
Drug specific transcriptomic signatures in healthy human subject iPSC derived 
cardiomyocytes 
 

Jens Hansen1,2, Yuguang Xiong1,2, Priyanka Dhanan3, Bin Hu1,2, Gomathi Jayaraman1,2, Rosa 
Tolentino1,2, Yibang Chen1,2,  Kristin G. Beaumont4, Robert Sebra4,  Dusica Vidovic5, Stephan C. 
Schürer5, Joseph Goldfarb2, Joseph Gallo6, Marc R. Birtwistle7, Eric A. Sobie2, Evren U. 
Azeloglu2,8, Christoph Schaniel3,9,*, Nicole C. Dubois3,*, Ravi Iyengar1,2,* 

 
1 Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New 
York, NY 10029, USA  
2 Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, 
NY 10029, USA  
3 Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at 
Mount Sinai, New York, NY 10029, USA 
4 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New 
York, NY 10029, USA 
5 Institute for Data Science and Computing, University of Miami, Coral Gables, FL 33146, USA  
6 School of Pharmacy and Pharmaceutical Sciences ,University of Buffalo  SUNY System, Buffalo 
NY 14260 
7 Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29634, USA 
8 Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, 
New, York, NY 10029, USA 
9 Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer 
Institute,  Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA  

* Co-senior authors 

 

Address correspondence to  

Jens Hansen – jens.hansen@mssm.edu  

or 

Ravi  Iyengar -  ravi.iyengar@mssm.edu 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.02.466774doi: bioRxiv preprint 

http://icahn.mssm.edu/departments-and-institutes/developmental-and-regenerative-biology/
https://doi.org/10.1101/2021.11.02.466774


1 
 

Abstract 

Drug-induced gene expression profiles are an important source for the characterization of drug-
specific mechanisms of action that might also indicate potential mechanisms of drug toxicity. 
Unfortunately, drug-induced transcriptomic signatures are often the sum of multiple responses, 
such as cell line or cell-type specific responses, and can include false positive results. Both issues 
complicate the identification of drug-specific effects. To unmask drug-specific effects in drug-
induced transcriptomic signatures, we use singular value decomposition to characterize shared 
transcriptomic responses induced in multiple cell lines treated with the same drug. Six different 
cardiomyocyte cell lines that were generated from induced pluripotent stem cells obtained from 
six healthy human subjects were stimulated with 25 protein kinase inhibitors, 4 monoclonal 
antibodies against protein kinases and 25 other cardiac- and non-cardiac acting drugs. Searching 
for drug-specific subspaces that characterize drug-specific responses in the original data, we could 
identify highly similar drug responses for multiple drugs. Pathway enrichment analysis of those 
responses predicts reasonable effects for multiple drugs. Revealing drug-specific responses from 
transcriptomic signatures might allow an easier characterization of drug-induced toxicity, such as 
cardiotoxic side effects induced by multiple protein kinase inhibitors and monoclonal antibodies 
against protein kinases.   
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Introduction 

Unwanted side-effects of the therapeutically useful drugs continue to be a substantial problem (1). 
Even after a drug is approved and introduced into the market, pharmacovigilance studies often 
reveal adverse events that lead to warning label requirements mandated  by the FDA (2). Practical 
reasons including time required to bring a potentially useful drug to market and costs of clinical 
trials which are rightfully focused on therapeutic efficacy often limit the patients with potential for 
side effects who can be studied during clinical trials to understand the details regarding adverse 
events. Hence, early indications of a potential of adverse events could be useful in the drug 
development process at various stages (3, 4).   Adverse events can occur due to a variety of reasons 
due to mechanisms operative at the molecular and cellular levels (5). Although cellular 
mechanisms of adverse events are most often not well defined, preclinical studies at the molecular 
levels are often useful as has been demonstrated by HERG channel protein interacting drugs and 
the potential for arrythmias (6, 7). Hence, molecular studies in cell-based systems have the 
potential to be useful in predicting adverse event potential of drugs.  

Drug related adverse events are often organ selective with kidney, liver and heart as major organs 
where drug toxicity leads to serious and often life-threating adverse events. In addition to drugs 
with the potential to produce arrythmias, many useful cancer drugs such as tyrosine kinase 
inhibitors which are used for targeted cancer therapy can often be associated with cardiac 
insufficiencies and development of heart failure. This has been recognized for nearly two decades 
(8, 9). However, a systematic understanding of the molecular pathways and potential cellular 
mechanisms associated with these toxicities are still not well understood. 

Cell based assays using known cardiotoxic drugs have become a potentially useful approach for 
studies that can provide predictive understanding of why some drugs many be associated with 
cardiotoxicity. With the development of human iPSC-derived cardiomyocytes (10) several studies 
have demonstrated the potential for their use in understanding cardiotoxicity (11, 12). We have 
used human adult cardiomyocyte like cells to demonstrate the relationship between tyrosine kinase 
inhibitor induced transcriptional profiling and the cardiotoxicity risk as assessed from 
pharmacovigilance data (13). Hence, transcriptional profiles in human cardiomyocyte can be 
useful for studies focused on mechanism-based drug signatures that could be used for prediction 
of cardiotoxicity potential in some human subjects.  In this study, we have used six healthy human 
subject cardiomyocyte cell lines to conduct a detailed study of 54 drugs to map drug selective 
signatures across the different human subject lines. 

Very often drug-induced gene expression profiles are not only composed of drug-specific 
responses, but might also contain cell-type and cell line specific responses as well as false 
positives. Depending on the relative contribution of these effects, the drug-specific response might 
not be obviously detectable in the list of induced differentially expressed genes. Singular value 
decomposition has been applied to investigate multiple transcriptomic profiles. For example, it has 
been successfully used to uncover cycling gene expression profiles indicative of different yeast 
cell cycle phases that were hidden in the full gene expression dataset (14). Multiple applications 
of singular value decomposition (15-17) or other methods for the separation of omics data into 
subcomponents, such as independent component analysis (18, 19), followed. 
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Here, we use singular value decomposition to reveal drug-specific responses from the gene 
expression profiles induced by the 54 drugs in the six human cardiomyocyte cell lines. We 
document that singular value decomposition allows the identification of gene expression profiles 
that show high similarity among different cell lines treated with the same drug. Pathway 
enrichment analysis of the identified drug-specific gene expression profiles further underlines the 
high consistency between the results revealed from the different cell lines and predicts reasonable 
effects for multiple drugs. 

 

 

Results 

Six different cardiomyocyte cellines that were generated from induced pluripotent stems cells 
obtained from six healthy human subjects were stimulated with 25 protein kinase inhibitors, 4 
monoclonal antibodies against protein kinases and 25 other cardiac- and non-cardiac acting drugs 
(Table 1). Transcriptomic analysis of gene expression profiles with and without drug treatment 
generated 266 lists of differentially expressed genes (DEGs) (Figure 1). To analyze if drug induced 
DEGs in the different cell lines document drug-specific gene expression profiles, we subjected the 
lists of DEGs to pairwise correlation analysis followed by hierarchical clustering (Figure 2A). If 
the lists of DEGs are representative of drug-specific responses, hierarchical clustering should 
group different samples of the same drug treatment within the same cluster. A few samples were 
indeed grouped together based on the treated drug, while most of the samples were grouped by the 
treated cell line. Additionally, the clustering outcome was also determined by the amplitude of the 
drug response that can be quantified by the number of significantly differentially expressed genes. 
To quantify the efficiency of drug-specific clustering for each drug, we calculated the F1 score 
(Figure 2B). The F1 score is the harmonic mean of precision and recall. Here, precision indicates 
the fraction of samples in a particular cluster that were treated with a particular drug, recall 
indicates the fraction of all samples treated with that drug that are in that particular cluster. For 
this analysis, any cluster emerging within the dendrogram was investigated, independently of the 
height at which the dendrogram needed to be cut to generate that cluster. For each drug, the 
maximal F1 score is documented. As expected, most drugs are associated with a very low F1 score. 
In summary, our analysis reveals that the documented gene expression profiles are mainly 
determined by the amplitude of the drug response as well as by cell line specific responses that 
both mask drug-specific responses. 

Singular value decomposition 

To dissolve drug-specific responses from our data we subjected the DEGs to singular value 
decomposition. Singular value decomposition is a factorization of a matrix into orthonormal left 
singular vectors, singular values and orthonormal right singular vectors (Supplemental figure 1A). 
Applied to gene expression data, the left singular vectors are often called eigenassays and the 
singular values eigenexpression values (14). Each gene expression profile is a linear combination 
of all eigenassays. The sample specific coefficients of this linear combination are described by the 
matrix of right singular vectors. The eigenexpression values document how much each eigenassay 
contributes to the total gene expression and need to be considered for the linear combination as 
well.  
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General stress response 

Singular value decomposition of our data identified 266 eigenassays that contribute with different 
degrees to the original gene expression profiles (Figure 3A). Since our initial clustering suggested 
that the amplitude of the response significantly influences the induced gene expression profiles, 
independently of the used drug or treated cell line, we correlated the sample specific coefficients 
of each eigenassay with the number of significantly differentially expressed genes in each sample 
(Supplemental figure 1B). We observed a correlation coefficient of -0.91 for the first eigenassay 
(Figure 3B), indicating that the first eigenassay captures the documented amplitude specific 
response. Enrichment analysis of the top 600 genes of the first eigenassay predicts multiple 
pathways related to muscle contractility (Figure 3C). We hypothesized that this amplitude specific 
response describes a general stress response that is induced by the magnitude of the cellular 
perturbation, independently of the pertubed cell line or pertubing drug. We removed the first 
eigenassay from the gene expression profiles. Hierarchical clustering of the obtained gene 
expression profiles documents a disruption of the initially observed grouping of samples by the 
number of significantly differentially expressed genes (Figure 3D). All following analyzes were 
generated with the data after removal of the first eigenassay.  

Drug and cell line specific eigenassays 

To identify eigenassays that capture drug-specific responses we used student’s t-test to investigate 
if the coefficients related to each eigenassay significantly differ between the samples of a particular 
drug and the samples of all other drugs (Supplemental figure 1C). As a result, we obtained a p-
value for each eigenassay and drug combination that was transformed into a -log10(p-value), 
allowing the assignment of each drug to a vector of eigenassay specific -log10(p-values). Similarly, 
we applied the same algorithm using cell lines instead of drugs, generating a vector of eigenassay 
specific -log10(p-values) for each cell line. We calculated all pairwise correlations between drug- 
and cell line-specific vectors, followed by hierarchical clustering (Figure 5A). Results revealed 
that the degrees to which each eigenassay captures drug-specific responses differ from the degrees 
to which each eigenassay captures cell line-specific responses, as documented by the grouping of 
the six different cell lines in one single cluster.  

Drug specific subspaces capture drug-specific gene expression profiles 

Any combination of eigenassays spans a subspace that contains a particular fraction of the full 
DEG profiles. For each drug, we ranked all eigenassays by significance and generated 264 
subspaces spanned by the top three to 266 ranked eigenassays. We then projected all 266 full gene 
expression profiles into each of these subspaces, followed by pairwise correlation analysis and 
hierarchical clustering. The maximum F1 score for that particular drug in each subspace was 
calculated, as described above. To analyze how much of the initial information still lies in that 
subspace, we calculated the cosine similarity between the full gene expression vectors for that drug 
and their projections into each subspace. F1 scores and median cosine similarities were used to 
calculate a selection score for each subspace. Since we wanted to extract the similarities between 
the different gene expression profiles induced by the same drug, we used stringent focus on the F1 
score and defined the selection score to be determined to 95% by the F1 score and to 5% by the 
median cosine similarity. That subspace that was associated with the highest selection score was 
selected as the specific subspace for that particular drug (Supplemental figure 2). Repeating the 
analysis for each drug lead to the identification of 54 drug-specific subspaces. 
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Projection of gene expression profiles into these drug-specific subspaces significantly improved 
the clustering efficiency (Figure 5A, Supplemental figure 3), as documented by the F1 scores 
(Figure 5B). The projected amount of initial information in the drug-specific subspaces as 
described by the median cosine similarities varies between the different drugs. Drug-specific gene 
expression profiles in their corresponding drug-specific subspaces were combined into a new 
matrix. Not surprisingly, clustering of this matrix identifies clusters that mostly contained samples 
that were treated with the same drug (Figure 5C). 

 

Drug specific gene expression profiles lead to the prediction of similar mechanisms of action 

Projection of gene expression profiles into drug-specific subspaces allowed us to identify common 
response patterns that were induced by treatment of different cell lines with the same drug. 
Focusing on drug-specific effects that are drug- but not cell line-dependent, we subjected the 
projected gene expression profiles to pathway enrichment analysis using the Molecular Biology of 
the Cell Ontology (20) (Figure 6, Supplemental figure 4). To investigate the effects of our 
decomposition pipeline on the predicted pathways, we additionally subjected the full (initial) gene 
expression profiles and the gene expression profiles after removal of the first eigenassay to 
pathway enrichment analysis (Supplemental figure 4). Predicted up- and downregulated 
subcellular processes (SCPs) were ranked by significance. Comparison of the top five predicted 
SCPs between the three datasets documents that our decomposition pipeline significantly increases 
the similarity between the predicted pathways for the same drug in different cell lines. In some 
cases the decomposition lead to the identification of SCPs that were not among the top five 
predictions of any cell line in the full datasets. 

A common element in the predicted pathways for multiple EGFR inhibitors (erlotinib, afatinib, 
gefitinib, cetuximab, trastuzumab) is the downregulation of SCPs involved in DNA replication 
and chromosome segregation by the mitotic spindle (Figure 6, Supplemental figure 4). These 
pathways were also constantly downregulated by the kinase inhibitor trametenib, the anthracycline 
idarubicine and the glucocorticoid prednision. On the contrary, the kinase inhibitors nilotinib, 
imatinib, regorafenib, sorafenib and ponatinib as well as the antirarrhythmic flecainide consistently 
upregulate SCPs involved in centrosome dynamics, chromosomal separation and cell cycle 
progression. These findings are supported by morphological observations of centrosome 
aberrations in disease unrelated fibroblasts and cells from the oral mucosa obtained from patients 
treated with dasatinib, nilotinib, imatinib, sorafenib and sunitinib (21). The anthracycline 
idarubicine up-regulated DNA repair mechanisms and the SCP ‘Cell cycle arrest due to DNA 
damage’, in agreement with its stronger activity in inducing DNA damage, if compared to 
daunorubicin (22). The SCP ‘JAK-STAT signaling pathway’ was the top ranked downregulated 
SCP in four of six cell lines treated with the JAK-STAT inhibitor ruxolitinib. Investigation of the 
SCP genes documented that in all six cell lines the genes STAT3, STAT4, SOCS2 and SCOS3 
were downregulated. The inhibitory components SOCS2 and SOCS3 are upregulated as part of a 
negative feedback loop in response to JAK-STAT signaling (23). Consequently, their 
downregulation might be the consequence of the inhibition of JAK-STAT signaling. The 
upregulation of proteasomal components and genes involved in poly-ubiquitination by the 
proteasome inhibitor bortezomib could be a compensatory mechanism to mitigate proteasome 
inhibition (Supplemental figure 4). The downregulation of the SCP ‘Cellular iron storage’ by the 
anthracyclines daunorubicin and doxyrubicine (Supplemental figure 4) is in agreement with the 
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interference of doxorubicine with cellular iron metabolism (24). Described pathways were 
predicted based on the decomposed datasets. In the full dataset they were either less consistently 
predicted, i.e. they were identified in less cell lines, or they were not among the top 5 predictions 
in any cell line. 

 

Discussion 

The identification of any drug-induced transcriptomic signatures including those that are indicative 
of cardiotoxicity depends on the separation of drug-specific transcriptomic responses from other 
responses, including cell type or cell line specific responses as well as general responses to 
perturbations of cells by extracellular ligands.  These additional components of the overall 
response have to be removed before we can determine if we have drug specific signatures in a cell 
type of interest. 

Here, we developed a pipeline for decomposition of transcriptomic profiles based on singular value 
decomposition that searches for the largest shared component in gene expression profiles induced 
by the same drug in different cell lines. Singular value decomposition of gene expression data 
results in the identification of orthonormal eigenassays. Our pipeline searches for drug-specific 
subspaces spanned by a subset of those eigenassays that contain most of the drug related gene 
expression response and exclude gene expression profiles involved in the other response types. To 
find such subspaces we document the clustering efficiency for each drug after projection of the 
full gene expression profiles into subspace candidates. As a second criterion for determining drug 
specific signatures across cell lines (i.e. that is different human subjects) we use the cosine 
similarity to quantify how much of the overall gene expression response for a drug of interest is 
still preserved in each potential subspace. In this study, we used a stringent focus on the similarity 
of drug responses, since our final decision score is determined to 95% by the clustering efficiency 
and to 5% by the cosine similarity. This might come with the cost of losing too much of the original 
information in some cases, so that other constellations are justifiable as well.  

The identified drug related responses in the drug-specific subspaces are of high similarity and 
allow the prediction of similar and in some cases almost identical pathways induced by the same 
drugs in the different cell lines representing different human subjects. In contrast, pathways 
predicted from the full dataset show much larger variations, indicating that our decomposition 
pipeline enriches for drug-specific responses from the overall gene expression profiles. Literature 
research and biological interpretation of the identified pathways from these drug specific gene 
expression profiles show that there is reasonable agreement between the predicted pathways from 
mRNA expression profiles and pathways inferred from small-scale experimental studies. This 
congruence give us confidence that future studies can identify drug selective pathways associated 
with cellular mechanisms related to potential drug toxicity.   
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Table 1. Drug metadata
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Figure 1. Drug-induced transcriptomic signatures. Six cardiomyocyte cell lines that were 
derived from induced pluripotent stem cells obtained from six healthy human subjects were treated 
with one of 54 drugs or vehicle for 48 hours. Drug- and vehicle treated cell lines were subjected 
to bulk RNAseq, followed by the identification of differentially expressed genes in drug-treated 
versus vehicle-treated control cell lines. Numbers of significantly differentially expressed genes 
induced by the different drugs in each cell line are shown (based on an FDR cutoff of 0.1). Each 
dot visualizes one cell line drug combination. 
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Figure 2. Drug-induced gene expression profiles in iPSC derived cardiomyocytes are mostly 
cell line specific. (A) Minus log10(p-values) of up- or downregulated genes were defined as 
positive or negative, respectively. Pairwise Pearson correlation coefficients were calculated based 
on the generated signed minus log10(p-values) and used to hierarchically cluster the samples. 
Heatmap of signed minus log10(p-values) was rearranged according to the clustering results. 
Dendrogram labels show the treated cell lines, drugs used for treatment and the number of 
significantly differentially expressed genes in each sample as defined by an FDR <= 0.1. (B) If the 
transcriptomic responses are mainly determined by the drug used for treatment, hierarchical 
clustering should group those samples that were treated by the same drug into the same cluster. To 
document the efficiency of drug specific clustering, we calculated the F1 score for each drug and 
cluster. The F1 score is the harmonic mean of precision and recall, i.e. of how many samples in a 
particular cluster belong to a particular drug and how many samples treated with that drug are 
within that cluster, respectively. For each drug, we identified the highest F1 score within any 
cluster that can be obtained by cutting the dendrogram at any height. Results document low 
maximum F1 scores for most of the drugs, documenting that the used drugs are not the main 
determinant of the observed gene expression responses. 
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Figure 3. Singular value decomposition identifies an unspecific stress response that is 
proportional to the magnitude of disturbance. (A) Investigation of the relative contribution of 
each eigenassay documents that the first eigenassay explains ~9% of the total variance. (B) The 
gene expression profile of each sample is a linear combination of all 266 eigenassays, based on 
sample specific coefficients for each eigenassay. We correlated the sample specific coefficients 
associated with each eigenassay with the number of significantly induced differentially expressed 
genes (FDR <= 10%). Calculated Pearson correlation coefficient of the first eigenassay was -0.91, 
suggesting that the contribution of the first eigenassay to the gene expression profiles increases 
with the magnitude of disturbance and is independently of the drug used for treatment. (C) To 
investigate the biology captured by the first eigenassay, we subjected the top 600 genes of this 
eigenassay to pathway enrichment analysis. Results revealed an enrichment of genes involved in 
muscle contraction, supporting our hypothesis of a cell type, but not drug specific response that is 
captured by this eigenassay.  
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Figure 4. Identification of drug-specific eigenassays. For each drug and eigenassay we analyzed, 
if the coefficients assigned to all samples that were treated with this drug are significantly different 
from the coefficients assigned to all other samples. Consequently, we calculated one p-value for 
each drug-eigenassay combination. Similarly, we analyzed if the coefficients assigned to each 
eigenassay and all samples of the same cell line are significantly different from those assigned to 
the same eigenassay and all other samples. All p-values were transformed into -log10(p-values) 
and used to calculate pairwise correlation coefficients between all drugs and cell lines, followed 
by hierarchical clustering of drugs and cell lines based on the coefficients. Initial heatmap 
of -log10(p-values) was rearranged according to the clustering results. Results document that the 
six cell lines are grouped into a single cluster, suggesting that drug-specific eigenassays are 
different from cell line or cell type specific eigenassays. Significance increases from white to red. 
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Figure 5. Identification of drug-specific subspaces. (A) After removal of the first eigenassay, 
we aimed at identifying drug-specific subspaces that allow characterization of drug-specific gene 
expression responses. For this, we ranked all eigenassays by decreasing significance for each drug, 
generating 54 ranked lists. Any combination of eigenassays defines a subspace that captures a 
particular amount of the original data. For each drug, we generated 264 subspaces that were 
spanned by the top three to 266 ranked eigenassays for that particular drug. We projected the full 
data into each of these subspaces, followed by pairwise correlation analysis, hierarchical clustering 
and identification of the largest F1 score for that drug, as described in figure caption 2. Calculation 
of the median cosine similarity between the full gene expression profiles of that drug and their 
projections into each subspace documented how much of the initial full response is preserved 
within each subspace. We combined both values to a selection score (0.95 x F1 score + 0.05 median 
cosine similarity) and defined that subspace with the highest selection score as the drug-specific 
subspace. Shown is the clustering behavior of three example drugs in the full dataset (after removal 
of the first eigenassay) and in the identified drug-specific subspaces. (B) The figure shows the 
identified F1 scores and median cosine similarities for each drug in each drug-specific subspace. 
Blue lines indicate median values of bar heights. (C) Drug-specific gene expression profiles within 
each of the drug-specific subspaces were merged and subjected to pairwise correlation analysis 
and hierarchical clustering, as described in figure caption 2.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.02.466774doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.02.466774


Figure 6
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Figure 6. Drug-specific gene expression responses describe reasonable drug effects. Drug-
specific gene expression profiles that were obtained by projecting the full gene expression profiles 
into the drug-specific subspaces were ranked by decreasing absolute -log10(p-values). Up- and 
downregulated genes among the top 600 genes were separately subjected to pathway enrichment 
analysis using Fisher’s Exact Test and the Molecular Biology of the Cell Ontology. Predicted up- 
and downregulated subcellular processes (SCPs) were ranked by significance. Top five ranked up- 
and downregulated SCPs for three kinase inhibitors and one anthracycline are shown. If a pathway 
was identified in at least one cell line for the same drug, pathway ranks are shown for all cell lines, 
even if they exceeded five. Fields are colored based on pathway ranks, any ranks above 15 are 
colored gray. Minus signs indicate that the pathway was not identified at all.  
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