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Abstract. Connectomics—the study of brain networks—provides a unique and valuable opportunity to study the brain. How-
ever, research in human connectomics, accomplished via Magnetic Resonance Imaging (MRI), is a resource-
intensive practice: typical analysis routines require impactful decision making and significant computational capa-
bilities. Mitigating these issues requires the development of low-resource, easy to use, and flexible pipelines which
can be applied across data with variable collection parameters. In response to these challenges, we have devel-
oped the MRI to Graphs (m2g) pipeline. m2g leverages functional and diffusion datasets to estimate connectomes
reliably. To illustrate, m2g was used to process MRI data from 35 different studies (≈ 6,000 scans) from 15 sites
without any manual intervention or parameter tuning. Every single scan yielded an estimated connectome that fol-
lowed established properties, such as stronger ipsilateral than contralateral connections in structural connectomes,
and stronger homotopic than heterotopic correlations in functional connectomes. Moreover, the connectomes gen-
erated by m2g are more similar within individuals than between them, suggesting that m2g preserves biological
variability. m2g is portable, and can run on a single CPU with 16 GB of RAM in less than a couple hours, or be
deployed on the cloud using its docker container. All code is available on https://neurodata.io/mri/.

1 Introduction Human brain imaging, especially Magnetic Resonance Imaging (MRI), has become
a vital tool in both basic and clinical brain science [1], with new analysis techniques being developed
frequently. One such area concerns itself with estimation and analysis of connectomes from MRI data,
allowing for the use of graph theoretic mathematics and statistics to discern both physiological and
functional relationships. A connectome is a comprehensive map of relationships present in the brain.
The creation of a connectome revolves around the number of connections, or edges, between different
areas of the brain called regions of interest (ROIs). Where the boundaries lie for each of these regions
of interest depends on the parcellation method used, as there a many different ways to group regions
of the brain. Edges can represent any type of relationships between ROIs. For structural connectomes,
which are generated using diffusion-weighted MRI scans, edges represent the quantity of white-matter
tracks that connect ROIs. For functional connectomes, which are estimated from blood oxygenation
level dependent (BOLD) images, edges represent the correlation in activation between pairs of regions,
as neuronal firing is shortly followed by a depletion of oxygen in surrounding capillaries as neurons
prepare to fire again.

The process of estimating a connectome from MRI data involves multiple steps, each with different
inputs and outputs, and can be performed with a variety of parameters. There are two main approaches
that can be taken in the designing of a pipeline for estimating connectomes: (1) optimize the pipeline
for each data set you wish to analyze or (2) design a "general" pipeline that can be used on a variety
of data. While the creating of a optimized pipeline for each data set results in the "most accurate"
connectomes for the data, it also limits the ability for the pipeline to be used with new data and for
comparisons between data sets. Inversely, the creation of a "standard" pipeline which can adequately
estimate connectomes from a wide collection of data sets will allow for more confident comparison
at the expense of potentially sub-optimal connectome estimation. While there exist multiple pipelines
which perform part or all of the processes required to estimate a connectome from MRI data, few exist
which are easily accessible for individuals new to the field. Both fmriprep and dmriprep do not
estimate a connectome from provided data, rather serving to preprocess data for further analysis by
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Figure 1: Individual Level Pipeline The m2g pipeline has two sub-pipelines: m2g-d transforms Nifti-formatted dMRI data
into sparse structural connectomes, and m2g-f organizes the data for processing by CPAC’s functional pipeline that we
developed here. Each sub-pipeline consists of four key steps, and each step generates both data derivatives and quality
assurance figures to enable both qualitative assessments and quantitative comparisons.

other software. Other MRI connectome estimating pipelines often require multiple stages of installation
and require significant background knowledge in order to utilize effectively. The Human Connectome
Pipeline (HCP) requires the manual installation of multiple software packages and running of different
shell scripts for each step of the pipeline, requiring the user to input settings which require extensive
knowledge.:

In hopes to expand the study of connectomes to a larger group of individuals, we developed a
pipeline, called ”MRI to Graphs” (m2g), which utilizes accepted approaches for connectome generation
along with multiple open-source tools. The m2g pipeline serves to streamline the process of estimating
connectomes for both functional and structural MRI data through handling the required preprocessing,
graph generation, and quality assurance from one function call. Rather than providing bespoke analy-
ses for each unique dataset, limiting their generalizability and likely increasing computational cost, m2g
harmonizes processing to produce maximally reliable data derived quantities across a wide variety of
datasets. To further the goal of a pipeline accessible to everyone, m2g also provides extensive qual-
ity assurance at each data processing stage in the form of easy to understand images, using widely
accepted visualization formats.

In total, m2g processed 13 diffusion-weighted MRI (dMRI) studies comprising ≈720 individuals with
≈ 1, 400 scans, and 30 functional MRI (fMRI) studies comprising ≈ 1, 400 individuals with ≈ 3, 500
scans—yielding a total of approximately 172, 000 estimated structural and functional connectomes from
all 35 parcellations. Estimation of each of these connectomes was performed with one command
line call, 3 CPUs, and ≈16 GB of RAM, in under an hour and a half from raw data to connectome.
These connectomes, in addition to code and other data derivatives, are publicly available at https:
//neurodata.io/mri/.

2 Results
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2.1 The m2g Pipeline The m2g pipeline consists of two separate sub-pipelines: m2g-d, which pro-
cesses diffusion-weighted MRI scans in order to estimate structural connectomes, and m2g-f, which
processes BOLD functional MRI scans in order to estimate functional connectomes. While m2g-d
sub-pipeline is locally contained in m2g, m2g-f sub-pipeline has been added into CPAC as a Nipype
pipeline and that implementation is called during the processing of functional MRI data. While the pa-
rameters and functions were developed and chosen by our group, and the performance is monitored for
consistency between updates, the m2g-f sub-pipeline itself is hosted and maintained by the FCP-INDI
organization. The steps involved in each of these sub-pipelines are further discussed in the Methods
section. Due to the focus on ease of use and generalizability, m2g only requires the path of the input
directory, output directory, and which of pipelines is to be run. Through calling m2g with the simplest
parameters:

m2g --<type> <input_directory> <output_directory>
where <type> is either dwi for the diffusion pipeline or func for the functional pipeline, m2g is able
to estimate connectomes. The m2g pipeline was used to successfully estimate all of the connectomes
used in this manuscript. The data consisted of both functional and diffusion MRI nifti files of varying
voxel resolutions and acquisition methods. m2g is also able to process scans with non-isotropic voxels
without issue. This is due to the reslicing preformed in both the m2g-d and m2g-f pipelines, utilizing
Dipy’s reslice function with tri-linear interpolation for both [2]. As reslicing an image to a different
resolution results in the creation of new voxels with different intensity values, it may cause concern to
significant changing of the information contained within the images and by extension the connectomes.
However, it has been shown that such processing does not significantly change the information for both
diffusion and functional MRI [3, 4].

In addition to visual inspection of quality assurance (QA) figures generated after each step in the
pipeline, the discriminability metric, which evaluates the fraction of measurements from the same in-
dividual that are closer to one another than they are to the measurement of any other individual [5],
was used as a benchmark to the performance of m2g during development. The m2g-d pipeline was
optimized on the Kirby21 dataset [6], while the m2g-f pipeline was optimized on both the Kirby21 and
IBATRTdatasets because of their creation for test-retest analysis Both pipelines were then validated us-
ing data from the Consortium of Reliability and Reproducibility (CoRR), consisting of 35 different studies
from nearly 20 different institutions around the world, spanning the Americas, Europe, and Asia [7]. The
CoRR data collection efforts were not harmonized, and all data (regardless of quality) were requested
to be shared. This data repository was thus well-suited to test the robustness of our pipeline. Sev-
eral additional open access datasets from other repositories with different acquisition details, such as
ABIDE [8, 9], were also processed with m2g.

The neuroparc repository of atlases, developed alongside m2g was used as the main resource for
the standardized parcellations used in m2g’s development [10]. This repository served to consolidate
atlases from a multitude of sources, each registered to MNI152 space at 1, 2, and 4mm3 voxel sizes. Of
the atlases listed there, 35 were used during the development of m2g. While neuroparc was developed
in unison with m2g, the m2g pipeline is capable of utilizing unique parcellation atlases provided by the
user.

Due to the lack of gold standards to determine the accuracy of an estimated connectome, certain
forms of validation of the m2g pipeline are impossible. However, we have used surrogate metrics for
QA to increase confidence in the outputs. For each MRI, m2g ran to completion while passing basic
QA metric consisting of (1) edge values associated with every ROI, (2) for all applicable datasets,
discriminability values above 0.7, (3) QA figures generated successfully, (4) homophyly and homotopy
observations in agreement with literature. m2g’s ability to pass these metrics for validation denote its
ability to be used widely, across a variety of datasets, including those leveraging older MRI technology.
The resulting connectomes constitute one of the larger open database of connectomes to date.

To visually inspect consistency in connectomes across the datasets, a distance-dependent group
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consensus structural connectivity graph was created. This method serves to prevent the observed trend
of down-weighting long range connections [11] in conventional averaging of connectomes and preserve
the network properties/hubb-ness seen in individuals. A similar graph was created for the functional MRI
data, called a group-averaged functional connectivity matrix [12], which serves to minimize the effect
of inconsistent correlations (Figure 2). The reproducibility of the estimated connectomes was tested
using discriminability [5], and network statistics to determine that biological diversity and plausibility
were maintained.

2.2 Validated Connectomes Connectomes were estimated by both m2g-d and m2g-f for all 35 par-
cellations from the Neuroparc repository [10] As mentioned before, the oracle accuracy of connectomes
compared to true functional and structural properties of individuals’ brains is impossible to measure. In-
stead, we measure the discriminability of each dataset (Figure 3), which is a measure of preservation
of individual-specific information and data repeatability. We also observed trends in agreement with
existing literature regarding the edge strengths between regions of interest and relative amount of ho-
mophyly and homotopy (Figure 4). Manual inspection of the extensive quality control checks associated
with each step, particularly those regarding registration, served to reinforce our confidence in the gen-
erated connectomes.

Discriminability Discriminability was estimated for each data set, for every data set with multiple scans
per subject (as reported in the Supporting Materials, which gives all of the individual numeric values).
The closer to 1 the discriminability value, the more distinct the connectomes generated from one in-
dividual’s scans are from the connectomes of others. The m2g-d pipeline created connectomes with
discriminability values greater than 0.7 for the 33 of the 35 parcellations (Figure 3, top). The discrim-
inability measurements appear to be robust to the number of scans per subject, as can be seen with the
SWU4 and HNU1 data sets (two scans per subject and ten scans per subject, respectively). In addi-
tion, m2g-f relatively rarely created connectomes with discriminability values lower than 0.7 (Figure 3,
bottom).

Connectome Connectivity Because discriminability assesses the uniqueness of each individual’s
connectome, it does not guarantee that the connectome itself is biologically meaningful. To address
this issue, we analyzed the prominence of different categories of connections—ipsilateral versus con-
tralateral and homotopic versus heterotopic—using the connectomes estimated from three unique par-
cellations. To analyze homotopic connections, we chose the DKT [13], AAL [18], and Hammersmith [19]
parcellations, due to their symmetric ROI placement (i.e. each ROI on the left hemisphere had a match-
ing ROI on the right). For the structural connectomes, the percentage of total edges which belonged
to each network were analyzed, while the the Pearson’s correlation value [20] calculated by CPAC was
used for the functional connectomes. The results coincided with well documented phenomena regard-
ing structural and functional relationships [14–17]. Namely, structural connectomes had significantly
more ipsilateral than contralateral connections than homotopic, while functional connectomes had sig-
nificantly stronger homotropic correlations than heterotropic either ipsilaterally or contralaterally (Figure
4).

Reproducibility In the m2g pipeline, there exists algorithms with the potential to introduce noise in the
generated connectome. The randomized seed placement in the m2g-d pipeline, and the registration of
the functional MRI data onto the T1-weighted image and the T1-weighted image onto the diffusion MRI
data for m2g-f and m2g-d, respectively, serve as potential vectors for noise. To test the reproduciblity of
m2g, a subset of scans were used to estimate connectomes multiple times. Using a subset of five scans
from each dataset, m2g estimated connectomes five times per scan, using the same default parameters.
The resulting connectomes were treated as unique connectomes, with each set belonging to the same
subject. Discriminability metrics were calculated for each of these repeated connectomes, to determine
whether the unique qualities of the individual scan were preserved. For all subsets, the discriminability
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Figure 2: Group Consensus Connectomes Group consensus structural connectome from m2g-d (blue) and group con-
sensus functional connectomes from m2g-f (red), using the DKT parcellation method [13]. Structural connectomes of the
datasets appear qualitatively similar, with minor deviations particularly visible in the contralateral regions of the connectomes
(nodes 0-40 and 41-80). Ipsilateral connectivity is consistently more dense than contralateral connectivity in structural con-
nectomes [14]. The functional connectomes appear qualitatively similar to one another. Homotopic correlation is consistently
higher than ipsilateral and contralateral connectivity, which agrees with existing knowledge about functional correlation in the
brain [15–17].
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Figure 3: Discriminability Results Discriminability values from each applicable diffusion (top) and functional (bottom) MRI
dataset. Relative row height denotes the relative size of the dataset. Columns, each representing a different parcellation,
are organized from left to right by highest to lowest number of ROIs. The mean discriminability value for each parcellation
is displayed in the last row of both plots. The number of subjects/sessions is displayed next to the datasets’ names in
brackets and the number of ROI’s in a given parcellation are shown in brackets if not mentioned in the parcellation name.
Discriminability values for the structural connectomes was greater than 0.7 for the 32 of the 35 parcellations, while being
robust to the number of scans per subject. Functional connectomes rarely had discriminability values lower than 0.7.

values greater than 0.97 were recorded for all parcellations (excluding the Tissue parcellation method)
for both the functional and structural connectomes. Additional testing using Spearman’s rank correlation
found that the repeated connectomes had a coefficient greater than 0.98 for all parcellations.

2.3 Low Resource and Time Requirement Computation expediency and resource efficiency were
key reasons to develop m2g. While the required resources for running m2g varies according to the data,

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.01.466686doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.01.466686
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.2

0.4

0.6

0.8

1.0
R

at
io

 o
f T

ot
al

 S
tre

am
lin

es
DKT

AB
ID

EI
I-B

N
I

AB
ID

EI
I-S

D
SU

AB
ID

EI
I-T

C
D

BM
B

BN
U

1
BN

U
3

H
N

U
1

IA
C

AS
IB

AT
R

T
IP

C
AS

1
IP

C
AS

2
IP

C
AS

3
IP

C
AS

4
IP

C
AS

5
IP

C
AS

6
IP

C
AS

7
IP

C
AS

8
JH

N
U

M
R

N
N

KI
1

N
KI

24
N

KI
EN

H
N

YU
1

N
YU

2
SW

U
1

SW
U

2
SW

U
3

SW
U

4
U

PS
M

U
W

M
U

ta
h

XH
C

U
M

S

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Contralateral
Ipsilateral
Homotopic

Figure 4: Connectome biological plausibility results Analysis of the edge weights of both structural (top) and functional
(bottom) connectomes estimated using the DKT, AAL, and Hammersmith parcellation methods. For the structural connec-
tomes, the mean of the percentage of streamlines observed between ipsilateral, contralateral, and homotopic ROIs was
recorded and plotted for each scan. Mean Pearson correlation coefficients between ipsilateral, contralateral, and homotopic
ROIs was plotted for functional connectomes. A consistent significantly higher ratio of ipsilateral connections was observed
across parcellation methods for structural connectomes, as well as a higher correlation between homotopic ROIs across
parcellation methods in functional connectomes.

the datasets mentioned in this paper could be processed by m2g with approximately 16 GB of RAM and
1 CPU core. If more resources are available, m2g is capable of utilizing multiple CPUs at the same at
various points throughout the pipeline, such as registration and graph generation, to reduce runtime.
While estimating the connectomes used in this manuscript, we recorded the time required for m2g to
successfully analyze each of the scans used in the discriminability calculations (Figure 5). The optimal
configuration of resources for our purposes required 3 CPUs and 16 GB of RAM. When tested using 1
CPU, m2g-d took less than 120 minutes to complete the connectome creation using 35 parcellations
for a given dMRI scan. The m2g-f pipeline likewise took less than 110 minutes to generate the set
of connectomes. Additional CPUs were found to significantly increase the RAM requirements of the
m2g-f pipeline, due to the configuration of CPAC.

2.4 Quality Assurance Outputs Quality assurance images were created by m2g at each of the sig-
nificant steps of both the m2g-d and m2g-f pipelines (Figure 1) for easy determination of erroneous
results. The QA figure formats were chosen for maximum clarity and minimal image analysis exper-
tise requirements in order to detect any potential errors. Documentation for each of the QA figures
generated by m2g can be found at https://neurodata.io/mri/.
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Figure 5: Runtimes for Diffusion and Functional Datasets Amount of time, in minutes, it took for m2g to generate a
connectome for each of the scans in the datasets using the 35 brain parcellations. Computation time for diffusion datasets
(blue) and functional datasets (red) varied based off of size and resolution of the input MRI files. In these time estimates, m2g
was run utilizing 3 CPUs in parallel and at least 16 GB of RAM available.

3 Discussion The m2g processing pipeline was created to both efficiently analyze diffusion and func-
tional MRI scans, and lower the barrier for entry to connectomics. It was developed to excel at three
key aspects: ease of use, biological veracity, and computational reproducibility. With regards to these
three aspects, we believe m2g to be a success.

Attesting to its ease of use, all datasets referenced in this manuscript were run through m2g with
the default parameters and minimal user input, resulting in the successful generation of connectomes
for each scan. This was true across a range of acquisition properties of the MR images. Moreover,
this processing was achieved with modest computational resources, 16 GB of RAM and 1 CPU and no
intra-pipeline additional parallel processing steps, in less than two hours for each scan. In addition, m2g
requires very minimal user input, only the filenames, voxel size, and acquisition method (for fMRI data).
As such, the pipeline is an easy tool for researchers and clinicians without extensive computer science
experience or resources. Finally, m2g produces comprehensive visual reports to analyze processing
output.

We assessed m2g’s ability to produce biologically plausible and realistic data using multiple ap-
proaches. First, we computed the discriminability for each dataset. Discriminability scores depend on
the parcellation method used in the connectome generation. However, the discriminability values sur-
passed statistical tests of random chance in essentially all cases. The majority of the 35 parcellation
methods used in this analysis resulted in discriminability values above 0.8 (Figure 3). Upon re-running
of datasets though the m2g pipeline, these discriminability values changed by less than 0.03 for the
HNU1, SWU4, and BNU1 datasets. We also were able to confirm the negligible effect variance in
connectome generation introduced by randomized elements of the pipeline.
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Second, we assessed the relative fraction of ipsilateral versus contralateral, and homotopic ver-
sus heterotopic, connections. Results were consistent with current knowledge about the anatomical
and functional realities of neuro-typical brains [14–17]. More specifically, the prominence of ipsilat-
eral connections in structural connectomes, and the prominence of homotopic correlations in functional
connectomes (Figure 4).

Third, our focus on computational reproducibility manifested through the generation of QA figures
for every major step in both the m2g-d and m2g-f pipelines. With users without extensive knowledge
of MRI analysis in mind, the QA figures created by m2g were designed to make it easy to visually
determine whether the pipeline has successfully processed their data. With the emphasis on color
coordination and concise figure generation, any issue in the preprocessing and registration process is
made obvious. All QA figures are clearly labeled and placed in the same directory location relative to
the output, regardless of pipeline being used, with detailed explanations found at http://m2g.io.

The design criteria for m2g required certain trade-offs in performance to increase the generaliz-
ability of input data. With the strength of pipeline flexibility and minimal required user input still being
paramount, m2g could be improved along several dimensions. First, recent advances in registration [21]
and tractography [22] could be incorporated. Second, several more sophisticated batch effect strate-
gies have been successfully employed in dMRI data [23]. Such strategies could possibly help here as
well, especially if they are modified appropriately to work on binary graphs [24]. Third, m2g may under-
perform for particular populations (e.g., infants) or for brains that show nonstandard structures such as
tumors, resected regions, or lesions. The refinement of the pipeline used adult brains, with no current
measurement on how it would react to significantly different scans. Inclusion of the ability to supplement
the standard MNI152 reference images and parcellations with ones relevant to nonstandard brain struc-
tures could drastically expand the populations m2g could process. This would be particularly interesting
as a means to adapt the workflow to data collected from rodents and nonhuman primates in the future.

Because the methods developed during the creation of m2g are open source and easy to use, and
the data are open access, the continual development of the pipeline and assessment of the connec-
tomes generated is ready for outside collaboration. Due to the well-commented and modular code,
modification is straightforward for pythonistas. Along with the ease of use, a boon for the wider adop-
tion of m2g is the plethora of connectomes created as a byproduct of its development. With each of
the MRI datasets being processed on 35 unique parcellation methods, possibly the largest collection of
connectomes has been created. These connectomes are open access and available from our website,
https://neurodata.io/mri/.

4 Methods

4.1 Data The m2g pipelines were validated through the processing of the majority of data from the
Consortium of Reliability and Reproducibility (CoRR). The CoRR data consists of 36 different studies
from nearly 20 different institutions around the world, spanning the Americas, Europe, and Asia [7]. The
CoRR data collection efforts were not harmonized, and all data (regardless of quality) were shared.
Thus, these collections are well-suited to test the robustness of any pipeline. In addition to the CoRR
data, we also used m2g to process several additional open access data collections with complementary
acquisition parameters.Using this collection of MRI data, m2g pipeline development and parameter
selection prioritized the maximization of discriminability scores across all datasets, while also focusing
on limiting resource requirements.

4.2 m2g Input The input required to run the m2g pipeline depends on whether functional and/or
diffusion MRI data is being analyzed. The required inputs for either pipeline are:

• A T1-weighted anatomical scan, either an uncompressed or gzipped nifti file
• m2g-d:

– A diffusion-weighted MRI file, either an uncompressed or gzipped nifti file
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– b-value and b-vector parameter files (.bval and .bvec file types)
• m2g-f:

– A functional MRI file, either an uncompressed or gzipped nifti file
– The TR value (in seconds) and acquisition method used for the functional scan

The directory containing the input data must be BIDS formatted [25]. Both the m2g-d and m2g-f pipe-
lines can be run independently or on the same dataset, provided the required data files are available.
Which parcellation(s) to be used in the connectome creation can be specified by the user, whether they
be unique files stored locally or from the neuroparc repository [10]. If no parcellations are present, then
m2g will pull from the neuroparc repository and run all available parcellations.

4.3 m2g Diffusion Workflow The m2g diffusion pipeline leverages existing open source tools, in-
cluding the fMRI Software Library (FSL) [26–28], Dipy [2], the MNI152 atlas [29], and a variety of
parcellations defined in the MNI152 space [10]. The pipeline consists of five major steps: (1) Pre-
processing, (2) Registration, (3) Tensor estimation, (4) Tractography, and (5) Graph generation. All
algorithms used throughout the pipeline requiring hyper-parameter selection were initially set to the
suggested parameters, and optimized on the subset of CoRR datasets. The output of each processing
stage includes data derivatives and QA figures to enable individualized accuracy assessments. The
QA figures at each major step include cross-sectional images at different depths in the three canon-
ical planes (sagittal, coronal, and axial) of images or overlays. Figure 1 provides a schematic of the
individual-level analysis.

Preprocessing The input diffusion MRI data is first eddy-corrected using FSL’s eddy_correct [2] pro-
gram with the default parameters. This program was chosen as newer eddy functions either require
substantially longer to run or rely on GPU acceleration, an additional resource requirement which would
reduce the accessibility of m2g. The associated bvec and bval files are then checked for any errors and,
if necessary, corrected using Dipy’s read_bvals_bvecs function [2] into a usable format. The b-vectors
are then normalized, making sure to not alter the b-vector if its associated b-value is 0.

The eddy-corrected dMRI file then has its orientation checked, and if not already oriented in RAS+
coordinate space, nibabel’s as_closest_canonical [30] is used for the reorientation. The b-vectors are
also reoriented to RAS+ if necessary using default parameters. The dMRI file is then resliced to the
desired voxel size (specified by the user, with a reasonable default of 2mm3 if not specified) using Dipy’s
reslice function with trilinear interpolation[2].

The T1 weighted MRI file (T1w) is also reoriented into RAS+ format using as_closest_canonical and
similarly resliced, if necessary, into the desired voxel size using Dipy’s reslice function [2] with default
parameters. The resulting image is then skull-stripped using AFNI’s 3dSkullStrip function [31] with the
surface density parameter set to 30, resulting in an anatomical image with all non-neuronal structures
removed.

Registration From the skull-stripped T1w anatomical file, three probability masks are generated for the
grey matter, white matter, and cerebral spinal fluid regions of the brain using FSL’s fast function [26–28]
using default parameters. The white matter mask is then used to create another mask of just the outer
edge of the white matter area using FSL’s fslmaths [26–28]. Using FSL’s flirt function [26–28], an initial
linear registration is made for the anatomical image to the reference MNI152 template in MNI space. An
initial attempt is made for non-linear registration of the T1w image to the MNI template, using the affine
transformation matrix previously created by the linear registration as a starting configuration. If it is not
successful and throws an error, the linear registration is used. Using FSL’s fnirt function [26–28], the
nonlinear warp coefficients/field is generated to register the T1w image onto the reference MNI image.
FSL’s invwarp function [26–28] is then used on the coefficients/field to get the field for registering the
reference MNI image onto the T1w image. However, if the nonlinear registration fails, then the linear
registration affine transformation matrix for T1w to MNI is used and inverted using FSL’s convert_xfm
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[26–28].
FSL’s flirt is then used for calculating the boundary-based registration (BBR) of the dwi image onto

the T1w image, using 256 bins and 7 degrees of freedom. The resulting transformation matrix is
inverted and used with a mutual information cost function in flirt to generate an image of the anatomical
image registered to the dwi image. Using fslmaths, binary ventricle and corpus callosum masks in MNI
space are generated. Along with the previously generated grey matter, white matter, and cerebral spinal
fluid masks, flirt is used to register the masks to dwi space. A grey matter/white matter boundary binary
mask is then made using fslmaths, which denotes the approximated boundary between the two tissue
types across the entire brain, for later seed propagation in the tractography stage of the pipeline.

Finally, the parcellation files to be used in the graph generation are reoriented using nibabel’s
as_closest_canonical function into RAS+, where they are resliced to the desired voxel size using Dipy’s
reslice function. They are then registered from MNI to dwi space using the previously calculated trans-
formation matrices, utilizing FSL’s flirt function and the "nearest neighbor" cost function.

Tractography Seeds are generated along the grey matter/white matter boundary mask of the regis-
tered brain using a custom python script, where the number of seeds per voxel on the mask can be
specified by the user. The seed locations and dwi image are then used in conjunction with Dipy trac-
tography functions [2] in order to generate a series of non-directional streamlines spanning the image.
m2g offers deterministic or probabilistic tractography, Constrained Spherical Deconvolution (CSD) or
Constant Solid Angle (CSA) reconstruction methods, and particle filter or local tracking. Regardless of
the tractography settings specified, the resulting series of streamlines is output and saved to a trk file
for use in graph generation.

Graph Generation For each parcellation being analyzed, each streamline is converted into voxel co-
ordinates and analyzed for overlap with any of the regions specified by the parcellation. m2g does not
determine the direction of a given streamline, making its connectome and resulting graph undirected.
If a streamline overlaps with a given region for more than 2mm, it is considered an intersection. The
number of streamlines intersecting a given region and the other regions they also intersect with are
recorded and tabulated in the form of a weighted edgelist. In this edgelist format each unique region
of interest on the parcellation, marked by a unique intensity value, is considered a node whose edge
weight is the number of streamlines that connect it to another region. For example, if a streamline inter-
sects two or more regions in the parcellation (region A, region B, and region C) the weight of the edges
AB, AC, and BC is increased by one. In this sense, the order through which the streamline intersects is
not important. The resulting edgelist is saved in the form of a csv file, and an accompanying adjacency
matrix of the normalized edgelist is also saved. A unique edgelist will be made for each parcellation
specified by the user.

4.4 m2g Functional Workflow The m2g-f pipeline was constructed starting with the optimal pro-
cessing pipeline identified in Wang et. al [5] using CPAC [32]. The CPAC pipeline utilizes existing open
source tools, including FSL [26–28], Dipy [2], the MNI152 atlas [29], and a variety of parcellations de-
fined in the MNI152 space [10]. The functional pipeline consists of four major steps: (1) Preprocessing,
(2) Registration, (3) Nuisance correction, and (4) Graph generation.

Preprocessing The m2g-f pipeline in CPAC uses AFNI’s SkullStripping function [31] with a variable
shrink factor between 0.4 and 0.6 over 250 iterations with nearest neighbor interpolation to eliminate
all non-neuronal structures from the anatomical image. The resulting anatomical file is resampled to
the desired resolution voxel size using FSL’s FNIRT [26–28]. Slice timing correction is then performed
using AFNI’s 3dTshift [31], utilizing the TR value and scan acquisition method provided by the user. The
resulting image is then motion corrected using AFNI’s 3dvolreg, aligning all images to the first image in
the functional MRI’s timeseries.
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Registration Nonlinear boundary based registration of the preprocessed fMRI and anatomical images
are performed in order to transform them into MNI152 space. The MNI152 6th generation anatomical
reference image [29] is used in this registration process, as it is FSL’s preferred image. The functional
image is then registered to the anatomical scan using FSL bet [26–28] with BBR. FSL’s standard white
matter, grey matter, and cerebral spinal fluid masks are then registered onto the functional image using
FSL’s FAST thresholding, resulting in segmentation tissue masks. The specified atlases that are going
to be used in the connectome generation are also registered to the functional space using FSL’s FLIRT
function.

Nuisance Correction Nuisance correction of the functional image is performed using the component
based noise correction (CompCor) method. Using "noise ROIs", or areas of white matter and cere-
bral spinal fluid whose intensity values are unlikely to be modulated by neural activity, physiological
noise can be isolated[33].Based on this assumption, physiological noise in gray matter regions can
be corrected for by regressing out principal components from noise ROIs. CompCor uses the previ-
ously registered white matter and cerebral spinal fluid masks (csf) in order to determine noise ROIs. A
principal component analysis is applied using the top five components of the white matter and csf to
characterize the times series data from the noise ROIs. Significant principal components are then intro-
duced as covaraites in a general linear model as and estimate for the physiological noise single space.
Polynomial Detrending is also performed to remove linear or quadratic trends in the timeseries, likely
from changes in scanner heat or subject movement. After nuisance regression, frequency filtering oc-
curs on the functional data using a bandpass filter from 0.01 Hz to 0.1 Hz to account for low-frequency
drift and high-frequency noise.

Graph Generation With the anatomical files and atlases registered to the functional image. For each
ROI, the timeseries of the average of all voxels within the ROI at each collection time point is calculated.
This timeseries is then used to calculate the Pearson’s correlation coefficient [20] between each pair of
ROIs in the given timeseries. The resulting adjacency matrix of correlations is then saved, along with
an edgelist file containing the same information.

4.5 Validation of m2g on Diverse Data

Discriminability To evaluate a methods reliability, Wang et al. [5] developed a metric called discrim-
inability that quantifies the fraction of measurements from the same individual that are closer to one
another than they are to the measurement of any other individual. Discriminability, as seen in Equation
(4.1), describes that probability that two observations within the same class are more similar to one
another than two objects belonging to a different class:

(4.1) D = p(||aij − aij′ || ≤ ||aij − ai′j′ ||)

In the context of validation of m2g, each connectome is converted into a ranked vector, assigning each
edge a weight between 0 and 1 from smallest to largest, and compared. This means that each connec-
tome, aij , in a test-retest dataset is first compared to other connectomes belonging to the same subject,
aij′ , and then to all connectomes belonging to other subjects, ai′j′ . A perfect discriminability score is
1, meaning that for all observations within the dataset, each connectome is more alike to connectomes
from the same subject than to others. Optimizing m2g with respect to discriminability enables us to
minimize the upper-bound on error for any general downstream inference task. The discriminability
score for the multitude of datasets run through the default settings of m2g were recorded.The average
discriminability over all scans was approximately 0.85 for dMRI data and approximately 0.8 for fMRI
data.

Connectome Connectivity While discriminability may determine the extent that m2g preserves the
unique properties of a given MRI scan, additional care must be taken to determine whether the con-
nectomes generated by m2g even conform with basic phenomena that are observed in the brain. One
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such process to do this involves observation of either to the physical or functional connection between
different regions of the brain. Three simple categories for these regions are ipsilateral (connections that
stay within the left or right hemispheres), contralateral (across hemispheres), or homotopic (from one
region of the brain to the same region on the other hemisphere). Using the edge weights from the struc-
tural connectomes generated by m2g, the percent of edges that fell into each of the three connection
types was calculated, with the mean and standard deviation were found for each dataset. This process
was performed for three parcellations which had clearly-defined homotopic regions of interest, namely
the DKT, Hammersmith, and AAL atlases. For the functional connectomes generated, the Pearson’s
correlation between regions of interest was used as a metric. The mean and standard deviation of each
of the three connection types was found for each dataset (Figure 4). This process was also performed
for the same three parcellations, which had similarly consistent results.

5 Ethical Compliance We complied with all relevant ethical regulations. This study reused publicly
available data acquired at many different institutions. Protocols for all of the original studies were
approved by the corresponding ethical boards.

6 Software Availability All of our code is available from our website, http://m2g.io, and has been
deposited into our public github repository, https://github.com/neurodata/m2g, and published with a
DOI, https://doi.org/10.5281/zenodo.1161284, under the Apache License 2.0.

7 Data Availability The data derivatives that support the findings of this study are available from our
website, http://m2g.io, under a (ODC-By) v1.0 license.
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