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Abstract:  

 

Lineage plasticity is a well–established mechanism of resistance to targeted therapies in lung and 

prostate cancer, where tumors transition from adenocarcinoma to small–cell or neuroendocrine 

carcinoma. Through single–cell analysis of a cohort of heavily–treated castration–resistant human 

prostate cancers (CRPC), we report a greater degree of plasticity than previously appreciated, with 

multiple distinct neuroendocrine (NEPC), mesenchymal (EMT–like), and other subpopulations 

detected within single biopsies. To explore the steps leading to this plasticity, we turned to two 

genetically engineered mouse models of prostate cancer that recapitulate progression from 

adenocarcinoma to neuroendocrine disease. Time course studies reveal expansion of stem–like 

luminal epithelial cells (Sca1+, Psca+, called L2) that, based on trajectories, gave rise to at least 4 

distinct subpopulations, NEPC (Ascl1+), POU2F3 (Pou2f3+), TFF3 (Tff3+) and EMT–like (Vim+, 

Ncam1+)––these populations are also seen in human prostate and small cell lung cancers. 

Transformed L2–like cells express stem–like and gastrointestinal endoderm–like transcriptional 

programs, indicative of reemerging developmental plasticity programs, as well as elevated Jak/Stat 

and interferon pathway signaling. In sum, while the magnitude of multilineage heterogeneity, both 

within and across patients, raises considerable treatment challenges, the identification of highly 

plastic luminal cells as the likely source of this heterogeneity provides a target for more focused 

therapeutic intervention. 

 

 

One Sentence Summary: Multilineage plasticity results from expansion of stem–like luminal 

cells with JAK/STAT activation, serving as a therapeutic target. 
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Main Text: 

 

Acquired resistance to precision oncology therapies is often due to mutations in the drug target 

present in rare subclones, which eventually emerge during treatment (1, 2). This understanding has 

spurred the development of several next–generation targeted therapies that can overcome such “on 

target” resistance and extend survival (3-5). However, the expanded clinical use of these more 

effective inhibitors has led to the recognition that acquired resistance is often associated with a 

change in tumor histology, typified by the adenocarcinoma to neuroendocrine carcinoma transition 

seen in lung and prostate cancer (6). This histologic transition, often termed lineage plasticity, 

refers broadly to cell–state changes that allow cells to adapt to environmental stresses, such as 

those associated with invasion and metastasis, as well as to the selective pressure of drug therapy 

(7). Work across a range of model systems has shown that transcriptional programs associated 

with plasticity typically resemble those seen in stem and progenitor cells of various tissues and in 

various developmental pathways (8-10). Unlike the more conventional mechanism of drug 

resistance due to “on target” mutation, lineage plasticity does not appear to be associated with the 

acquisition of new mutations; however, mutational contexts such as loss of tumor suppressor genes 

can predispose to acquiring a state of plasticity (11-14).  

 

To better understand the process by which plasticity begins and subsequently evolves in a common 

human tumor, we used single cell genomics to characterize a cohort of early and late stage human 

prostate cancers and two genetically engineered mouse prostate cancer models (GEMM) that 

undergo an adenocarcinoma to neuroendocrine lineage transition (9) (Fig. 1A). Integrative 

computational analysis of these mouse and human datasets, together with human small cell lung 

cancer data, reveals conservation of plasticity–derived cell types and transcriptional programs, 

pointing toward a specific luminal subpopulation as the source of plasticity.  
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Recent single–cell analyses of normal human and mouse prostate tissue have defined a complex 

array of previously unappreciated cell types, particularly within the luminal epithelial 

compartment (15-20). We interrogated this complexity in the context of prostate cancer by first 

performing single–cell RNA sequencing (scRNA–seq) analysis of sixteen human samples (Table 

S1). Six patients had early–stage castration–sensitive prostate cancer (CSPC) (2) and ten patients 

had late–stage metastatic castration–resistant prostate cancer (CRPC) representing three clinically 

recognized phenotypes: CRPC adenocarcinoma (AR+, SYP–); double negative prostate cancer 

(DNPC) (AR–, SYP–); and neuroendocrine prostate cancer (NEPC) (AR–, SYP+). All three CRPC 

phenotypes were enriched for alterations in TP53, PTEN and RB1 (8, 11) (Table S2 and Fig. S1). 

 

Unsupervised clustering (21) on batch–corrected data was used for iterative labeling of coarse cell 

types into lineages using canonical markers (Fig. 1B, Fig. S2). Primary benign and CSPC tumor 

cells were labelled per Karthaus et al (2), whereas all epithelial cells derived from metastatic 

tumors were found to be malignant, except for a small benign hepatocyte population (Fig. S2, 

Table S5 for DEGs, refer to Methods). To assess for inter–tumor heterogeneity, we determined 

the Shannon diversity of patient tumors (refer to Methods). As anticipated, CRPC samples were 

significantly more heterogeneous (lower entropy) than CSPC tumors (P=1.5x10-205, Fig. 1C). 

Furthermore, while CRPC samples showed minimal overlap across samples and did not adhere to 

a priori defined pathologic groupings (Fig. 1B), the CRPC adenocarcinoma subgroup showed less 

heterogeneity (higher entropy) than the DNPC or NEPC samples (P=1.6x10-22, Fig. 1C). 

 

We next explored the factors that contribute to intra–tumoral heterogeneity as tumors displaying 

plasticity may harbor distinct tumor phenotypes at the per–biopsy level. Recurring transcriptomic 

trends emerged within multiple tumor biopsies including focal loss of AR signaling, gain of EMT 

signals, emergence of rare and early NEPC cells, and differing NEPC lineages (Fig. 1D, Figs. S3–

S4). For example, HMP13 (CRPC adenocarcinoma) showed consistent AR expression throughout 

but had clusters with loss of expression of AR target genes, such as FKBP5 and NKX3.1, and rare 

gain of SYP or INSM1+ cells, likely indicative of early transition to NEPC (Fig. 1D). HMP08, 

histologically classified as DNPC, showed evidence of EMT (EPCAM+, TWIST1+) and focal 

expression of the NEPC marker CHGB (Fig. 1D, Fig. S4). Two further samples, both classified 

histologically as NEPC, displayed either distinct clusters of ASCL1+ and NDRG1+ (an EMT 
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marker) (HMP04, Fig. 1D, Fig. S4) or ASCL1+ and NEUROD1+ cells (HMP17, Fig. 1D) that, in 

human small cell lung cancer, are considered distinct disease subtypes. Collectively, these cases 

(each of which serves as its own case study) illustrate the complexity of aberrant lineages that can 

emerge from a relatively uniform population of adenocarcinoma cells in response to the selective 

pressure of androgen receptor signaling inhibitors (ARSIs). 

 

To gain more insight into the early stages of lineage plasticity, we turned to two prostate GEMMs 

that model the adenocarcinoma to NEPC transition following prostate–specific deletion of the 

human–relevant tumor suppressor genes PTEN, RB1 and TP53. scRNA–seq was performed on 

whole prostates harvested from 29 mice [9 wildtype (WT); 7 Pten-/-Rb-/- (PtR); 13 Pten-/-Rb-/-Trp53-

/- (PtRP)] at relevant timepoints reflecting adenocarcinoma to NEPC transformation (Fig. 2A, Fig. 

S5). Transcriptomes from 67,622 cells were analyzed using Gfp to mark those that underwent Cre 

recombination and visualized by UMAP, with cell types identified by coarse labelling (Fig. 2B, 

Fig. S5, refer to Methods). In addition to the expected adenocarcinoma (Epcam–Gfp) and NEPC 

(Syp+) populations, we were surprised to see three additional Gfp+ clusters defined by expression 

of Pou2f3 and Dclk1 (Pou2f3–Gfp), Vim, Twist2 and Ncam1 (EMT–Gfp), and Tff3 (Tff3–Gfp), 

respectively. POU2F3 is a transcription factor (TF) expressed by rare chemosensory cells in 

normal gut and lung tissue (often called tuft cells), whereas Tff3 encodes a secreted protein 

expressed by intestinal columnar epithelial cells involved in maintaining mucosal integrity. Of 

note, POU2F3 also defines a non–neuroendocrine variant subtype of lung cancer with morphologic 

features of small cell carcinoma distinct from ASCL1 and NEUROD1 subtypes (12, 22). 

 

We examined potential routes of plasticity by generating force–directed layouts (FDLs) for each 

genotype across different timepoints. We noted the early appearance of Gfp+ adenocarcinoma 

(Epcam–Gfp) as well as Tff3–Gfp cells, followed by the expansion of EMT–Gfp and NEPC and 

Pou2f3–Gfp populations, with some differences based on genotype (Figs. 2C and 2D). The 

presence of each of these subpopulations was confirmed by multiplex immunofluorescence (IF) 

and immunohistochemistry (IHC), which documented SYP+ (NEPC) and VIM+ (EMT) positive 

cells in a background of ECAD+ (or PANCK+) epithelial cells (top row), larger clusters of NEPC 

and EMT (middle and bottom rows) and foci of TFF3+ or POU2F3+ cells (right panel) (Fig. 2E, 

see Fig. S6 for additional examples and PANCK staining).  
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To investigate the cellular origin of these early adenocarcinoma cells, we performed deconvolution 

of mixed wild–type epithelial phenotypes in mutant Gfp+ cells using Markov absorption 

classification (refer to Methods) and found the majority of cells associate with stem–like luminal 

2 (Sca1, Psca, Tacstd2, and Krt4, adeno–L2) or basal (Krt5 and Krt14, adeno–B) phenotypes. This 

conclusion was supported by bulk RNA–seq data from normal mouse L1, L2 and basal cells (Fig. 

3A, Fig. S7, refer to Methods). While adenocarcinoma cells were readily annotated based on 

maximum likelihood (adeno–L1, –L2, and –B), these cells displayed significant basal and L2 

phenotypic mixing (higher entropy) compared with wild–type cells (P<10-16, Fig. 3A, right bar 

plot). We further found that NEPC cells had the highest similarity to wild–type L2 cells among 

the wild–cell types (Fig. 3A, refer to Methods). In all, our scRNA-seq and spatial imaging data 

together implicate stem–like luminal (L2) cells and potentially basal–like state as the source of 

plasticity following deletion of Pten/Rb1 or Pten/Rb1/Trp53 that can give rise to at least 4 distinct 

lineages, namely NEPC, Pou2f3–Gfp, EMT–Gfp, and Tff3–Gfp.  While we cannot exclude that 

these lineages arise from early activation and/or leakiness of Pbsn–Cre, notably with respect to 

EMT–Gfp, there is compelling evidence through lineage tracing using luminal Nkx3.1–Cre and 

Krt8–Cre mice, and our spatial IF showing PANCK and SYP staining that transformed luminal 

cells readily transdifferentiate into NEPC (23). Specifically, and consistent with our data, L2 

(SCA–1+) cells have an increased propensity to transdifferentiate to neuroendocrine cells upon 

androgen ablation compared with L1 (SCA–1–)(24). 

 

Having documented a much greater than expected degree of lineage plasticity in human and mouse 

prostate cancers (i.e., beyond SYP+ NEPC alone), we studied transcriptional programs and 

transcription factors associated with these lineage transitions, starting with differentially expressed 

genes (DEG) and pathways using gene set enrichment analysis (GSEA) (Tables S6, S7). In 

addition to L2–like regenerative programs that we previously reported in the context of the normal 

castration response (14), lineage–specification programs of early gut development (25, 26) in Gfp+ 

luminal and basal adenocarcinoma cells emerged (Fig. 3B and 3C). Among these programs, and 

specifically highest in adenocarcinoma luminal–like cells, we noted an upregulation of Hnf4a 

(focal positivity confirmed by IHC in Fig. S6), Hhex and Onecut2, which are known lineage–
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defining TFs in the developing foregut (27, 28).  Onecut2 is of particular interest due to its recently 

reported role in suppression of AR signaling in CRPC (29).  

 

Given that the data suggest that reactivation of stem– and developmental–like programs in Gfp+ 

adenocarcinoma cells is the likely source of lineage plasticity, we looked more specifically at TFs 

that might be responsible, starting with a predefined set of known TFs (1637 genes, Transcription 

Factor Database, TFDB). Consistent with our FDLs (Fig. 2B), pseudotime analysis using Palantir 

(30) (refer to Methods) starting with an early adenocarcinoma state (cluster with low Cdk2na 

expression) revealed four terminal differentiated states: Tff3–Gfp, EMT–Gfp, Pou2f3–Gfp and 

NEPC (Fig. S8). To explore the set of perturbed TFs further and given its clinical relevance, we 

focused on the adenocarcinoma to NEPC transition, restricting to the PtRP model, and noted three 

major trends in TF expression, namely: (i) those active in adenocarcinoma alone, (ii) those 

expressed during the transition to NEPC and (iii) NEPC–specific regulators (Figs. 3D and 3E, 

Fig. S8, discussed later).  

 

A closer look at the NEPC and non-neuroendocrine variant populations provided evidence for even 

more heterogeneity, consisting of three subsets defined by distinct DEG profiles designated as: (i) 

Pou2f3–Gfp (Pou2f3, Dclk1), (ii) NEPC–A (Ascl1), (iii) NEPC–Ar (refer to Methods, Fig. 4A, 

Fig. S9). Because the NEPC–Ar subset is largely based on scRNA-seq data from a single PtRP 

mouse, we confirmed the presence of NEPC–Ar populations by multiplex–IF in additional PtR 

and PtRP mice (Fig. S9). We further found a cluster of Syp+ cells that express both Ar and Ascl1. 

We asked if the diversity of NEPC lineages detected in the prostate GEMMs are also found in 

human CRPC (beyond that observed in our scRNA–seq cohort, Figs. 1 and 4A). To this end, we 

assessed expression of selected lineage markers across a cohort of tissue samples from a large 

rapid autopsy cohort (31, 32) containing tissue samples from multiple anatomically distinct 

metastatic sites per patient [16 patients, 139 tumors from distant metastases and the prostate gland; 

2–21 metastatic sites per patient] (Fig. 4B, 4C, Fig. S10, Table S8). The analysis confirmed 2 of 

the 3 mouse NEPC subsets (NEPC–A and NEPC–Ar) in human CRPC. Human NEPC–A is 

notable for concordant INSM1 and DLL3 expression, consistent with the mouse profile, and 

reminiscent of ASCL1+ human SCLC. Human NEPC–AR samples were largely INSM1– and 

ASCL1–negative (Fig 4B). NEUROD1 and POU2F3 were absent in this subset at the TMA level.  
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Our TMA also revealed a subset of YAP1+ human high–grade carcinomas (HGC), while NEPC 

tumors largely showed absence or focal YAP1 expression (33). Although the former finding may 

implicate altered Hippo pathway signaling in CRPC adenocarcinoma, important to note is that 

YAP1 is also expressed in primary adenocarcinoma cells (28). Finally, when examining lineage 

marker expression across metastases, we found several examples of widespread SYP+ soft tissue 

metastases in patients whose bone lesions retained the expression of luminal epithelial markers 

(AR, NKX3.1, CK8), suggesting microenvironmental signals may influence lineage commitment 

(Fig. 4B, Table S8, patients 6,7, and 10, boxed in gray). 

 

To determine whether there is a human counterpart to mouse Pou2f3–Gfp, we examined existing 

human CRPC (SU2C) and patient–derived xenograft datasets (PDXs, LuCAP) for expression of 

POU2F3 and its signature (12) (refer to Methods). We also studied NEPC–N (NEUROD1) in 

both datasets; this subpopulation was found in patient HMP17 by scRNA–seq (Fig 1D), but not in 

mouse NEPC or by human TMA. Most NEPC samples in the SU2C dataset expressed ASCL1, as 

expected, but we did identify several NEUROD1–expressing samples (NEPC–N+) that also 

retained expression of ASCL1, in line with HMP17 and recent literature (34) (Z–score > 2, 

discussed above) (Fig. 4D). Pou2f3–Gfp was less convincing in that the extreme POU2F3 outlier 

(by signature) is from a subcutaneous tumor, which may alternatively represent contamination 

from skin cells expressing high levels of POU2F3 (Fig. 4D). Similar to our GEMM data, analysis 

of the PDX dataset also revealed divergent NEPC–A and Pou2f3–Gfp phenotypes in two sublines 

derived from the same patient, LuCAP173. Notably, subline LuCAP173_2 (DNPC with rare foci 

of NEPC) showed high POU2F3 expression, whereas subline LuCAP173.1 (fully NEPC) 

expressed low POU2F3, but high INSM1, CHGA, and SYP (Fig. S11). This is consistent with a 

recent cohort of human CRPC patients displaying some degree of POU2F3–positivity (12). While 

these findings are suggestive of the presence of these NEPC subsets, large scale tissue–based PDX 

and tumor IHC/IF are likely needed to delineate their prevalence. Lastly, we also found evidence 

of EMT–like programs in the SU2C dataset, although not exclusively linked to NEPC histology 

(Fig. S11). This observation was consistent with EMT programs being active in late stage CRPC, 

such as in our human single–cell analysis and enriched in HMP08 (DNPC, Fig. 1E). Furthermore, 

while TFF3 was expressed in SU2C samples (highest Z–score of ~8), the Tff3–Gfp signature for 
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all samples fell below a Z–score of 1.5, perhaps because TFF3 defines an early population not 

enriched in CRPC patients (as seen in the GEMM data, Fig 2D, Fig. S11). 

 

Given the concordance of NEPC populations in the GEMM and human datasets (scRNA–seq, UW 

rapid autopsy, SU2C, and PDX), we asked whether the TFs that define these subsets are conserved 

across human SCLC subtypes. We found significant overlap of differentially expressed TFs in 

scRNA–seq data from human SCLC as well as in mouse and human NEPC subtypes (35) (Fig. 

4E, Fig. S7E). Examples of shared NEPC and SCLC TFs include: FOXA2, INSM1, SOX2, SOX4, 

TOX3 (ASCL1 subtype, P=6x10-15, Fisher’s exact test); ASCL2, REST, IRF7, SOX9, MYC, MYB 

(POU2F3 subtype, P=4x10-5, Fisher’s exact test) and DACH1, NFIA, HLX, TCF4 (NEUROD1 

subtype, P=3x10-6, Fisher’s exact test) (Fig. S9, additional overlap analyses). Collectively, these 

mouse/human and prostate/lung cancer pairs reveal a high level of conservation of the endoderm–

derived lineage specification pathways, in essence, revealing how these can be hijacked to promote 

disease progression and drug resistance.  

 

Because transition to NEPC portends a highly aggressive and lethal stage of prostate cancer, there 

is an acute need for novel therapies. Current drug development efforts are focused on actionable 

targets known to be expressed in NEPC, such as EZH2, AURKA and DLL3, with clinical trials 

currently underway.  In light of the high degree of heterogeneity in NEPC seen through our single–

cell analyses, we looked at expression of these and other common targets, such as AR and PSMA 

across our datasets. Not surprisingly, this analysis revealed a high degree of both intra–tumoral 

and inter–tumoral heterogeneity across both human and GEMM scRNA-seq (examples shown in 

Fig. 5A), raising obvious concerns about the clinical efficacy of these treatment strategies due to 

escape of target–negative tumor cells.  

 

Our prostate GEMM time course analysis implicated stem–like luminal (L2) adenocarcinoma cells 

as the source of plasticity for NEPC, raising the possibility that pharmacologic targeting of this 

population may be a strategy to prevent NEPC transition. We thus explored the temporal activation 

of pathways across the adenocarcinoma to NEPC transition in our GEMMs, with an eye toward 

druggability. In the adeno–L2, pathway analysis revealed the majority of significantly enriched 

gene sets related to activation of Jak/Stat, IFN and other inflammatory response pathways (Fig 
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5B). The set of genes (GSEA leading edge) driving this enrichment overlapped with transition 

regulators, namely IRF1/7, JAK2, STAT1/2, showing the highest expression in the adeno–L2 high 

plastic state, but with reduced expression in the NEPC populations (Fig. S8). To assess human 

relevance, we explored whether these transcription drivers were activated in tumor biopsies 

displaying evidence of plasticity from AR–high to AR–low adenocarcinoma states. Strikingly, we 

found a similar enrichment of inflammatory (and EMT) pathways in humans across high to low 

AR signaling as seen in HMP13 and highest in cells displaying an L2–like state (Fig 5C, Fig. S11). 

Mapping of TFs across diffusion pseudotime revealed a similar activation of transcriptional 

regulators, namely JAK1, STAT2/3, IRF1, and IRF7 (Fig 5C, Fig. S11). 

 

Together, our data reveal a greater than expected degree of lineage plasticity in prostate cancers 

that develop resistance to androgen deprivation therapy and, through side–by–side analysis of 

human and mouse datasets, establish a set of transcriptional programs that define and likely 

mediate plasticity states in prostate cancer. The delineation of such novel signatures should inform 

clinical prognosis and could enhance precision in treatment selection. Most importantly, we define 

a stem–like luminal (L2) population as the likely source of plasticity and implicate the 

inflammatory JAK/STAT pathway as a potential target for therapeutic intervention (Fig. 5D), 

which we address functionally in the accompanying manuscript. 
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Figure 1. Drivers of Resistance in Metastatic Human Castration–Resistant Prostate Cancer. 

(A) Schematic of an investigative platform to explore drug resistance and lineage plasticity in 

early– and late–stage human prostate cancer and two autochthonous genetically engineered mouse 

prostate cancer models (GEMM). Human prostate cancer samples include castrate–sensitive 

prostate cancer (CSPC) and castrate–resistant prostate cancer (CRPC). The latter includes CRPC 

adenocarcinoma (AR+, SYP–), double–negative prostate cancer (DNPC) (AR–, SYP–), and 

transformed neuroendocrine prostate cancer (NEPC) (AR–, SYP+). GEMMs include organ–

specific deletion (Probasin–Cre) of Pten and Rb1 (PtR), or Pten, Rb1, and Tp53 (PtRP) at relevant 

timepoints reflecting adenocarcinoma to NEPC transformation. (B) UMAPs of tumor cells 

(N=29,373 cells), colored by tumor ID and grouped by tumor type. (C) Inter–patient heterogeneity 

measured by Shannon entropy based on tumor frequencies. To control for cell sampling, 100 cells 

were subsampled from each Phenograph cluster (k=30) within epithelial, immune, and 

mesenchymal compartments 100 times with replacement (Bonferroni–adjusted Student’s t–test, 

refer to Methods). (D) UMAPs of individual CRPC biopsies: HMP13 (N=354 cells, CRPC 

adeno), HMP08 (N=4,279 cells, DNPC), HMP04 (N=1791 cells, NEPC), and HMP17 (N=2,845 

cells, NEPC). For each biopsy, cells are colored based on normalized expression (log2X+1) for 

select genes demonstrating heterogenous and divergent intra–tumoral molecular resistance 

programs.  
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Figure 2. Modeling Multilineage Plasticity in GEMMs. (A) Experimental design includes WT 

(9 mice), PtR (7 mice, PbCre:Rosa26mT/mGPtenfl/flRb1fl/fl), and PtRP (13 mice, PbCre: 

Rosa26mT/mGPtenfl/flRb1fl/flTp53fl/fl) at labelled time points. (B) UMAP of GEMMs (N=67,622 

cells) shown for all cell types based on imputed Gfp expression (restricted to non–immune cells) 

as a marker for mutant cells (refer to Methods). (C) Mutant Gfp–positive and wild–type cells 

(N=28,934) were subsetted. Shown is a force–directed layout (FDL) colored by wild–type and 

mutant cell types. (D) FDLs separated by genotypes and timepoints and colored by cell types (left, 

WT with N=7,435 cells; top PtRP 24/30/47 weeks with N=2,565/662/1,441 cells; bottom PtRP 

8/9/12/16 weeks with N=981/353/4,984/569 cells) with stacked bar plot of fraction of cell types 

per genotype and time point (right). (E) Validation of mutant subtypes, including adenocarcinoma 

to NEPC transition, NEPC, and EMT by hematoxylin/eosin and multiplex immunofluorescence 

(mIF) (40x). Shown are GFP (mG, green), DAPI (nuclei, blue), VIM (mesenchymal, red), SYP 

(synaptophysin, purple), and E–CAD (e–cadherin, white). Also shown is mIF of adenocarcinoma 

state (20x) with zoomed in (80x) hematoxylin/eosin and immunohistochemistry of TFF3– and 

POU2F3–positive cells in mutant tissue.  
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Figure 3. Stem– and Developmental–Like Programs Highest in L2–Like State with Mapping 

of Inferred Transition TFs. (A) Ternary plots of wild–type epithelial cells, adenocarcinoma or 

NEPC cells (left to right labelled ‘WT’, ‘Adeno’, and ‘NEPC’) based on three coordinates–basal 

(B), luminal 1 (L1), and luminal 2 (L2) Markov absorption probabilities. A preponderance of 

‘Adeno’ cells (middle) along the B–L2 side of the triangle suggests an increased mixed phenotype 

compared with ‘WT’.  Ternary plot of ‘NEPC’ cells (right) demonstrating skew to luminal 2 (L2) 

absorption probabilities. Box plot of basal–luminal plasticity per single cell, as measured by 

Shannon entropy of re–normalized Markov absorption probabilities for B, L1 and L2 phenotypes 

comparing WT versus mutant Adeno in PtR and PtR (Mann–Whitney U test comparing entropies 

of WT versus mutant Adeno in PtR/PtRP, refer to Methods). (B) Heatmap of significantly 

enriched gene sets per cell type (scale from -2 to +2.5 of GSEA normalized enrichment score, 

P<0.05, refer to Methods). (C) Dot plot of select differentially expressed genes (DEGs), stratified 

by cell type (mean normalized log2X+1 expression scaled from 0 to 1; size of dot represents percent 

of cells expressing the respective gene) grouped by L2, gut tube specification, EMT, and 

embryonic/neuronal genes. (D) FDL of mutant adenocarcinoma (restricted to PtR model, including 

adeno–B and adeno–L2) and NEPCs cells (total N=16,593 cells) colored by genotype and time 

(left).  Shown below are FDLs colored by normalized log2X+1 expression of Cdkn2a or 

pseudotime scaled from 0 to 1 (bottom). Gene trends for TF DEGs across the adenocarcinoma to 

NEPC branch probability were determined as described in Palantir using a generalized additive 

model with cubic splines used as the smoothing function across 500 equally sized bins. Gene trends 

were grouped using Phenograph cluster (k=30). Solid and dashed lines represent the mean and 

standard deviation of the gene trends for each cluster (Refer to Methods).  TFs groups include 

early adenocarcinoma (purple), transition (red), and NEPC (blue). (E) Heatmap of gene trends of 

select TF DEGs (Phenograph cluster versus rest, refer to Methods: ‘Identifying DEGs’) from 

each category are ordered by the adenocarcinoma to NEPC transition and colored by 

aforementioned groups (right; scale gene trends of imputed expression, -0.5 to 1.5).  
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Figure 4. Conservation of Transcription Factors in NEPC Subtypes. (A) UMAP colored by 

NEPC subtypes based on Ascl1 (A), Ar (Ar) and Pou2f3 (P) in GEMMs (N=4,973 cells) (A) and 

ASCL1 (A) and NEUROD1 (N) in human samples (from HMP04, HMP16, and HMP17, N=9,572 

cells). (B) Heatmap of human CRPC tissue microarray H-score (immunohistochemical score, scale 

0 to 200, red gradient) and proliferative score (KI67, 0 to 100, black gradient) shown with 

corresponding patient ID, site (soft tissue, purple; bone, yellow), and histology (adenocarcinoma, 

blue; high-grade carcinoma, NOS, orange; high-grade neuroendocrine, red) confirming NEPC–A 

and NEPC–Ar subsets. Arrow denotes bone tropism of AR positivity in patients 6, 7 and 10. (C) 

Representative immunohistochemistry shown for NEPC–A, NEPC–Ar, and high-grade 

adenocarcinoma (additional examples and stain shown in Fig. S10). (D) Scatter plot shows Z–

score of expression of genes in the SU2C database of Pou2f3–Gfp (y–axis) and NEPC-N (x–axis) 

signatures (top, Refer to Methods), and canonical transcriptional regulators POU2F3 (y–axis) 

and NEUROD1 (x–axis) (bottom). Red and blue dots denote non–NEPC or NEPC features as per 

SU2C database, respectively. Size of dot corresponds to the Z–score of NEPC–A signature (top) 

or ASCL1 expression (bottom).  Dotted lines denote Z–score cutoff of 1.5. (E) Venn diagrams of 

differentially expressed TFs in corresponding ASCL1, NEUROD1 and POU2F3–high subtypes in 

small cell lung cancer and neuroendocrine prostate cancer. The overlap between NEPC and SCLC 

subsets is assessed by Fisher’s exact test.  Key overlapping TFs are annotated suggesting conserved 

transcriptional regulation.  
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Figure 5. Identification of Targetable Transcriptional Mediators of Plasticity Across Human 

and GEMM Datasets. (A) FDL and kernel density estimate plots of imputed gene expression 

(MAGIC, k=30, t=3) are shown of current and select prostate cancer drug targets.  FDL of DLL3 

expression is shown for HMP17 (NEPC, 2,845 cells, top) with density of expression stratified by 

NEPC–A (purple) and NEPC–N (red). FDL of PSMA expression is shown for HMP14 (CRPC 

adenocarcinoma, 3,351 cells, middle) highlighting both low PSMA (blue) and high AR (orange) 

expression.  FDL of Ezh2 expression is shown for GEMM NEPC tumors (N=4,973 cells, bottom) 

with ridgeline plots of imputed expression shown for Ar, Aurka, Dll3, and Ezh2. (B) Enriched 

signaling pathways using GSEA in adeno–L2 state highlighting inflammation and JAK/STAT 

pathways (scale -2.5 to 2, normalized enrichment score, P<0.05). Plotted gene trends of Jak2, 

Stat1, Stat2, Irf7 were determined as described in Palantir across adenocarcinoma (purple bar) to 

NEPC (blue bar) using a generalized additive model with cubic splines used as the smoothing 

function across 500 divided equally sized bins. (C) UMAP of HMP13 (N=353 cells) colored by 

pseudotime from cells with high to low AR signaling (refer to Methods, top left). Corresponding 

robustness analysis of pseudotime detailed in Fig. S11 (refer to Methods). Heatmaps showing 

gene trends for select DEGs and mouse transition TF markers ordered by the high to low AR 

signaling—early NEPC transition (right; scale -1 to 1.5, refer to Fig. S11). Gene trends were 

determined as described in Palantir and above in (B). AR signature score (refer to Methods) or 

Z–score of leading edge of enriched GSEA terms IL6–JAK–STAT or EMT are shown (scale, -0.5 

to 1.5) (bottom). (D) Schematic of lineage plasticity progression and its mediators highlighting 

plastic L2–like cells enriched for TP53, RB1, and/or PTEN loss with emergence of developmental 

and stem–like program and upregulation of Jak/Stat and interferon signaling genes (ISGs). This 

cellular state is primed for multi–lineage plasticity with inhibition of Jak/Stat re–sensitizing to AR 

directed therapy (refer to accompanying manuscript). NEPC and neuroendocrine variant cells 

states, ASCL1, NEUROD1, and POU2F3, are common to both lung and prostate cancers with 

conservation of TFs.  The identification of stem–like transformed L2 state provides a target for 

more focused therapeutic intervention. 
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Supplementary Materials: 
 
 
Materials and Methods 

 

Patient and GEMM cohorts 

 

Human patient derived tissue. Tumor tissues were collected from patients undergoing a surgical 

resection or tissue biopsy for clinical care at Memorial Sloan Kettering Cancer Center (MSKCC). 

Informed consent was obtained for all patients and approved by MSKCC’s Institutional Review 

Board (IRB) #12–245 (NCT: 01775072), #06–107, and #12–001. Tumor biopsies included 6 

primary castrate–sensitive prostate cancer (CSPC–HP) (19) and 10 metastatic castrate–resistant 

prostate cancer (CRPC–HMP). The 6 CSPC biopsies were previously analyzed and published by 

our group and are available at the Data Use and Oversight System controlled access repository: 

https://duos.broadinstitute.org/ (accession no. DUOS–000115, files annotated as HP95T to 

HP101T, all FASTQ files were re–processed per ‘Data pre–processing’) (19). All CRPC–HMP 

biopsies collected prospectively from 2019 to 2020 and were freshly derived from metastatic sites 

from patients with CRPC, who by definition, progressed after being treated with a next–generation 

anti–androgen therapy (ARSI) with or without a taxane. Serum PSA levels were reported from the 

date one week before or after of biopsy. Detailed clinical characteristics including AJCC staging, 

location, PSA, type and number of prior treatments, and genomic alterations are listed in Table S2 

and Fig. S1. Routine clinical histology and immunohistochemistry were performed by a MSKCC 

pathologist. Based on this pathologic assessment, patients were classified into three clinically 

recognized phenotypes—namely CRPC adenocarcinoma (AR+, SYP–), double–negative prostate 

cancer (DNPC) (AR–, SYP–), or neuroendocrine with characteristic small cell features (AR–, 

SYP+) (32). 

 

Targeted sequencing of human tumor tissue. For patients who consented to IRB 12–245 (NCT 

01775072; MSK–IMPACT) and for clinical purposes, targeted sequencing was performed for a 

panel of actionable cancer genes for alterations (36) (Table S2). Genomic data was collected on 

retrospective review of the electronic medical record.  
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GEMM series. Mouse studies were carried out in compliance with Research Animal Resource 

Center guidelines (IACUC 06–07–012). The construction and genotyping of all GEMMs has been 

previously described (9, 37, 38). 7 PtR (7 mice, PbCre:Rosa26mT/mGPtenfl/flRb1fl/fl), and 13 PtRP 

(13 mice, PbCre: Rosa26mT/mGPtenfl/flRb1fl/flTp53fl/fl) mice analyzed were on a mixed 

C57BL/6:129Sv: FVB/NJ background. Timepoints for PtR included 24, 30, and 47 weeks, and for 

PtRP were 8, 9, 12, and 16 weeks relevant to the adenocarcinoma to neuroendocrine transition (9, 

37, 38). Six PtRP mice were castrated at 8 weeks of age for either a total of 4 weeks (3 mice, 

‘Cas’), or 2 weeks followed by 2 weeks of dihydrotestosterone (DHT, ‘Cas/Reg’) addback (3 

mice). DHT pellet was implanted subcutaneously. Nine wildtype (WT) mice were on a matched 

or FVB background (Fig. 2A and Fig. S5A).  

 

Sample Handling 

 

Sample processing: human and GEMM tissue. Fresh benign and malignant tissue was 

mechanically cut using a scalpel into small pieces (~1–5 mm3). The tissue was then processed and 

dissociated in 5–10 mg/ml collagenase type II (Gibco) solution in adDMEM/F12+/+/+ with 10 

µM Y–27632 dihydrochloride for 30 minutes to 2 hours on a 37oC shaking platform. This was 

followed by a 1 minute 0.5 M EDTA wash at room temperature, and subsequent digestion with 

TrypLE (Gibco) with 10 µM Y–27632 dihydrochloride for 5–10 minutes at 37oC on a shaking 

platform until a single cell suspension was obtained (39). For human samples, if more than 10% 

of doublets were present (visual inspection) or there was evidence for <80% viability 

(hemocytometer, using 0.2% Trypan Blue), then cells were FACS–sorted for singlets and viability 

using a DAPI. For GEMM tissue, all cells were subsequently FACS–sorted for singlets and 

viability using DAPI.  

 

Sample processing: 10X single cell RNA–sequencing. Dissociated cells were subjected to 

scRNA–seq using 10X genomics Chromium Single Cell 3’ Library and Gel bead Kit (v3 for 

human, except v2 for HP95T, and v2 for mouse) per manufacturer’s protocol. ~3000 to 10,000 

cells per sample was encapsulated and barcoded following the manual. Sample viability varied 

between 72 and 95% (0.2% Trypan Blue). The final sequencing libraries were double–size purified 

(0.6–0.8X) with SPRI beads and sequenced on Illumina Nova–Seq platform (R1–26 cycles, i7–8 
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cycles, R2–70 cycles or higher). For human samples, on average, 5861 cells per clinical biopsy 

were sequencing at a depth of ~ 26,931 reads per cell (~267 million reads per sample). The unique 

mapping was high, between 80.1– 90.5%, with a median number of unique transcripts per cell 

being 4,973. For mouse samples, on average, 3,575 cells per mouse sample were sequenced at a 

depth of ~ 48,685 reads per cell (~213 million reads per sample). The unique mapping was high, 

between 73.4 – 80.4 %, with a median number of unique transcripts per cell being 4,403. Detailed 

QC statistics are listed in Table S1. 

 
Immunohistochemistry, Immunofluorescence, and Tissue Microarray 

 

Human immunohistochemistry of CRPC–HMP samples. For all CRPC–HMP biopsies AR or 

NKX3.1, SYP, and INSM1 stains were performed if not already completed for routine clinical 

work up (Fig. S1). Exceptions included INSM1 stains for HMP16, HMP17 and SYP and INSM1 

stains for HMP19 where additional tissue was not readily available. Briefly, and as part of routine 

clinical practice, patient biopsies were fixed in 10% neutral–buffered formalin, dehydrated with 

ethanol, and paraffin embedded per standard protocol. Furthermore, in select cases where ample 

formalin fixed tumor tissue (HMP04, HMP08, HMP11A/B, HMP13 and HMP14) was available, 

additional immunohistochemistry were performed by the MSK Clinical Pathology Core and 

include CK8, SYP, EZH2, POU2F3, ASCL1, INSM1, and YAP1. Immunohistochemistry of 

formalin–fixed tissue was performed using a Leica Bond RX and pretreated with epitope retrieval 

(ER1 or ER2) for 30–40 minutes. The respective primary antibodies were incubated for 30–60 

minutes and followed by the Polymer Refine Detection Kit (Leica, DS9800) per the manufacturer 

protocol.  Antibody clones, concentrations, antigen retrieval and platform used are listed in Table 

S3. Formalin–fixed stained tissue was scanned using a MIRAX scanner and processed using Case 

Viewer. All cases were reviewed by experienced genitourinary pathologists (A.G., M.R., M.C.H.) 

and immunoreactivities were scored in a blinded manner using a previously established H–score 

system, whereby the optical density level (“0” for no brown color, “1” for faint and fine brown 

chromogen deposition, and “2” for prominent chromogen deposition) was multiplied by the 

percentage of cells at each staining level, resulting in a total H–score (range 0–200) (Fig. S1) (31, 

32). 
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Human tissue microarray. Tissue samples were procured from men who died of metastatic 

CRPC and who signed written informed consent to undergo a rapid autopsy as part of the Prostate 

Cancer Donor Program at the University of Washington as described previously (31, 32). The 

Institutional Review Boards of the University of Washington and of the Fred Hutchinson Cancer 

Research Center approved this project. In this study, a total of 139 anatomically distinct tumors 

including 47 adenocarcinomas, 54 high–grade carcinomas not otherwise specified (NOS), and 38 

high–grade neuroendocrine carcinomas from 16 patients were analyzed. A TMA containing 2 

separate cores for each metastatic site was constructed and adjacent sections were stained with 

antibodies specific to a total of 13 proteins including AR, NKX3.1, SYP, INSM1, ASCL1, SOX2, 

FOXA2, YAP1, CK8, DLL3, EZH2, TP63, NEUROD1, POU2F3, and KI67 (antibody 

specifications listed in Table S3). Tissue sections were counterstained with hematoxylin and slides 

were digitized on a Ventana DP 200 Slide Scanner (Roche). All cases were reviewed by 

experienced genitourinary pathologists (M.R., M.C.H.) and immunoreactivities were scored in a 

blinded manner using a previously established H–score system, whereby the optical density level 

(“0” for no brown color, “1” for faint and fine brown chromogen deposition, and “2” for prominent 

chromogen deposition) was multiplied by the percentage of cells at each staining level, resulting 

in a total H–score (range 0–200) (31, 32). The final H–score for each sample was the average of 

two replicate tissue cores. For KI67, any nuclear positivity was counted, and the percent of positive 

nuclei are shown (range 0–100). Included patient identifiers and H–scores for each protein are 

detailed in Table S8. 

 

GEMM immunohistochemistry. Murine prostate tissue was fixed using 4% paraformaldehyde 

overnight, dehydrated with ethanol, and paraffin embedded per standard protocol. 

Immunohistochemistry (IHC) and immunofluorescence of FFPE tissue were performed using a 

Ventana Roche Benchmark Ultra (TFF3, rabbit polyclonal, Abcam, ab108599, 0.5 ug/mL) or 

Leica (HNF4A, rabbit monoclonal, Sigma Aldrich, ZRB1457, 0.06 ug/mL; and POU2F3, rabbit 

polyclonal, Sigma Aldrich, HPA–019652, 0.35 ug/mL) (Fig. S6C). For TFF3 IHC, tissue sections 

were first heated for 32 minutes, followed by CC1 (Cell Conditioning 1, Ventana 950–500) 

retrieval and blocking using the Innovex (NB306) reagent for 30 minutes. The primary TFF3 

antibody was incubated for 4 hours, followed by 60 minutes of incubation with biotinylated goat 

anti–rabbit IgG (Vector labs, PK6101) at 5.75 ug/mL. Blocker D, Streptavidin–HRP and 
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DABMAP kit from Ventana Roche were used according to the manufacturer instructions. The 

slides were counterstained with hematoxylin and cover–slipped with Permount (Fischer 

Scientific). For HNF4A and POU2F3 IHC, tissue sections were first heated for 1 hour, loaded into 

the Leica Bond RX, and pretreated with an EDTA–based epitope retrieval ER2 solution (Leica, 

AR9640) for 20 minutes at 95oC. The respective primary antibodies (POU2F3 and HNF4A) were 

incubated for 60 minutes and processed with Polymer Refine Detection Kit (Leica, DS9800) per 

the manufacturer protocol. The slides were counterstained with hematoxylin and cover–slipped 

with Permount (Fischer Scientific). All FFPE stained tissue was scanned using a MIRAX scanner 

and processed using Case Viewer. All antibody concentration and antigen retrieval in Table S3. 

 

Spatial immunofluorescence for GEMM. For quadruple spatial IF of GFP, VIM, E–CAD (Figs 

2 and S6) and SYP, tissue sections were heated for 32 minutes, followed by CC1 (Cell 

Conditioning 1, Ventana 950–500) retrieval, and blocking using the Innovex (NB306) reagent for 

30 minutes. First, a chicken polyclonal anti–GFP antibody (Abcam, ab13970) was used at 2 ug/ml. 

The incubation with the primary antibody was performed for 5 hours, followed by a 60–minute 

incubation step with biotinylated goat anti–chicken IgG (Vector labs, T1008) at 7.5 ug/mL. 

Blocker D, Streptavidin–HRP and TSA Alexa 488 (Life Tech, B40932) were then used for 16 

minutes. Second, a mouse monoclonal anti–Vimentin antibody (Vector Lab, VP–V684) was used 

at 0.1 ug/mL. The incubation with the primary antibody was performed for 5 hours followed by 

biotinylated anti–mouse secondary (Vector Labs, MOM Kit BMK–2202) at 5.75ug/mL. Blocker 

D, Streptavidin–HRP and Tyramide–CF594 (Biotium, 92174) were used for 16 minutes. Third, a 

mouse monoclonal anti–E–cadherin antibody (BD Bioscience, 610181) was used at 2.5 ug/ml. The 

incubation with the primary antibody was performed for 5 hours followed by biotinylated goat 

anti–mouse secondary (Vector Labs, MOM Kit BMK–2202) at 5.75ug/mL. Blocker D, 

Streptavidin–HRP and TSA Alexa 647 (Life Tech, B40958) was used for 16 minutes. Fourth, a 

rabbit monoclonal anti–Synaptophysin antibody (clone YE269) (Epitomics, 1485–1) was used at 

0.05 ug/ml. The incubation with the primary antibody was performed for 5 hours, followed by 60 

minutes incubation with biotinylated goat anti–rabbit IgG (Vector labs, PK6101) at 5.75ug/ml. 

Blocker D, Streptavidin–HRP and CF 543 (Biotium, 92172) were used for 16 minutes. All slides 

were counterstained in 5ug/mL DAPI [dihydrochloride (2–(4–Amidino Phenyl)–6–

indolecarbamidine dihydrochloride] Sigma D9542 for 5 minutes at room temperature, mounted 
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with anti–fade mounting medium Mowiol [Mowiol 4–88] and cover–slipped. For quadruple spatial 

IF of GFP, SOX2, AR and SYP, (Figs. 2E and S6) the procedure was the same as above, but rabbit 

polyclonal anti–Sox2 antibody, (Chemicon–Millipore, AB5603) was used at 2 ug/mL in place of 

VIM (Step 2), and rabbit monoclonal anti–androgen receptor (AR) antibody (Epitomics, 3184–1) 

was used at 0.66 ug/mL in place on ECAD (Step 3). All FFPE stained tissue was scanned using a 

MIRAX scanner and processed using Case Viewer. All antibody concentration and antigen 

retrieval in Table S3.  

 

Pre–processing of scRNA–seq data 

 

Data pre–processing. For each sample, fastq files were processed individually using the SEQC 

pipeline with default parameters used for the 10X single–cell 3’ library. For human samples, 6 

primary CSPC–HP and 10 metastatic CRPC–HMP were mapped to the hg38 human genome 

reference. For GEMM samples, 9 WT, 7 PtR and 13 PtRP were mapped to the mm38 mouse 

genome reference with a custom Gfp mapping. The SEQC (40) pipeline performed read alignment, 

multi–mapping read resolution with cell barcode and UMI correction to generate a count matrix 

[cells x genes]. The pipeline further performed the following initial cell filtering steps: true cells 

were distinguished from empty droplets based on the cumulative distribution of total molecule 

counts; cells with a high fraction of mitochondrial molecules were filtered >20%; and cells with 

low library complexity expressing very few unique genes were filtered (3 standard deviations 

(SDs) below the mean). In addition, we used the EmptyDrops (41) package and performed 

additional filtering of empty droplets by retaining cells with FDR <0.01. Putative doublets were 

removed using the DoubletDetection package (42) . Genes that were expressed in > 10 cells were 

retained for further analysis.  

 

Combined matrix and normalization. For human samples, the entire cohort of CSPC–HP and 

CRPC–HMP samples yielded a filtered count matrix of 76,929 cells x 22,672 genes, with a median 

of 8,866 molecules per cell and a median of 3,901 cells per sample (Table S1). For GEMM 

samples, the entire cohort of WT, PtR, and PTRP tissues yielded a filtered count matrix of 67,622 

cells x 19,591 genes, with a median of 8,626 molecules per cell and a median of 2,328 cells per 

sample (Table S1). For both human and GEMM datasets, the count matrix was normalized using 
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sctransform (43) to obtain Pearson residuals per gene that adjust for technical artifacts in 

normalization. To visualize gene expression, non–zero UMI counts were corrected using 

sctransform (43), normalized by library size, scaled by median library size, and log2–transformed 

with a pseudo–count of 1. 

 

Batch Correction 
 

Summary of batch correction. For the human dataset, we used batch correction at the global 

level, propagating batch–corrected counts for downstream subsetting. For the GEMM datasets, 

batch correction was not required. Both batch–corrected human and non–batch–corrected GEMM 

datasets resulted in high coherence and mixing among immune populations, while maintaining 

distinct tumor phenotypes. For the GEMM dataset, replicates showed a high degree of mixing. Our 

methods, rationale, and evidence for batch correction for each dataset are noted below. 

 

Batch correction of the human dataset: We performed batch correction of the entire human 

dataset including primary prostate samples (CSPC: HP tumors) and metastatic CRPC samples 

(HMP tumors) using fastMNN (44) with cosine distance applied to the residuals of 5,000 highly 

variable genes (minus cell cycle [regev_lab_cell_cycle_genes.txt] dataset, ribosomal and 

mitochondrial genes), reduced to the top 50 PCs with 40% of variance explained. We opted for 

fastMNN due to the ability to perform hierarchical merging among samples from the same patient 

(HMP11A and HMP11B).  

 

Entropy–based measure of batch correction. To evaluate the effects of batch correction, we 

used an entropy–based measure that quantifies the degree of mixing of normalized expression 

across patients or GEMM samples (40, 45). We constructed a k–nearest neighbors (knn) graph 

(k=30) from the normalized matrix using Euclidean distance and computed the fraction of cells qT 

derived from each tumor sample T in the neighborhood of each cell j. We calculated the Shannon 

entropy Hj of sample frequencies within each cell’s neighborhood as:  

𝐻! =	$
"

– 𝑞" 	𝑙𝑜𝑔	𝑞" 
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High entropy indicates that most similar cells come from a well–mixed set of tumors. For human 

datasets, and with batch correction, while many tumor cells remained distinct and patient–specific, 

there was high coherence and mixing among immune populations indicating effective batch 

correction (Figs. S2B and S2C). For GEMM datasets, there was high coherence of mixing the 

immune populations without batch correction (Figs. S5C, S5D, and S5E).  

 

Measuring Inter–Patient Heterogeneity Per Cell Type  

 

We used an entropy–based measure of inter–patient diversity for each tumor type, including 

benign prostate, CSPC, CRPC adenocarcinoma, DNPC and NEPC. We used the Phenograph 

clusters (k=30) within subsetted tumor cells (N=29,373 cells), myeloid, lymphoid, and 

mesenchymal populations without batch correction. Each cluster C represents a discrete phenotype 

of a given cell. To account for any differences in the number of cells per cluster and cell type, we 

subsampled 100 cells from each cluster 100 times with replacement and calculated the Shannon 

entropy of tumor biopsy frequencies P in each subsample Hc as: 

𝐻# =	∑$ – 𝑞$	𝑙𝑜𝑔	𝑞$. 

We then compared the distribution of Shannon entropies bootstrapped from clusters using a 

Bonferroni–adjusted two–sample t–test (Fig. 1C and Fig. S2C). 

 

Visualization of ScRNA–Seq Data 

Visualization of different cell type compartments. To visualize all cells, or subsets of cell types 

(epithelial, mesenchymal, lymphoid and/or myeloid, individual HMP samples, or Gfp–positive 

cells), we used either uniform manifold approximation and projection (UMAP) (46) or force–

directed layout (FDL) constructions (47). UMAPs were generated by creating a partition–based 

graph abstraction (PAGA) based on Phenograph (21) clusters that served to initialize the low 

dimensional embedding. The effective minimum distance between embedded points was set to 0.2 

to 0.3 (knn=30, min_dist=0.2–0.3, and init_pos=‘paga’). To visualize cell state transitions and 

local relationships, FDLs were constructed. First, a knn graph was created based on PCs. The 

corresponding adjacency matrix was converted to an affinity matrix using an anisotropic Gaussian 

Kernel with k ranging from 20 to 40 neighbors as the scaling factor. The affinity matrix was then 
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used as input for the draw_graph scanpy function––an implementation of the ForceAtlas2 (47) 

python module––to compute the FDL. Given the sparse nature of single–cell sequencing that arises 

from gene dropout, for certain analyses which we have explicitly commented on in the Methods, 

we imputed gene expression using MAGIC (k= 30, t=3) (48). 

Phenograph Clustering 

 

Parameter selection and robustness analysis. We performed unsupervised clustering of single 

cells using Phenograph (21). To calculate robust clusters, we performed Phenograph clustering 

over a range of values for the parameter k (numbers of neighbors in the knn–graph) to ensure that 

cell typing, and cluster labelling was consistent. We calculated the adjusted Rand index to 

determine the consistency of clustering across different k (10 to 80). The optimal k = 30 for all cell 

compartments was chosen from the window where the adjusted Rand index was consistently 

highest.  

 

Human Cell Type Annotation 

A schematic of human cell typing and subsetting is shown in Fig. S2A. 

Human coarse cell type identification and subsetting. We used a hierarchical strategy to identify 

cell types using expression of canonical marker genes in unsupervised clusters. We first identified 

coarse cell types by performing Phenograph clustering (21) (k=30) on the batch–corrected count 

matrix (refer to “Batch correction of human dataset”). This step yielded 43 clusters spanning 

76,929 cells. Clusters were annotated by expression of canonical markers, including EPCAM or 

CHGA/CHGB (epithelial, 44,448 cells), PTPRC and either CD2/CD3E, CD79A, or TPSB2 

(lymphoid; 11,152 cells), PTPRC and CD14 and/or LYZ (myeloid; 6,121 cells), COL1A1/VIM 

and/or CLDN5 (mesenchymal and endothelial; 7,922 and 5,484 cells, respectively) (Fig. S2B). We 

also used a more comprehensive gene list to confirm our coarse cell types referencing PanglaoDB, 

https://panglaodb.se/). We subsetted each coarse cell type for downstream analyses with 

propagation of batch correction, as described in the following sections. 
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Human designation of epithelial and tumor cells. EPCAM–positive epithelial clusters 

(N=44,448 cells, which includes 19,250 primary cells from CSPC–HP series and 25,198 metastatic 

cells from CRPC–HMP series). We projected sctransform residuals (batch–corrected in the 

combined dataset) onto the top 29 principal components (PCs) detected by knee–point with 98.5% 

variance explained. We executed Phenograph clustering (k=30), yielding 45 clusters. 

 

We obtained cells from primary CSPC–HP tumors that were previously annotated as benign vs 

malignant in Karthaus et al. (refer to Karthaus et al. Methods section ‘Identification of 

potentially malignant cells by inferred copy number alterations', provided kindly by Matan 

Hofree, PhD) (2). We further considered any basal cells detected in CSPC–HP tumors to be benign, 

as a hallmark of primary adenocarcinoma is the loss of basal (TP63–positive) cells. These steps 

left a total of 4,333 primary CSPC adenocarcinoma cells (classified as malignant and comprising 

22% of total epithelial cells). To support our cancer cell identification, we assessed the expression 

of genes known to be upregulated in malignant prostate cancer, including KLK3/PSA, 

PSMA/FOLH1, ETV1 (up in HP97), SOX9, and CDKN2A. We noted that in contrast to benign 

basal and luminal cells, malignant CSPC–HP cells showed higher expression of these genes 

compared with benign cells (Figs. S2D, S2E).  

 

To identify malignant cells in CRPC–HMP metastatic biopsies, we followed a similar marker–

based approach and considered any cluster with expression of known oncogenic or prostate–

specific markers (AR or KLK3/PSA, CDKN2A, CHGA or CHGB) in a metastatic site to be 

malignant (Figs. S2D, S2E). We however did note that cluster 41 (from HMP05) had high 

expression of ALB, APOA1, CRP (hepatocyte markers) (refer to PanglaoDB, https://panglaodb.se/) 

without CDKN2A expression (upregulated with TP53/RB1 loss as in HMP05), compared to cluster 

22 from the same patient (HMP05) that had low expression of ALB, APOA1, CRP, but high 

expression of CDKN2A. We therefore concluded that cluster 41 is likely a benign hepatocyte 

cluster given that this biopsy was derived from a liver metastasis. Furthermore, we ensured that 

putative cancer subpopulations clustered separately from cells derived from the normal prostate. 

  

As a parallel approach to confirm our identification of malignant cells in both CSPC and CRPC, 

we assessed single–cell CNV profiles, based on the reasoning that any cells with a high degree of 
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CNVs are likely malignant. To identify CNV profiles, we used a sliding window approach 

executed in the infercnvpy package (49), using a sliding window of 100 genes, with diploid mean 

and standard deviation (SDs) defined by benign luminal cells annotated in Karthaus et al (2). We 

calculate a summary score of CNV burden per cluster based on the mean of the absolute value of 

CNV. As expected, we find that malignant cells show significantly higher CNV burden compared 

to primary benign cells (Figs. S2F, S2G, P<6x10–78, Student’s t–test). We further noted that the 

CNV score was highest in metastatic NEPC/DNPC samples, followed by CRPC adenocarcinoma, 

and then primary adenocarcinoma (CSPC) (Figs. S2F, S2G). Overall, our approach yielded a total 

of 29,373 malignant cells (composed of 25,040 CRPC–HMP cells and 4,333 CSPC–HP cells). 

 

Human designation of adenocarcinoma and NEPC cells. Tumor designated cells as above 

(N=29,373 cells) were subsetted (Fig. S2A). We projected sctransform residuals (batch–corrected 

in the combined dataset) onto the top 24 principal components (PCs) detected by knee–point with 

98.5% variance explained. We identified neuroendocrine and non–neuroendocrine cell types by 

first implementing Phenograph clustering (k=30) yielding 34 clusters which we labelled to be 

neuroendocrine based on expression of canonical markers (CHGA, CHGB, SYP, ASCL1, INSM1). 

We thereafter separated neuroendocrine (14 clusters, 13,696 cells) and non–neuroendocrine (20 

clusters, 15,677 cells) clusters. For neuroendocrine cells, we projected the normalized counts on 

the top 9 PCs detected by knee–point with 98.7% variance explained Phenograph clustering (k=30) 

yielding 23 clusters. We used well published markers for different small cell lung cancer subtypes 

(45), including ASCL1, NEUROD1, YAP1, and POU2F3 to annotate clusters. We noted three 

major groups with ASCL1, NEUROD1, and CHGB–alone (the latter with no other canonical NE 

markers such as SYP, CHGA, ASCL1, NEUROD1) expression. We subsequently labelled these as 

NEPC–A (13 clusters, 7,368 cells), NEPC–N (4 clusters, 1,574 cells), NEPC–CHGB only (7 

clusters, 4,754 cells). NEPC–CHGB cells were largely derived from HMP08, a sample 

histologically classified as a DNPC with predominant basaloid morphology, and which on our 

single cell analysis displayed both CHGB+ and CHGB– tumor cells (Fig. S4A). For 

adenocarcinoma cells, we projected sctranform residuals (batch–corrected in the combined 

dataset) on the top 12 PCs detected by knee–point with 98.5% variance explained Phenograph 

clustering (k=30) yielding 27 clusters. All clusters showed expression of either AR, KLK3/PSA or 

CDKN2A suggestive of transformed metastatic prostate cancer. 
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Human characterization of CRPC samples. For each CSPC–HP and CRPC–HMP sample, we 

subsetted tumor cells, re–normalized counts, and projected the top PCs as selected by knee–point. 

We executed Phenograph clustering (k=30). These steps yielded the following for CSPC–HP 

samples: HP96 (355 cells, 86 PCs, 55% variance explained), HP97 (1726 cells, 116 PCs, 44% 

variance explained, Fig. S3A), HP99 (1296 cells, 107 PCs, 57% variance explained, Fig. S3B), 

HP100 (406 cells, 50 PCs, 49% variance explained), HP101 (550 cells, 138 PCs, 57% variance 

explained). These steps yielded the following for CRPC–HMP sample: HMP04 (1791 cells, 94 

PCs, 40% variance explained, Fig. S4B), HMP05 (501 cells, 147 PCs, 65% variance explained), 

HMP08 (4279 cells, 88 PCs, 32% variance explained, Fig. S4A), HMP11A/B (5718 cells, PCs, 

variance explained), HMP13 (354 cells, 102 PCs, 52% variance explained, Fig. S3C), HMP14 

(3351 cells, 88 PCs, 28% variance explained, Fig. S3D), HMP16 (4936 cells, 75 PCs, 28% 

variance explained), HMP17 (2845 cells, 123 PCs, 35% variance explained, Fig. S4C), HMP19 

(1265 cells, 94 PCs, 53% variance explained). Differential expression and pathway analysis was 

performed for each sample (refer to “Identifying DEGs and Enriched Pathways”). Specific 

DEGs were plotted by UMAP for select biopsies to highlight intra–tumoral heterogeneity (Fig. 

S3–S4, and Fig. 2D). Patient level clusters largely recapitulated clusters identified at the cohort 

level of analysis. However, it is interesting to note that by combining patients, increasing the 

number of cells, and incorporating trends that were shared across patients we got clearer subtypes 

that explained a far larger percentage of the variance.  

 

Human mesenchymal annotation. COL1A1/COLA12 and CLDN5–positive mesenchymal 

clusters (N=14,787). We projected sctransform residuals (batch–corrected in the combined 

dataset) onto the top 19 principal components (PCs) detected by knee–point with 98.6% variance 

explained. We executed Phenograph clustering (k=30), yielding 25 clusters. Cells were annotated 

as fibroblasts (16 clusters, 9,660 cells, COL1A1, COL1A2, COL6A2, MFAP4, PDGFRB) or 

endothelial (10 clusters, 5,127 cells, CLND5, PECAM1, FLT1, FLT4, VWF).  

 

Human lymphoid and myeloid annotation. We subsetted CD45+ myeloid (monocyte, 

macrophages, PMNs, and DCs, 6,121 cells, CD14, LYZ, CD14, TPSAB1/TPSB2). We projected 

sctransform residuals (batch–corrected in the combined dataset) onto the top 13 principal 
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components (PCs) detected by knee–point with 98% variance explained.  We executed Phenograph 

clustering (k=30) yielding 17 clusters. We identified monocyte/macrophages (4,332 cells, 12 

cluster, HLA–DRA, HLA–DRB1, LYZ), polymorphonuclear neutrophils (525 cells, 1 cluster, 

ITGAX, CSF3R), dendritic (550 cells, 1 cluster, CLEC10A), and mast (714 cells, 4 cluster, 

TPSAB1/TPSB2) cells.  We similarly subsetted CD45+ lymphoid (B cells, T cell, NK cells, 11,152 

cells). We projected sctransform residuals (batch–corrected in the combined dataset) onto the top 

13 principal components (PCs) detected by knee–point with 98.5% variance explained. We 

executed Phenograph clustering (k=30), yielding 19 clusters. We identified NK/T cells (CD3E, 

CD8, CD4, NKG7, KLRD1, GZMB, 16 clusters, 10,097 cells) and B cells (CD79A, MS4A1, 4 

clusters, 1,055 cells).  
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GEMM Cell Type Annotation 

A schematic of GEMM cell typing and subsetting is shown in Fig. S5B. 

GEMM coarse cell type identification and subsetting. We used a hierarchical strategy to 

identify cell types (Fig. S5B). We identified coarse cell types by first implementing Phenograph 

clustering (21) (k=30) on the normalized count matrix (refer to “Data Pre–Processing”). This 

yielded 44 clusters spanning 67,622 cells (Fig. S5C). Clusters were annotated by expression of 

canonical markers, which included Epcam or Chga/Chgb (epithelial, 29,380 cells), Ptprc and 

Cd2/Cd3e or Cd79a (lymphoid, 6,441 cells), Ptprc and Cd14 and/or Csfr1 or Csfr3 (myeloid, 

13,491 cells), Col1a1 and/or Cldn5 (mesenchymal and endothelial, 6441 cells). We also used a 

more comprehensive gene list to confirm our coarse cell types referencing PanglaoDB, 

https://panglaodb.se/). We subsetted each respective cluster for downstream analysis without batch 

correction (Fig. S5B) – this was possible because batch effects were not observed (entropy panel 

of Figs. S5C, and S5D/E).  

 

GEMM epithelial compartment. Epcam–positive epithelial clusters (N=29,380 cells) were 

subsetted. We projected sctranform residuals without batch correction onto the top 80 principal 

components (PCs) detected by knee–point with 63% variance explained. We executed Phenograph 

clustering (k=30), yielding 39 clusters. Clusters expressing high levels of PATE4 (seminal vesicle 

marker), CALML3 (basal seminal vesicle marker), or FOXI1 (L3 marker) (2) were removed (2,839 

SV cells and 817 L3 cell removed) as this latter subset is highly represented in the epididymis (2, 

15). Furthermore, L3 cells, even after removal of its epididymal subpopulation, have been shown 

by Karthaus et al. to have no significant transcriptomic changes during a cycle of castration and 

generation (2). After removal of these cells, a total of 25,724 epithelial cells remained. All mutant 

PtR and PtRP epithelial cells fell into Gfp–positive clusters, consistent with a priori expectation 

that Cre recombination would be highly efficient (9). 

 

GEMM mesenchymal compartments. Col1a1 or Vim–positive mesenchymal clusters 

(N=18,310 cells) were subsetted (Fig. S5B). We projected sctranform residuals without batch 

correction onto the top 89 principal components (PCs) detected by knee–point with 44% variance 

explained. These steps yielded 39 clusters. As there were both Gfp positive and Gfp negative 
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clusters, we used the following strategy to identify transformed Gfp–positive mesenchymal/EMT–

like cells. We plotted the median imputed expression of Gfp per cluster, which showed a bimodal 

distribution. A mixture model of two Gaussians showed that a threshold of 1.6 separated the 

bimodal distribution of Gfp expression well. We therefore labelled clusters with a median imputed 

Gfp > 1.6 as EMT–Gfp (clusters 1, 12, 13, 14, 24, and 27). We further excluded 216 cells from 

wild–type (WT) mice that also were captured in these clusters. These steps yielded a total of 3,210 

EMT–Gfp cells. Given the lack of clear separation between mesenchymal cells from WT mice and 

Gfp positive mesenchymal cells, we cannot exclude the possibility of recombination of PtR or 

PtRP in wild–type mesenchymal cells due to the Pbsn promoter.  

 

GEMM wild–type epithelial annotation. To define the wild–type epithelial cellular architecture 

in from our 9 wild–type (WT) mice, we subsetted WT epithelial populations (from ‘GEMM 

Epithelial compartment’, 7,435 WT cells from total 29,380 epithelial cells), again excluding 

seminal vesicle (SV) and luminal 3 (L3) cells. We first projected sctranform residuals onto the 

first 70 PCs selected by knee–point, explaining 50% variance. We then executed Phenograph 

clustering (k=30) yielding 23 clusters. Based on previously published canonical markers (2, 15, 

50), we labelled wild–type epithelial cells as basal (Krt5, Krt14; 5808 cells, 14 clusters), L1A 

(luminal 1 anterior lobe, Nkx3.1high, Hoxb13low; 523 cells, 3 clusters), L1D (luminal 1 dorsal lobe, 

Nkx3.1high, Hoxb13high; 345 cells, 3 clusters), L1L (luminal 1 lateral lobe, Sbp; 254 cells, 1 cluster), 

L1V (luminal 1 ventral lobe, Msmbhigh; 322 cells, 2 clusters), and L2 (luminal 2, Krt4, Tasctd2, 

Sca1; 183 cells, 1 cluster) (Fig. S7B).  

 

GEMM mutant–gfp cells PtR and PtRP annotation. To understand the different cell types in 

the mutant Gfp–positive populations, we subsetted all mutant epithelial and Gfp–positive 

mesenchymal cells (‘GEMM Epithelial compartment’ without SV and L3 cells and restricting 

to PtR and PtRP genotypes, and ‘GEMM Mesenchymal compartment’ with Gfp–positive cells). 

These steps yielded 21,499 cells. We first projected sctranform residuals onto the first 89 PCs 

selected by knee–point, explaining 64% variance. We then executed Phenograph clustering (k=30) 

yielding 31 clusters, and labelled clusters based on expression. We noted four groups of cells: (1) 

a large Epcam– and Gfp–positive population (18 clusters), (2 and 3) two additional smaller 

Epcam– and Gfp–positive population (TFF3, 1 cluster; and POU2F3 and ASCL2, 3 clusters), and 
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(4) a CHGA–positive neuroendocrine population (CHGA, CHGB, SYP, 6 clusters), and (5) a EMT–

like population (VIM, COL1A1, NCAM1, 3 clusters). We labelled these as (1) Adeno (adeno–Gfp), 

(2) Pou2f3–Gfp (POU2F3, ASCL2), (3) Tff3–Gfp, (4) EMT–Gfp, and (5) NEPC, respectively (Fig. 

2C and 2D, Fig. S5C and S7C). In order to further delineate sub adenocarcinoma–Gfp 

populations, we trained a classifier based on wild–type cells as a training set (refer to ‘Phenotype 

deconvolution of GEMM Gfp–positive mutant cells’).  

 

Pooled dataset of GEMM WT epithelial and GFP+ populations. To understand the changes 

and potential trajectories from wild–type epithelial cells to Gfp–positive mutant cells, we subsetted 

both WT epithelial (“GEMM WT epithelial annotation” 7,435 cells) and mutant Gfp–cells 

(“GEMM Mutant–Gfp Cells PtR and PtRP mice” 21,499), yielding a total of 28,934 cells. PCA 

was performed with the top 76 principal components (PCs) retained with 62% variance explained. 

FDL are shown in Figs. 2C, 2D, and S7C (refer to “Visualization of scRNA–seq data”). 

 

Phenotype deconvolution of GEMM Gfp–positive mutant cells. To deconvolute the mutant 

Gfp+ cell types and assess the degree of cell type mixing in adeno–Gfp, we performed cell type 

classification of the mutant Gfp–positive populations by calculating Markov absorption, as 

executed in the Phenograph package (21), which can model mixed cancer phenotypes (51) (Fig. 

S7A). For this approach, we combined mutant GFP–positive cells with WT epithelial cells (as 

described in “Pooled dataset of GEMM WT epithelial and GFP+ populations”, N=28,934 

cells) and used the wildtype prostate epithelial cells (refer to “GEMM WT epithelial 

annotation”) as training data (L1A, L1D, L1V, L1L, L2, and B1) with annotated cell types (Fig. 

S7B). Markov absorption models the probability that each unlabeled mutant cell represents a given 

cell type based on random walks on a graph. Each mutant cell can therefore be described by a 

simplex of cell–type probabilities summing to 1. For each mutant cell, we can then assign a hard 

classification of cell type by maximum likelihood or model the mutant cell as a mixed phenotype 

(45). 

 

To ensure that wild–type cells were equally represented as the training data, we down–sampled to 

183 WT cells per category, which included L1A, L1D, L1V, L1L, L2, and B1 (Fig. S7B, lowest 

number of cells is L2 is 183 cells, refer to ‘GEMM WT epithelial annotation’). To constrict a 
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Markov graph, we considered the combined dataset of both WT and mutant–Gfp cells (refer to 

“Pooled dataset of GEMM WT epithelial and GFP+ populations”). To ensure that our 

classification was specific to cell type related features, we performed feature selection, restricting 

genes to WT DEGs and excluding genes related to cell cycle, hypoxia, and apoptosis (N=234 

genes). We projected sctranform residuals, restricted to these genes, onto the first 24 PCs selected 

by knee–point detection, corresponding to 90% variance. We obtained the first 8 diffusion 

components (DCs) retained by eigengap and transformed this diffusion graph into a Jaccard graph 

between k–neighborhoods using the Phenograph package (21). The resulting graph represented a 

Markov chain where we could calculate the Markov absorption probabilities for each unlabeled 

cell to reach a labeled cell of a given subtype. We initially considered six probabilities of basal (B) 

or each luminal (L1A, L1D, L1V, L1L, and L2). Given that we observed that mutant cell types 

largely demonstrated L2 or B probabilities, we summed the probabilities of all the L1 subsets 

(L1A, L1D, L1V, L1L) resulting in the sum of the L1 aggregated, L2, and B probabilities equaling 

to 1. We then assigned hard classification labels for the adenocarcinoma–Gfp cells by maximum 

likelihood of these subsets, findings supported by expression of canonical L1, L2, and B gene 

markers (Figs. S7E) and the set of published DEGs from L1, L2 and B signatures (from the AP 

lobe, Figs S7D) (2).  For each set of DEGs, scanpy (52) score_genes function was used, which is 

the average z–scored expression of a set of B/L1/L2 genes (refer to ‘Human Genes Sets) 

subtracted from the average z–scored expression of a randomly selected reference set of genes 

from a gene pool matched for binned expression values. We also considered the L1, L2, B to 

represent a deconvolution of mixed phenotypes that we represented by a 3–coordinate ternary 

graph (ggtern R package, Figs. 3A and S7F). As expected, the wild–type cells largely favored a 

single assignment of L1, B, and L2 even given mixed breeding backgrounds of WT mice. 

However, in both PtR and PtRP, adenocarcinoma cell probabilities became less committed to 

either B or L2, with several cells showing mixed B and L2 probabilities (Fig. 3A). Finally, to 

assess plasticity, we used the entropy of subtype probabilities per cell as a measure of basal–

luminal mixing comparing wild–type to epithelial to mutant (PtR and PtPR) cells (statistic: 

Wilcoxon signed ranked test, right bar plot of Fig 3A). Of note, the majority of cells in NEPC, 

NEPC–P, Tff3–Gfp favored L2 probabilities with Pou2f3–Gfp and EMT–Gfp showing a mix L2 

probabilities with either L1 or basal probabilities, respectively (Fig. S7F).  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.01.466599doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.01.466599


 44 

GEMM NEPC–A, NEPC–Ar and Pou2f3–Gfp classification. Syp+, Chga+, Chgb+, or Pou2f3+ 

clusters (N=4,973 cells) were subsetted from all mutant epithelial cells (refer to ‘GEMM Mutant–

Gfp Cells PtR and PtRP annotation’). Normalized counts were projected onto the top 90 

principal components (PCs) with 43% variance explained. Phenograph clusters (k=30) were 

identified yielding 17 clusters, which were merged based on the underlying hierarchical 

dendrogram.  This yielded the following NEPC subsets Pou2f3–Gfp (3 clusters, 783 cells), Ascl1 

(NEPC–A, 12 clusters, 3516 cells), and Ar (NEPC–Ar, 2 clusters, 674 cells) (Fig S9A and S9B). 

We also noted three clusters which had shared expression of Ar and Ascl1, however these appeared 

hierarchically related to the Ascl1 subset.  

 

GEMM lymphoid and myeloid annotation. We subsetted CD45+ myeloid (monocyte, 

macrophages, PMNs, and DCs, 13,491 cells, Cd14, Csfr1, Csfr3, Xcr1). We projected sctransform 

residuals onto the top 84 principal components (PCs) detected by knee–point with 50% variance 

explained.  We executed Phenograph clustering (k=30) yielding 25 clusters. We identified 

monocyte/macrophages (9,521 cells, 19 cluster, Aif1, Csfr1), polymorphonuclear neutrophils 

(3447 cells, 5 cluster, Csfr3), dendritic (523cells, 2 clusters, Xcr1) cells.  We similarly subsetted 

CD45+ lymphoid (B cells, T cell, NK cells, 6,441 cells). We projected sctransform residuals onto 

the top 78 principal components (PCs) detected by knee–point with 35% variance explained. We 

executed Phenograph clustering (k=30), yielding 20 clusters. We identified NK/T cells (Cd3e, 

Cd8, Cd4, Nkg7, Klrd1, Gzmb, 19 clusters, 5,888 cells) and B cells (Cd79a, Ms4a1, 1 cluster, 553 

cells) (Fig. 5B).  

 

GEMM/Human Gene Sets 

 

GEMM/Human gene sets: For AR scoring of cells, genes involved in androgen receptor signaling 

from published datasets (113 genes) (53, 54) were used. L1, L2 and basal cells were scored based 

on published DEGs. For each gene set, we computed a per–cell–score using the scanpy (52) 

score_genes function, which is the average z–scored expression of a set genes subtracted from the 

average z–scored expression of a randomly selected reference set of genes from a gene pool 

matched for binned expression values (2). 
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Identifying DEGs and Enriched Pathways 

Identifying DEGs and MAST. For all differential expression, we used MAST v.1.16.0 (55). This 

package provides a flexible framework for fitting a hierarchical generalized linear model to the 

expression data. A regression model was executed that adjusted for both cellular detection rate 

(cngeneson, or number of genes detected per sample) and tissue status (Human: CSPC, CRPC, 

DNPC, NEPC) (GEMM: WT, PR 24, 30, 47 weeks, PRP 8, 9, 12, 16 weeks).  

Y_i,j ~ condition + cngeneson + tissue status 

The condition represents the condition of interest and Yi is the expression level of gene i in cells 

of cluster j, transformed by natural logarithm with a pseudo–count of 1. We considered genes to 

be significantly differentially expressed for FDR <0.05 and absolute log fold–change (FC) > 0.3.  

Human DEG comparisons. We performed differential expression (DEG) on the following: (1) 

Tumors cells labeled as CSPC, CRPC, DNPC, NEPC–A, and NEPC–N (refer to ‘Human 

designation of adenocarcinoma and NEPC cells’) versus rest, and NEPC–A versus NEPC–N 

(restricted to HMP17) (Table S5) and (2) each Phenograph cluster versus rest for each HP–CSPC 

and HMP–CRPC sample (select DEGs as dot plot shown in Figs. S3–S4).  

GEMM DEG comparisons. We performed differential expression (DEG) on the following: (1) 

each GEMM cell types (B, L1, L2, Adeno–L1, Adeno–L2, Adeno–B, Tff3–Gfp, EMT–Gfp, 

Pou2f3–Gfp, NEPC versus rest (Table S7), (2) each Phenograph cluster versus rest within the 

subset of wild-type and mutant cells (refer to ‘Pooled dataset of GEMM WT epithelial and 

GFP+ populations’, Fig. S7B) (3) and each GEMM NEPC subtype, NEPC–A, NEPC–Ar, and 

Pou2f3–Gfp (Fig. S9D).  

Identifying enriched pathways. Enriched gene pathways were identified using pre–ranked 

GSEA, as executed by the R package fGSEA (56) using 10,000 permutations. Gene ranks were 

calculated using –log(P–value) x log(FC) based on MAST differential expression (refer to 

‘Identifying DEGs and MAST’). To assess enriched pathways in between human cell types 

(CSPC, CRPC, DNPC, NEPC–A, and NEPC–N) or GEMM cell type, and each Phenograph 

cluster, we used a curated set of both prostate–specific (43 sets) (2) and developmental pathways 
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(80 gene–sets) (25, 26) along with mouse cell type gene sets (67 gene sets) (57), KEGG (14 gene–

sets), REACTOME (61 gene–sets), and HALLMARK (50 gene–sets) subset of canonical 

pathways in MSigBDv7.1 (56). All 315 included gene sets are listed in Table S4. We considered 

pathways with a P–value <0.05 to be significant. To score activation of significantly enriched 

pathways in our dataset, we would consider the leading–edge gene subset based on GSEA and 

calculated the average Z-score of the gene set.  

Modeling Transitions Between Cell Types 

GEMM pseudotime analysis. We aimed to model the transition of adenocarcinoma to its more 

transdifferentiated states (NEPC, Pou2f3–Gfp, EMT–Gfp, and Tff3–Gfp with a particular focus on 

the NEPC transition given its clinical relevance. We executed the Palantir (30) package to model 

these transdifferentiation processes. For the mapping of transcription factors across the 

adenocarcinoma and NEPC transition, we restricted to one model PtRP, which showed the 

majority of the NEPC cells. We ensured the results remained consistent across a number of 

robustness measures detailed in the ‘GEMM robustness of pseudotime’.  We add the caveat that 

the assumptions in Palantir may be problematic in cancer, specially that cells transition in one 

direction from the defined starting point and do no revert.  

 

We first subsetted all mutant Gfp–positive cells (refer to ‘GEMM mutant–gfp cells PtR and 

PtRP annotation’, N=21,499 cells), we projected normalized counts of the top 3000 highly 

variable genes (minus cell cycle) onto the first 95 PCs selected by knee–point explaining 48% of 

variance. Cells labeled as adenocarcinoma between PtR and PtRP showed good mixing, albeit 

most NEPC cells were contributed by the PtRP model (Fig. S8A).  Palantir uses diffusion maps 

constructed from a knn graph (k=30) to identify potential trajectories of transdifferentiation (30) 

thereby avoiding spurious edges due to the sparsity and noise of scRNA–seq. As input, we selected 

the first 14 diffusion components based on eigengap. We reasoned that a start cell from 

adenocarcinoma to more transdifferentiated states would display lower expression of low Cdkn2a 

expression (Cdkn2a upregulated as a result of Trp53 and Rb1 loss). This assumption was supported 

by the finding that NEPC and Pou2f3–Gfp cells showed the highest Cdkn2a expression, while wild 

type epithelial cells showed no Cdkn2a expression. To identify an appropriate Cdkn2a–low cell, 

we identified the Phenograph cluster of tumor cells with the lowest imputed median Cdkn2a 
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(median imputed expression of 0.42 expression then randomly picked a cell within this cluster 

(start cell barcode: ‘PRP_9weeks_Intact_R1_157613955672309’). From this start cell, Palantir 

computed pseudotime and combined it with the neighbor–graph to construct a Markov chain that 

models state transitions as a stochastic process where an adenocarcinoma cell would reach more 

transdifferentiated states through a series of steps through the phenotypic manifold, whose 

probability is defined by the constructed Markov chain. We identified four ‘terminal’ states, 

Pou2f3–Gfp, NEPC, Tff3–Gfp, and EMT–Gfp (Fig. S8A).  

 

We then focused on the adenocarcinoma to NEPC transition given its clinical relevance. For the 

adenocarcinoma to NEPC transition, we subsetted 13,134 mutant Gfp–positive adenocarcinoma 

and NEPC cells restricting only to the PtRP model. We projected normalized counts of the top 

3000 highly variable genes (minus cell cycle) onto the first 95 PCs selected by knee–point 

explaining 58% of variance. We again used the start cell barcode 

‘PRP_9weeks_Intact_R1_157613955672309’’ (cluster 1) given the same reasoning as mentioned 

above and repeated pseudo–temporal ordering in its entirety.  As an input, we selected the first 9 

diffusion components based on eigengap.  The terminal state was found within NEPC cluster 6 

and centered around the cell ‘PRP_12weeks_Intact_R2_196638162925470.’ Gene trends for TF 

DEGs across the adenocarcinoma to NEPC transition were determined using a generalized additive 

model with cubic splines as the smoothing function across 500 equally sized bins, as executed by 

the Palantir package. Gene trends were grouped using Phenograph clusters (k=30) and we 

identified three TFs groups: early adenocarcinoma (purple), transition (red), and NEPC (blue) (Fig. 

3D, Figs. S8D).  Heatmap of gene trends of select TF DEGs from each category are ordered by 

pseudotime modeling the transition from adenocarcinoma to NEPC colored by aforementioned 

groups (gene trends of imputed expression, scale –0.5 to 1.5) (Fig. 3E).  

 

GEMM robustness of pseudotime. To ensure that our adenocarcinoma to NEPC pseudotime 

ordering was robust to cell sampling, we repeated our trajectory analysis by randomly subsampling 

cells 100 times. In particular, we subsampled 50% of cells from each Phenograph cluster (range 

34 to 1647 cells) while randomly choosing a different cell each time in the low Cdk2na cluster 

(cluster 1, 1232 cells, Fig. S8D, S8E) We aimed to confirm that (1) the original pseudotime 

ordering of subsampled cells was highly correlated to newly generated pseudotime orderings based 
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on Palantir analysis of the corresponding subsampled cells, (2) the original gene trends of DEGs 

of subsampled cells was highly correlated to newly generated gene trends of the corresponding 

subsampled cells, and (3) the terminal cell falls into the same end cluster with each run. Gene 

expression trends were computed using a generalized additive model of 8 splines with spline order 

3 using the python package pyGAM (DOI: 10.5281/zenodo.1476122). Both pseudotime (Fig. S8E 

in red) ordering and gene trends were highly correlated between the original and subsampled runs 

(median Spearman correlation (p) for pseudotime ordering 0.98 and for all gene trends > 0.87). 

Moreover, the terminal cell fell in the original end cluster 6 in all 100 subsampled runs. 

Furthermore, putative transition genes (labeled in red, Fig. 3D) were highly expressed in 

Phenograph clusters that showed both mixed adenocarcinoma and NEPC states or high expression 

of Cdk2na in adenocarcinoma clusters (Figs. S8F, S8G).  

Human mapping genes across AR–high to AR–low–early–NEPC states using pseudotime 

ordering. To identify whether the set of transition TFs identified in the GEMM series showed 

similar trends in human CRPC samples, we reassessed our human scRNA–seq data to (1) establish 

the existence of an L2–like state and (2) understand the set of genes and pathways perturbed across 

this transition using the Palantir algorithm (30) (Figs. 11C–E). We focused on CRPC–HMP13, a 

tumor that demonstrated areas of both low AR signaling and high AR signaling with gain of focal 

SYP–positive cells (Figs. 1D, S3C). We subsetted the tumor cells of HMP13 (N=354 cells), and 

projected normalized counts of the 5000 highly variable genes (removing cell cycle) onto the first 

103 PCs selected by knee–point, which explained 52% of variance. Because pseudotime analysis 

can be sensitive to low cell sampling and may be problematic in cancer, we performed several 

robustness analyses as noted in section below ‘Human robustness of pseudotime.’  

Similar to the mouse pseudotime analysis (see “GEMM pseudotime analysis”) we used Palantir, 

and as input, we selected the first 16 diffusion components based on eigengap. We reasoned that 

a start cell of the trajectory from prostate adenocarcinoma to NEPC would display high AR 

signaling. To identify an appropriate AR–high start cell, we computed an AR–signaling–per–cell–

score using the scanpy (52) score_genes function, which is the average z–scored expression of a 

set of AR target genes (refer to ‘GEMM/Human gene sets’) subtracted from the average z–scored 

expression of a randomly selected reference set of genes from a gene pool matched for binned 

expression values. We then computed the mean AR score per Phenograph cluster, determining that 
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cluster 0 (107 cells) had the highest AR score and randomly picked a start cell (start cell; 

HMP13_126777613212453). From this start cell, Palantir found a pseudo–temporal ordering from 

an AR–high cell to an AR–low–early–NEPC state through a series of steps through the phenotypic 

manifold. Only one branch probability was determined, in which the terminal state showed low 

PSA/FKBP5 state in the proximity of terminal cell: ‘HMP13_169150399240027’.  Gene trends 

for DEGs across the AR–high to AR–low–early–NEPC transition were determined using a 

generalized additive model with cubic splines as the smoothing function across 500 equally sized 

bins, as executed by the Palantir package. Heatmap of gene trends of select transcription factor 

(TF) DEGs and mouse transition genes were ordered by pseudotime modeling the transition from 

AR–high to AR–low–early–NEPC transition (gene trends of imputed expression, scale –1 to 1.5) 

(Fig S5C). Of note, cells with the highest L2 signature (Fig. S11C) had the high levels of 

JAK/STAT gene activation (cluster 1, blue) while those cells with early NEPC acquisition (cluster 

2, green, refer to Fig. 3C for SYP expression) showed a relative downregulation in expression of 

JAK and STATs (Fig. S11E), consistent with our GEMM data. 

Human robustness of pseudotime. To ensure that our adenocarcinoma to AR–high to AR–low–

early–NEPC pseudotime ordering was robust to cell sampling, we repeated our trajectory analysis 

by randomly subsampling cells 100 times. In particular, we subsampled 50% of cells from each 

Phenograph cluster (range 97 to 150 cells) while randomly choosing a different cell each time in 

the high AR score cluster (cluster 0, 107 cells) We aimed to confirm that (1) the original 

pseudotime ordering of subsampled cells was highly correlated to newly generated pseudotime 

orderings based on Palantir analysis of the corresponding subsampled cells, (2) the original gene 

trends of DEGs of subsampled cells was highly correlated to newly generated gene trends of the 

corresponding subsampled cells, and (3) the terminal cell falls into the same end cluster with each 

run (Fig. S11D).  Gene expression trends were computed using a generalized additive model of 8 

splines with spline order 3 using the python package pyGAM (DOI: 10.5281/zenodo.1476122). 

Both pseudotime (Fig. S11D in red) ordering and gene trends were highly correlated between the 

original and subsampled runs (median Spearman correlation (p) for pseudotime ordering 0.84 and 

for all gene trends > 0.84 (except SMARCC1 of 0.69, ATF 0.76, STAT1 0.79). Moreover, the 

terminal cell fell in the original end cluster 2 in all 100 subsampled runs.  
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Intersection of TFs Between GEMM and Human NEPC and SCLC 
 

Shared phenotypes between GEMM NEPC, human NEPC, and human SCLC. We sought to 

assess the degree of shared phenotype 1) between mouse and human NEPC subtypes, and 2) 

between NEPC and SCLC. We therefore considered ASCL1, NEUROD1, and POU2F3–high 

subsets identified in our GEMM (NEPC–A and Pou2f3–Gfp) and human NEPC tumors (NEPC–

A and NEPC–N), as well as corresponding SCLC subsets identified in a patient cohort of SCLC 

tumors (SCLC–A, SCLC–N, and SCLC–P) (45).  For each NEPC subtype, we determined the set 

of significant DEGs using MAST with a FDR P–value ≤ 0.05 and coefficient ≥0.3 (≥0.2 in GEMM 

subsets) in a similar fashion to Chan, et al. (refer to Chan et al. Cancer Cell, 2021 ‘Differential 

Expression of Tumor and Immune Subsets’ SCLC–A, SCLC–N, and SCLC–P). From our GEMM 

dataset, we mapped significant DEGs to human orthologs.  We then restricted our analysis to TFs 

based on the transcription factor database (TFDB, 16,65 total genes), leaving the following 

differentially expressed TFs with human orthologs for each subtype: GEMM NEPC (GEMM 

NEPC–A: 54 genes, GEMM Pou2f3–Gfp: 51 genes), human NEPC (Human NEPC–A: 36 genes, 

Human NEPC–N: 32 genes), and human SCLC (SCLC–A: 24 genes, SCLC –N: 22 genes, SCLC–

P: 48 genes). We intersected the list of DEGs between subsets based on the following comparisons: 

1) GEMM NEPC to human NEPC, 2) GEMM NEPC to human SCLC, and 3) human NEPC to 

human SCLC. The differences and intersections for human NEPC–A versus SCLC–A, human 

NEPC–N versus SCLC–N, GEMM NEPC–P versus SCLC–P were shown as Venn diagrams (Fig. 

4E). A Fisher’s exact test was used to determine significance of overlap, considering only TFs 

from the TFDB.  

 

To avoid hard thresholding of DEGs (MAST coefficient ≥ 0.3, see above, refer to ‘Identifying 

DEGs and MAST’) and further understand the relationship between neuroendocrine subtypes 

across lung and prostate cancer, we computed the per–gene (restricted to TFs) log2 fold change 

(FC) of mean Wasserstein distances (based on imputed expression, MAGIC, k=30, t=3) between 

ASCL1 versus NEUROD1 or POU2F3 versus non-POU2F3 subtypes (Fig. S7E, left and right 

scatter plots, respectively). Specifically, for the ASCL1 versus NEUROD1 subsets, we first 

restricted our analysis to cells that were labeled as these subtypes (SCLC subtype labelling based 

on Chan et al. Cancer Cell, 2021) and to genes that are transcription factors (TF, TFDB, 16,65 
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total genes). For each TF gene, we calculated the Wasserstein distance between the ASCL1 and 

NEUROD1 labeled cell and calculated the log2FC of the mean Wasserstein distance 

(ASCL1/NEUROD1). We then plotted the fold change for each cancer type, NEPC or SCLC, on 

the x– and y– axis, respectively. We further labeled TF genes that also overlapped DEGs (refer to 

‘Identifying DEGs and MAST’) in blue and those with a FC ≥ 0.3 (enriched in ASCL1) and FC 

≤ -0.3 (enriched in NEUROD1) both in NEPC and SCLC tumor types. We repeated these 

computational steps and calculations for the POU2F3 subtype, but compared POU2F3 labelled 

cells to all non–POU2F3 subtypes.  

 

Cell Type Signatures in Bulk RNA–seq Datasets from SU2C and PDX 

 
SU2C and PDX bulk RNA–seq. To assess whether NEPC subtypes identified in the GEMMs are 

also present in patients in general, we considered publicly available bulk RNA–seq datasets from 

Stand Up to Cancer Prostate Cancer Foundation (SU2C–PCF) (11). Processed bulk RNA–seq 

expression data from 266 CRPC samples was downloade d from SU2C–PCF as Z–scored FPKM 

units per gene (https://github.com/cBioPortal/datahub/tree/master/public/prad_su2c_2019, file 

name: data_mRNA_seq_fpkm_polya_Zscores.txt,). Clinical annotations were also downloaded.  

Expression data was first queried for cell type markers (ASCL1, POU2F3, NEUROD1, TFF3 and 

ZEB2) and corresponding signatures (NEPC–A, Pou2f3–Gfp, NEPC–N,  Tff3–Gfp and EMT–Gfp). 

Corresponding signatures for the NEPC cell markers, NEPC–A (12 genes), Pou2f3–Gfp (10 

genes), and NEPC–N (6 genes) were derived by taking the overlap of significantly expressed TF 

DEGs between NEPC and SCLC (refer to ‘Shared phenotypes between GEMM NEPC, human 

NEPC, and human SCLC’). For non–NEPC cell types, the top 50 DEGs for Tff3–Gfp and EMT–

Gfp were used as the respective signatures (refer to ‘Identifying DEGs and Enriched Pathway’). 

A scatter plot was generated showing Z–scored gene expression in the SU2C database of Pou2f3–

Gfp (y–axis) and NEPC–N (x–axis) signatures (Fig. 4D, top), and canonical transcriptional 

regulators POU2F3 (y–axis) and NEUROD1 (x–axis) (Fig. 4D, bottom). We also denoted non–

NEPC or NEPC histology as annotated in the SU2C database by red and blue dots and Z–scored 

NEPC–A signature or ASCL1 expression by dot size. Similar plots were generated for ZEB1 

(marker of EMT, y-axis) and EMT signature (x-axis), or TFF3 (y-axis) and TFF3 signature (x-

axis) with dot size corresponding to Z–scored ASCL1 expression (Fig. S11B). Additionally, Dr. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.01.466599doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.01.466599


 52 

Peter Nelson provided log2 mean–centered ratios (Z–scores) of recently published and processed 

bulk RNA–sequencing data from 115 of PDX tumor samples (32). We specifically focused on 

POU2F3 expression to identify PDX lines that may express POU2F3. We plotted the Z–scored 

POU2F3 expression (x–axis) and CHGA (y–axis) expression with dot size corresponding to Z–

scored INSM1 expression. This analysis indicated two sublines derived from the same patient, one 

with NEPC–A (173_1_s6) and the other with Pou2f3–Gfp (173_2A_s11, 173_2B_s9, 

173_2B_s11) phenotypes from two sublines derived from the same patient, LuCAP173. Notably, 

subline LuCAP173_2 (DNPC with rare foci of NEPC) showed high POU2F3 expression, whereas 

subline LuCAP173.1 (fully NEPC) expressed low POU2F3, but high INSM1, CHGA, and SYP 

(Fig. S11A).  
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