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Abstract

The joint analysis of imaging-genetics data facilitates the systematic investigation
of genetic effects on brain structures and functions with spatial specificity. We focus on
voxel-wise genome-wide association analysis, which may involve trillions of single nu-
cleotide polymorphism (SNP)-voxel pairs. We attempt to identify underlying organized
association patterns of SNP-voxel pairs and understand the polygenic and pleiotropic
networks on brain imaging traits. We propose a bi-clique graph structure (i.e., a set
of SNPs highly correlated with a cluster of voxels) for the systematic association pat-
tern. Next, we develop computational strategies to detect latent SNP-voxel bi-cliques
and inference model for statistical testing. We further provide theoretical results to
guarantee the accuracy of our computational algorithms and statistical inference. We
validate our method by extensive simulation studies, and then apply it to the whole
genome genetic and voxel-level white matter integrity data collected from 1052 par-
ticipants of the human connectome project (HCP). The results demonstrate multiple
genetic loci influencing white matter integrity measures on splenium and genu of the
corpus callosum.

Keywords: bi-clique, imaging-genetics, graph, ultra-high dimensionality, voxel-wise GWAS,
white matter integrity
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1 Introduction

Imaging-genetics has garnered increased interest in the field of neuropsychiatric research

as it provides a viable pathway to understand brain diseases by integrating genetic, brain

imaging, and environmental factors. The joint analysis of imging-genetics data reveals the

genetic effects on spatially specific brain functions and structures (Ge et al., 2013; Liu and

Calhoun, 2014; Nathoo et al., 2019; Smith et al., 2021; Zhao et al., 2019, 2021; Zhu et al.,

2014). Identifying genetic effects on objectively measured high-resolution imaging traits can

enhance understanding the complex genetic and neurological mechanisms of neuropsychiatric

disorders.

In imaging-genetics studies, both brain imaging data and genome sequence are measured

for each participant. The genetic measurements can characterize genetic variations using

single nucleotide polymorphism (SNP) and copy number variants (CNVs). The non-invasive

brain imaging techniques assess the brain structures by magnetic resonance imaging (MRI),

diffusion tensor imaging (DTI), and brain functions by functional magnetic resonance imag-

ing (fMRI). The recent development of neuroimaging technology provides high-resolution

imaging data with improved spatial specificity and thus can better assess the genetic effects

on brain structures and functions.

The statistical analysis of imaging-genetics data is computationally intensive and method-

ologically challenging. These challenges mainly rise from the combination of two sets of

high-dimensional features: multivariate imaging traits with multivariate genetic variants.

Moreover, both imaging traits and genetic variants exhibit complex and organized depen-

dence structure reflecting the underlying neurophysiological mechanisms and linkage dise-

quilibrium patterns (Nathoo et al., 2019). For example, a typical imaging-genetics study

collects up to 107 SNPs and 105 voxels, jointly contributing trillions (1012) of SNP-voxel

pairs (Huang et al., 2015, 2017). The direct application of classic voxel-wise genome-wide

association analysis (vGWAS) may require an enormous sample size (e.g., multiple millions

of participants) to control the false positive error rate while maintaining adequate statistical
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power (Ge et al., 2012, 2015; Hibar et al., 2011; Stein et al., 2010).

Furthermore, advanced methods have been developed to leverage group sparsity by tech-

niques including regularization, low rank techniques and projection of high-dimensional fea-

tures (Chi et al., 2013; Greenlaw et al., 2017; Hardoon et al., 2009; Kong et al., 2020; Le Floch

et al., 2012; Liu et al., 2009; Wang et al., 2012; Vounou et al., 2010, 2012; Zhu et al., 2014).

However, while these methods could gain statistical power by jointly modelling genetic vari-

ants and imaging traits through a multivariate regression model, the high dimensionality

of imaging-genetics data remains challenging due to computational burdens and/or over-

fittings. The results from summarized measures as a few latent variables or a coarser scale

are less interpretable or lacking the spatial specificity (Liu and Calhoun, 2014).

In this study, we propose a new multivariate to multivariate method to systematically

investigate the SNP-voxel association patterns with four aims: identify voxel clusters as

genetically correlated imaging traits, detect functionally related SNP sets, understand the

SNP-voxel association patterns as polygenic and pleiotropic relationships, and test the as-

sociation patterns while controlling multiplicity. Specifically, we consider genetic variants

and imaging voxels as two disjoint sets of nodes, correspondingly, and associations between

all SNP-voxel pairs as edges in a bipartite graph. We model the polygenic and pleiotropic

SNP-voxel association structure as an imaging-genetics dense bi-clique (IGDB). IGDB is a

node-induced subgraph consisting of a subset of SNPs and a subset of voxels, where the pos-

sibility of a SNP associated with a voxel is much elevated than the rest of graph. Within an

IGDB, each voxel can be considered as a polygenic imaging trait, and a SNP as a pleiotropic

genetic variant. The existence of the polygenic and pleiotropic SNP-voxel association struc-

ture can be evaluated against a random bipartite graph. We then develop computationally

efficient algorithms to extract the IGDB structure from the bipartite graph mixture model

and thus provide sound estimates of parameters in the mixture model. Our inference on

IGDB is constructed via likelihood based statistic on the bipartite graph mixture model,

and thus can improve statistical power with controlled family-wise error rate.
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Figure 1: Data structure for vGWAS
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2 Motivating Data Example

The Human Connectome Project (HCP) sponsored by National Institutes of Health (NIH)

aims to construct the underlying neuro pathways with healthy human brain functions. It is an

important public resource for structural and functional brain connectivity data, accompanied

by demographic, behavioral, genetic and other data. In this study, we focus on the brain

imaging and genetics data in the HCP surveyed from 1052 participants (F/M 483/569; age

28.1±3.7), for whom the scans and data were released in June 2014 (humanconnectome.org)

that passed the HCP and ENIGMA quality control and assurance standards (Marcus et al.,

2013). The participants in the HCP study were recruited from a large population-based

study named “the Missouri Family and Twin Registry” (Van Essen et al., 2013).

The fractional anisotropy (FA) measure, derived from diffusion tensor imaging (DTI), is

a widely-used brain structural connectivity metric for studying the white matter microstruc-

ture. Previous studies have investigated the heritability quantitatively through variance

components method of pedigrees (Jahanshad et al., 2013; Kochunov et al., 2014). They find

that 70% to 80% of the total phenotypic variance of tract-wise FA measures can be explained

by additive genetic factors (Kochunov et al., 2015). The significantly and reliably hertiable

FA measurements are qualified as a set of endophenotypes which suggests to further spec-

ify genetic variants associated with these traits. Hence, the genetic analysis is desirable to

detect the genetic effect from specific loci on imaging traits with statistical inference. More-

over, it is reported that FA measurements at multiple brain locations can be affected by a

common set of genetic variates (Zhao et al., 2021). FA is a complex trait determined by

multiple alleles. It stimulates the identification of functionally-related genetic variants. This

investigation naturally invokes the search for polygenity and pleiotropy networks as the focus

of this study. Voxel-level association analysis between imaging traits and genetic variants

can provide the maximal spatial resolution. Nevertheless, the implementation is challenging

because it requires a multivariate to multivariate association analysis to extract SNP-voxel

subnetworks with polygenic and pleiotropic structures and further to provide sound statisti-
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cal inference. To close this gap, we develop an IGDB-based framework to perform voxel-vise

GWAS and systematically identify polygenic and pleiotropic structures.

3 Methods

3.1 Background and notations

We consider an imaging-genetics data set collected from L independent subjects. We let

V be the set of brain imaging voxels with |V | = n and U be the set of genetic variants

(i.e., SNPs) with |U | = m. For each participant l ∈ {1, ..., L}, define xl = (x1,l, ..., xm,l)
T

to be the genetic variants for the participant l and yl = (y1,l, ..., yn,l)
T to be the vector of

multivariate imaging traits. Let zl denote a p-dimensional vector of individual-level profiling

covariates We model the associations between multivariate imaging traits and multivariate

genetic variants using a generalized linear regression model:

E(yl|xl) = g−1(BTxl +αTzl),

where g(·) is a known link function with inverse g−1(·), and the coefficientB = {βuv}u∈U,v∈V ∈

Rm×n is called the SNP-voxel association matrix. The goal of our statistical inference is to

accurately identify the subset of significant associations {(u, v) : βuv 6= 0} based on multi-

variate to multivariate hypothesis testing (Benjamini and Hochberg, 2000; Efron, 2012):

H
(u,v)
0 : βuv = 0, versus H

(u,v)
1 : βuv 6= 0, for all u ∈ U, v ∈ V.

Conventional statistical inference methods (e.g., multiple testing correction or regression

shrinkage) work by regularizing vectorized B. However, this strategy may only capture indi-

vidual association pairs βuv without recognizing systematic patterns (e.g., the pleiotropic and

polygenic structure). A prominent example is that a cluster of SNPs may jointly influence

the observations on a cluster of neighboring voxels. To address this challenge, we propose a
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new multivariate to multivariate inference framework that extracts the joint structure in B,

which we call imaging-genetics dense bi-clique (IGDB). Next, we introduce the IGDB struc-

ture, based on which, we then formally propose a novel estimation and inference procedure

on this structure.

3.2 IGDB in a multivariate to multivariate graph structure

We characterize the vGWAS association as a bipartite graph G = (U, V,E), where U and V

are distinct node sets representing SNPs and voxels, respectively. The set of binary edges E

describes the locations of significant SNP-voxel associations: euv ∈ E if and only if βuv 6= 0

in the association matrix B = {βuv}u∈U,v∈V . In contrast to conventional approaches that

treat edges euv individually, our proposal provides a succicint description of pleiotropic (one

SNP to multiple image voxels) and polygenic (multiple SNPs to one voxel) relationships. To

this end, we now formally propose IGDB as a subgraph structure of G. Denote an arbitrary

subgraph of G by G[S, T ] = (S, T,E[S, T ]), where S ⊂ U , T ⊂ V and E[S, T ] = {euv ∈

E|i ∈ S, j ∈ T}. Our proposed IGDB will be defined based on some particular subgraph

G[S0, T0] such that most βuv’s are nonzero for euv ∈ G[S0, T0], while most βu′v′ ’s elsewhere

are zero. Our core intuition can be quantified into the following formulation:

∑
u,v I(βuv 6= 0|δuv = 1)∑

u,v I(δuv = 1)
>

∑
u,v I(βuv 6= 0|δuv = 0)∑

u,v I(δuv = 0)
, (1)

where δuv is a binary variable indicating the IGDB-based network structure, i.e.,

δuv ≡ δuv(S0, T0) = I(euv ∈ G[S0, T0]).

This reflects that imaging features (T0) are polygenic traits and the genetic variants (S0) are

pleiotropic alleles. The genetically correlated imaging features and functionally related SNPs

jointly compose a functional biclique G[S0, T0]. In neuroimaging studies, findings are often

reported for spatially contiguous brain areas (i.e., connected voxels) because of the biological
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interpretability and inference advantages (Woo et al., 2014). This is reflected in our proposed

IGDB structure by further formulating S0 and T0 as disjoint vertex neighborhoods, as follows:

S0 = N S0
1 ∪ ... ∪N S0

K1
, and T0 = N T0

1 ∪ ... ∪N T0
K2
,

where each N T0
k (k ∈ {1, · · · , K2}) is a spatially contiguous voxel cluster, and accordingly

N S0
k (k ∈ {1, · · · , K1}) is a set of functionally related SNPs associated with one or multiple

spatially-contiguous voxel clusters (e.g., N T0
k ). In the next subsection, we articulate that the

IGDB enjoys several statistical advantages supported by graph and combinatorics theory.

Figure 2: Illustration of a bipartite graph with IGDB structure G[S0, T0]. The right subfigure
highlights G[S0, T0] in G with nodes reordered.
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3.3 Graph properties of IGDB

Without loss of generality, we consider the following two cases regarding the underlying

network structure of G:

Case 0 : G is observed from a random bipartite graph G(m,n, µ0),

Case 1 : There exists at least one non-trivial IGDB G[S0, T0] such that G is observed from

euv = I(βuv 6= 0) ∼


Bernoulli(µ1), if u ∈ S0 & v ∈ T0

Bernoulli(µ0), otherwise

with µ1 > µ0.

In Case 0 (i.e., no polygenic and pleiotropic patterns), we can directly implement the

conventional multiple testing corrections and regression shrinkage methods to determine

individual associations between genetic variants and imaging traits. If Case 1 presents, our

primary goal becomes to extract and test the underlying IGDB subgraphs as polygenic and

pleiotropic subnetworks.

In practice, the estimated IGDB from a sample can be used to distinguish Case 0 versus

Case 1 because the observed network behave differently under two cases on the size of the

maximal “dense” subgraph. For convenience, we call a subgraph G[S, T ] a γ-quasi biclique,

if it contains at least γ · |S| · |T | edges. Then, asymptotically, if |S0|, |T0| → ∞ as m,n→∞,

with high probability, the true IGDB subgraph G[S0, T0] would be a γ-quasi biclique for any

fixed γ ∈ (µ0, µ1). In contrast, under Case 0, there would rarely exist a γ-quasi biclique of

decent size with high density as the following lemma.

Lemma 1. Suppose G is observed from a random bipartite graph G(m,n, µ0) as Case 0.

G[S, T ] is any subgraph with edge density |E[S,T ]|
|S||T | ≥ γ ∈ (µ0, 1) (i.e., γ-quasi biclique).

Let m0, n0 = Ω(max{mε, nε}) for some 0 < ε < 1. Then for sufficiently large m,n with
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c(γ, µ0)m0 ≥ 8 log n and c(γ, µ0)n0 ≥ 8 logm, we have

P (|S| ≥ m0, |T | ≥ n0) ≤ 2mn · exp

(
−1

4
c(γ, µ0)m0n0

)
,

where c(a, b) =
{

1
(a−b)2 + 1

3(a−b)

}−1
.

4 Estimation and Inference

Let Wm×n denote the inference result matrix (e.g., test statistics wuv = tuv or − log(puv))

for the regression coefficients B̂m×n. Then, our goal becomes to extract and test the IGDB

structure from a weighted bipartite graph G = (U, V,W ). Similar to Efron (2012), as a

natural consequence of our model set up in Section 3.2, edge weights in W follow a mixture

marginal distribution:

wuv ∼


f1(·;θ1), if βuv 6= 0

f0(·;θ0), if βuv = 0.

(2)

where wuv|δuv = 1 ∼ µ1f1 + (1− µ1)f0, while wuv|δuv = 0 ∼ µ0f1 + (1− µ0)f0. Empirically,

we have the central tendency of f1(·;θ1) being greater than f0(·;θ0), in the sense that

Eθ1 [wuv|βuv 6= 0] > Eθ0 [wuv|βuv = 0].

4.1 IGDB estimation

Motivated by the nature of IGDB as a subgraph of elevated mean edge weights, we estimate

it by looking for the maximal subgraph of G with a density constraint. Inspired by Lemma

1, we estimate the IGDB G[S0, T0] based on the edge weight matrix W by optimizing:

max
S⊆U,T⊆V

|S||T | subject to
‖W [S, T ]‖1,1
|S||T |

≥ γ′ (3)
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or the Lagrangian form after taking logarithm on both terms:

max
S⊆U,T⊆V

log(|S||T |) + λ log

(
‖W [S, T ]‖1,1
|S||T |

)
, (4)

where ‖ · ‖1,1 refers to the entry-wise `1 norm such that ‖W [S, T ]‖1,1 =
∑

u∈S,v∈T |wuv|, γ′ is

the density constraint and the tuning parameter λ ∈ (1,∞).

The direct optimization of the objective function (4) is challenging because it is a nonde-

terministic polynomial (NP) problem (Charikar, 2000; Khuller and Saha, 2009). We propose

a computationally efficient greedy algorithm to approximately carry out the optimization of

(4). We describe the greedy algorithm as Algorithm 1 in the following. In designing it, we

extended the greedy algorithms for dense subgraph discovery (Khuller and Saha, 2009) in an

adjacency matrix to a large bipartite matrix to extract dense bi-cliques. The computational

complexity of Algorithm 1 is O(C1mn), where C1 is determined by the grid search of h (i.e.,

|S|/|T |) in the following Algorithm 1.

Algorithm 1 Direct optimization of objective function (4)

Input: G = (U, V,E,W ), λ
Output: G[S̃λ, T̃λ]

1: procedure Algorithm
2: for h ∈ {h1, h2, ..., hL} do
3: S1 ← U , T1 ← V
4: for k=1 to n+m− 1 do
5: Let i ∈ Sk be the node with smallest degree: i = arg mini′∈Sk degX(i′;Sk, Tk);
6: Let j ∈ Tk be the node with smallest degree: j = arg minj′∈Tk degY (j′;Sk, Tk);

7: if
√
d degX(i;Sk, Tk) ≤ 1√

d
degY (j;Sk, Tk) then

8: Sk+1 ← Sk/{i} and Tk+1 ← Tk;
9: else

10: Sk+1 ← Sk and Tk+1 ← Tk/{j};
11: end if
12: end for
13: Output G[Sh, T h] with largest objective function in

G[S1, T1], ..., G[Sn+m−1, Tn+m1 ];
14: end for
15: Output G[S̃λ, T̃λ] with largest objective function in G[Sh1 , T h1 ], ..., G[ShL , T hL ];
16: end procedure
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Now we establish approximation accuracy results of Algorithm 1 and its estimation of

IGDB. Let S∗λ and T ∗λ be the true optimal solution to (4):

(S∗λ, T
∗
λ ) = arg max

S⊂U,T⊂V
dλ(S, T ),

and (S̃λ, T̃λ) is from Algorithm 1 with

(S̃λ, T̃λ) = arg max
h

arg max
(S1,T1),...,(Sm+n−1,Tm+n−1)

dλ(S, T ),

where dλ(S, T ) := log(|S||T |) + λ log
(
‖W [S,T ]‖1,1
|S||T |

)
.

The greedy algorithm with average-degree based density (or equivalently λ = 2) is

said to have a 2-approximation guarantee for the true optimal (Charikar, 2000), namely,

2d2(S̃2, T̃2) > d2(S
∗
2 , T

∗
2 ). In this article, we present the approximation bounds for the pro-

posed objective function (4) in terms of a parameter λ as the following Theorem 1.

Theorem 1. For a given bipartite graph G = (U, V,E), with (S∗λ, T
∗
λ ) and (S̃λ, T̃λ) defined

in Section 3.1.1, the greedy algorithm 1 has a ρ(λ,m, n)-approximation, i.e., dλ(S
∗
λ, T

∗
λ ) ≤

ρ(λ,m, n)dλ(S̃λ, T̃λ) with

ρ(λ,m, n) =


2(mn)

1
λ(1− 2

λ) if λ ≥ 2

2(mn)(
1
λ
− 1

2) if 4
3
< λ < 2

(mn)(1−
1
λ). if 1 < λ ≤ 4

3

In Theorem 2, we state that the optimization of the proposed objective function (4)

asymptotically leads to almost full recovery of the IGDB-based network structure.

Theorem 2. Assume the graph G = (U, V,E) with an IGDB G[S0, T0] = (S0, T0, E[S0, T0]) is

generated from mixture of Bernoulli distributions: euv ∼ δuvBernoulli(π1)+(1−δuv)Bernoulli(π0),
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δuv = I(euv ∈ G[S0, T0]) and π1 > π0. For simplicity, we let m = Θ(n). Assume |S0| =

O(|m|1/2+ε) and |T0| = O(|n|1/2+ε) as n→∞ for some ε > 0. Denote

eS =

(
1− S̃λ ∩ S0

S0

)
+

(
1− S̃cλ ∩ Sc0

Sc0

)

and

eT =

(
1− T̃λ ∩ T0

T0

)
+

(
1− T̃ cλ ∩ T c0

T c0

)

to be the error rates of node memberships based on (S̃λ, T̃λ) from Algorithm 1. Then, there

exists some λ such that we will get almost full recovery in Algorithm 1, i.e. for any fixed

a ∈ (0, 1), as n→∞, we have

P(eS + eT ≥ a)→ 1.

In practice, the tuning parameter λ can be objectively selected by a likelihood method

(see the web Appendix A for details). Based on each dense subgraph G[S, T ], we further

identify spatially-contiguous voxel clusters (i.e., Ñ T
k , k = 1, , , , K̃2), and a corresponding set

of SNPs (i.e., Ñ S
k , k = 1, , , , K̃1) that are functionally associated with voxel clusters (see Web

Appendix A). Last, multiple IGDBs can be extracted by performing algorithms repeatedly

with the detected IGDBs masked (Cheng and Church, 2000).

4.2 Statistical inference of the IGDB

Recall that the purpose of this study is to perform statistical inference on the pleiotropic and

polygenic association pattern or the IGDB. We investigate the significance of the presence

of an IGDB against a random bipartite graph (Case 1 vs. Case 0) as illustrated in Section

3.3. Let r be a sound cutoff that dichotomize the weighted graph G into a binary graph

Gr = (U, V,A) using auv = I(|wuv| > r). Then, under IGDB structure indexed by node sets
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(S0, T0), the edges in Gr follow a mixture of two Bernoulli distributions:

auv|(S0, T0) ∼ Bernoulli(πuv) (5)

where πuv = δuvπ1 + (1 − δuv)π0 with π1 = µ1

∫∞
r
f1(w,θ1)dw + (1 − µ1)

∫∞
r
f0(w,θ0)dw,

π0 = µ0

∫∞
r
f1(w,θ1)dw + (1− µ0)

∫∞
r
f0(w,θ0)dw, and π1 > π0. Then, a hypothesis testing

to distinguish Case 0 and Case 1 can be proposed:

H0 : π1 = π0 = π versus H1 : π1 > π0,

based on our mixture distribution model (5).

We propose a likelihood-based statistic for the IGDB test. For a binarized graph Gr, let

tG = log
supH0∪H1

L(π;S, T,A)

supH0
L(π;A)

,

with likelihood given by Bernoulli distributions in (5). Then, the asymptotic power is ensured

using the likelihood-based statistic through the following Theorem 3.

Theorem 3 (Under IGDB alternative hypothesisH1). Assume m = Θ(n) and the underlying

IGDB G[S0, T0] with generating probabilities π1 > π0 satisfies |S0| = m0, |T0| = n0 and

m0, n0 = Ω(nε) for some ε > 0. Then for any η > 1, as n→∞, we have

Pr(tG > η)→ 1.

In determining the significance of IGDBs, the simultaneous testing needs to be accounted

for all potential IGDBs. Besides, a rejection region (η) should be determined based on the

distribution of tG under null model. Hence, we employ the commonly used permutation test

procedure in the field of neuroimaging (Zalesky et al., 2010; Nichols, 2012) to empirically

approximate the distribution of the likelihood-based statistic tG under the IGDB null and
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control the family-wise error rates (FWER). We describe the detailed testing procedure in

the Web Appendix A. The p-values of multiple IGDBs can be observed by considering each

IGDB individually.

5 Results

We applied the IGDB approach to the motivating data set. The FA measures of DTI at

117,139 voxels were used in this study to characterize the white matter integrity (Kochunov

et al., 2015, 2016). The image acquisition parameters are described in the Web Appendix B.

Regarding genetic variants, 10,595,779 SNPs passed the quality control filters in HCP data

set (MAF<0.01; HQE<1e-6; r-squared>0.03; call rate>0.95) after imputation on the Michi-

gan Imputation Server Minimac3 (https://imputationserver.sph.umich.edu) using the

1000 Genomes Project (phase 1 v3) reference set (Das et al., 2016).

We preprocessed the diffusion weighted images following the ENIGMA-DTI workflow

(http://enigma.ini.usc.edu/protocols/dti-protocols/). We further applied the Se-

quential Oligogenic Linkage Analysis Routines (SOLAR)-Eclipse software (https://www.

nitrc.org/projects/se_linux) for the heritability analysis, of which imaging voxels were

kept with significant heritability, based on the Fast and Powerful Heritability Inference

(FPHI) function of SOLAR-Eclipse (p<0.05) in both the HCP and Amish Connectome

Project (ACP). For these voxels, we performed vGWAS while adjusting covariates including

sex, age, BWI, and population characteristics using the first 10 principal components in our

application. We then performed sure independence screening on SNPs with multiple imaging

responses through a direct extension of univariate screening procedure (Zou et al., 2021).

13,498 SNPs survive into further analysis. The details are described in the Web Appendix

B.

We tested the imaging-genetic associations between SNPs across 22 chromosomes and

voxel-level imaging traits using our proposed method. Based on the procedures described
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in section 4.1 and 4.2, we extracted IGDBs and performed permutation tests to determine

its statistical significance while controlling family-wise error rate (q < 0.05). We observe

different brain areas being influenced by distinct genetic loci. A Manhattan plot for all SNPs

across 22 chromosomes with selected imaging-genetic associations highlighted and tables for

snp and voxels across all 22 chromosomes are included in the Web Appendix B.

In this section, we focus on SNPs on chromsome 1 to demonstrate their systematic

association patterns with voxel-traits, and then annotate the genes in the detected IGDB.

Based on the matrix of association strength W1178×29627 (i.e., Figure 3 (a)), we detected an

IGDB with 384 SNPs and 3803 voxels as Figure 3 (b) by maximizing the objective function

(4). The computation is efficient, which took 20 minutes on a PC with an i7 CPU 3.60 GHz

and 64GB memory. We further calculated the p value for the IGDB statistical inference

via the permutation test, which results in a significant existence of an IGDB with p value

< 0.001. Although the IGDB is an irreducible subgraph, it can be further refined based

on data-driven algorithms and spatial information of imaging data. We applied the existing

community detection algorithms (Chen et al., 2018) on similarity matrices observed from the

detected IGDB. The refined pattern in Figure 3 (c) displays 6 distinct SNP-voxel association

clusters. Note that the refined structure can not be identified without revealing the IGDB

by the proposed algorithm.

We illustrate the voxel clusters and corresponding SNP sets in Figure 4. For example,

the voxel cluster 2 (colored cyan) includes voxels mainly from the splenium of corpus cal-

losum (SCC), part of one of the largest white matter tracts that connects many parts of

the brain, and which lesions to often result in many varied neurological issues (Park et al.,

2014). To annotate the SNPs in the identified clusters, we queried the SNPs in the QTLbase

(http://mulinlab.org/qtlbase/index.html, (Zheng et al., 2020)) for potential expression

quantitative trait locus (eQTL) and examined the genes being regulated by these variants in

a tissue-specific pattern. The summary of associated genes related with brain tissues is dis-

played in Web Table 4 as supporting information. In cluster 1, multiple SNPs are linked with
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Figure 3: IGDB procedure on chromosome 1: (a) is the input matrix W ; (b) demonstrates
the detected IGDB; (c)displays the refined pattern of the IGDB
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the LEPR gene, a protein coding gene for leptin receptor generation that has been shown to

be associated with obesity. It has been known the white matter integrity is highly associated

with obese disorder and body mass index (Verstynen et al., 2012). Therefore, this cluster re-

veals the marginal association of (obesity-related) LEPR gene and white matter integrity. In

clusters 2, 3, 4, and 5, the associated genes, for example, S100A1, TAF1A, CFH, CFHR3, and

DPH5 are associated with immune system functions (http://immunet.princeton.edu/,

https://www.innatedb.com/moleculeSearch.do). White matter integrity can be influ-

enced by the immune system functions and systematic inflammation. In cluster 6, the

NOS1AP gene has been found to be associated with white matter microstructure in previ-

ous studies (Zhao et al., 2019). In addition, the NOS1AP gene is identified to be a risk factor

for schizophrenia (Brzustowicz et al., 2004), while the alterations of white matter integrity

for patients with schizophrenia were studied in Kubicki et al. (2005). In summary, our find-

ings provided insights into the complex neurogenetic mechanisms of how genetic variants

influence imaging traits in a systematic fashion potentially via regulating gene expression

and generated hypotheses to be further confirmed in future multi-omics studies.

6 Simulation Studies

6.1 Synthetic data

We evaluate the finite-sample performance of our proposed method based on simulation

studies. We generate the input matrix Wm×n based on the two sets of multivariate variables

representing genetic variants Xm×L and imaging voxels Yn×L. We let the pattern of Wm×n

be determined by a graph G = (U, V,E). Specifically, we assume there exists an IGDB

G[S0, T0] = (S0, T0, E[S0, T0]) with higher proportion of edges as significant imaging-genetics

associations (i.e., µ1) than the rest of graph (i.e., µ0). Then, we let the entries of Wm×n

follow mixture distributions according to G as wuv|δuv = 1 ∼ µ1tdf (ν) + (1 − µ1)tdf (0),

wuv|δuv = 0 ∼ µ0tdf (ν) + (1 − µ0)tdf (0), where δuv is an indicator variable with δuv = 1 for
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Figure 4: An illustration of the association patterns between SNP and voxel clusters on
chromosome 1.
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edges in the IGDB and 0 otherwise. tdf (ν) and tdf (0) are the non-null and null distributions

of imaging-genetics associations respectively. tdf (ν) is a t distribution with the degree of

freedom L− p (p covariates) and non-central parameter ν = θ√
4/L

, where θ is standardized

effect size (e.g., Cohen’s d). µ1 and µ0 are the proportions of the non-null distribution

within the IGDB and otherwise. We use m = 200, n = 100, and L = 60. We simulate

data sets with multiple settings by varying the size of IGDB (i.e., (|S0|, |T0|) = (50, 40) and

(30, 20)), standard effect size (i.e., θ = 0.8, 1, and 1.2), and proportions of noisy edges (i.e.,

(µ1, µ0) = (0.8, 0.2) and (0.9, 0.1)). Additional simulation settings with larger graph and

sample sizes are included in the Web Appendix B.

6.2 Performance metrics and results

We evaluate the performance of proposed method at two levels. At the subgraph-level,

we assess the accuracy of IGDB inference by examining if we can reject the null (i.e., no

systematic imaging-genetics association). At the edge-level, we evaluate the accuracy of

detected IGDB by comparing it with ground truth in terms of edge differences.

For IGDB inference, we consider a detected IGDB G[Ŝ, T̂ ] is a recovery of the underlying

IGDB G[S0, T0] if it is rejected in the proposed likelihood-ratio test and has high similarity

with G[S0, T0]. Specifically, we consider G[Ŝ, T̂ ] is a true positive detection of G[S0, T0] if

JX ∧ JY is no less than the cutoff with

JX =
S0 ∩ Ŝ
S0 ∪ Ŝ

and JY =
T0 ∩ T̂
T0 ∪ T̂

,

and we succeed to reject the IGDB null hypothesis in the permutation test. We display

the results with cutoff 0.8 and 0.9. Therefore, the detected IGDB leads to a false negative

finding if the p-value in the permutation test is not lower than the a significant level (i.e.,

0.05). Besides, we observe a false positive error if G[Ŝ, T̂ ] has low similarity to G[S0, T0] even

we rejected the IGDB null hypothesis. We report the accuracy of inference by False Positive

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.02.467021doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.02.467021
http://creativecommons.org/licenses/by-nc-nd/4.0/


Rate (FPR) and False Negative Rate (FNR) among replications.

Furthermore, we compare IGDB to commonly-used multivariate testing methods at the

edge-level: positive false discovery rate (pFDR) by Storey (2002) and Bonferroni correction.

These correction methods are commonly used in GWAS and vGWAS analysis in practice. We

evaluate the true ∆ = {δuv}u∈U,v∈V with estimated ∆̂ = {δ̂uv}u∈U,v∈V from varied methods.

For the proposed method, we obtain the ∆̂ based on the extracted IGDB G[Ŝ, T̂ ] and the

hypothesis testing. Particularly, if we reject the IGDB null hypothesis with a detected

IGDB G[Ŝ, T̂ ], we let ∆̂ = {δ̂uv} = {I(euv ∈ G[Ŝ, T̂ ])}. In the case that we fails to reject, we

consider Ŝ, T̂ as empty sets such that ∆̂ = 0m×n. The FDR threshold of 0.2 and corrected

α level of 0.05 are used in the pFDR and Bonferroni correction respectively.

Subsequently, based on the δ̂uv observed from different methods, and true parameters

δuv, we calculate true positive rate (TPR) and true negative rate (TNR) as:

TPR =

∑
u,v I(δuv = δ̂uv = 1)∑

u,v I(δuv = 1)
, TNR =

∑
u,v I(δuv = δ̂uv = 0)∑

u,v I(δuv = 0)
.

The associated means and standard deviations are reported based on 100 replications for

each simulation scenario.

The results from the IGDB inference are summarized in Table 1. The power of the IGDB

inference relies on the size and SNR (by different standard effect sizes) of the underlying

IGDB G[S0, T0], which concurs with our theoretical results. We fails to reject the IGDB null

hypothesis for one simulated data set with a smaller size (30, 20) and effect size 0.8, and

higher noise (0.8, 0.2).

The comparative edge-level results from the proposed method and competing methods are

displayed in Table 2 for different sizes of IGDB. All three methods have improved performance

with higher SNRs and lower noise levels. The proposed method outperforms pFDR and

Bonferroni correction methods for both TPR and TNR under different scenarios. Both

pFDR and Bonferroni methods have high TNR but low TPR indicating a stringent cutoff,
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Table 1: IGDB inference results under varied SNRs and noises

0.8 1.0 1.2

(50, 40)

(0.9, 0.1)
FPR (0.8) 0 (0) 0 (0) 0 (0)
FPR (0.9) 0 (0) 0 (0) 0 (0)

FNR 0 (0) 0 (0) 0 (0)

(0.8, 0.2)
FPR (0.8) 0 (0) 0 (0) 0 (0)
FPR (0.9) 0 (0) 0 (0) 0 (0)

FNR 0 (0) 0 (0) 0 (0)

(30, 20)

(0.9, 0.1)
FPR (0.8) 0 (0) 0 (0) 0 (0)
FPR (0.9) 0 (0) 0 (0) 0 (0)

FNR 0 (0) 0 (0) 0 (0)

(0.8, 0.2)
FPR (0.8) 0 (0) 0 (0) 0 (0)
FPR (0.9) 0.2100 (0.4073) 0.0400 (0.1960) 0 (0)

FNR 0.0600 (0.2375) 0 (0) 0 (0)

while the proposed method achieves a higher TPR maintaining a similar or even higher

TNR than the others. The Bonferroni method is even more stringent where the TPR is even

smaller than 10% when we have low SNRs (e.g., 0.8) for all cases.

7 Discussion

We have developed an IGDB mulivariate to multivariate analysis tool to identify systematic

associations between multivariate voxel-level imaging features and multivariate genetic vari-

ants. Our method focuses on the systematic polygenic and pleiotropic patterns rather than

individual pairwise associations, and thus mitigates the challenges of ultra-high dimension-

ality due to multivariate to multivariate association analysis.

We develop a new optimization solution to extract IGDB by leveraging its graph prop-

erties that we discovered in theoretical study. Our IGDB extraction algorithm is computa-

tionally efficient and scalable. The input data for our method could either individual-level

or GWAS summary statistics. The IGDB inference method controls the family-wise error

rate for IGDB-level findings. We provide theoretical results to guarantee the numerical per-

formance of IGDB extraction and accuracy of the inference model. In real data applications,
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Table 2: Edge-wise accuracy under varied IGDB sizes, SNRs and noises.

(|S0|, |T0|) (q1, q2) Methods 0.8 1.0 1.2

(50,40)

(0.9, 0.1)

IGDB
TPR 0.9879 (0.0184) 0.9942 (0.0124) 0.9968 (0.0097)
TNR 1 (0) 1 (0) 1 (0)

pFDR
TPR 0.7453 (0.0090) 0.8686 (0.0045) 0.8995 (0.0023)
TNR 0.8858 (0.0020) 0.8667 (0.0018) 0.8619 (0.0018)

Bonferroni
TPR 0.0520 (0.0048) 0.1739 (0.0092) 0.3941 (0.0096)
TNR 0.9942 (0.0005) 0.9806 (0.0008) 0.9562 (0.0012)

(0.8, 0.2)

IGDB
TPR 0.9938 (0.0126) 0.9982 (0.0064) 0.9984 (0.0061)
TNR 0.9998 (0.0006) 1.0000 (0.0003) 1.0000 (0.0004)

pFDR
TPR 0.7032 (0.0067) 0.7903 (0.0039) 0.8095 (0.0027)
TNR 0.7842 (0.0021) 0.7577 (0.0019) 0.7517 (0.0018)

Bonferroni
TPR 0.0458 (0.0043) 0.1557 (0.0084) 0.3506 (0.0097)
TNR 0.9884 (0.0007) 0.9612 (0.0014) 0.9125 (0.0020)

(30,20)

(0.9, 0.1)

IGDB
TPR 0.9987 (0.0081) 0.9992 (0.0060) 1 (0)
TNR 1.0000 (0.0001) 1 (0) 1(0)

pFDR
TPR 0.7043 (0.0176) 0.8537 (0.0085) 0.8954 (0.0042)
TNR 0.9017 (0.0019) 0.8799 (0.0015) 0.8741 (0.0014)

Bonferroni
TPR 0.0517 (0.0082) 0.1741 (0.0163) 0.3946 (0.0175)
TNR 0.9942 (0.0005) 0.9807 (0.0009) 0.9561 (0.0012)

(0.8, 0.2)

IGDB
TPR 0.8527 (0.2248) 0.9645 (0.0398) 0.9778 (0.0287)
TNR 0.9996 (0.0009) 0.9995 (0.0009) 0.9997 (0.0005)

pFDR
TPR 0.6891 (0.0114) 0.7857 (0.0075) 0.8069 (0.0045)
TNR 0.7952 (0.0022) 0.7661 (0.0017) 0.7596 (0.0019)

Bonferroni
TPR 0.0473 (0.0095) 0.1563 (0.0144) 0.3525 (0.0173)
TNR 0.9884 (0.0008) 0.9610 (0.0013) 0.9123 (0.0017)
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we identify significant IGDBs where voxels are spatially contiguous and SNPs are function-

ally correlated confirmed by eQTL. Our IGDB algorithm can also be extended to further

constrain the IGDB structure by leveraging the functional annotation of genetic variants (Li

et al., 2020).
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