific regulon. 271 

 272 
DeepMAPS accurately identify cell types in PBMC and lung tumor immune CITE-273 
seq data 274 
To demonstrate the joint representation of scMulti-omics in characterize cell identities, we 275 
demonstrate a case study that applies DeepMAPS on a published PBMC and lung tumor 276 
leukocytes CITE-seq data. The dataset includes RNA and protein measured on 3,485 cells.  277 
We identified 13 cell clusters, including four CD4 T cell groups (Naïve, central memory 278 
(CM), tissue resident memory (TRM), and regulatory (Treg)), two CD8 T cell groups (CM 279 
and TRM), a natural killer group, a memory B cell group, a plasma cell group, two 280 
monocyte groups, one tumor-associated macrophage group, and a dendritic cell (DC) 281 
group, via DeepMAPS and annotated each cluster by visualizing expression levels of 282 
curated maker genes and proteins (Fig. 4a). Compared to cell types identified using only 283 
proteins or RNAs, we either isolated or accurately annotated cell populations that cannot 284 
be characterized in the individual modality analysis. For example, the expression levels of 285 
marker genes (CD4, IL7R, CD44, SELL, and CD69) in CD4 T cells are weak and 286 
undistinguishable, thus only CM and naïve CD4 T cell groups can be recognized using 287 
only scRNA-seq data (Fig. 4b), while the signal of marker proteins in CD4 T cells are much 288 
stronger and differentiable. Another example lies in the recognition of tumor associated 289 
macrophage in which the marker genes (CSF1R, CCR2, and MARCO) were identified to 290 
be uniquely expressed in RNA, while no specific protein markers can be used to annotate 291 
such cell group. Altogether, combining signals captured from both RNA and protein sides, 292 
DeepMAPS successfully identified biologically reasonable and meaningful cell types in the 293 
CITE-seq data. 294 
 295 
We then zoomed in to compare the modality correlation between two cell types. We used 296 
the top differentially expressed genes and proteins between memory B cells and plasma 297 
cells and performed hierarchical clustering of the correlation matrix. The result clearly 298 
stratified these features into two anticorrelated modules: one associated with memory B 299 
cells and the other with plasma cells (Fig. 4c). Furthermore, we found that the features in 300 
the two modules significantly correlated with the axis of maturation captured by our HGT 301 
embeddings. We observed that the 51th HGT embedding showed distinctive differences 302 
between plasma cells and memory B cells  (Fig. 4d-e). Similar findings were also observed 303 
for the comparison of EM CD8 T cells and TRM CD8 T cells, which showed a much closer 304 
relation when looking at expression correlations (Fig. 4f). Nevertheless, we can still find a 305 
representative HGT embedding (56th) that maintains embedding signals to well separate 306 
the two groups (Fig. 4g-h). These results point to a program of any two cell clusters 307 
consisting of coordinated activation and repression of multiple genes and proteins, leading 308 
to a gradual transition in cell state that can be captured by a specific dimension of the 309 
DeepMAPS latent HGT space. 310 
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 311 
Based on the cell types and raw data of genes and proteins’ expression, we inferred cell-312 
cell communication by using CellChat17. We constructed communication networks among 313 
different cell types within multiple signaling pathways as Fig. 4i. We further applied 314 
CellChat17 to find any ligand-receptor interactions that have been validated between any 315 
cell types we identified. We observed an ALCAM signaling pathway existing between TRM 316 
CD4 T cells and DCs in the lung cancer tumor microenvironment (TME), of which DCs and 317 
TRM CD4 T cells serve as the major source and ligand of CD166. Previous studies 318 
showed that ALCAM on antigen-presenting DCs would interact with CD6 on T cell surface 319 
and contribute to T-cell activation and proliferation18-20. For another example, we also 320 
identified the involvement of NECTIN pathway during the interaction between the activated 321 
macrophages (source) and TRM CD8 T cells (target). This is consistent with the previous 322 
report that NECTIN (CD155) expressed on tumor-infiltrating macrophages could be 323 
immunosuppressive when interacting with surface receptors on CD8+ T cells in the lung 324 
cancer TME21, 22. 325 
 326 
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Fig. 4: DeepMAPS identifies the heterogeneity in CITE-seq data of PBMC and lung tumor 328 
leukocytes. (a) UMAPs for DeepMAPS cell clustering results of integrating RNA and protein 329 
information, only using protein, and only using RNA. Cell clusters were annotated based on curated 330 
marker proteins and genes. (b) Heatmap of curated marker proteins and genes that determine the 331 
cell clustering and annotation. (c) Heatmap of correlation comparison of top differentially expressed 332 
genes and proteins in plasma cells and memory B cells. (d) UMAP is colored by the 51th embedding, 333 
indicating distinct embedding representations in plasma cells and memory B cells. (e) Expression 334 
of top differentially expressed genes and proteins in c as a function of the 51th embedding to 335 
observe the pattern relations between plasma cells and memory B cells. Each line represents a 336 
gene/protein, colored by cell types. For each gene, the line was drawn by a loess smoothing 337 
function based on the corresponding embedding and scaled gene expression in a cell. (f-h) Similar 338 
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visualization was given for the comparison of EM CD8 T cell s and TRM cd8 T cells in c-e. (i) Two 339 
signaling pathways, NECTIN and ALCAM, were shown to indicate the predicted cell-cell 340 
communications between two cell clusters. 341 

 342 
DeepMAPS provides a multi-functional and user-friendly web portal for analyzing 343 
scMulti-omics data  344 
Researchers who lack sufficient computational skills prefer to use webservers or dockers 345 
to lessen the programming burden of data analysis, and hence, a code-free and interactive 346 
platform for single-cell sequencing data analysis are urgently needed in the public domain. 347 
Considering the complexity of single-cell sequencing data, more and more webservers 348 
and dockers have been developed in the past three years23-35 (Supplementary Table 6). 349 
However, most of these tools only provide minimal and basic functions such as cell 350 
clustering and differential gene analysis, and do not support the joint analysis of scMulti-351 
omics data, especially lack sufficient support for biological network inference. To this end, 352 
we deliver DeepMAPS as the-first-of-its kind web portal to support online and code-free 353 
computational analysis for scMulti-omics data. The webserver supports the analysis of 354 
multiple RNA-seq data, CITE-seq data, and scRNA-ATAC-seq data using DeepMAPS. 355 
Other methods, e.g., Seurat, are also included as an alternative use for the users’ 356 
convenience. Three major steps, data preprocessing, cell clustering and annotation, and 357 
network construction, are included in the server. The DeepMAPS server supports real-358 
time computing and interactive graph representations. Users may register for an account 359 
to have their own workspace to store and share analytical results.  360 
 361 
Conclusion and discussion 362 
We highlighted DeepMAPS as the first deep learning framework that implements 363 
heterogeneous graph representation learning and graph transformer in the study of 364 
scMulti-omics data. By building a heterogeneous graph containing both cells and genes, 365 
DeepMAPS identified the joint embedding of both sides simultaneously and enabled the 366 
inference of cell-type-specific biological networks along with cell types in an intact 367 
framework. The application of heterogeneous graph transformer takes the advantages 368 
beyond graph nerural network that considering not only the message from neighbor cells 369 
but also the attention of how such message should be passed to the target. In such a way, 370 
the information training and learning process in a graph can be largely shortened to 371 
consider cell impacts from a further distance.  372 
 373 
While with the advantages and outperformed performances in analyzing scMulti-omics 374 
data, there are still rooms to further improve the power of DeepMAPS. First of all, the 375 
computational efficiency for super large datasets (e.g., more than 1 million cells) might be 376 
a practical issue considering the complexity of the heterogeneous graph representation 377 
(may contain billions of edges). Moreover, DeepMAPS is recommended to be run on 378 
GPUs and supercomputers, which leads to a potential problem of reproducibility. Different 379 
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GPU models have different floating-point numbers that may influence the precision of loss 380 
functions during the training process. That is to say, for different GPU models, DeepMAPS 381 
may generate different cell clustering and network results, which is the main reason that 382 
drives us to the development of webserver. Lastly, the current version of DeepMAPS is 383 
based on a bipartite heterogeneous graph with genes and cells. Separate preprocessing 384 
and integration steps are required to transfer different modalities all into genes and be 385 
integrated into a unique cell-gene matrix. To fully achieve an end-to-end framework for 386 
scMulti-omics analysis, the bipartite graph can be extended to a multipartite graph, where 387 
each modality can be included as a node type. Such multipartite heterogeneous graph can 388 
even include knowledgeable and biological information, such as known molecular 389 
regulations, and more than two modalities all in one graph. However, by including more 390 
node types, the computational burden will be increased geometrically, which requires a 391 
dedicated discovery of model optimization in the future. 392 
 393 
In summary, we evaluate our DeepMAPS as a pioneer study for the joint analysis of 394 
scMulti-omics data and cell-type-specific biological network inference. It is likely to provide 395 
new visions of deep learning deployment in single-cell biology. With the development and 396 
maintainness of DeepMAPS webserver, our long-term goal is to create a deep learning-397 
based eco-community for AI-ready scMulti-omics data archiving, analyzing, visualizing, 398 
and disseminating. 399 
 400 

401 
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Methods 402 
Data preprocessing and data integration 403 
Multiple scRNA-seq data  404 
DeepMaps takes the raw scRNA-seq gene expression profiles as input. Only genes that 405 
are expressed in more than 0.1% of total cells, and cells with a minimum of 0.1% genes 406 
expressed were kept. To integrate multiple scRNA-seq, we first reduce the dimension of 407 
multiple scRNA-seq in low-dimensional space by canonical correlation analysis (CCA) and 408 
search for mutual nearest neighbors (MNNs) in the shared low-dimensional space 409 
(integration method used in Seurat v3). It then calculated vector of each cell and for 410 
correcting gene expressions in different datasets. The output is an integrated matrix with 411 
combined cells from all datasets and shared genes with normalized and scaled expression 412 
values of 𝑥𝑥𝑖𝑖𝑖𝑖′  for gene i in cell j. 413 

 414 
CITE-seq data  415 
We also first removed low-quality genes and cells as described above. We applied log 416 
normalization on the RNA matrix and centered log-ratio (CLR) transformation on the 417 
protein matrix as below:  418 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝑥𝑥𝑖𝑖𝑖𝑖� = log �1 +
𝑥𝑥𝑖𝑖𝑖𝑖 × 1𝐿𝐿4
‖{𝑥𝑥𝑖𝑖. }‖ � (1) 419 

𝐶𝐶𝐿𝐿𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝑥𝑥𝑖𝑖𝑖𝑖� = log�1 +
𝑥𝑥𝑖𝑖𝑖𝑖
𝐿𝐿𝑖𝑖
� (2) 420 

where 𝑥𝑥𝑖𝑖𝑖𝑖 represent for the expression of either a gene or protein in a cell. The top 2,000 421 

highly variable genes in the RNA matrix were spliced with the protein matrix and performed 422 
a joint normalization as below: 423 

𝑥𝑥𝑖𝑖𝑖𝑖′ =  𝐿𝐿𝑥𝑥𝑒𝑒�
∑  
𝑖𝑖

log�1 + 𝑥𝑥𝑖𝑖𝑖𝑖�

‖𝐾𝐾𝑖𝑖‖
� , (3) 424 

where 𝑥𝑥𝑖𝑖𝑖𝑖  represents the expression for gene/protein i in cell j, and �𝐾𝐾𝑖𝑖� represents the 425 
sum of expressed values in of that gene/protein. 426 
 427 
Matched scRNA-seq and scATAC-seq data (scRNA-ATAC-seq) 428 
Data filtering and quality control were performed as usual. We first annotated peak regions 429 
in the scATAC-seq based on the method described in MAESTRO36. The regulatory 430 
potential 𝐶𝐶𝑖𝑖𝑖𝑖 of each 𝑒𝑒𝐿𝐿𝐿𝐿𝑝𝑝𝑖𝑖 to each 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 are calculated independently by the exponential 431 

weight decay with the distance from the peak to the transcription start site (TSS): 432 

𝐶𝐶𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

0,     𝑑𝑑𝑖𝑖𝑖𝑖 > 150𝑝𝑝𝑘𝑘 𝐿𝐿𝐿𝐿 𝑒𝑒𝐿𝐿𝐿𝐿𝑝𝑝𝑖𝑖 𝐿𝐿𝐿𝐿𝑙𝑙𝐿𝐿𝑙𝑙𝐿𝐿𝑑𝑑 𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝑎𝑎 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘𝑎𝑎 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑔𝑔
1
𝐿𝐿

,         𝑒𝑒𝐿𝐿𝐿𝐿𝑝𝑝𝑖𝑖 𝐿𝐿𝐿𝐿𝑙𝑙𝐿𝐿𝑙𝑙𝐿𝐿𝑑𝑑 𝐿𝐿𝑙𝑙 𝑙𝑙ℎ𝐿𝐿 𝐿𝐿𝑥𝑥𝐿𝐿𝐿𝐿𝑔𝑔 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝑜𝑜 𝑙𝑙ℎ𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

2−
𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑0 , 𝐿𝐿𝐿𝐿𝑔𝑔𝐿𝐿

(4) 433 

where 𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between the center of 𝑒𝑒𝐿𝐿𝐿𝐿𝑝𝑝𝑖𝑖 and the TSS of 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖. The default 434 
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𝑑𝑑0 is set to 10kb. If a 𝑒𝑒𝐿𝐿𝐿𝐿𝑝𝑝𝑖𝑖 is located at the exon regions of the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖, the regulatory 435 
potential 𝐶𝐶𝑖𝑖𝑖𝑖 will be normalized by the length of the exon region 𝐿𝐿. To ensure computational 436 
efficiency, we set the 𝐶𝐶𝑖𝑖𝑖𝑖 as 0 if the 𝑒𝑒𝐿𝐿𝐿𝐿𝑝𝑝𝑖𝑖 to TSS of 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 distance is over 150 kb. The 437 

default parameters were applied. The gene regulatory activity 𝐴𝐴𝑖𝑖𝑖𝑖  of 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖  in 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖  is 438 
defined as: 439 

𝐴𝐴𝑖𝑖𝑖𝑖 = �𝐶𝐶𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖

, (5) 440 

where 𝑃𝑃𝑖𝑖𝑖𝑖 is the binary value in the scATAC-seq count matrix of 𝑒𝑒𝐿𝐿𝐿𝐿𝑝𝑝𝑖𝑖 in 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖. 441 

We assume that the activity of a gene to a cell is determined by both gene expression 442 
activity and gene regulatory activity while with different contributions. Different than the 443 
contribution weights determined directly based on the expression and chromatin 444 
accessibility values in Seurat v4 (weighted nearest neighbor)5, we hypothesized that the 445 
contribution relation of gene expression and chromatin accessibility is dynamic to the 446 
future state of the cell, which can be estimated by RNA velocity. The RNA velocity is 447 
determined by the abundance of unspliced and spliced mRNA in a cell. The amount of 448 
unspliced mRNA is determined by gene regulation and gene transcription rate (which is 449 
considered to be the same among genes), and the amount of spliced mRNA is determined 450 
by the difference between unsliced mRNA and degraded mRNA. We assume that for 451 
genes with positive RNA velocities, there are higher potentials to drive genes to be 452 
transcribed. Thus, its regulatory activity related to chromatin accessibility has a higher 453 
influence than the gene expression in defining the overall gene activity in a cell of the 454 
current snapshot; for genes with negative velocities, on the other hand, the transcription 455 
rate tend to be decelerated, and regulatory activity has less influence to the cell than gene 456 
expression activity. We define a gene activity score (GAS) of 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖  in 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 , which 457 
integrates RNA and ATAC information, is defined as: 458 

𝐺𝐺𝐴𝐴𝐺𝐺𝑖𝑖𝑖𝑖 =  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝐸𝐸𝑖𝑖𝑖𝑖 .�𝐸𝐸𝑖𝑖𝑖𝑖

𝑖𝑖

+ (1 + 𝑘𝑘𝑣𝑣+)𝐴𝐴𝑖𝑖𝑖𝑖.�(1 + 𝑘𝑘𝑣𝑣+)�𝐴𝐴𝑖𝑖𝑖𝑖
𝑖𝑖

� ,    𝑜𝑜𝐿𝐿𝐿𝐿 𝑣𝑣𝑖𝑖𝑖𝑖 > 0

𝐸𝐸𝑖𝑖𝑖𝑖 .�𝐸𝐸𝑖𝑖𝑖𝑖
𝑖𝑖

+ (1 − 𝑘𝑘𝑣𝑣−)𝐴𝐴𝑖𝑖𝑖𝑖 .�(1 + 𝑘𝑘𝑣𝑣+)�𝐴𝐴𝑖𝑖𝑖𝑖
𝑖𝑖

� ,     𝑜𝑜𝐿𝐿𝐿𝐿 𝑣𝑣𝑖𝑖𝑖𝑖 < 0

𝐸𝐸𝑖𝑖𝑖𝑖 .�𝐸𝐸𝑖𝑖𝑖𝑖
𝑖𝑖

+ 𝐴𝐴𝑖𝑖𝑖𝑖 .�𝐴𝐴𝑖𝑖𝑖𝑖
𝑖𝑖

,     𝑜𝑜𝐿𝐿𝐿𝐿 𝑣𝑣𝑖𝑖𝑖𝑖 = 0

(6) 459 

where 𝐸𝐸𝑖𝑖𝑖𝑖 and 𝐴𝐴𝑖𝑖𝑖𝑖 represents the gene expression activity and gene regulatory activity, 460 
respectively, of 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖  in 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖  which are normalized by rows. 𝑣𝑣𝑖𝑖𝑖𝑖  represents the RNA 461 
velocity of 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 in 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖, calculated by using CellRank37. The weighted of scATAC-seq is 462 
defined as: 463 

𝑘𝑘+ =
���𝑉𝑉,𝑖𝑖

+� − 𝐿𝐿𝐿𝐿𝐿𝐿𝑝𝑝�𝑣𝑣𝑖𝑖𝑖𝑖�𝑉𝑉,𝑖𝑖
+��

2
+ ��𝑉𝑉𝑖𝑖,+� − 𝐿𝐿𝐿𝐿𝐿𝐿𝑝𝑝�𝑣𝑣𝑖𝑖𝑖𝑖�𝑉𝑉𝑖𝑖,+��

2

���𝑉𝑉,𝑖𝑖
+� − 1�2 + ��𝑉𝑉𝑖𝑖,+� − 1�2)

(7) 464 
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𝑘𝑘− =
���𝑉𝑉,𝑖𝑖

−� − 𝐿𝐿𝐿𝐿𝐿𝐿𝑝𝑝�𝑣𝑣𝑖𝑖𝑖𝑖�𝑉𝑉,𝑖𝑖
−��

2
+ ��𝑉𝑉𝑖𝑖,−� − 𝐿𝐿𝐿𝐿𝐿𝐿𝑝𝑝�𝑣𝑣𝑖𝑖𝑖𝑖�𝑉𝑉𝑖𝑖,−��

2

���𝑉𝑉,𝑖𝑖
−� − 1�

2 + ��𝑉𝑉𝑖𝑖,−� − 1�
2)

(8) 465 

where 𝑉𝑉𝑖𝑖,+ is the positive velocity in 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖, 𝑉𝑉𝑖𝑖,− is the negative velocity in 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖. And 𝑉𝑉,𝑖𝑖
+ is 466 

the positive velocity in 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖, 𝑉𝑉,𝑖𝑖
− is the negative velocity in 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖. 467 

 468 
Construction of gene-cell heterogeneous graph  469 
For any scMulti-omics data type, we now obtain a matrix that integrates information from 470 
both modalities, with columns as cells and rows as genes only. Values in the integrated 471 
matrix represent for either normalized gene expressions (for multiple scRNA-seq and 472 
CITE-seq) or GAS (for scRNA-ATAC-seq). Given an integrated matrix 𝑋𝑋 ∈ ℝ𝑁𝑁𝑁𝑁𝑁𝑁 with 𝑁𝑁 473 
cells and 𝑀𝑀  genes generated in the last step, we denote a heterogeneous graph 𝐺𝐺 =474 
(𝑉𝑉𝐶𝐶 ,𝑉𝑉𝐺𝐺 ,𝐸𝐸),  where 𝑉𝑉𝐶𝐶 = {𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑁𝑁} ∈ ℝ𝑁𝑁  and 𝑉𝑉𝐺𝐺 = {𝐿𝐿1,𝐿𝐿1, …𝐿𝐿𝑁𝑁} ∈ ℝ𝑁𝑁  represents for all 475 
cells and genes in 𝑋𝑋, respectively, and 𝐸𝐸 = �𝐿𝐿𝑖𝑖𝑖𝑖� represents for the edge between 𝑙𝑙𝑖𝑖 and 476 
𝐿𝐿𝑖𝑖  with the weight corresponding to gene expression of 𝐿𝐿𝑖𝑖  in 𝑙𝑙𝑖𝑖 . To learn an initial 477 
embedding of each node (𝑙𝑙𝑖𝑖 and 𝐿𝐿𝑖𝑖) in the matrix 𝑋𝑋, a feature autoencoder with two deep 478 

learning layers of dense networks in both encoder and decoder was used. The training 479 
objective of this feature autoencoder is to achieve a maximum similarity between 𝑋𝑋 and 480 
reconstructed matrix 𝑋𝑋′ by minimizing the mean squared error (MSE): 481 

��𝑋𝑋 − 𝑋𝑋𝑔𝑔�
2 ,𝐿𝐿𝐿𝐿𝑑𝑑 �(𝑋𝑋 − 𝑋𝑋𝑐𝑐)2 (9) 482 

We denote the initial embedding for each 𝑙𝑙𝑖𝑖 and 𝐿𝐿𝑖𝑖 as 𝐻𝐻𝑐𝑐𝑖𝑖
0  and 𝐻𝐻𝑔𝑔𝑖𝑖

0 . 483 

    484 
Learning joint embeddings via a heterogeneous graph transformer 485 
We propose an unsupervised HGT framework14, 15 to learn joint embeddings of 𝑙𝑙𝑖𝑖 and 𝐿𝐿𝑖𝑖. 486 

Given a heterogeneous bipartite graph 𝐺𝐺 = (𝑉𝑉𝐶𝐶 ,𝑉𝑉𝐺𝐺 ,𝐸𝐸), DeepMAPS extracts all linked cell-487 
gene node pairs which are denoted as (𝑔𝑔, 𝑙𝑙), where 𝑙𝑙 means the target node and 𝑔𝑔 means 488 
the neighbor node of 𝑙𝑙 . The training processes consist of the following four steps: 1) 489 
calculate multi-head attention; 2) pass heterogeneous message; 3) aggregate neighbors’ 490 
information; 4) calculate loss function. We also denote the embedding of the 𝐿𝐿 𝑙𝑙ℎ HGT 491 
layer as ℋ𝑙𝑙. To learn joint embeddings of 𝑙𝑙𝑖𝑖 and 𝐿𝐿𝑖𝑖, we aggregate information from 𝑔𝑔 to 492 

get a contextualized representation for 𝑙𝑙 and simultaneously learn the representations of 493 
𝑉𝑉𝐶𝐶   and 𝑉𝑉𝐺𝐺 . It is noteworthy that, to handle the heterogeneous relations in the graph, 494 
attention will be calculated via multiple heads, where each node type (cell node and gene 495 
node) has a unique head in attention and is linearly projected to a low dimensional space 496 
to maximally model the distribution differences. 497 

 498 
1) Calculate multi-head attention.  499 
We extract all linked node pairs, where a target node 𝑣𝑣𝑡𝑡 ∈ {𝑉𝑉𝐶𝐶 ,𝑉𝑉𝐺𝐺} is directly linked to its 500 
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source (neighbor) node 𝑣𝑣𝑠𝑠 = {𝑉𝑉𝐶𝐶 ,𝑉𝑉𝐺𝐺} through edge 𝐿𝐿. The contextualized representation of 501 
𝑣𝑣𝑡𝑡 on the 𝐿𝐿 th layer is denoted as ℋ𝑙𝑙[𝑣𝑣𝑡𝑡], which can be learned by its own presentation 502 
ℋ𝑙𝑙−1[𝑣𝑣𝑡𝑡] and its neighbor ℋ𝑙𝑙−1[𝑣𝑣𝑠𝑠] from the (𝐿𝐿 − 1)th layer, where 𝐿𝐿 ≥ 1. The overall model 503 
is formulated as: 504 

ℋ𝑙𝑙[𝑣𝑣𝑡𝑡] ← 𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙𝐿𝐿
∀𝑠𝑠,𝑡𝑡∈𝑉𝑉,∀𝑒𝑒∈𝐸𝐸

(ℋ𝑙𝑙−1[𝐴𝐴𝑙𝑙𝑙𝑙𝐿𝐿𝐿𝐿𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿(𝑣𝑣𝑠𝑠, 𝑣𝑣𝑡𝑡 , 𝐿𝐿) ∙ 𝑀𝑀𝐿𝐿𝑔𝑔𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑣𝑣𝑠𝑠)]) , (10) 505 

where Attention estimates the importance of each neighbor; Message extracts the 506 
information passed from the neighbors; Aggregate is the final step to aggregate the 507 
neighborhood message by the attention weight.  508 

The multi-head attention is proposed in the attention level to calculate ℎ -head 509 
attention for each edge 𝐿𝐿 = (𝑣𝑣𝑠𝑠, 𝑣𝑣𝑡𝑡) . Each target node 𝑙𝑙  in the head ℎ𝜖𝜖{1,2, … ,𝐻𝐻}  was 510 
mapped into a target-node vector 𝑇𝑇ℎ(𝑣𝑣𝑡𝑡)  in each HGT layer via linear projection 511 

𝑇𝑇𝜏𝜏(𝑡𝑡)
ℎ : 𝐶𝐶𝑑𝑑 →× 𝐶𝐶

𝑑𝑑
𝐻𝐻, where 𝑑𝑑 is the dimension of initial node feature, 𝐻𝐻 is the number of heads, 512 

and 𝑑𝑑
𝐻𝐻

 is the feature dimension per head. Similarly, each neighbor node 𝑔𝑔 in the head ℎ 513 

was mapped into a key vector 𝐾𝐾𝑖𝑖(𝑣𝑣𝑠𝑠)  with a linear projection 𝐾𝐾𝜏𝜏(𝑠𝑠)
ℎ  :  𝐶𝐶𝑑𝑑 →× 𝐶𝐶

𝑑𝑑
𝐻𝐻 . The 514 

similarity between the queries and keys is measured (e.g., scaled dot product operator) 515 
as attention.  516 

𝑇𝑇ℎ(𝑣𝑣𝑡𝑡) = 𝑇𝑇𝜏𝜏(𝑡𝑡)
ℎ �ℋ(𝑙𝑙−1)[𝑣𝑣𝑡𝑡]�, (11) 517 

𝐾𝐾ℎ(𝑣𝑣𝑠𝑠) = 𝐾𝐾𝜏𝜏(𝑠𝑠)
ℎ �ℋ(𝑙𝑙−1)[𝑣𝑣𝑠𝑠]�, (12) 518 

Then we calculate the multi-head attention value for source node 𝑔𝑔 to target node 𝑙𝑙 by the 519 
dot product. To maximize parameter sharing while still maintaining the specific 520 

characteristics of different relations, we propose to parameterize weight matrices 𝑊𝑊𝜙𝜙(𝑒𝑒)
𝐴𝐴𝐴𝐴𝐴𝐴 of 521 

the interaction operators. The 𝐿𝐿 𝑙𝑙ℎ head attention can be defined as: 522 

𝐴𝐴𝑇𝑇𝑇𝑇ℎ𝐿𝐿𝐿𝐿𝑑𝑑ℎ(𝑣𝑣𝑠𝑠,𝑣𝑣𝑡𝑡 , 𝐿𝐿) = �𝐾𝐾ℎ(𝑣𝑣𝑠𝑠)𝑊𝑊𝜙𝜙(𝑒𝑒)
𝐴𝐴𝐴𝐴𝐴𝐴𝑄𝑄ℎ(𝑣𝑣𝑡𝑡)𝐴𝐴� ∙

𝜇𝜇〈𝜏𝜏(𝑣𝑣𝑠𝑠), 𝜏𝜏(𝑣𝑣𝑡𝑡)〉
√𝑑𝑑

, (13) 523 

where 𝑇𝑇 is the transposal function, 𝜇𝜇 is a prior tensor to denote the significance of each 524 
edge 𝐿𝐿, serving as an adaptive scaling to the attention. The attention score in the ℎ 𝑙𝑙ℎ 525 
head in the 𝐿𝐿 𝑙𝑙ℎ layer is defined as: 526 

𝐴𝐴𝑙𝑙𝑙𝑙(𝑣𝑣𝑠𝑠, 𝑣𝑣𝑡𝑡 , 𝐿𝐿) = Softmax
∀𝑠𝑠∈𝑉𝑉(𝑡𝑡)

�||
𝐻𝐻
𝐴𝐴𝑇𝑇𝑇𝑇ℎ𝐿𝐿𝐿𝐿𝑑𝑑ℎ(𝑣𝑣𝑠𝑠,𝑣𝑣𝑡𝑡 , 𝐿𝐿)� . (14) 527 

 528 
2) Pass heterogeneous message.  529 
To alleviate the distribution differences of different types of nodes and edges, we 530 
incorporate the types of edges into the message passing. The ℎ 𝑙𝑙ℎ head message for each 531 
edge (𝑔𝑔, 𝑙𝑙) can be defined as: 532 
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𝑀𝑀ℎ(𝑣𝑣𝑠𝑠,𝑣𝑣𝑡𝑡 , 𝐿𝐿) = 𝑀𝑀𝜏𝜏(𝑠𝑠)
ℎ �ℋ𝑙𝑙−1[𝑣𝑣𝑠𝑠]�𝑊𝑊𝜙𝜙(𝑒𝑒)

𝑁𝑁𝑀𝑀𝐺𝐺 (15) 533 

where each source node 𝑔𝑔 in the head 𝐿𝐿 was mapped into a message vector by a linear 534 

projection 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒(𝑠𝑠)
ℎ  : 𝐶𝐶𝑑𝑑 →× 𝐶𝐶

𝑑𝑑
𝐻𝐻  , 𝑊𝑊𝑒𝑒

𝑁𝑁𝑠𝑠𝑔𝑔 ∊ 𝐶𝐶
𝑑𝑑
𝐻𝐻×𝑑𝑑

𝐻𝐻   is a distinct edge-based matrix for each 535 

edge, 𝐿𝐿  is the edge type of the heterogeneous graph. After multi-head aggregate, the 536 
degree of message passing can be defined as: 537 

𝑀𝑀𝑔𝑔𝐿𝐿(𝑣𝑣𝑠𝑠, 𝑣𝑣𝑡𝑡 , 𝐿𝐿) = ||
𝐻𝐻
ℎ𝐿𝐿𝐿𝐿𝑑𝑑ℎ(𝑣𝑣𝑠𝑠,𝑣𝑣𝑡𝑡) (16) 538 

 539 
3) Aggregate neighbors’ information.  540 
To obtain the represents of each node, we need to aggregate multi-head attention and 541 
message. The attention vectors can be regarded as the weight for message representation. 542 
The representation of target nodes ℋ𝑙𝑙 [𝑣𝑣𝑡𝑡] can be updated as: 543 

ℋ𝑙𝑙[𝑣𝑣𝑡𝑡] = 𝐴𝐴𝐿𝐿𝑖𝑖𝐿𝐿𝑒𝑒𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒(𝑡𝑡) �𝜎𝜎 � ⊕
∀𝑠𝑠∈𝑁𝑁(𝑡𝑡)

�𝐴𝐴𝑙𝑙𝑙𝑙(𝑣𝑣𝑠𝑠, 𝑣𝑣𝑡𝑡 , 𝐿𝐿) ∙ 𝑀𝑀𝑔𝑔𝐿𝐿(𝑣𝑣𝑠𝑠, 𝑣𝑣𝑡𝑡 , 𝐿𝐿)���+ ℋ𝑙𝑙−1[𝑣𝑣𝑡𝑡] (17) 544 

 545 
4) Calculate loss function.  546 
The original application of HGT was to solve node classification problems. Here, to train 547 
cell and gene embeddings without supervised classification labels, we use a graph 548 
autoencoder (GAE) framework. The whole HGT structure was deployed as an encoder in 549 
the GAE, and we defined two embedding matrices 𝐸𝐸𝑐𝑐  and 𝐸𝐸𝑔𝑔  recording the trained 550 

embeddings of cells and genes from the HGT encoder with both columns representing the 551 
same embedding dimensions, and rows representing cells and genes, respectively. A 552 
decoder was used to reconstruct the heterogeneous graph by the inner product of 𝐸𝐸𝑐𝑐 and 553 
𝐸𝐸𝑔𝑔. The loss function of GAE is defined as: 554 

𝐿𝐿𝐿𝐿𝑔𝑔𝑔𝑔 = �[𝑒𝑒(𝑥𝑥𝑖𝑖)𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒(𝑥𝑥𝑖𝑖) − 𝑒𝑒(𝑥𝑥𝑖𝑖)𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙(𝑥𝑥𝑖𝑖)
𝑖𝑖

], (18) 555 

where 𝑒𝑒(𝑥𝑥𝑖𝑖) and 𝑙𝑙(𝑥𝑥𝑖𝑖) represents the softmax operation for the 𝐿𝐿 𝑙𝑙ℎ row of 𝐸𝐸𝑐𝑐 and 𝐸𝐸𝑔𝑔.  556 

 557 
HGT training on subgraphs 558 
To handle the efficiency and capability of applying HGT on such a giant heterogeneous 559 
graph (tens of thousands of nodes and millions of edges), we performed model training 560 
on subgraphs and multiple mini-batches based on the idea of HGSampling14. The core of 561 
HGSampling is to sample heterogeneous subgraphs with similar proportions in different 562 
type of nodes which can avoid sampling highly imbalanced subgraph in training process. 563 
We sample n_batch number of subgraphs for each epoch training, and the one-hot of each 564 
node will be put into the trained model to obtain all node embedding. Given a node 𝑙𝑙 which 565 
has been sampled, a dictionary 𝐷𝐷[𝜏𝜏] for each node type 𝜏𝜏, we add all the first-neighbor 566 
node of t into the corresponding 𝐷𝐷[𝜏𝜏] and add t’s normalized degree to these neighbors to 567 
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calculate the sampling probability p. 568 

𝑒𝑒[𝜏𝜏][𝑔𝑔] =
𝐷𝐷[𝜏𝜏][𝑔𝑔]2

�|𝐷𝐷[𝜏𝜏]|�2
, (19) 569 

where 𝑒𝑒[𝜏𝜏][𝑔𝑔] is the sampling probability for each source node s of type 𝜏𝜏, 𝐷𝐷[𝜏𝜏] is all node 570 
for type 𝜏𝜏 with the normalized degree, ||.|| is the 2-norm, 𝐷𝐷[𝜏𝜏][s] is the normalizer degree 571 
for source node s of node type 𝜏𝜏. Then we sampled all types of nodes according to the 572 
probability in 𝐷𝐷[𝜏𝜏], and moved them out of 𝐷𝐷[𝜏𝜏]. We repeated this sampling for 50 times 573 
to obtain 50 subgraphs that maximize the coverage of the whole heterogeneous graph, 574 
and each subgraph was trained with 100 epochs. 575 
 576 
Cell clustering and cell-type-active gene association network prediction 577 
Cell clustering.  578 
We applied the Louvain clustering method (igraph v1.2.7, R package) to predict cell 579 
clusters on cell-embedding matrix 𝐸𝐸𝑐𝑐.  580 
 581 
Attention-based gene module detection.  582 
To infer the connection of genes and cell clusters, we extract the attention value of gene 583 
𝐿𝐿 to cell 𝑙𝑙 in head 𝐿𝐿 through the step of multi-head attention calculation. We define the 584 
importance 𝐼𝐼 of 𝐿𝐿 to 𝑙𝑙 as: 585 

𝐼𝐼(𝐿𝐿, 𝑙𝑙) =   ��𝐴𝐴𝑇𝑇𝑇𝑇ℎ𝐿𝐿𝐿𝐿𝑑𝑑ℎ(𝐿𝐿, 𝑙𝑙) 2
𝐻𝐻

(20) 586 

We assign genes to each cell with a threshold of 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑔𝑔�𝐼𝐼(𝐿𝐿, 𝑙𝑙)� + 𝑔𝑔𝑑𝑑𝑔𝑔(𝐼𝐼(𝐿𝐿, 𝑙𝑙)). The gene 587 
𝐿𝐿 is considered to be one of the active genes in cell 𝑙𝑙, if the 𝐼𝐼 is higher than the threshold. 588 
 589 
The Steiner Forest Problem (SFP) model   590 
We build an SFP model on a heterogeneous graph to extract the most critical gene-gene 591 
and gene-cell relations contributing to the gene module specificity in a cell cluster. The 592 
input of this model includes three parts: 593 

1. Gene-gene relations defined by the embedding (resulted from GAE) Pearson’s 594 
correlation between genes (𝐸𝐸), 595 

2. Gene-cell relations are defined by the attention score of a gene to a cell (𝐹𝐹), 596 
3. A set of cell clusters, {𝑉𝑉𝑖𝑖, 𝐿𝐿 = 1, 2,⋯ ,𝑝𝑝}, predicted by the HGT model. 597 

 598 
We define a weighted heterogeneous graph, 𝐺𝐺 = (𝑈𝑈 ∪ 𝑉𝑉,𝐸𝐸 ∪ 𝐹𝐹), in which nodes represent 599 
genes (𝑈𝑈) and cells (𝑉𝑉 = ⋃ 𝑉𝑉𝑖𝑖𝑖𝑖 ), edges 𝐺𝐺 represent both gene-gene (𝐸𝐸) and gene-cell (𝐹𝐹) 600 
relations. We formulate this problem using a combinatorial optimization model defined as 601 
below  602 
 603 
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min
𝑀𝑀⊆𝐸𝐸∪𝐹𝐹

�𝑤𝑤(𝐿𝐿)
𝑒𝑒∈𝑀𝑀

(21) 604 

 605 
s.t. 606 

𝐿𝐿𝑀𝑀(𝑢𝑢, 𝑣𝑣) = 1,∀ 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉𝑖𝑖, 𝐿𝐿 = 1, 2,⋯ ,𝑝𝑝. (22) 607 
 608 
where 𝐿𝐿𝑀𝑀(𝑢𝑢, 𝑣𝑣) is a binary indicator function to represent whether two nodes,𝑢𝑢 and 𝑣𝑣 , are 609 
connected (1) or not (0) in the subgraph induced by 𝐺𝐺 in 𝐺𝐺. We aim to identify the minimum 610 
weighted edge set, 𝐺𝐺, from the heterogeneous graph 𝐺𝐺, so that cells in the same cell type 611 
could be connected to each other via edges in 𝐺𝐺. 612 
 613 
First, in view of the huge size of 𝐺𝐺 , containing |𝑈𝑈 ∪ 𝑉𝑉|  nodes and |𝐸𝐸 ∪ 𝐹𝐹|  edges, we 614 
convert 𝐺𝐺 into a sparser graph, 𝐺𝐺′, by iteratively finding a global alignment between genes 615 
and cells based on the gene-cell edges, using the maximum matching theory38. In graph 616 
theory, a matching or independent edge set in an undirected graph is a set of edges 617 
without common nodes, and a maximum matching in a weighted graph is a matching 𝑀𝑀 618 
that yields the maximum sum of edge weights. To fulfill this task, we build a weighted 619 
bipartite graph, 𝐺𝐺𝐵𝐵 = (𝑈𝑈 ∪ 𝑉𝑉,𝐹𝐹) , by only retaining the gene-cell edges, i.e., 𝐹𝐹 . The 620 
objective is to identify an edge subset, 𝑀𝑀, to satisfy 621 
 622 

max
𝑁𝑁⊆𝐹𝐹

� 𝑤𝑤(𝐿𝐿)
𝑒𝑒∈𝑁𝑁

. (23) 623 

 624 
We calculate the 𝑀𝑀 of 𝐺𝐺𝐵𝐵 using the igraph R package39. Then, we remove the cell nodes 625 
incident by edges in 𝑀𝑀. Repeat the prediction of maximum matching and deletion of cell 626 
nodes incident to edges in previously identified maximum matchings, until there is no cell 627 
node in the remaining graph. We compute the union of all the matchings as 𝐹𝐹′, and then 628 
construct 𝐺𝐺′ = (𝑈𝑈 ∪ 𝑉𝑉,𝐸𝐸 ∪ 𝐹𝐹′). Finally, the weights of gene-cell edges, 𝐹𝐹′, and gene-gene 629 
edges, 𝐸𝐸, are normalized by the following two functions, respectively. 630 

max�𝑤𝑤(𝐹𝐹′)� − 𝑤𝑤(𝐹𝐹′)
max�𝑤𝑤(𝐹𝐹′)� − min�𝑤𝑤(𝐹𝐹′)�

(24) 631 

max�𝑤𝑤(𝐸𝐸)� − 𝑤𝑤(𝐸𝐸)
max�𝑤𝑤(𝐸𝐸)� − min�𝑤𝑤(𝐸𝐸)�

(25) 632 

Second, we find the edge set, 𝐺𝐺, of the Steiner forest, 𝑇𝑇, as follows. To begin with, we 633 
utilize the igraph R package to calculate a minimum spanning forest (MSF)38, 𝑇𝑇, of 𝐺𝐺′. A 634 
MSF means that each pair of nodes in the same connected component could be 635 
connected to each other. Herein, we only need the edges to connect cell nodes belonging 636 
to the same cell type. Therefore, we iteratively remove the gene nodes with degree one 637 
from 𝑇𝑇, until no gene node with degree one exists in 𝑇𝑇. Finally, we output the edge set of 638 
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𝑇𝑇, i.e., 𝐺𝐺, as the solution to the SFP model. 639 
 640 
For each connected component of the Steiner forest, the gene-gene edges denote the co-641 
expression relations among genes in the same module, while the set of gene-cell edges 642 
represents the cell type specificity of this gene module, and this module is a cell-type-643 
active gene module. 644 
 645 
Construct gene regulatory network from scRNA-ATAC-seq data 646 
Infer master TFs and GRNs in each cell type.  647 
To quantify the intensity of genes regulated by TFs, we design regulatory intensive (RI) 648 
score, which can be decomposed into two components as: 1) the regulatory potential (𝐶𝐶𝑖𝑖𝑖𝑖) 649 

of peaks calculated in the preprocessing step, and 2) the binding affinity (BA) score of TFs 650 
to the peaks. The TF binding profiles were obtained from JASPAR database. To reduce 651 
false positives of binding site, we select significance binding sites with transformed p-652 
values for TF binding profile matches less than 1e-04. The BA score is the transformed 653 
relative score which obtained from TF binding profiles.  Then the RI score 𝐶𝐶𝐼𝐼𝐿𝐿,𝑖𝑖,𝑖𝑖 of TF 𝐿𝐿 654 

to the gene 𝐿𝐿 in the cell 𝑝𝑝 is defined as: 655 

𝐶𝐶𝐼𝐼𝐿𝐿,𝑖𝑖,𝑖𝑖 = �𝐵𝐵𝐴𝐴𝐿𝐿,𝑡𝑡 ∙
𝑡𝑡

𝐶𝐶𝑖𝑖𝑖𝑖 (26) 656 

Master TFs are genes at the top of a gene regulation hierarchy, particularly in regulatory 657 
pathways related to cell fate and differentiation. To infer cell type master TFs, we construct 658 
cell-type-specific GRN with RI score as edges weight and calculate centrality which 659 
reflects the importance of each node in the network to rank the TFs in each cell type. TFs 660 
with high ranked are regarded as master TFs. Consider the RI score of TFs to genes, 661 
eigenvector centrality which assigns relative scores to all nodes in the network based on 662 
the concept that connections to high-scoring nodes contribute more to the score of the 663 
node in question than equal connections to low-scoring nodes is applied to infer master 664 
TFs. The eigenvector centrality of a node 𝑣𝑣 in GRN can be defined as: 665 

𝐶𝐶𝑣𝑣 = 𝛼𝛼𝑚𝑚𝐿𝐿𝑚𝑚(𝑣𝑣) (27) 666 
Where 𝛼𝛼𝑚𝑚𝐿𝐿𝑚𝑚 is the eigenvector corresponding to the largest eigenvalue of the weighted 667 
adjacency matrix of a GRN. 668 

 669 
Identity differential regulon (CTSRs) 670 
To detect regulon associated with disease states, we identity CTSRs by logFC and 671 
Wilcoxon rank-sum test. For a cell type active regulon, we define a regulon activity score 672 
(RAS) as: 673 

𝐶𝐶𝐴𝐴𝐺𝐺(𝑇𝑇𝐹𝐹,𝐶𝐶𝑇𝑇) =
∑ ∑ 𝐺𝐺𝐴𝐴𝐺𝐺𝑖𝑖,𝑖𝑖𝑖𝑖∈𝐶𝐶𝐴𝐴𝑖𝑖 .𝐶𝐶𝐼𝐼𝐿𝐿,𝑖𝑖,𝑖𝑖

𝑁𝑁𝐺𝐺
, (28) 674 

where 𝐿𝐿 means TF, 𝐿𝐿 means gene and 𝑝𝑝 means cell. 𝑁𝑁 is the cell number in a cell type, 𝐺𝐺 675 
is the gene number in the regulon 𝐿𝐿 − 𝐶𝐶𝑇𝑇. Then we construct a RAS matrix with |𝐿𝐿 − 𝐶𝐶𝑇𝑇| 676 
rows, |𝐶𝐶𝑇𝑇| columns. The significance of difference is calculated using the Wilcoxon rank-677 
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sum test. If the BH-adjusted p-value is less than 0.05 between different cell clusters and 678 
log fold change larger than 0.25, we consider the regulon is differentially active in this 679 
cluster and defined as a CTSR.  680 
 681 
Benchmarking quantification and statistics  682 
Adjusted rand index (ARI) 683 
ARI is used to compute similarities by considering all pairs of the samples that are 684 
assigned in clusters in the current and previous clustering adjusted by random permutation. 685 
To calculate ARI, a contingency table is built to summarize the overlaps between the two 686 
cell label lists with n elements (cells). Each entry denotes the number of objects in common 687 
between the two label lists. The 𝐴𝐴𝐶𝐶𝐼𝐼 score can be calculated as:   688 

𝐴𝐴𝐶𝐶𝐼𝐼 =
𝐶𝐶𝐼𝐼 − 𝐸𝐸[𝐶𝐶𝐼𝐼]

max(𝐶𝐶𝐼𝐼) − 𝐸𝐸[𝐶𝐶𝐼𝐼]
(29) 689 

where 𝐶𝐶𝐼𝐼 is the unadjusted rand index which defined as: 690 

𝐶𝐶𝐼𝐼 =
𝐿𝐿 + 𝑘𝑘
𝐶𝐶𝐿𝐿2

(30) 691 

 692 
Average Silhouette Weight (ASW) 693 
Different from ARI which requires known ground truth labels, silhouette refers to a method 694 
of interpretation and validation of consistency within clusters of data. The silhouette value 695 
is a measure of how similar an object is to its luster (cohesion) compared to other clusters 696 
(separation). The silhouette ranges from −1 to +1, where a high value indicates that the 697 
object is well matched to its cluster and poorly matched to neighboring clusters. The 698 
silhouette score 𝑔𝑔(𝐿𝐿) can be calculated by: 699 

𝑔𝑔(𝐿𝐿) =
𝑘𝑘(𝐿𝐿) − 𝐿𝐿(𝐿𝐿)

max{𝐿𝐿(𝐿𝐿), 𝑘𝑘(𝐿𝐿)} =

⎩
⎪
⎨

⎪
⎧1 −

𝐿𝐿(𝐿𝐿)
𝑘𝑘(𝐿𝐿)

,    𝐿𝐿𝑜𝑜 𝐿𝐿(𝐿𝐿) < 𝑘𝑘(𝐿𝐿)

0,                 𝐿𝐿𝑜𝑜 𝐿𝐿(𝐿𝐿) = 𝑘𝑘(𝐿𝐿)
𝑘𝑘(𝐿𝐿)
𝐿𝐿(𝐿𝐿)

− 1,    𝐿𝐿𝑜𝑜 𝐿𝐿(𝐿𝐿) > 𝑘𝑘(𝐿𝐿)

(31) 700 

where 𝐿𝐿(𝐿𝐿) is the average distance between a cell 𝐿𝐿 and all other cells in the same cluster, 701 
and 𝑘𝑘(𝐿𝐿) be the average distance of 𝐿𝐿 to all cell in the nearest cluster to which 𝐿𝐿 does not 702 
belong. We take the average silhouette of all cells in a cluster as the average silhouette 703 
weight (ASW) to represent the whole cell cluster. 704 
 705 
Closeness centrality (CC) 706 
The closeness centrality (CC)40 of a vertex u is defined by the inverse of the sum length 707 
of the shortest paths to all the other vertices v  in the undirected weighted graph. The 708 
formulation is defined as: 709 

𝐶𝐶𝐶𝐶(𝑢𝑢) =
1

∑ 𝑑𝑑𝑤𝑤(𝑢𝑢, 𝑣𝑣) 𝑖𝑖≠𝑖𝑖
 (32) 710 

Where 𝑑𝑑𝑤𝑤(𝑢𝑢, 𝑣𝑣)  is the shortest weighted paths between u  and v . If there is no path 711 
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between vertex u and v, the total number of vertices is used in the formula instead of the 712 
path length. The CC is calculated by R package igraph with function igraph::betweenness. 713 
 714 
Eigenvector centrality (EC) 715 
Eigenvector centrality (EC)41 scores correspond to the values of the first eigenvector of 716 
the graph adjacency matrix. The EC score of vertex 𝑢𝑢 is defined as: 717 

𝐸𝐸𝐶𝐶(𝑢𝑢) = 𝑥𝑥𝑢𝑢 = 𝑙𝑙�𝐿𝐿𝑢𝑢𝑣𝑣𝑥𝑥𝑣𝑣
𝑣𝑣∈𝑔𝑔

(33) 718 

Where 𝑙𝑙  is inverse of the eigenvalues of eigenvector 𝑥𝑥 = [𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝐿𝐿] , 𝐿𝐿𝑢𝑢𝑣𝑣  is the 719 
weighted adjacent matrix of undirect graph 𝐿𝐿. The EC is calculated by R package igraph 720 
with function igraph::evcent. 721 
 722 
Pathway enrichment test 723 
To evaluate the function of the regulatory network, we use pathway enrichment analysis42 724 
to identify pathways that are significantly represented in each cell cluster active regulon, 725 
and count the number of regulon-enriched pathways. The pathway enrichment analysis is 726 
done by R package enrichR43. 727 
 728 
Robustness evaluation 729 
Cell cluster leave-out test 730 
For a benchmark dataset with a real cell type label, we removed all cells in one cell type 731 
and ran DeepMAPS. We traverse all cell types (one at a time) to evaluate the robustness 732 
with ARI. For data without benchmark labels, we removed cells in predicted cell clusters 733 
from DeepMAPS and other benchmark tools, respectively. 734 
 735 
Read depth simulation test 736 
We performed a downsampling simulation for gene expressions to test the robustness of 737 
DeepMAPS to read depth. Let matrix 𝐶𝐶 be the 𝑁𝑁 ×  𝑀𝑀 expression count matrix, where 𝑁𝑁 738 
is the number of cells and 𝑀𝑀 is the number of genes. Define the cell sequencing depths 739 
𝑙𝑙𝑖𝑖 = ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑁𝑁

𝑖𝑖 =1  , i.e., the column sums of 𝐶𝐶 . Thus, the average sequencing depth of the 740 

experiment is 𝑙𝑙̅  =  ∑ 𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖 = 1
𝑁𝑁

. Let 𝑙𝑙 <  𝑙𝑙 ̅be our target downsampled sequencing depth and let 741 

𝐶𝐶∗ be the 𝑁𝑁 × 𝑀𝑀 downsampled matrix. We perform the downsampling as follows: 742 
For each spot 𝐿𝐿 =  1, … ,𝑁𝑁: 743 

1) Define the total counts to be sampled in the cell 𝐿𝐿 as 𝑙𝑙𝑖𝑖  =  𝑡𝑡 ×𝑐𝑐𝑖𝑖
𝑐𝑐̅

. 744 

2) Construct the character vector of genes to be sampled as 𝐺𝐺𝑖𝑖 =745 

 {1, . . . ,1��� ,
𝐶𝐶𝑖𝑖1

2, . . . ,2��� ,
𝐶𝐶𝑖𝑖2

. . . ,𝑀𝑀, . . . ,𝑀𝑀�����
𝐶𝐶𝑖𝑖𝑖𝑖

}. 746 

3) Sample 𝑙𝑙𝑖𝑖 elements from 𝐺𝐺𝑖𝑖 without replacement and define 𝑁𝑁𝑖𝑖 as the number of 747 

times gene 𝑗𝑗 was sampled from 𝐺𝐺𝑖𝑖 for 𝑗𝑗 =  1, . . . ,𝑀𝑀. 748 
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4) Let 𝐶𝐶𝑖𝑖𝑖𝑖∗  = 𝑁𝑁𝑖𝑖. 749 

Using this method, the average downsampled sequencing depth is:  750 

𝐶𝐶 
∗

=
𝑙𝑙
𝑙𝑙̅ 𝑙𝑙1  + 𝑙𝑙𝑙𝑙̅ 𝑙𝑙2 + ⋯+ 𝑙𝑙

𝑙𝑙̅ 𝑙𝑙𝐿𝐿
𝑁𝑁

 =  
𝑙𝑙
𝑙𝑙̅  ∑ 𝑙𝑙𝑖𝑖𝑁𝑁

𝑖𝑖 =1

𝑁𝑁
=  

𝑙𝑙
𝑙𝑙̅

× 𝑙𝑙̅  =  𝑙𝑙 (34) 751 

as desired.  Note that, this method preserves the relative total counts of each cell, i.e., 752 
cells that had higher sequencing depths in the original matrix have proportionally higher 753 
depths in the downsampled matrix. 754 
 755 
Comparisons with existing tools 756 
In order to assess the performance of DeepMAPS alongside other proposed scMulti-omics 757 
benchmark tools, we compare DeepMAPS with Seurat (v 3.2.3 and v 4.0.0, 758 
https://github.com/satijalab/seurat), MOFA+ (v 1.0.0, https://github.com/bioFAM/MOFA2), 759 
Harmony (v 0.1, https://github.com/immunogenomics/harmony), and TotalVI (v 0.10.0, 760 
https://github.com/YosefLab/scvi-tools). Due to the integration capability, DeepMAPS was 761 
compared with Seurat v 3.2.3 and Harmony on multiple scRNA-seq data, with Seurat 762 
v4.0.0, MOFA+, and TotalVI on CITE-seq data, and with Seurat 4.0.0 and MOFA+ on 763 
scRNA-ATAC-seq data. All benchmark tools used the default settings. We also evaluated 764 
the performance of gene association network inference with IRIS311 and a normal gene 765 
co-expression network inference method. Specifically, in IRIS3, cell-gene biclusters were 766 
first identified based on the QUBIC2 algorithm. Cell-type-active gene modules were 767 
identified in each cell cluster (using the same cell label predicted in DeepMAPS to ensure 768 
the comparability) by performing a cell-wise hypergeometric enrichment. On the other 769 
hand, all genes were selected to calculate a gene expression correlation score (Pearson’s 770 
correlation) between any pairs of two genes using cells in one cell cluster. Gene pair 771 
expression correlations with a BH-adjusted p-value smaller than 0.05 were kept and used 772 
to build the overall co-expression network in one cell cluster. Co-expressed sub gene 773 
modules were inferred by performing Louvain clustering on the co-expression network. 774 
For scRNA-ATAC-seq data, we compared regulon and cell-type-specific regulon inferred 775 
from DeepMAPS with IRIS3 in terms of enriched biological pathways. Noted that, IRIS3 776 
only supports regulon inference from scRNA-seq data based on de novo motif findings; 777 
thus, here, we used the GAS matrix generated in DeepMAPS as an input of IRIS3. 778 
 779 
DeepMAPS server construction 780 
DeepMAPS runs on an HPE XL675d RHEL system with 2 x 128-core AMD EPYC 7H12 781 
CPU, 64GB RAM, and 2 x NVIDIA A100 40GB GPU. The backend is written in TypeScript 782 
using the NestJs framework. Auth0 is used as an independent module to provide user 783 
authentication and authorization services. Redis houses a queue of all pending analysis 784 
jobs. There are two types of jobs in DeepMAPS: The stateful jobs are handled by the 785 
Plumber R package to provide real-time interactive analysis; The stateless jobs, such as 786 
CPU-bound bioinformatics pipelines and GPU training tasks that could take a very long 787 
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time, are constructed using Nextflow. All the running jobs are orchestrated using Nomad, 788 
allowing each job to be assigned with proper cores and storage, as well as keeping the 789 
jobs scalable based on the server load. The job results are deposited to a MySQL 790 
database. The frontend is built with NUXT, Vuetify as the UI library, Apache ECharts, and 791 
Cytoscape.js for data visualization. The frontend server and backend server are 792 
communicated using REST API. 793 
 794 
Data availability 795 
All data used for benchmarking and case study are collected from the public domain and 796 
can be retrieved using links or accession numbers provided in Supplementary Tab. 1. 797 
 798 
Code availability 799 
The source code of DeepMAPS Docker is freely available at (https://github.com/OSU-800 
BMBL/deepmaps). The DeepMAPS webserver is available at 801 
https://bmblx.bmi.osumc.edu/.  802 
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