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Abstract— EEG power spectral density (PSD), the individual 

alpha frequency (IAF) and the frontal alpha asymmetry (FAA) 

are all EEG spectral measures that have been widely used to 

evaluate cognitive and attentional processes in experimental and 

clinical settings, and that can be used for real-world applications 

(e.g., remote EEG monitoring, brain-computer interfaces, 

neurofeedback, neuromodulation, etc.). Potential applications 

remain limited by the high cost, low mobility, and long 

preparation times associated with high-density EEG recording 

systems. Low-density wearable systems address these issues and 

can increase access to larger and diversified samples. The 

present study tested whether a low-cost, 4-channel wearable 

EEG system (the MUSE) could be used to quickly measure 

continuous EEG data, yielding similar frequency components 

compared to research a grade EEG system (the 64-channel 

BIOSEMI Active Two). We compare the spectral measures 

from MUSE EEG data referenced to mastoids to those from 

BIOSEMI EEG data with two different references for 

validation. A minimal amount of data was deliberately collected 

to test the feasibility for real-world applications (EEG setup and 

data collection being completed in under 5 min). We show that 

the MUSE can be used to examine power spectral density (PSD) 

in all frequency bands, the individual alpha frequency (IAF; i.e., 

peak alpha frequency and alpha center of gravity), and frontal 

alpha asymmetry. Furthermore, we observed satisfying internal 

consistency reliability in alpha power and asymmetry measures 

recorded with the MUSE. Estimating asymmetry on PAF and 

CoG frequencies did not yield significant advantages relative to 

the traditional method (whole alpha band). These findings 

should advance human neurophysiological monitoring using 

wearable neurotechnologies in large participant samples and 

increase the feasibility of their implementation in real-world 

settings. 

 
Keywords— wearable EEG, power spectral density, 

frequency domain, signal validation, frontal alpha 

asymmetry, individual alpha frequency (IAF). 

 

I. INTRODUCTION 

The MUSE (InterAxon Inc.) is a low-cost, off-the-shelf, 

wearable EEG headset that has two frontal and two 

temporoparietal (TP) dry active EEG channels. It has been 

validated for evoked-response potential (ERP) research (i.e., 

time-domain; [1]) and used in many recent studies [2]–[12]. 

However, to our knowledge, it has not yet been validated for 

frequency domain analysis (power spectra on continuous 

EEG data), with one study showing mixed results [13]. In 

addition to assessing the validation of MUSE spectral 

measures, it is relevant to test if the MUSE could be used to 

estimate clinically- and research- relevant spectral measures, 

such as the frontal alpha asymmetry (FAA) and the individual 

alpha frequency (IAF). 

Frontal alpha asymmetry (FAA; or frontal EEG asymmetry) 

refers to the relative difference in log alpha power (8-12 Hz) 

between the right and the left frontal regions. This spectral 

measure has been widely used to evaluate participants’ 

cognitive, emotional, and attentional processes, both as an 

event-related state response and as a trait during rest [14]–

[19]. Because of the inhibitory role of alpha oscillations [20]–

[23], relatively greater left than right alpha power is 

associated with relatively greater right than left cortical 

activity. In addition, greater activation of the left-frontal 

cortex relative to the right is related to approach motivation 

and emotions with positive valence (e.g., happiness, positive 

urgency), whereas greater activation of the right-frontal 

cortex relative to the left is associated with the brain 

processes related to avoidance motivation and negative 

emotional valence (e.g., depression, anxiety, withdrawal). 

FAA is suspected to reflect neural processes of the executive 

control systems and has been source-localized to the 

frontoparietal network [19]. 

The individual alpha frequency (IAF) refers to the frequency 

within the alpha band with dominant spectral power [24]. It 

is associated with cognitive performance [25], considered a 

trait-like characteristic of human EEG [26], has high 

heritability and test-retest reliability [27], [28], and better 

accounts for interindividual differences in alpha activity [24], 

[29]. It has been traditionally examined using the peak alpha 

frequency (PAF) approach, which takes the frequency with 

the highest alpha power within the alpha band [30]–[32]. 

However, it has been highlighted that this approach does not 

perform well in a large portion of the population (up to 44%) 

that displays absent, ambiguous, or “split” alpha peaks [24], 
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[33]. The alpha center of gravity (CoG) is considered a more 

robust approach to calculate the IAF by considering the 

whole alpha power distribution [24].  

The IAF may be used to estimate FAA. Since alpha power 

distribution can fall outside the traditional predefined range 

(8-13 Hz) for some individuals [32], asymmetry scores based 

on the IAF (instead of the traditional band) might better 

address interindividual differences and might therefore 

provide more accurate asymmetry indexes method for 

research and clinical applications [34], [35].  

IAFs and FAA seem like promising candidate measures for 

wearable EEG systems, as they require simple calculations in 

the frequency domain and a few EEG channels covering the 

frontal regions of each hemisphere. While these measures 

have not been validated using these systems against research-

grade EEG, wearable EEG systems have been used 

extensively over the past few years to measure frontal 

asymmetry, suggesting this measure is well-suited for these 

technologies [2], [36]–[45]. Wearable systems, when 

reliable, can offer advantages for researchers through easeful 

EEG data collection for over large samples, increased access 

to populations that are hard to study with conventional 

systems (e.g., children, elderly, patients), reduced hardware 

and software costs, and facilitated EEG research in real-world 

environments by increasing subjects’ mobility and streaming 

the data wirelessly [46].  

However, there is still a lack of validation of the data 

collected by such devices and the interpretation of the results 

based on the literature based on conventional higher-density 

systems and different referencing methods (i.e., linked-

mastoids or average reference). The reference method 

implemented for low-density wearable systems is of 

particular importance when considering measuring EEG 

asymmetry [47], [48]. Both IAF and FAA are promising EEG 

measures for neurofeedback applications [35], [49], which 

would benefit from mobile data collection. 

The present study tested whether the 4-channel wearable 

MUSE EEG system can quickly measure continuous EEG 

data with a maximum of 5-minute set-up and data collection 

time, that would yield quantifiable frequency components 

comparable to research-grade systems and if it can extract 

clinically relevant measures such as IAF and FAA.  

II. METHODS 

A. Participants 

Participants for this study were 40 English-speaking adults in 

the San Francisco Bay area. Exclusion criteria were: aged 

younger than 18 years old, unable to read, having an acute or 

chronic illness that interfered with the completion of the 

experiment, or being unable to sit on a chair for about 30 

minutes. Participants had their EEG recorded with a 64-

channel EEG system at the laboratory for another study (~2h 

session) and were asked if they wanted to volunteer a few 

more minutes of their time for an additional ~5 minutes EEG 

recording using the wearable headset. They were 

compensated only for their participation in the initial study. 

They gave informed consent, and the study was approved by 

the IONS Institutional Review Board. 

B. EEG data collection procedures 

EEG data were collected with the active dry MUSE 1 (version 

2016) at 256 Hz and a 64-channel gel-based BIOSEMI 

Active 2 system (BIOSEMI Inc.) at 512 Hz. Simultaneous 

recording of both systems was not possible due to their 

configurations. The MUSE data were recorded first, and then 

the BIOSEMI data about 30 minutes later, which 

corresponded to the time necessary to set up the BIOSEMI 

equipment and optimize channel impedance). A comparison 

of the two systems’ hardware specifications can be found in 

Table 1. For both systems, the participants’ skin was cleaned 

with alcohol wipes at electrode sites before positioning the 

headband/head cap.  

MUSE - A thin layer of water was applied to the dry 

electrodes with a sponge for both the frontal metallic sensor 

and the conductive silicone rubber mastoid sensors behind the 

ears to decrease the impedance and increase signal quality. 

The MindMonitor App [50] running on a Chromebook laptop 

was used to record the EEG signal and check electrode 

contact (a colored circle for each electrode was filled when 

the software deemed the connection acceptable). Visual 

examination of the raw EEG waveforms was also performed 

while participants were asked to generate eye blinks to 

provide an additional index of signal quality. The headset 

position was adjusted if the signal was judged too noisy by 

visual inspection of the data. 

BIOSEMI - Highly conductive electrolytes SignaGel was 

injected into the electrode sites of the BIOSEMI head cap. 

BIOSEMI active electrode offsets were kept below offset 20 

using the Actiview software. 

TABLE I. HARDWARE SPECIFICATIONS OF EACH SYSTEM 

 Biosemi Active Two InteraXon MUSE 

Electrode 

montage 
64 wet active electrodes (10-20 

system) 
4 dry active electrodes 

(AF7, AF8, TP9, TP10)b 

Sampling 

rate 
512 Hz 256 Hz 

Resolution 24 bits 12 bits 

Active 

electrode 

system 

Passive DRL and active CMS 

located around POz 
Passive DRL and active 

CMS located at Fpz 

Head sizes 3 different head cap sizes 

covering 54-62 cm  
Adjustable headband, 52-60 

cm range 

Recording 

apparatus 
Optic fiber and amplifier, 

MacBook Pro, Actiview 

Software 

Bluetooth on a low-cost 

Chromebook, Mind  
Monitor App 

Reference Reference freea Fpz 
a Data is reference-free at data collection time. A reference must be chosen when importing the data. 

Not choosing a reference led to a 40 dB loss of signal-to-noise (SNR) ratio. 
b Approximate positions.  

MUSE and BIOSEMI - Recordings were performed at the 

same location within the recording room, minimizing the 

differences in terms of potential electrical artifacts from the 

environment. One minute of data was recorded with eyes 

open gazing at the computer screen in front of them, and one 

minute was recorded with eyes closed. Half the participants 

did eyes open before eyes closed, and the other half did the 

reversed order to avoid carry-over effects. Participants were 

instructed to sit still on a chair, limit their movements, and 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.02.466989doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.02.466989
http://creativecommons.org/licenses/by-nd/4.0/


focus their attention on their breath by counting each 

inhalation/exhalation cycle. In this manuscript, we only 

process eyes’ closed data. 

C. EEG data preprocessing 

BIOSEMI data were imported into the EEGLAB processing 

software (v2021.1; [51]) using the BIOSIG plugin (v3.7.5). 

MUSE data were imported using the MUSEMonitor (v3.2) 

plugin of EEGLAB. BIOSEMI data were downsampled to 

256 Hz. Raw data were high-pass filtered with EEGLAB’s 

linear non-causal Finite Impulse Response (FIR) filter of the 

FIRFILT (v2.4) plugin (filter order = 1129; transition 

bandwidth = 0.75 Hz; passband edge = 0.75 Hz; -6 dB cutoff 

frequency = 0.375 Hz). No low-pass filter was used.  

Files were inspected visually for abnormal channels (bad 

connection, impedance, very high noise, flat sections from 

disconnections, etc.) and artifactual segments (eye and 

muscle artifacts, high-frequency bursts, etc.). Artifactual 

regions and channels were manually rejected. MUSE data 

files with at least 1 visually abnormal channel were removed. 

If the BIOSEMI or the MUSE file was shorter than 45 s, the 

participant data was also excluded from further analysis. 

Using these criteria, three out of 40 data files were excluded. 

The traditional method to compute frontal alpha asymmetry 

(FAA) is to calculate the difference in log-transformed alpha 

power between the frontal electrodes F7 and F8 on 64-

channel EEG data [47], [48]. While the linked-mastoids 

reference method has been used extensively in the EEG 

asymmetry literature, average-referencing was shown to be 

preferable to estimate FAA [47]. Thus, spectral measures 

were obtained on BIOSEMI data referenced to the average 

(called the “average-ref montage” in this study) and on 

BIOSEMI re-referenced to mastoids (called the “mastoid-ref 

montage”). With 4 electrodes, an average reference is not 

meaningful for the MUSE system since it requires a whole-

head electrode coverage. The default reference channel for 

the MUSE is Fpz which is close to the frontal channels AF7 

and AF8, and leads to low signal amplitude on these channels. 

Thus, the MUSE frontal channels were re-referenced to the 

TP9/TP10 mastoid electrodes (the two other channels 

available on the MUSE), termed in this study the “mastoid-

ref montage” (AF7 and AF8 with linked mastoid reference)”. 

This reference method has been widely used in the 

asymmetry literature (e.g., [47], [52]).  

To assess if spectral measures obtained with the MUSE 

mastoid-ref montage are reliable and interpretable in terms of 

underlying neural activity, we tested whether they were 

comparable to those obtained with the BIOSEMI mastoid-ref 

montage and the BIOSEMI average-ref montage. 

D. Power spectral density (PSD) 

Power spectral density (PSD) was computed using the pwelch 

function in MATLAB 2021a (The MathWorks Inc., MA, 

United States) for each EEG channel on 4-second hamming 

windows, with 50% overlap and 200% padding (taking into 

account data discontinuity due to excluded artifactual 

regions). The mean was removed from PSD data, and they 

were converted to decibels (10*Log10(power)) [48]. Mean 

PSD was extracted for each frontal channel for each 

frequency band: delta (1-3 Hz), theta (3-7 Hz), alpha (8-13 

Hz), beta (14-30 Hz), and gamma (>30 Hz). Then, the 

average between the two channels was used for analyses.  

E. Individual alpha frequency (IAF) 

Both the peak alpha frequency (PAF) and the alpha center of 

gravity (CoG) were estimated using the open-source and 

automated restingIAF toolbox (v1.0.2; [24]). This method 

uses curve-fitting algorithms, zero-crossing, and Savitzky-

Golay Filter (SGF) smoothing techniques (same parameters 

as above for PSD estimation, a minimum of 1 required 

channel to estimate PAF and CoG, and the default values for 

the other parameters). 

F. Frontal alpha asymmetry 

Three methods were used to calculate alpha asymmetry:  
 Traditional method: the difference between the frontal 

channels on alpha power (in dB) averaged over the 8-

13 Hz band (mean_alpha_right - mean_alpha_left).  

 PAF-asymmetry. Same as above but on power at the peak 

alpha frequency (PAF).  

 CoG-asymmetry. Same as above but on power at the 

alpha center of gravity (CoG). 

G. Internal consistency reliability 
Previous research showed that reliable asymmetry values can 

be obtained with as little as 80 seconds of data [53]. To 

confirm internal consistency reliability of the asymmetry 

measures with the different montage methods and with very 

short segments of data (45 seconds for the shortest file after 

data cleaning), mean alpha power and FAA (traditional 

method only) were also computed for each montage on 

eleven 4-s blocks of data (mean for each block). Internal 

consistency reliability of alpha PSD and FAA was evaluated 

using Cronbach’s standardized alpha on the blocks of spectral 

data [54], [55]. Values >.8 indicate high internal consistency 

reliability and <.3 indicate low internal consistency 

reliability; [53].  

H. Statistics 

All spectral measures were compared using the skipped 

Pearson correlation from the open-source Robust Correlation 

MATLAB toolbox [56]. Skipped Pearson correlations detect 

and remove bivariate outliers using the minimum covariance 

determinant (MCD) estimator, and better control for the type 

I error by accounting for their deletion when testing for 

significance, and by using bootstrapped 95% confidence 

intervals (CI; [56]–[58]). If the CI encompasses 0, then the 

null hypothesis (H0) of independence cannot be rejected. 

This approach is less sensitive to heteroscedasticity (i.e., 

change in the spread of the residuals over the range of 

measured values leading to biased results) and therefore more 

robust against the type I error [56], [57]. Rejections of H0 at 

the 95% confidence level (i.e., significant correlations) are 

reported next to the skipped Pearson correlation r coefficient 

scores with * (i.e., p < 0.05). Bivariate outliers correspond to 

the red observations in the plots. The red line correspond to 

the least square fit line, and the red shaded areas correspond 

to the 95% CI.  
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III. RESULTS 

A. Internal consistency reliability 

The following Cronbach’s alpha scores were obtained for 

frontal alpha power (.98 -  BIOSEMI average-ref montage; 

.95 - MUSE mastoid-ref montage) and frontal alpha 

asymmetry (.67 - BIOSEMI average-ref montage; .76 - 

MUSE mastoid-ref montage).  

B. Power spectral density (PSD) for each frequency band 

The averaged PSD of each frequency band was first 

compared between the BIOSEMI mastoid-ref montage and 

the MUSE mastoid-ref montage. All frequency bands were 

significantly correlated between the two montages: delta (1-

3 Hz, r = .59*, CI [0.38, 0.75]), theta (3-7 Hz, r = .73*, CI 

[0.55, 0.85]), alpha (8-13 Hz, r = .87*, CI [0.77, 0.93]), beta 

(14-30 Hz, r = .84*, CI [0.70, 0.91]), and gamma (>30 Hz, r 

= 0.48*, CI [0.19, 0.69]). These results are plotted in Fig. 1.  

 

 
 

Correlations between PSD estimates from MUSE mastoid-ref 

montage and those from BIOSEMI average-ref montage are 

reported in Fig. 2. Significant correlations were observed for 

the delta (r = .47*, CI [0.19, 0.69]), the theta (r = .63*, CI 

[0.43, 0.78]), the alpha (r = .80*, CI [0.65, 0.90], and the beta 

(r = .74*, CI [0.58, 0.86]) bands. However, the correlation 

was not significant for the gamma band (r = .17, CI [-0.13, 

0.50]).  
 

 
 

C. Individual alpha frequency (IAF) 

IAFs estimated on BIOSEMI mastoid-ref montage were 

significantly correlated with those obtained on MUSE 

mastoid-ref montage (Fig. 3, left), for both PAF (r = .91*, CI 

[0.79, 0.97]) and CoG (r = .78*, CI [0.64, 0.88]). However, 

PAF could not be estimated on BIOSEMI for 7 files, and for 

MUSE on 13 files. CoG could not be estimated on BIOSEMI 

data for 5 files and on MUSE data for 4 files.  
 

Correlations between IAF for the BIOSEMI average-ref 

montage and the MUSE mastoid-ref montage (Fig. 3, right) 

were also significant for both estimation methods: PAF (r = 

.95*, CI [0.86, 0.98]) and CoG (r = .84*, CI [0.69, 0.93]). 

However, the automated algorithms could not detect the PAF 

for 18 files (11 on BIOSEMI data and 13 on MUSE data) and 

the CoG for 6 files (5 for BIOSEMI and 4 for MUSE).  

 

 

D. Frontal alpha asymmetry (FAA) 

The three methods to compute FAA were significantly 

correlated between BIOSEMI and MUSE with the same 

mastoid-ref montage: traditional asymmetry (r = .67*, CI 

[0.40, 0.93]), PAF-asymmetry (r = .35*, CI [0.7, 0.62], CoG-

asymmetry (r = 0.42*, CI [0.05, 0.69]). These results are 

plotted in Fig. 4. 

 

Finally, FAA measures were compared between 

the  BIOSEMI average-ref montage and the MUSE mastoid-

ref montage and are plotted in Fig. 5. FAA calculated on the 

average power over the whole alpha band (i.e., traditional 

method) was significantly correlated (r = .37*, CI [0.06, 

0.60]). However, asymmetry scores calculated on power at 

the PAF (r = .12, CI [-0.24, 0.44]) and at the CoG (r = .26, CI 

[-0.02, 0.55]) were not significantly correlated.  

 
Fig. 1. Correlations between BIOSEMI (mastoid-ref montage) and 

MUSE (mastoid-ref montage) of mean power spectral density (PSD) for 

each frequency band: delta (1-3 Hz), theta (3-7 Hz), alpha (8-13 Hz), 

beta (14-30 Hz), and gamma (> 30 Hz). All frequency bands were 

significantly correlated. Statistics are reported in the text of the Results 

section. Red dots are bivariate outliers accounted for by the skipped 

Pearson correlations. The red line is the least-squares fit line. Shaded 

areas are the 95% confidence intervals. The power spectral density 

(PSD) unit is deciBels (10*log10(μV2/Hz)).  

 
Fig. 2. Correlations between BIOSEMI (average-ref montage) and 

MUSE (mastoid-ref montage) of mean power spectral density (PSD) for 

each frequency band: delta (1-3 Hz), theta (3-7 Hz), alpha (8-13 Hz), 

beta (14-30 Hz), and gamma (> 30 Hz). All frequency bands except 

gamma were significantly correlated. Statistics are reported in the text 

of the Results section. Red dots are bivariate outliers accounted for by 

the skipped Pearson correlations. The red line is the least-squares fit 

line. Shaded areas are the 95% confidence intervals. The power spectral 

density (PSD) unit is deciBels (10*log10(μV2/Hz)).  

 
Fig. 3. Left: Correlations between BIOSEMI (mastoid-ref montage) 

and MUSE (mastoid-ref montage) of individual alpha frequency (IAF). 

Right:between BIOSEMI (average-ref montage) and MUSE (mastoid-

ref montage). All estimates using both the peak alpha frequency (PAF) 

and the alpha center of gravity (CoG) were significantly correlated 

between the two systems and montages. Statistics are reported in the text 

of the Results section. Red dots are bivariate outliers accounted for by 

the skipped Pearson correlations. The red line is the least-squares fit 

line. Shaded areas are the 95% confidence intervals. The power spectral 

density (PSD) unit is deciBels (10*log10(μV2/Hz)).  

 
Fig. 4. Comparison of frontal alpha asymmetry measures from 

BIOSEMI mastoid-ref montage and MUSE mastoid-ref montage. The 

three forms of frontal alpha asymmetry were significantly correlated 

between the two systems. Statistics are reported in the text. Red dots are 

bivariate outliers accounted for by the skipped Pearson correlations. 

The red line is the least-squares fit line. Shaded areas are the 95% 

confidence intervals. The power spectral density (PSD) unit is deciBels 

(10*log10(μV2/Hz)).  
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IV. DISCUSSION 

A. Results and interpretations 

When comparing MUSE mastoid-ref montage with 

BIOSEMI mastoid-ref montage, all spectral measures 

significantly correlated, indicating that this low-cost 

wearable EEG system can accurately capture these frequency 

components and that interpretations are in line with the 

literature using mastoid-ref montages can be made. However, 

correlation coefficients and CIs indicate that the traditional 

method to calculate frontal alpha asymmetry should be 

preferred relative to the PAF- and CoG- asymmetry methods.  

When comparing MUSE mastoid-ref montage with 

BIOSEMI average-ref montage, PSD (in all frequencies 

beow 30 Hz), IAF, and FAA (traditional method) were 

significantly correlated, indicating that the MUSE can be 

used to examine these measures and interpret the findings in 

line with the literature using the average-ref montages (i.e., 

F7 and F8 sites referenced to average). PAF- and CoG- 

asymmetry measures were not significantly correlated, 

indicating they should only be interpreted in the mastoid-ref 

montage context.  

These latter findings may suggest that: 

1. The automated toolbox used for IAF-estimation does not 

perform well on low-density sparse montages and is 

better suited for higher density montages (since it can use 

neighboring channels to improve detection performance; 

[24]). Channels referenced to average may have 

contained alpha spectral components from other 

channels that were not captured by the mastoid-ref 

montage. IAF measures (PAF and CoG) could not be 

estimated for some files, which could have reduced 

statistical power compared to the traditional measures. 

However, the superior performance of the CoG method 

compared to the PAF method was apparent since it was 

able to find IAF in many more participants.  

2. The traditional asymmetry method is more robust and 

grounded in theory (independently of the montage). 

Previous research suggested that EEG asymmetry is 

influenced by different neural processes between the 

lower and the upper frequencies of the alpha band [32]. 

Thus, while IAFs better account for interindividual 

differences and are associated with some cognitive 

processes (e.g., memory), they might reflect different 

underlying neural processes than those underlying alpha 

asymmetry (e.g., executive control, attention, emotion 

regulation). Thus IAF-asymmetries might not be well-

suited for asymmetry calculation.  

B. Limitations 

The first limitation of this study is the 30 minutes difference 

between the two recordings. Mental states may likely have 

changed between the two recordings. However, correlations 

were still significant when comparing the MUSE and the 

BIOSEMI with the same mastoid-ref montage, suggesting 

trait spectral components were still captured. Ideally, both 

types of data should have been recorded simultaneously using 

markers to synchronize the data at the millisecond resolution. 

While this was not possible for this study, future studies 

should aim to record both systems simultaneously. 

Second, FAA during rest was previously estimated to vary 

~60% from trait influence and 40% from state influences 

[59], the former being the target measure in this study. While 

internal consistency reliability of asymmetry measures was 

relatively high, more variation and lower values were 

observed compared to the internal consistency reliability of 

the alpha power data (as in previous publications; [53]). 

Increasing the data length (e.g., 3 minutes of artifact-free 

data) might increase the trait influence by reducing the 

fluctuations due to state influences, and in turn, increase 

internal consistency reliability. We purposely used short 

segments to determine if they could be easily and reliably 

used in experimental and clinical conditions, but we did not 

compare different data lengths and their impact on these trait 

EEG measures. Future studies should compare asymmetry 

measures from a clinical system and a low-cost wearable 

system (as in this study) with longer data lengths to address 

this potential limitation.  

The absence of correlation in the higher frequencies (PSD > 

30 Hz) when comparing MUSE with BIOSEMI average-ref 

montage but not mastoid-ref montage may suggest that these 

frequencies may reflect field potentials from other brain 

processes when referenced to average than those captured 

with the mastoid-ref montage. Thus, these frequencies should 

only be interpreted in the mastoid-ref montage context when 

uing this system.  

C. Recommendations for research and clinical MUSE 

recordings 

Recommendations for using the MUSE in future clinical and 

experimental research are as follows: 
 Eye’s closed recordings of at least 1 minute (ideally 5 if 

time allows), corresponding to a total preparation and 

recording time of about 3 minutes (about 8 for 5-minute 

recordings). 

 Cleaning the participants’ skin with alcohol wipes and 

wetting the dry electrodes to reduce impedance. 

 Manual exclusion of channels and bad data portions after 

data collection (or validation of an automated method on 

this system’s signal).  

 Re-referencing the data to linked mastoid electrodes (i.e., 

TP9/TP10). 

 Using measures found to be reliable with this system: 

PSD<30 Hz, traditional FAA, and the IAF (in particular 

the CoG).  

 
Fig. 5. Comparison of frontal alpha asymmetry measures from 

BIOSEMI average-ref montage and MUSE mastoid-ref montage. Alpha 

asymmetry calculated using the traditional method (on average power 

over the whole alpha band) was significantly correlated between the two 

systems. However, asymmetry scores calculated on the PAF and CoG 

power were not significantly correlated. Statistics are reported in the 

text. Red dots are bivariate outliers accounted for by the skipped 

Pearson correlations. The red line is the least-squares fit line. Shaded 

areas are the 95% confidence intervals. The power spectral density 

(PSD) unit is deciBels (10*log10(μV2/Hz)).  
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 Robust statistical methods should be used to better 

account for outliers and higher noise in the spectral 

estimates that might occur more frequently using this 

montage and system (e.g., skipped correlations, 

iteratively reweighted least squares regressions or 

weighted least squares regressions). 

V. CONCLUSION 

Our study validates the use of the low-cost MUSE headset for 

accurately and reliably measuring PSD, IAFs, and FAA 

(calculated on the whole band). This system can help advance 

human neurophysiological monitoring techniques on large 

datasets using wearable neurotechnologies and increase the 

feasibility of their implementation into real-world 

applications. 
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