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Abstract: 20 

Environmental fluctuations are becoming increasingly volatile in many ecosystems, 21 

highlighting the need to better understand how stochastic and deterministic processes 22 

shape patterns of commonness and rarity, particularly in high-diversity systems like 23 

coral reefs. Here, we analyze reef fish time-series across the Great Barrier Reef to show 24 

that approximately 75% of the variance in relative species abundance is attributable to 25 

deterministic, intrinsic species differences. Nevertheless, the relative importance of 26 

stochastic factors is markedly higher on reefs that have experienced stronger coral 27 

cover volatility. By contrast, a-diversity and species composition are independent of 28 

coral cover volatility but depend on environmental gradients. Our findings imply that 29 

increased environmental volatility on coral reefs erodes assemblage’s niche structure, 30 

an erosion that is not detectable from static measures of biodiversity. 31 

 32 

One-Sentence Summary: 33 

Coral cover volatility modulates how stochastic and deterministic processes shape 34 

commonness and rarity in coral reef fishes. 35 

 36 

Main Text: 37 

Coral reef ecosystem dynamics and community structure are profoundly influenced 38 

by episodic, stochastic disturbances (1–6). Differences in species’ susceptibility to 39 

disturbances (7, 8), and differences in species’ rates of recovery from such disturbances (9, 40 

10), suggest that environmental stochasticity can have a substantial role in shaping species’ 41 

commonness and rarity on coral reefs. However, the fossil record also provides ample 42 

evidence of persistent differences in species’ abundances over long time scales (11, 12), 43 

including consistently rare species (11, 13). This indicates that species’ intrinsic traits also 44 

influence their relative commonness or rarity. The combination of high diversity and 45 

pronounced stochasticity in species’ relative abundances has made coral reefs a model system 46 

for tests of neutral theory (14–17) and fluctuation-mediated theory of species coexistence (2, 47 

3). Tests of neutral theory revealed that both reef coral and reef fish assemblages appear to 48 

have more heterogeneity in species’ relative abundance than that of neutral models can 49 

explain (15, 17, 18). Nevertheless, the fact that neutral theory is insufficient to explain 50 

community structure on coral reefs leaves its relative importance unresolved. Specifically, 51 

neutral ecological drift could explain most of the variation in species abundances, with 52 
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species’ niche differences additionally driving small heterogeneity in abundances. 53 

Alternatively, neutral drift could be relatively unimportant, with most of the variation in 54 

species abundance driven by differences in the demographic characteristics of species. 55 

Moreover, the current widespread environmental disruption of reef community structure, 56 

function, and dynamics raises the possibility that the relative importance of these different 57 

classes of processes is changing, with potential consequences for the future of reef 58 

biodiversity. 59 

Here, we use an approach derived from a stochastic-dynamic theory of community 60 

structure to partition the variance of the temporal dynamics of relative species abundances 61 

(19) and apply it to a unique, regional-scale, spatially replicated time series of species 62 

abundances of fishes on the Great Barrier Reef (see Materials and Methods and Fig. 1). Our 63 

analysis reveals that reef fish communities are structured disproportionately by persistent, 64 

intrinsic differences among species, rather than by stochastic fluctuations in population 65 

growth rates (Fig. 1E). Specifically, these differences explain a substantially larger 66 

proportion of variation in reef fish community structure (75% on average [95% CI: 72%-67 

78%]), compared to stochastic fluctuations in population growth rates (18% on average [95% 68 

CI: 15%-20%]) (Fig. 1E). Only ~7% of the variance is attributable to additional sources of 69 

variance, such as demographic and sampling variance (Fig. 1E). Despite the well-70 

documented importance of episodic disturbances in coral reef ecology, our findings show that 71 

species differences underlie persistence in commonness versus rarity through time. This 72 

suggests that ecological traits of species influencing long-term mean abundances are 73 

disproportionately responsible for the variation in species’ abundances in reef fish 74 

assemblages. 75 

Despite the lower relative importance of stochastic fluctuations in population growth 76 

rates as a driver of variation in commonness and rarity overall, there is substantial variation 77 

in the relative magnitudes of variance components among the reefs in our study (i.e., the 78 

spread in variance components; Fig. 1E), and much of this spatial variation is explainable 79 

(Fig. 2, Table S1). In particular, the relative importance of persistent species differences in 80 

driving reef fish abundances varies strongly with temporal volatility in coral cover (Fig. 2). 81 

Reef fish assemblages are less deterministically structured on reefs with more volatile coral 82 

cover, especially when mean coral cover is high (cf. Fig. 2A and 2C). The interactive effects 83 

of the mean and temporal standard deviation of coral cover together explain about 40% of the 84 

variation in these two variance components of fish species abundance (R2=0.39, p<0.001 for 85 

the variance component of persistent species differences, and R2=0.4, p<0.001 for the 86 
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variance component of stochastic fluctuations; Table S1). Model selection favors this 87 

interactive model over all alternatives considered (Table S1). Surprisingly, latitude and cross-88 

shelf position, which can serve as proxies for a range of regional-scale environmental 89 

gradients (Fig. S1), explained almost none of the spatial variation in the relative importance 90 

of persistent, intrinsic species differences (Table S1), despite the fact that reef fish species 91 

composition is known to change quite markedly from inshore to offshore (20, 21), and indeed 92 

cross-shelf position explains about 3–4 times more variation in community composition than 93 

coral cover variables in our data (Fig. S2). 94 

In contrast to the dynamical quantities represented by the variance components, coral 95 

cover volatility explains little variation in static measures of community structure (i.e., time-96 

averaged richness and evenness; Methods) of the reef fish assemblages (R2~0 in all cases; 97 

Table S1). Instead, these a-diversity quantities vary strongly and interactively with latitude 98 

and cross-shelf position, which together explain about 55% and 71% of the variation in 99 

richness and evenness, respectively (Fig. 3). Specifically, species richness increases and 100 

unevenness decreases (i.e., evenness increases) towards the equator, but the increases in 101 

richness and decreases in unevenness are much steeper on the inner shelf than the outer shelf 102 

of the Great Barrier Reef (Fig. 3). This might be due to the fact that human population 103 

density and associated coastal impacts disproportionately affect nearshore versus offshore 104 

reefs and also decrease towards the equator on the Great Barrier Reef (22). Alternatively, the 105 

interaction effect of cross-shelf position and latitude might be explained by natural 106 

covariation between locations and oceanographic conditions (23). 107 

We initially suspected that much of this heterogeneity in species’ abundances was a 108 

consequence of the functional diversity of the reef fish assemblage. However, extended 109 

analysis of our data indicated that this was not the case. After dividing all our fishes into 110 

functional groupings, we had sufficient species richness in three of our groups (herbivores, 111 

planktivores, and benthic invertivores) to repeat our entire analysis on each of them 112 

separately (see Materials and Methods, Table S2). We found that the proportion of variance 113 

in abundance attributable to persistent species differences within each of these functional 114 

groups was similar to the proportion for the fish fauna as a whole (78%, 83% and 75% on 115 

average for herbivores, planktivores, and benthic invertivores, respectively; Table S3-S5, Fig. 116 

S3). Moreover, the variance components of relative species abundance changed with coral 117 

cover volatility in a manner virtually identical to when the data were analyzed in the 118 

aggregate (Table S6, Fig. S4). Richness and evenness of functional groups also varied with 119 
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respect to latitude and cross-shelf position similarly to the whole fauna, although in contrast 120 

to the variance components of community structure, the magnitude of richness and 121 

unevenness estimates varied substantially among the groups (Table S6, Fig. S5-S7).  122 

The large proportion of variance in reef fish species’ abundances (including 123 

functional groups) attributable to persistent, intrinsic species differences underscores the 124 

importance of niche structure and places a clear upper bound on how much of the species 125 

abundances can be explained by neutral ecological drift (Fig. 1E and Fig. S3). This upper 126 

bound is provided by our estimates of deterministic niche structure (i.e., community 127 

determinism resulting from intrinsic species differences). Whereas species’ differential 128 

responses to environmental fluctuations (i.e., response diversity) likely also contribute to the 129 

stochastic-fluctuation variance component (Fig. 1E). Indeed, half of the variation among 130 

reefs in this variance component is explained by volatility in coral cover, suggesting that 131 

response diversity could also contribute to the variation in species’ abundances that are owing 132 

to stochastic fluctuations (Fig. 2). If so, the importance of niche structure may be higher than 133 

our deterministic estimates. 134 

One of our key findings–that nearly half the variation in community determinism 135 

spanning 10 degrees of latitude across the Great Barrier Reef can be explained by just two 136 

explanatory variables linked to coral cover volatility–highlights the risk of ongoing erosion of 137 

niche structure among coral reef fishes (Fig. 1-2, Table S1). In this system, regional variation 138 

in coral cover dynamics during the time frame of our analysis has been driven substantially 139 

by episodic disturbances, including cyclones, crown-of-thorns starfish outbreaks, and coral 140 

bleaching (4, 24, 25). As climate change accelerates, coral bleaching is almost certain to 141 

overtake other disturbances as a key driver of increased coral cover volatility, if it has not 142 

already (5, 26, 27). Our findings suggest that such volatility will further erode the role of 143 

intrinsic fish species traits in structuring community abundance patterns, most dramatically 144 

on reefs with the highest levels of average coral cover (Fig. 2). Moreover, because the 145 

erosion in assemblage structure is not reflected in static measures of community structure, 146 

such as richness, evenness or composition (Fig. 3, Fig. S2), reliance on these metrics might 147 

fail to provide sufficient early warning for important changes in the processes structuring 148 

coral reefs ecosystems, and highlight the urgent need for long-term community-level 149 

abundance data to identify signs of ecological degradation (6, 28, 29). 150 

 151 
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 279 

 280 

Fig. 1. Map showing reefs included in all analyses, along with frequency distributions of 281 

explanatory and response variables. On the map, red circles show locations of the n=40 282 
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reefs used in this study. (A-B) Frequency distribution of the temporal mean and standard 283 

deviation in coral cover that are proxies for environmental volatility across study sites. (C-D) 284 

Frequency distribution of (time-averaged) species richness and unevenness of reef fish 285 

communities across study sites. (E) Frequency distribution of the proportional variance in 286 

relative species abundances attributable to deterministic intrinsic species differences that 287 

produce differences in long-term mean abundances (red bars; n=40), to environmentally 288 

induced stochastic fluctuations in species’ growth rates (blue bars; n=40), and to residual 289 

effects such as demographic and sampling variance (green bars; n=40). Color-coded, dashed 290 

lines indicate the mean value of the corresponding variance component. 291 
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 293 

Fig. 2. Deterministic and stochastic variance components in relative species abundance 294 

of reef fishes depend on coral cover volatility, but not on physical environmental 295 

gradients. (A-C) Relationships between the reef-scale coral cover variables (temporal 296 

standard deviation and mean of coral cover for each reef) and the relative importance of 297 

variance components in structuring fish species-abundances across reefs. The relationships 298 

are plotted using parameter estimates for the lowest-AIC models, with interactive effects of 299 

the temporal SD and mean of coral cover as explanatory variables, and variance components 300 

of fish community structure as response variables (n=40 reefs, Supplementary Table S1). The 301 

red bands represent the 95% C.I. of the proportional variance attributable to persistent, 302 

intrinsic species differences, while the blue band represents the 95% C.I. of the proportional 303 

variance attributable to environmental stochasticity. To illustrate the interactive relationships, 304 

the 1st, median and 3rd quartiles of mean coral cover are fixed in panels (A), (B), and (C), 305 

respectively, and the fitted relationship between the natural logarithm of the standard 306 

deviation of coral cover and variance component values are plotted for the corresponding 307 

value of mean coral cover. (D) The relationship between observed and predicted values from 308 

the corresponding OLS regression models whose fits are plotted in panels (A-C). The solid 309 

line is the unity line (observed = predicted). 310 

  311 
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 312 

Fig. 3.  a-diversity (richness and unevenness) depend on physical environmental 313 

gradients, but not on coral cover volatility. (A-C) Relationship between time-averaged fish 314 

species richness and the interaction of latitude with cross-shelf position. (E-G) Relationship 315 

between time-averaged unevenness and the interaction of latitude with cross-shelf position. 316 

Grey bands are the 95% C.I. predicted from the lowest-AIC models for richness and 317 

unevenness (n=40 reefs, Supplementary Table S1). To better illustrate the interactive 318 

relationships, the 1st, median, and 3rd quartiles of cross-shelf positions are fixed in panels (A, 319 

E), (B, F), and (C, G), respectively, and the relationship between richness or unevenness as a 320 

function of latitude are shown for the corresponding value of cross-shelf position. Note that 321 

values of the cross-shelf position increase from the offshore towards the coast. (D, H) The 322 

relationship between observed and predicted values from the OLS regression models 323 

corresponding to the fitted relationships in (A-C) and (E-G), respectively. The solid line is 324 

the unity line (observed = predicted). 325 
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Materials and Methods: 
Fish community data and environmental covariates on the Great Barrier Reef 

We use data from the Australian Institute of Marine Science Long-Term Monitoring 

Program (LTMP), which has made visual surveys of benthos and fish communities on reefs 

spanning 10 degrees of latitude on the Great Barrier Reef for more than 20 years (30). The 

surveys themselves are hierarchically structured: 3 sites on the reef slope at approximately 6-9m 

depth were selected, usually on the NE faces of 40 reefs of our study (30). At each site, five 

permanently marked 5m × 50m transects were established for censusing all fishes other than 

small damselfishes, which were counted on 1m × 50m sections of the same transects. Transects 

were separated by about 10m. For these analyses, we used the community data from 1994 to 

2004 (11 years) because this was the only interval during which each reef was surveyed annually 

(the frequency of surveys changed after the Great Barrier Reef Marine Park was rezoned in 

2004).  

The statistical analyses focus on counts of fish identified to species and percentage cover 

of live coral at each survey reef. Fish species are counted visually for a prescribed list of species 

representing 13 families: Pomacentridae, Acanthuridae, Serranidae, Lutjanidae, Scaridae, 

Caesionidae, Chaetodontidae, Labridae, Lethrinidae, Haemulidae, Holocentridae, Siganidae, 

and Zanclidae. All species examined here are largely non-cryptic and easily identified 

underwater, and thus cryptic species groups, such as gobies, were excluded. A full list of species 

observed each year are included in the appendices of each LTMP status report (30) (also see 

Table S2 for species list used for our analysis). Corals were identified to relatively broad 

taxonomic and morphological categories, but we consider only total hard coral cover in our 

analyses. We pool fish community and coral cover data at the scale of the entire reef, summing 

abundances over all 15 transects surveyed at each reef. Percentage cover is similarly averaged 

across transects and sites within reefs. We adopt this approach to reduce stochastic sampling 

error, thereby obtaining more precise estimates of the community structure statistics that are of 

interest in this study. 

Because the small-sized fish taxa (mainly Pomacentridae) were surveyed in narrower 

transects than other larger fish taxa, we used subsampling to rescale the abundances of large-

sized species to standardize sampling effort. Each fish counted on the wider transects was given 

a 20% probability of appearing in the sub-sample (because the small-fish transects covered only 
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20% of the area of large-fish transects). It is these sub-sampled data that were used for our 

analyses. 

For each reef, we extracted the temporal average (11-yr mean), standard deviation (SD) 

and coefficient of variation (CV) in coral cover as proxies for disturbance-induced coral cover 

volatility. We also extracted each reef’s latitude and cross-shelf position, where latitude was 

measured by degrees from the equator and cross-shelf position was the standardized distance to 

the nearest continental shelf boundary (i.e., 0 represents the shelf boundary and 1 represents the 

coast, respectively). We used latitude and cross-shelf position as proxies for major environmental 

gradients because community structure on the Great Barrier Reef is known to vary strongly along 

both gradients, and because they are strongly correlated with environmental variables, such as 

mean and variability in temperature, and variation in terrestrial runoff, which are known to 

influence community structure (Fig. S1). 

 

Partitioning variance in relative species abundance: theoretical framework 

We used the partitioning approach of Engen et al. (2002) (31–33) to quantify the 

contribution of deterministic species differences, relative to environmental and demographic 

stochasticity in driving the total variance in relative species abundances (hereafter, variance 

partitioning of relative species abundance, VRPSA). These variance components can be 

estimated from how the correlation in a community’s log-abundances decays over time, i.e., the 

temporal autocorrelation in relative species abundance: 

  (eq. 1) 

where  represents the correlation coefficient of log species-abundances of a community at 

time lag t (i.e., it is a measure of community similarity between species’ log-abundances in two 

different years). This quantity is modelled as an exponential function of time lag t. That is, for all 

pairs of years on a reef, we estimated the correlation coefficient between these two samples, and 

then analyzed how the strength of this correlation decreased as a function of the time elapsed 

between the two samples (here, time lag or interval between two samples ranges from 1 to 10 

years). Parameter  represents asymptotic similarity. For a community in the absence of 

persistent niche structure in abundance (e.g., where all species have the same mean abundance, 

and variation in species abundances is due entirely to their different responses to environmental 
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fluctuations and independent demographic stochasticity),  would be zero. For a community in 

which environmental fluctuations play no role,  would be large (and in the absence of 

demographic or sampling stochasticity, it would tend to unity). Parameter !! is the intercept (i.e., 

the expected correlation in species’ log-abundances for a time lag of zero), and thus  

represents variation that not captured by the other two components (including demographic 

variance, as well as sampling effects due to local aggregation).   measures the strength of 

density-regulation in the system: it would be larger in assemblages that revert quickly toward 

their long-term mean relative abundances after a disturbance (see Supplementary Text for further 

explanation of eq. 1). 

The correlation coefficients  were estimated by fitting the bivariate Poisson-lognormal 

distribution to all possible pairs of surveys at each site, and these correlation coefficients were 

then modelled as a function of the amount of time separating the samples following eq. 1. This 

distribution assumes that the two surveys represent random samples of individuals from two 

communities whose species abundances follow Poisson-lognormal distributions with correlation 

coefficient !". That is, the correlation coefficient parameter estimates the true underlying 

correlation in species’ log-abundances between the communities at the two sampling times, 

taking account of the fact that each abundance distribution in the data represents an incomplete 

sample from the community, and, therefore, this quantity can be conceptualized as a measure of 

temporal beta-diversity (32, 33). This model is justified because the static species-abundance 

distributions of these reef fish assemblages have been shown to be well-described by the 

Poisson-lognormal distribution (34). As a further check, we conducted parametric bootstrap tests 

(Bootstrap N=100 for each fitted bivariate Poisson-lognormal distribution) to verify that the 

bivariate Poisson-lognormal is an adequate distribution for the LTMP data, and we found that 

none of our study reefs were statistically distinguishable from this distribution. 

After fitting eq. 1 to the estimates of pairwise correlation coefficients as a function of 

time lag, variance components of relative species abundance can be obtained as follows: 

   (eq. 2) 

     (eq. 3) 

        (eq. 4) 
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where  represents the proportional variation in relative abundance that is due to persistent, 

deterministic differences among species,  represents the proportional variation in relative 

abundance due to species’ responses to stochastic fluctuations in population size, and  

represents the proportional (residual) variation in relative abundance due to other processes, such 

as overdispersion. 

 

Stochastic community dynamics model of VPRSA 

Originally, the partitioning approach described above was explicitly derived from a 

stochastic theory of community dynamics. This theory characterizes the temporal dynamics of 

abundance of S species (richness is S) according to the stochastic Ornstein-Ühlenbeck process:  

   (eq. 5) 

                      (eq. 6) 

where  represents the abundance of species i on a logarithmic scale,  is the intrinsic 

population growth rate of species i,  measures the strength of density dependence,  scales 

the magnitude of environmental fluctuations in the growth rate (i.e., larger implies larger 

fluctuations), and  models the fluctuations themselves as a Brownian (Wiener) process. Eq. 

6 specifies that intrinsic growth rates, , vary among species according to a normal distribution 

with mean  and variance . Eq. 5 can be interpreted as a continuous-time analogue of 

discrete-time Gompertz-type community dynamics. 

Analysis of the model in eqns 5-6 shows that each species’ abundance fluctuates around a 

species-specific equilibrium “carrying capacity”, "
!"
# , and both the carrying capacities, and the 

abundances themselves, follow lognormal distributions among species. Notably, the stationary 

distribution of species’ abundances in the community remains lognormal, even in the presence of 

some violations of the model’s simplifying assumptions, such as the incorporation of correlations 

in species’ responses to environmental fluctuations, and of inter-specific interactions (31, 32) 

The model is therefore consistent with the reef fish data in this study whose species-abundance 

distributions are well-described as discrete, random samples of individuals from lognormal 

abundance distributions (i.e., Poisson-lognormal distributions). In addition, previous work 
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suggests that the Gompertz form of density dependence is appropriate for these data (35). For 

models of eqs 5-6, the total variance in relative species log-abundance (hereafter ) can be 

analytically partitioned into additive components as follows: 

   (eq. 7) 

and thus the proportional variance components , pe, and pd  would be equal to , 

 and , respectively. Extension of the model in eq (5) to explicitly incorporate 

demographic variance (intra-population heterogeneity in demographic rates and demographic 

stochasticity) suggested that such effects will be principally captured by the pd (and thus 1-p0) 

term, given that, like sampling effects, demographic variance will disproportionately affect 

observed abundances of the rare species (31, 36). However, to be conservative, our interpretation 

of our findings takes account of the possibility that part of the “environmental fluctuations” 

component of species-abundance variance could be due to such processes (including neutral 

ecological drift) (37).  

 Some of the assumptions of the stochastic dynamics model in eq. 5 are restrictive. 

Notably, it assumes that the strength of density regulation and the magnitude of environmentally 

induced fluctuations (i.e., proportional variance in population growth rate due to environmental 

fluctuations) are the same for all species, and it also assumes that there are no species 

interactions, nor covariation in species’ responses to environmental fluctuations. All of these 

assumptions might be violated to some degree in our study system. For a community showing 

Gompertz-type dynamics, the lognormal stationary distribution of abundances is quite robust to 

these simplifying assumptions. However, the robustness of variance component estimates has not 

yet been investigated previously, so we investigate this robustness in considerable detail in the 

Supplementary Simulation Study. 

 

Estimating richness and unevenness based on VPRSA 

We also use the Poisson-lognormal distribution to estimate (time-averaged) a-diversity 

measures of richness and unevenness of reef fishes as follows. We fit this distribution to each of 

the 440 species-abundance distributions (40 reefs × 11 years), using the method of maximum 

likelihood. Fitting this distribution yields maximum likelihood estimates of the standard 

2
totals

22
2 2

2 2
er

total r e dV V Vsss q
d d

= + + = + +

rp 2
r totalV s

2
e totalV s 2

d totalV s

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.03.467170doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467170
http://creativecommons.org/licenses/by-nc/4.0/


7 
 

deviation of log-abundance  for the underlying community from which the data are a sample. 

The skewness of a lognormal distribution is a function of only this parameter, implying that the 

skewness (i.e., the unevenness) of abundances in the fish community from which the data are a 

sample is a monotonically increasing function of  (i.e., larger values indicate more uneven 

communities) (32, 33). This can be understood as a generalization of the evenness metric based 

on the variance in log abundances among species that accounts for the effects of incomplete 

sampling (i.e., the variance parameter is independent of sample completeness) (33, 38). 

Additionally, Poisson-lognormal fits can be used to estimate the total number of species in the 

community, by producing an estimate of the probability that a species is present in the 

community but not observed in the sample, . An estimate of total community richness is 

simply the number of observed species divided by . We estimated the s2 parameter of the 

Poisson lognormal distribution (i.e., the variance of the species abundance distribution from 

which the sample was drawn) for each year, and then we calculated the mean of these values 

over years for each reef as our reef-scale measure of unevenness (i.e., averaged s2 is eqivalent to 

 in eq. 7). Similarly, we used the mean of the estimated total community richness across 

years for each reef as our reef-scale measure of species richness.  

 

Parameter estimation for VPRSA 

To estimate the three variance components that completely partition the variation in 

relative abundances of fishes over years for each reef, we fitted a mixed-effects version of eq. 1 

to the LTMP data set (Supplementary Text). Specifically, we fitted a family of nonlinear mixed-

effects models, in which each of the fitted parameters ( , , ) may be fixed constants for 

all reefs or they may randomly vary among reefs according to latent lognormal distributions 

(Supplementary Text). These models were parameterized in Template Model Builder (TMB) in 

R. We fitted models with different combinations of the three temporal autocorrelation function 

parameters (eq. 1) as fixed versus random, and we ranked model fits by AIC and bootstrapped 

AIC (Supplementary Text). We then checked for numerical stability of the model fits (i.e., we 

confirmed that the model’s random effects parameter estimates were valid), and we chose the 

best-fitting model (by AIC and bootstrapped AIC) that yielded a numerically stable fit as our 

basis for inference (Supplementary Text). Then, we used the estimates of fixed and reef-level 
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random effects of the best-fitting model to calculate variance components for each reef according 

to eqs 2-4. 

 

Predicting among-reef variation in community properties obtained by VPRSA 

We used ordinary least-squares (OLS) regression to investigate the extent to which 

variation among reefs in coral cover fluctuations (mean, standard deviation [SD] and coefficient 

of variation [CV] of coral cover at each reef), latitude, and cross-shelf position explain variation 

in fish community structure (variance components of community structure, species richness, and 

evenness). We chose latitude and cross-shelf position as our abiotic explanatory variables 

because many factors likely to affect community structure on coral reefs, such as temperature, 

turbidity, and nutrient loading vary strongly with one or both of these spatial variables (Fig. S1). 

SD and CV of coral cover were both right-skewed, so they were log-transformed to reduce the 

heterogeneity of leverage values associated with the different reefs in our analysis (model 

selection yielded the same best-fitting models when they were untransformed, and R2 values 

were higher, making our results conservative with respect to the conclusions drawn). Log(SD) 

and log(CV) of coral cover were very strongly collinear (r ~ 0.9), and model selection always 

preferred models using SD rather than CV when analogous models were compared (e.g., AIC 

favors a multiple regression model with interactive effects of log(SD) and mean coral cover over 

a model with interactive effects of log(CV) and mean coral cover), so we have not presented 

results for the models using log(CV). None of the remaining explanatory variables were highly 

correlated with one another (Supplementary Table S7-S8). We used AIC and adjusted R2 for 

model comparisons. We chose the parsimonious model with fewer parameters (effects) whenever 

AIC differences among candidates were smaller than 2 because, in such cases, adjusted R2 

favored the simpler models, and because the additional variables included in the more complex 

models tended to have comparatively weak effects. In practice, this affected only model selection 

for unevenness, where the lowest AIC model included an additive effect of mean coral cover (in 

addition to a latitude × cross-shelf position interaction) that was small in magnitude and led to a 

marginally worse adjusted R2 (Table S9). 

Lastly, because the reef-level proportional variance components were estimated from fits 

of another statistical model, rather than being directly observed, we also performed a sensitivity 

analysis to test the robustness of our results to parameter uncertainty. Specifically, we estimated 
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the uncertainty in our estimates of proportional variances by parametric bootstrap, resampling 

random effects values for the LTMP’s 40 reefs 10000 times from the variance-covariance matrix 

of the fitted nonlinear mixed-effects model based on TMB. Then, each bootstrap set of reef-level 

proportional variance component values were re-analyzed using the OLS regressions repeated on 

each of the bootstrapped data sets. We evaluated the robustness of our model selection procedure 

by quantifying the percentage of bootstrapped data sets for which each model was selected as the 

best model by AIC. 

 

Sensitivity analysis of community properties among trophic/functional groups 

Reef fish community data were separated into five major trophic/functional groups: 

herbivores, planktivores, piscivores, corallivores and benthic invertivores. These trophic groups 

were classified according to previously published functional classifications of reef fishes, 

supplemented by communication with experts in the field (Table S2). Of these functional groups, 

only three (i.e., herbivores, planktivores, and benthic invertivores) were sufficiently species-rich 

to analyze separately. We repeated all of the analyses conducted on the overall dataset, as 

described above, for each of the groups. We then compared the distribution of reef-scale 

estimates of variance components for the three trophic groups with each other, and with those for 

the mixed (i.e., the whole data, regardless of functional groups) assemblages, to determine 

whether the magnitudes of the variance components changed markedly when functional groups 

were considered independently. Formally, these comparisons were made with paired t-tests with 

Bonferroni correction for multiple comparisons. 

To examine the potential influence of coral cover volatility on variance components of 

relative species abundance within functional groups, we fitted relationships between variance 

components and coral cover volatility using OLS regression. In the full model, temporal mean 

and standard deviation in coral cover, and trophic group were considered as explanatory 

variables. AIC was used for model selection, beginning with a model including all main effects 

and interactions. As above mentioned, effects of latitude, cross-shelf position and trophic group 

on richness and evenness were also examined in a similar fashion.  
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Supplementary Text: 
To choose the optimal mixed-effects structure (with reefs as random effects) for fitting 

the autocorrelation function (i.e., eq. 1 in the main text), we first confirmed numerical stability of 

the random-effect estimates (to verify that we had a valid model), by fitting the models using 

both importance sampling and the Laplace approximation, both implemented in Template Model 

Builder (TMB) in R. Then, for those models that produced stable, valid parameter estimates, we 

used model selection by AIC to choose the best model (Table S10). To confirm our model 

selection results, we also calculated marginal AIC, a statistic that uses penalized marginal 

likelihood by bootstrap resampling (5000 bootstrap replicates in our case); this statistic has been 

proposed as a more robust model selection statistic than AIC for models that have a common 

fixed effect structure but differ in their random effects (39, 40).  

The model with random effects on all three parameters (r0, r∞, d) was highly numerically 

unstable, as shown by the poor agreement between random effects estimates produced by 

importance sampling and the Laplace approximation (R2<0.5 to the unity line for all three 

parameters) (Fig. S8 A-C). For comparison, our estimated best model, which contains random 

effects on r∞ and r0 but not  d, was numerically stable, shown by virtually identical random 

effects estimates produced by the two fitting approaches (R2>0.95 in every case) (Fig. S8 D-E). 

Of all possible combinations of random effects structures, only models including a random effect 

of r∞ were numerically stable, and all numerically stable models produced very similar 

parameter estimates (Table S10). We therefore used the fixed and random effect estimates from 

our best-fitting model of all models producing numerically stable fits in all subsequent analyses 

throughout this study. 
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Supplementary Figs. S1 to S8: 
 
 

 
Fig. S1. Latitude and cross-shelf position covary with oceanographic environmental 

conditions on the Great Barrier Reef. Pairwise Pearson correlations are presented in colour 

scale (n=40 reefs). ‘Nitrate_mean’, ’Phosphate_mean’, ‘DO_mean’, ‘Chla_mean’, and 

‘SST_mean’ represent long-term average of nitrate, phosphate, dissolved oxygen, chlorophyll-a, 

and sea surface temperature, respectively. Similarly, variables with ‘_SR’ and ‘_min’ attached 

represent averaged seasonal range and long-term minimum of the variables, respectively. 

Oceanographic environmental data on the Great Barrier Reef were taken from Matthews et al. 

2019 (41).  
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Fig. S2. Reef fish community composition explained by the explanatory variables employed 

in our analyses. Redundancy analysis (RDA) constrained by environmental variables was used 

for the multivariate ordination plot. Open circles represent fish assemblages on coral reefs (n=40 

reefs), and vectors represent major environmental variables, where ‘Shelf’, ‘MeanC’, ‘Log_sdC’ 

and ‘Latitude’ represents shelf position, average coral cover, coral cover volatility and latitude, 

respectively. On the right-hand side, the inertia (i.e., overall variance) is decomposed into RDA 

variance components explained by environmental variables in percentage. Reef fish community 

matrices are standardized prior to analysis. The RDA presented here uses abundance-weighted 

species composition, but the pattern is consistent with another RDA computed using only 

presence-absence data (not shown). 
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Fig. S3. Estimated variance components of reef fish functional groups compared to pooled 

assemblage. Points and horizontal lines represent the median and the 1st and 3rd quantiles of 

estimates (n=40 reefs). Red color represents estimated variance component due to persistent 

species differences. Blue color represents estimated variance component driven by stochastic 

fluctuations in population growth rates. Grey color represents estimated variance component 

driven by demographic and sampling variance (or overdispersion). Variance components for the 

pooled assemblage are the same as in Fig. 1E in the main text and are presented here simply to 

facilitate comparison. 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.03.467170doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467170
http://creativecommons.org/licenses/by-nc/4.0/


14 
 

 
 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.03.467170doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467170
http://creativecommons.org/licenses/by-nc/4.0/


15 
 

Fig. S4. Relationship between coral cover dynamics and variance components of 

community structure of reef fish functional groups. Relationships between the reef-scale coral 

cover variables (temporal SD and mean of coral cover for each reef) and the relative importance 

of variance components in structuring species-abundances of fish trophic groups across reefs 

(n=40 reefs). (A-C) Herbivores. (D-F) Planktivores. (G-I) Benthic invertivores. The 

relationships are plotted using the lowest-AIC models, with interactive effects of the mean and 

SD of coral cover as explanatory variables, on variance components of fish community structure 

as response variables (Table S6). The red band represents the 95% C.I. of the proportional 

variance attributable to persistent species/niche differences, while the blue band represents the 

95% C.I. of the proportional variance attributable to environmental stochasticity. For 

comparison, the grey bands represent the variance components for the original model, with 

functional groups pooled (as Fig. 2 in the main text). To illustrate the interactive relationships, 

the 1st, median and 3rd quartiles of mean coral cover are fixed in panels (A-C), (D-F), and (G-I), 

respectively, and the relationship between the natural logarithm of the standard deviation of coral 

cover and variance component values plotted for the corresponding value of mean coral cover. 
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Fig. S5. Estimated richness and unevenness of reef fish functional groups on the Great 

Barrier Reef. Points and horizontal lines represent the median and the 1st and 3rd quantiles of 

estimates (n=40 reefs). (A) Estimated species richness, and (B) estimated unevenness of trophic 

groups, compared to those of pooled assemblage presented in Fig. 1 in the main text. 
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Fig. S6. Richness of reef fish functional groups depend on latitude and cross-shelf position. 

Relationship between time-averaged species richness of reef fish trophic groups and the 

interaction of latitude with cross-shelf position. (A-C) Herbivores. (D-F) Planktivores. (G-I) 

Benthic invertivores. Grey bands are the 95% confidence intervals predicted from the lowest-

AIC models for richness (n=40 reefs; Table S6). To better illustrate the interactive relationships, 

the 1st, median, and 3rd quartiles of cross-shelf positions are fixed in panels (A-C), (D-F), and 

(G-I), respectively, and the relationship between species richness as a function of latitude show 

for the corresponding value of cross-shelf position. Note that cross-shelf position increases 

towards the coast. 
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Fig. S7. Unevenness of reef fish functional groups depend on latitude and cross-shelf 

position. Relationship between time-averaged unevenness of reef fish trophic groups and the 

interaction of latitude with cross-shelf position. (A-C) Herbivores. (D-F) Planktivores. (G-I) 

Benthic invertivores. Grey bands are the 95% confidence intervals predicted from the lowest-

AIC models for unevenness (n=40 reefs; Table S6). To better illustrate the interactive 

relationships, the 1st, median, and 3rd quartiles of cross-shelf positions are fixed in panels (A-C), 

(D-F), and (G-I), respectively, and the relationship between unevenness as a function of latitude 

show for the corresponding value of cross-shelf position. Note that cross-shelf position increases 

towards the coast. 
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Fig. S8. Relationship between random-effect parameters estimated from Laplace 

approximation and importance sampling in the full random effects model vs. the lowest-

AIC random effects model. In the full model (A-C), density dependence  is assumed to be a 

random-effect parameter in addition to the other two parameters of eq. 1 in the main text. By 

contrast, in the best model (D-E), density dependence  is a fixed effect while keeping the other 

two parameters of eq. 1 as random effects. Red line represents a 1:1 relationship where estimates 

from both methods of Laplace approximation and importance sampling converge to the same 

values. The strong departures from the red line in panels (A-C) indicate numerical instability of 

the estimated values for this model and illustrate why we excluded this model from our model 

selection procedure (Table S10). 
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Supplementary Tables S1 to S10: 
 

Table S1. OLS regression models for proportional variance components, richness, and 

unevenness. For explanatory variables, ‘mC’ and ‘log(sdC)’ represents the long-term (11-yr) 

mean (average coral cover) and log-transformed standard deviation in annual coral cover 

fluctuations (coral cover volatility), respectively. ‘Lat’ and ‘Shelf’ represents latitude and cross-

shelf position, respectively. ‘Intercept’ represents the regression model that contains only an 

intercept. Cross symbols indicate models that include main effects and interactions, whereas plus 

symbols denote models including only main effects (i.e., additive effects of the explanatory 

variables). The analyses of the variance component of demographic and sampling variance are 

not presented, because their magnitudes are negligible compared to those of other variance 

components (Fig. 1E in the main text).  

Response variable Explanatory variable adjR2 AIC ΔAIC 

Persistent species differences log(sdC)×mC 0.39 -80.93 0 
 log(sdC)×mC+Lat×Shelf 0.34 -75.66 5.27 
 log(sdC) 0.19 -71.64 9.29 
 mC 0.16 -70.28 10.65 
 log(sdC)+Lat×Shelf 0.19 -68.83 12.1 
 mC+Lat×Shelf 0.12 -65.59 15.34 
 Intercept 0 -64.2 16.73 
 Shelf 0 -63.78 17.15 
 Lat 0 -62.24 18.69 

  Lat×Shelf 0 -59.87 21.06 

Environmental stochasticity log(sdC)×mC 0.4 -77.47 0 
 log(sdC)×mC+Lat×Shelf 0.35 -71.96 5.51 
 log(sdC) 0.19 -67.43 10.04 
 mC 0.16 -65.91 11.56 
 log(sdC)+Lat×Shelf 0.18 -64.39 13.08 
 mC+Lat×Shelf 0.12 -61.05 16.42 
 Intercept 0 -59.85 17.62 
 Shelf 0 -59.4 18.07 
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 Lat 0 -57.97 19.5 

  Lat×Shelf 0 -55.55 21.92 

Richness Lat×Shelf 0.55 299.34 0 
 mC+Lat×Shelf 0.55 299.83 0.49 
 log(sdC)+Lat×Shelf 0.54 301.18 1.84 
 log(sdC)×mC+Lat×Shelf 0.54 303.61 4.27 
 Shelf 0.24 318.69 19.35 
 Lat 0.1 325.51 26.17 
 Intercept 0 328.96 29.62 
 mC 0.01 329.39 30.05 
 log(sdC) 0 330.47 31.13 

  log(sdC)×mC 0 332.25 32.91 

Unevenness mC+Lat×Shelf 0.7 60.45 0 
 log(sdC)+Lat×Shelf 0.7 60.58 0.13 
 Lat×Shelf 0.71 60.78 0.33 
 log(sdC)×mC+Lat×Shelf 0.69 63.8 3.35 
 Lat 0.27 94.14 33.69 
 Shelf 0.22 96.93 36.48 
 log(sdC) 0.03 105.65 45.2 
 Intercept 0 106.03 45.58 
 mC 0.02 106.16 45.71 

  log(sdC)×mC 0.02 107.83 47.38 
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Table S2. Classifications of trophic/functional groups of coral reef fishes on the Great 

Barrier Reef. 

Species name Trophic group 

Acanthochromis polyacanthus Planktivore 

Acanthurus albipectoralis Planktivore 

Acanthurus auranticavus Herbivore 

Acanthurus bariene Herbivore 

Acanthurus blochii Herbivore 

Acanthurus dussumieri Herbivore 

Acanthurus grammoptilus Herbivore 

Acanthurus lineatus Herbivore 

Acanthurus maculiceps Herbivore 

Acanthurus mata Planktivore 

Acanthurus nigricans Herbivore 

Acanthurus nigricauda Herbivore 

Acanthurus nigrofuscus Herbivore 

Acanthurus nigroris Herbivore 

Acanthurus olivaceus Herbivore 

Acanthurus pyroferus Herbivore 

Acanthurus spp Herbivore 

Acanthurus thompsoni Planktivore 

Acanthurus triostegus Herbivore 

Acanthurus xanthopterus Herbivore 

Amblyglyphidodon aureus Planktivore 

Amblyglyphidodon curacao Planktivore 

Amblyglyphidodon leucogaster Planktivore 

Amphiprion akindynos Planktivore 

Amphiprion chrysopterus Planktivore 

Amphiprion clarkii Planktivore 

Amphiprion melanopus Planktivore 

Amphiprion percula Planktivore 
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Amphiprion perideraion Herbivore 

Anyperodon leucogrammicus Piscivore 

Aprion virescens Piscivore 

Bolbometopon muricatum Herbivore 

Caesio caerulaurea Planktivore 

Caesio cuning Planktivore 

Calotomus carolinus Herbivore 

Cephalopholis argus Piscivore 

Cephalopholis boenak Piscivore 

Cephalopholis cyanostigma Piscivore 

Cephalopholis microprion Piscivore 

Cephalopholis miniata Piscivore 

Cephalopholis urodeta Piscivore 

Cetoscarus bicolor Herbivore 

Chaetodon aureofasciatus Corallivore 

Chaetodon auriga Benthic invertebrate feeder 

Chaetodon baronessa Corallivore 

Chaetodon bennetti Corallivore 

Chaetodon citrinellus Benthic invertebrate feeder 

Chaetodon ephippium Benthic invertebrate feeder 

Chaetodon flavirostris Corallivore 

Chaetodon kleinii Benthic invertebrate feeder 

Chaetodon lineolatus Benthic invertebrate feeder 

Chaetodon lunula Benthic invertebrate feeder 

Chaetodon melannotus Benthic invertebrate feeder 

Chaetodon mertensii Benthic invertebrate feeder 

Chaetodon meyeri Corallivore 

Chaetodon ornatissimus Corallivore 

Chaetodon oxycephalus Corallivore 

Chaetodon pelewensis Corallivore 

Chaetodon plebeius Corallivore 
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Chaetodon punctatofasciatus Corallivore 

Chaetodon rafflesii Benthic invertebrate feeder 

Chaetodon rainfordi Herbivore 

Chaetodon reticulatus Corallivore 

Chaetodon speculum Corallivore 

Chaetodon trifascialis Corallivore 

Chaetodon trifasciatus Corallivore 

Chaetodon ulietensis Corallivore 

Chaetodon unimaculatus Corallivore 

Chaetodon vagabundus Corallivore 

Cheilinus fasciatus Benthic invertebrate feeder 

Cheilinus undulatus Benthic invertebrate feeder 

Cheiloprion labiatus Corallivore 

Chelmon rostratus Benthic invertebrate feeder 

Chlorurus bleekeri Herbivore 

Chlorurus japanensis Herbivore 

Chlorurus microrhinos Herbivore 

Chlorurus sordidus Herbivore 

Choerodon fasciatus Benthic invertebrate feeder 

Chromis acares Planktivore 

Chromis agilis Planktivore 

Chromis amboinensis Planktivore 

Chromis atripectoralis Planktivore 

Chromis atripes Planktivore 

Chromis chrysura Planktivore 

Chromis flavomaculata Planktivore 

Chromis iomelas Planktivore 

Chromis lepidolepis Planktivore 

Chromis lineata Planktivore 

Chromis margaritifer Planktivore 

Chromis nitida Planktivore 
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Chromis retrofasciata Planktivore 

Chromis ternatensis Planktivore 

Chromis vanderbilti Planktivore 

Chromis viridis Planktivore 

Chromis weberi Planktivore 

Chromis xanthochira Planktivore 

Chromis xanthura Planktivore 

Chrysiptera biocellata Herbivore 

Chrysiptera flavipinnis Planktivore 

Chrysiptera rex Planktivore 

Chrysiptera rollandi Planktivore 

Chrysiptera talboti Planktivore 

Coris gaimard Benthic invertebrate feeder 

Cromileptes altivelis Piscivore 

Ctenochaetus binotatus Herbivore 

Ctenochaetus spp Herbivore 

Dascyllus aruanus Planktivore 

Dascyllus melanurus Planktivore 

Dascyllus reticulatus Planktivore 

Dascyllus trimaculatus Planktivore 

Dischistodus melanotus Herbivore 

Dischistodus perspicillatus Herbivore 

Dischistodus prosopotaenia Herbivore 

Dischistodus pseudochrysopoecilus Herbivore 

Epibulus insidiator Benthic invertebrate feeder 

Epinephelus cyanopodus Piscivore 

Epinephelus fasciatus Benthic invertebrate feeder 

Epinephelus fuscoguttatus Piscivore 

Epinephelus merra Benthic invertebrate feeder 

Epinephelus ongus Benthic invertebrate feeder 

Epinephelus quoyanus Benthic invertebrate feeder 
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Forcipiger flavissimus Benthic invertebrate feeder 

Forcipiger longirostris Benthic invertebrate feeder 

Gnathodentex aureolineatus Benthic invertebrate feeder 

Gomphosus varius Benthic invertebrate feeder 

Gymnocranius spp Benthic invertebrate feeder 

Halichoeres hortulanus Benthic invertebrate feeder 

Hemiglyphidodon plagiometopon Herbivore 

Hemigymnus fasciatus Benthic invertebrate feeder 

Hemigymnus melapterus Benthic invertebrate feeder 

Hemitaurichthys polylepis Planktivore 

Hipposcarus longiceps Herbivore 

Lethrinus atkinsoni Benthic invertebrate feeder 

Lethrinus erythracanthus Benthic invertebrate feeder 

Lethrinus harak Benthic invertebrate feeder 

Lethrinus laticaudis Benthic invertebrate feeder 

Lethrinus lentjan Benthic invertebrate feeder 

Lethrinus miniatus Benthic invertebrate feeder 

Lethrinus nebulosus Benthic invertebrate feeder 

Lethrinus obsoletus Benthic invertebrate feeder 

Lethrinus olivaceus Piscivore 

Lethrinus ornatus Benthic invertebrate feeder 

Lethrinus rubrioperculatus Benthic invertebrate feeder 

Lethrinus semicinctus Benthic invertebrate feeder 

Lethrinus xanthochilus Benthic invertebrate feeder 

Lutjanus adetii Piscivore 

Lutjanus argentimaculatus Piscivore 

Lutjanus biguttatus Piscivore 

Lutjanus bohar Piscivore 

Lutjanus boutton Piscivore 

Lutjanus carponotatus Piscivore 

Lutjanus fulviflammus Piscivore 
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Lutjanus fulvus Piscivore 

Lutjanus gibbus Piscivore 

Lutjanus kasmira Piscivore 

Lutjanus lemniscatus Piscivore 

Lutjanus lutjanus Piscivore 

Lutjanus monostigma Piscivore 

Lutjanus quinquelineatus Piscivore 

Lutjanus rivulatus Piscivore 

Lutjanus russellii Benthic invertebrate feeder 

Lutjanus sebae Piscivore 

Lutjanus semicinctus Piscivore 

Lutjanus vitta Piscivore 

Macolor spp Planktivore 

Monotaxis grandoculis Benthic invertebrate feeder 

Naso lituratus Herbivore 

Naso tuberosus Herbivore 

Naso unicornis Herbivore 

Neoglyphidodon melas Benthic invertebrate feeder 

Neoglyphidodon nigroris Herbivore 

Neoglyphidodon polyacanthus Planktivore 

Neopomacentrus azysron Planktivore 

Neopomacentrus bankieri Planktivore 

Neopomacentrus cyanomos Planktivore 

Paracanthurus hepatus Planktivore 

Plectroglyphidodon dickii Benthic invertebrate feeder 

Plectroglyphidodon johnstonianus Herbivore 

Plectroglyphidodon lacrymatus Herbivore 

Plectropomus areolatus Piscivore 

Plectropomus laevis Piscivore 

Plectropomus leopardus Piscivore 

Plectropomus maculatus Piscivore 
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Pomacentrus adelus Herbivore 

Pomacentrus amboinensis Herbivore 

Pomacentrus australis Herbivore 

Pomacentrus bankanensis Herbivore 

Pomacentrus brachialis Planktivore 

Pomacentrus chrysurus Herbivore 

Pomacentrus coelestis Planktivore 

Pomacentrus grammorhynchus Herbivore 

Pomacentrus imitator Planktivore 

Pomacentrus lepidogenys Planktivore 

Pomacentrus moluccensis Planktivore 

Pomacentrus nagasakiensis Planktivore 

Pomacentrus nigromarginatus Planktivore 

Pomacentrus philippinus Planktivore 

Pomacentrus reidi Planktivore 

Pomacentrus tripunctatus Herbivore 

Pomacentrus vaiuli Benthic invertebrate feeder 

Pomacentrus wardi Herbivore 

Pomachromis richardsoni Planktivore 

Pomadasys taeniatus Benthic invertebrate feeder 

Premnas biaculeatus Planktivore 

Sargocentron spiniferum Benthic invertebrate feeder 

Scarus altipinnis Herbivore 

Scarus chameleon Herbivore 

Scarus dimidiatus Herbivore 

Scarus flavipectoralis Herbivore 

Scarus forsteni Herbivore 

Scarus frenatus Herbivore 

Scarus ghobban Herbivore 

Scarus globiceps Herbivore 

Scarus longipinnis Herbivore 
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Scarus niger Herbivore 

Scarus oviceps Herbivore 

Scarus psittacus Herbivore 

Scarus rivulatus Herbivore 

Scarus rubroviolaceus Herbivore 

Scarus schlegeli Herbivore 

Scarus spinus Herbivore 

Scarus spp Herbivore 

Siganus argenteus Herbivore 

Siganus corallinus Herbivore 

Siganus doliatus Herbivore 

Siganus fuscescens Herbivore 

Siganus javus Herbivore 

Siganus lineatus Herbivore 

Siganus puellus Herbivore 

Siganus punctatissimus Herbivore 

Siganus punctatus Herbivore 

Siganus spinus Herbivore 

Siganus vulpinus Herbivore 

Stegastes apicalis Herbivore 

Stegastes fasciolatus Herbivore 

Stegastes gascoynei Herbivore 

Stegastes nigricans Herbivore 

Variola albimarginata Piscivore 

Variola louti Piscivore 

Zanclus cornutus Benthic invertebrate feeder 

Zebrasoma scopas Herbivore 

Zebrasoma veliferum Herbivore 

 

  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.03.467170doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467170
http://creativecommons.org/licenses/by-nc/4.0/


32 
 

Table S3. Results of paired t-tests for differences between variance components of intrinsic 

species differences of trophic groups. The direction of the estimated mean difference is 

presented as row subtracted by column. Thus, for example, -1.8%, in the herbivore row and 

plantkivore column, indicates that the species differences explained 1.8% less variation for 

herbivores than it did for planktivores. * indicates P <0.05 and ** indicates P <0.01 after 

Bonferroni correction of P values. 

  Herbivore Planktivore Benthicinvertivore 

Herbivore NA -1.8% 1.9% 

Planktivore NA NA 3.7% 

Benthicinvertivore NA NA NA 
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Table S4. Results of paired t-test for differences between variance components of 

environmental stochasticity of trophic groups. The direction of the estimated mean difference 

is presented as per Supplementary Table S3. * indicates P <0.05 and ** indicates P <0.01 after 

Bonferroni correction of P values. 

  Herbivore Planktivore Benthicinvertivore 

Herbivore NA -4.2% -11.2%** 

Planktivore NA NA -7%* 

Benthicinvertivore NA NA NA 
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Table S5. Results of paired t-test for difference between variance components of 

overdispersion of trophic groups. The direction of the estimated mean difference is presented 

as per Supplementary Table S3. * indicates P <0.05 and ** indicates P <0.01 after Bonferroni 

correction of P values. 

  Herbivore Planktivore Benthicinvertivore 

Herbivore NA 6.1%** 8.8%** 

Planktivore NA NA 2.6%** 

Benthicinvertivore NA NA NA 
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Table S6. OLS regression models for proportional variance components, richness, and 

unevenness in the context of trophic groups. For explanatory variables, ‘mC’ and ‘log(sdC)’ 

represents the long-term (11-yr) mean and log-transformed standard deviation in annual coral 

cover fluctuations, respectively. ‘Lat’ and ‘Shelf’ represents latitude and cross-shelf position, 

respectively. ‘TG’ represents the identity of trophic group as a categorical variable. Cross and 

plus symbols represent interactive and additive effects, respectively. The analyses of the variance 

component of demographic and sampling variance (overdispersion) are not presented, because 

their magnitude is negligible compared to that of other variance components (Fig. S3). 

Response variable Explanatory variable adjR2 AIC ΔAIC 

Persistent species differences log(sdC)×mC×TG 0.15 -168.2 0 
 log(sdC)×TG 0.07 -161.9 6.3 
 Shelf×TG 0.05 -160.5 7.7 
 mC×TG 0.05 -159.8 8.4 
 TG 0 -157.1 11.1 
 Lat×Shelf×TG 0.05 -155.7 12.5 

  Lat×TG 0 -154.5 13.7 

Environmental stochasticity log(sdC)×mC×TG 0.26 -176.1 0 
 log(sdC)×TG 0.16 -165.1 11 
 Shelf×TG 0.15 -164.9 11.2 
 mC×TG 0.15 -164.8 11.3 
 TG 0.11 -162.4 13.7 
 Lat×Shelf×TG 0.16 -160.2 15.9 

  Lat×TG 0.11 -159.3 16.8 

Richness Lat×Shelf×TG 0.84 673.4 0 
 Shelf×TG 0.77 708.5 35.1 
 Lat×TG 0.74 724.3 50.9 
 mC×TG 0.74 725.7 52.3 
 TG 0.73 727.1 53.7 

 
log(sdC)×mC×TG 0.74 730.9 57.5 

  log(sdC)×TG 0.72 731.4 58 

Unevenness Lat×TG 0.75 414.8 0 
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 Lat×Shelf×TG 0.74 425.2 10.4 
 log(sdC)×TG 0.72 428.6 13.8 

 
log(sdC)×mC×TG 0.7 438.4 23.6 

 mC×TG 0.69 441.4 26.6 
 TG 0.66 448 33.2 

  Shelf×TG 0.65 453.7 38.9 
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Table S7. Pearson correlations between environmental variables. ‘mC’, ‘log(sdC)’, and 

‘log(cvC)’ represents the long-term (11-yr) average, log-transformed standard deviation, and log-

transformed coefficient of variation in coral cover annual fluctuations, respectively. ‘Lat’ and 

‘Shelf’ represents the latitude and cross-shelf position, respectively. Symbol * indicates P<0.05. 

  log(sdC) mC log(cvC) Lat Shelf 

log(sdC) 
 

0.53 0.89* -0.24 -0.04 

mC 
 

 0.12 -0.16 -0.12 

log(cvC) 
 

  -0.18 0.07 

Lat 
 

  
 

0.15 

Shelf          
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Table S8. Pearson correlations between static and dynamic measures of reef fish 

community structure. ‘Richness’ and ’Unevenness’ represents time-averaged richness and 

unevenness from Poisson-lognormal fits of relative species abundance of reef fish across coral 

reefs, respectively. ##, #$ and #% (as eqs 2-4 in the main text) represents the proportional 

variance in relative abundances of reef fishes explained by intrinsic species differences, 

environmental stochasticity, and demographic and sampling variance (overdispersion), 

respectively. Symbol * indicates P<0.05. 

 Richness Unevenness ## #$ #% 

Richness 
 

-0.67* -0.08 0.11 -0.17 

Unevenness 
 

 0.09 -0.07 -0.08 

## 
 

  -0.98* 0.23 

#$ 
 

  
 

-0.39* 

#% 
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Table S9. Effect size comparison for AIC-similar (ΔAIC<2) models of unevenness. Variables 

are standardized prior to estimating effect size. Model structure for predicting unevenness 

presented as per Table S1. ** indicates P <0.01. 

Model Intercept Lat Shelf Lat×Shelf mC log(sdC) 

Unevenness~Lat×Shelf 0.05 -0.73** 0.59** -0.38** NA NA 

Unevenness~Lat×Shelf+mC 0.05 -0.71** 0.6** -0.34** 0.13 NA 

Unevenness~Lat×Shelf+log(sdC) 0.05 -0.71** 0.59** -0.4** NA 0.12 
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Supplementary Table S10. Model selection of auto-correlation function eq. 1 for VPRSA. !!, !", and " indicate either the fixed-

effect parameter estimate (where the corresponding “SD(.)” column is NA), or the estimated mean of the random-effect distribution, 

for the parameters of the autocorrelation function eq. 1 in the main text, respectively. SD(.) is the estimated standard deviations of the 

random-effect distribution for the corresponding parameter. SDtotal is the estimated residual standard error. 95% confidence intervals 

are enclosed in square brackets. Random effects are modelled as following lognormal distributions because normally distributed 

random effects yielded numerally unstable fits. Note that, with respect to all possible combinations of fixed and random-effect model 

structure of eq. 1., only the results of numerically stable models are reported. ‘AIC’ represents Akaike information criteria. 

Bootstrapped marginal-AIC values are consistent with AIC (not shown for simplicity). 
Fixed effect Random effect !! !" " SD (!!) SD (!") SDtotal AIC 

!!, !", "  !!, !"  0.75 [0.72, 0.78] 0.93 [0.92, 0.94] 0.09 [0.08, 0.11] 0.18 [0.15, 0.22] 0.02 [0.02, 0.03] 0.05 [0.047, 0.051] -6844.62 

!!, !", " !!	 0.75 [0.73, 0.78] 0.93 [0.93, 0.94] 0.09 [0.08, 0.11] 0.16 [0.13, 0.2] NA 0.05 [0.049, 0.051] -6803.06 

!!, !", " NA 0.76 [0.7, 0.82] 0.93 [0.93, 0.94] 0.09 [0.05, 0.15] NA NA 0.06 [0.059, 0.061] -6096.7 
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Supplementary Simulation Study: 
  Our analyses of the reef fish data use the variance partitioning of relative species 

abundance (hereafter, VPRSA) method. However, the underlying community dynamics model 

from which VPRSA is derived (eq. 5-6 in the Methods) makes some important simplifying 

assumptions that may commonly be violated in real communities, including the data analyzed in 

this paper, so it is important to evaluate whether inferences about proportional variance 

components are sensitive to those assumptions. Specifically, we wish to determine whether 

estimates produced by the VPRSA method, when applied to simulated data that violate model 

assumptions, still produce variance component estimates that reflect the relative contribution of 

persistent intrinsic species differences versus stochastic fluctuations to overall variation in 

species abundances. 

 

Simplifying assumptions of this model include that the following: (i) species’ intrinsic 

growth rates vary according to a normal distribution, (ii) the strength of intra-specific density 

dependence is the same for all species and inter-specific interactions to be negligible, and (iii) the 

responses of species’ intrinsic growth rates to environmental stochasticity (environmental 

variance) are assumed to be independent and equal in magnitude (i.e., they fluctuate from year to 

year with the same variance; because of the log-scaling of abundance in this model, this implies 

that fluctuations in population growth have a variance that is proportional to the mean). Samples 

from communities whose abundances follow these assumptions generate a static species-

abundance pattern that follows a Poisson-lognormal distribution, consistent with what is 

commonly observed in data (33, 42), and allow derivation of the autocorrelation function that we 

used in the main text to partition the variance in relative species log-abundances into 

components. 

 

Some of these assumptions are likely to be more reasonable than others. For instance, the 

assumption of Gompertz-type density dependence is consistent with many previous studies, 

which have found that this model characterizes the functional form of density dependence well 

and performs better than, or as well as, other forms such as the Ricker or Logistic form (43–45). 

More specifically, in a previous study of reef fish functional group dynamics on the Great Barrier 

Reef (35), Gompertz-type density dependence was found to fit data better than other forms of 
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density dependence. Another assumption is that of a normal distribution of intrinsic growth rates. 

Because of the log-scaling of species abundances in eq. 5, this implies a lognormal distribution 

of geometric growth factors. A strongly right-skewed distribution of this quantity, such as a 

lognormal, is consistent with the few studies of variation in population growth at the assemblage-

level, which show that most species are relatively slow growing, with a long tail of a few fast-

growing species (46). 

 

In contrast, the assumptions of equal strength of density dependence, and equal proportional 

magnitude of environmentally induced fluctuations in abundance, seem unlikely to hold in nature 

(35, 47). Between these extremes, the assumptions that interspecific interactions are negligible, 

and that species respond independently to environmental fluctuations, are common in 

biodiversity models, but controversial. For instance, there is some evidence that between-species 

interactions tend to be weak, particularly for high-diversity systems (35, 48, 49), and species’ 

responses to fluctuations tend to be relatively independent on average (32, 50). As noted above, 

the lognormal shape of the static species abundance distribution has been shown previously to be 

robust to violation of these assumptions (33, 51), but whether variance components estimated 

from the temporal evolution of such species-abundance distributions are equally robust is 

unknown. For instance, the deterministic “persistent species difference” component captures the 

proportional variance in log-abundance due to species differences in equilibrium abundance, but 

this will no longer be directly proportional to variance in intrinsic growth rates (as in the Vr term 

of eq. 7 in the main text) when species interactions or among-species heterogeneity in density 

dependence is present. 

 

In this supplement, we simulate different scenarios of community dynamics to test the 

robustness of variance components estimated from VPRSA to violations of assumptions. 

Specifically, we conduct VPRSA analysis on simulated community dynamics data that 

systematically violate model assumptions of VPRSA, and we compare estimated variance 

components with approximate “true” variance components based on the analytical solutions and 

known underlying parameters of the simulated communities. R code for simulations and fits is 

available at https://github.com/TsaiCH/simsEngenVPRSA. Our objective here is not to 

comprehensively examine the statistical performance of the estimates from this method, but 
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rather to verify that any biases in the estimates produced when the model’s assumptions were 

violated do not compromise the conclusions drawn about the reef fish data (LTMP) in the main 

text. For that reason, we focus on simulated data that share key features of the LTMP data, with 

respect to species richness, number and length of replicate time series, and parameter values. 

 

Community dynamics model 

We use state-space models that incorporate different assumptions about community 

dynamics to produce simulated data, which we then analyze using the VPRSA approach applied 

in the main text. This allows us to evaluate the robustness of VPRSA estimates to violation of the 

assumptions of the community dynamics model from which it was derived. The R code for 

simulations of community dynamics, and VPRSA estimation, is available and open access at 

https://github.com/TsaiCH/simsEngenVPRSA. 

 

First, we simulate the abundance dynamics of species i=1..S in a community according to 

the discrete-time multivariate Gompertz model (52): 

 (eq. 8) 

where  is the abundance of species we at time t,  is the species-specific intrinsic growth 

rate, and  and  are coefficients related to intra- and inter-species density dependence, 

respectively. -1 is the strength of intra-specific density-dependence, while larger values of 

indicate stronger inter-specific interactions. Here, we constrain these values to be between 0 and 

1, consistent with parameter estimates from Gompertz model fits to individual population time 

series (16), as well as the parameter estimates from our analyses here. (Note that <0 represents 

strongly over-compensatory interactions, where increases in Nt produce decreases in Nt+1, 

whereas bii=1 indicates density-independent dynamics.) Additionally, the species-specific 

intrinsic growth rates ( ) are assumed to vary among species according to a normal distribution 

(sensu  in eqs.1-2).	"!,# and "$,# are species-specific noise terms representing demographic and 

environmental stochasticity. 
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More formally, let  and take the natural logarithm of both sides of eq. 8 in order 

to facilitate expressing the Gompertz-type community dynamics in matrix form. By doing so, the 

community dynamics model becomes an order-one multivariate autoregressive model with two 

components of process noise as follows: 

 (eq. 9) 

 (eq. 10) 

 (eq. 11) 

where  is a vector containing log abundance for each species at time t,  is a vector 

containing species-specific intrinsic growth rates (ai), and  is the interaction matrix where the 

diagonal ( ) and off-diagonals ( ) are coefficients related to intra- and inter-specific density 

dependence (keeping in mind that the intra-specific density-dependence is -1, whereas the 

intra-specific density dependence is ). is a vector of random variables containing species’ 

responses to environmental fluctuations (i.e., the perturbations to the intrinsic growth rate due to 

environmental stochasticity) and follows a multivariate normal distribution (MVN) with zero 

means and variance-covariance matrix  (eq. 10).  is a vector of random variables 

representing perturbations due to demographic stochasticity. These quantities also follow a 

multivariate normal distribution (MVN) with zero means and variance matrix (by definition, 

the covariances of this matrix are all zero). Because less abundant species are more prone to 

demographic stochasticity than abundant species, we follow previous work and model the 

demographic variances in log-abundance (the diagonal in ) as inversely proportional to the 

square root of species abundance (eq. 11) (32, 53). That is, the diagonal elements of  follow: 

  (eq. 12) 

 

Finally, let  represent a vector containing the expected relative species abundance in a 

random sample of the species-abundance distribution, such that: 

 (eq. 13) 

log tN = tX

t+1 t t tX = A+BX +D +E
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where c is a measure of sampling intensity. Hence the (simulated) sampled species abundances 

Yt will be a Poisson sample of : 

 (eq. 14) 

The final model of community dynamics represents a discrete-time multivariate state-space 

model with normally distributed equilibrium log-abundances, normally distributed process noise, 

and Poisson-distributed observation error. we therefore model the sampled abundance values yt 

as following a Poisson-lognormal distribution (51).  

 
Simulating empirically constrained community dynamics data 

Simulated data were constrained to have similar numbers of locations (“reefs”), time series 

lengths, species richness, and numbers of individuals as per the LTMP data analyzed in the main 

text. Specifically, we generated 100 simulated data sets, each of which consisted of 40 simulated 

time series (“reefs”) sampled annually for 11 years, to correspond to the time series for the 40 

annually sampled reefs in the LTMP. For each reef, true total species richness was fixed at 

S=100 in all simulations. The level of “true” total richness used in simulations is close to the 

upper bound of estimated total richness at the reef scale in the LTMP (cf. Fig. 1 in the main text). 

Then, for each year at each reef, we simulated a Poisson random sample with a mean of 1500 

individuals (i.e., the sampling intensity c was set so that the sum of the Poisson mean abundance 

across all species was equal to 1500), since this was close to the median sample size in the 

LTMP. If any simulated samples had fewer than 40 observed species (i.e., species with sampled 

abundance greater than zero), that sample was discarded, and a new random sample was taken 

from the community for that reef and year. This threshold of 40 observed species was used to 

prevent unrealistically low representation of the community (in the LTMP data, no reefs had 

fewer than 40 observed species in any year). Simulations where this occurred were extremely 

rare (approximately 2% of simulations), so it is unlikely that this culling process has affected our 

conclusions. 

 

For each simulated data set, the communities on all reefs were specified to have the same 

community dynamics parameters for eqs. 9-11, except for the strength of environmental 

stochasticity (i.e.,  in eq. 1 and the diagonal [#$%] of  in eq. 10). This last quantity was 

tλ

( )Poissont tY λ!

es Σ
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varied systematically, in order to produce a data set in which the relative importance of 

deterministic species differences versus environmental stochasticity varied widely among reefs, 

which could then be used to evaluate how well VPRSA resolved these differences. Specifically, 

the environmental variance term (i.e.,	#$%) was varied from 0.025 to 0.5 in equal sized increments 

across the simulated reefs (e.g., one reef had #$%=0.025, another had #$%=0.0372, and so on up to 

#$%=0.5). This created a true distribution of variance components among reefs that was uniform 

and extended almost all the way to zero. For the effect of persistent, intrinsic species differences 

(cf. eq. 1-2 and eq. 9), the species-specific intrinsic growth rates were modelled as varying 

among species according to a normal distribution with mean =1.5 and standard deviation sr = 

0.25, based on a meta-analysis of global fishery stock assessments (46). Demographic 

stochasticity was simulated as process noise ( ), where the demographic variances (the 

diagonal of  in eq. 11) were scaled by the value #!%=0.5. Other parameter values varied among 

simulation scenarios, as specified below. 

 
Scenarios of simulated community dynamics data 

We simulated five scenarios of community dynamics, which are constrained as described 

above, to test the robustness of variance components (i.e., the relative importance of 

deterministic versus stochastic factors in eq. 7 in the main text) estimated by VPRSA. The values 

of #$% and #!% specified above were used for all simulations, and the additional parameters 

specified in scenarios (i)-(v) below were chosen so that the simulations produced frequency 

distributions of  ##&#%$  (variance of log-abundance in the communities), and sample completeness 

(measured as the fraction of the species pool observed at each site in each year) that were similar 

to those produced when the Poisson-lognormal was fitted to the LTMP data (Simulation Study 

Fig. 1). In addition, to ensure a stationary distribution of population sizes (i.e., all species 

coexisting), the complex norm of eigenvalues of interaction matrix B was constrained to be less 

than one. This constrained the overall strength of interspecific competition in scenario (iii) (i.e., 

if interactions were too strong, species would be unable to coexist). 

 

The details of parameters and scenarios of simulated community data are as follows:  

(i) Baseline: These simulations were run to conform with the assumptions of the 

rµ
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stochastic community-dynamic theory from which VPRSA was derived. 

Specifically, intra-specific density dependence was the same for all species (bii=b), 

the interaction matrix B contained no inter-specific density dependence (i.e., the off-

diagonals of  were zero in eq. 9) and responses to environmental fluctuations 

were independent and equal in variance (i.e., the off-diagonals of  were zero in 

eq. 10, and the variances were all equal to the reef-specific values of #$% specified 

above: #$,''% = #$%). In these simulations, we set b=0.84 (i.e., the “strength of density 

dependence” was 1 - 0.84 = 0.16), as this is consistent with the estimate of this 

parameter from the real data. 

(ii) Varied intra-specific interactions (varIntra): This scenario introduces between-

species variation in intra-specific density dependence. Specifically, values on the 

diagonal of  in (eq. 9) were drawn from a normal distribution with mean 1.8 and 

standard deviation 0.4, and then inverse-logit transformed to yield values between 0 

and 1. This produces random coefficients of the diagonal of B with mean values 

close to 0.84 (i.e., &[(''] ≈ 0.84, implying average strength of density-dependence  

1 − &[(''] ≈0.16), and standard deviations close to 0.06, implying a coefficient of 

variation of density-dependent strength of about 0.37. Because equilibrium 

abundance is exp 4 (!)!!5, this approach produced unrealistically large variance in the 

total variance of log-abundance, ##&#% . Therefore, the diagonal elements of  were 

reordered to increase with species’ intrinsic growth rates (i.e., elements of vector A 

in eq. 9), so that species with strong density dependence also had high intrinsic 

growth rates. This yielded more realistic variances of log-abundance (see below). 

(iii) Inter-specific interactions (varInter): This scenario introduces diffuse inter-specific 

density dependence by drawing the off-diagonals of  from a uniform distribution 

between 0 and 0.002 (mean=0.001). This yielded an average summed effect of 

interspecific interactions (across the other 99 species in the community) that was 

approximately 60% the strength of intra-specific density-dependence (i.e., 

0.001 × 99 ≈ 0.6	 × 0.16). All other parameter values were the same as in the 

Baseline simulation. Mean interaction strength values slightly above those employed 

here (0.001-0.003) tended to produce distributions of observed richness values that 
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differed notably from the data (lower observed richness levels, and more strongly 

right-skewed abundance distributions). Moreover, mean interaction strengths above 

about 0.003 tended to produce assemblages lacking a stable coexistence equilibrium. 

(iv) Unequal environmental variances (varEnv): This scenario introduces heterogeneity 

among species in sensitivity to environmental fluctuations. Specifically, species-

specific environmental variances (the diagonal of  in eq. 10) were drawn from a 

uniform distribution between 0 and 2 (mean=1), and then multiplied by the reef-

specific #$% term, as specified above. This ensured that the average value of 

environmental variance ranged from 0.025 to 0.5, as in the Baseline scenario, and 

thus continued to yield realistic ##&#%  values. All other parameter values were as in 

the Baseline scenario. 

(v) Unequal environmental covariances (varcovEnv): This scenario introduces 

covariance in species’ responses to environmental fluctuations. Specifically, we 

generated a lower-triangular matrix  whose elements were drawn from a normal 

distribution with mean 0 and standard deviation 0.25. We then produced a 

covariance matrix = . The elements of  were subsequently standardized by 

the mean of the diagonal elements, and then the entire matrix multiplied by the reef-

specific environmental variance term #$%. This yielded a matrix of unequal variances 

and covariances among species, whose correlation coefficients ranged from -0.5 to 

0.5, with mean 0, and with the mean of the diagonal elements equal to the reef-

specific value #$% (and thus comparable in average magnitude of environmental 

variability to the other scenarios). 

 

Estimating VPRSA from simulated community dynamics data 

We tested the robustness of statistical inferences drawn from VPRSA by analyzing the simulated 

data described above. Following the approach used with the real data, we used the R package 

“poilog” to fit the bivariate Poisson-lognormal distributions to paired assemblage at different 

time lags, and then analysed the correlation coefficients for all of these pairs as functions of the 

time elapsed between them, to estimate the three parameters ( , , and ) of the 

autocorrelation function (eq. 1) for all 40 reefs simultaneously using the nonlinear mixed-effects 

modelling approach employed in the main text analysis. Consistent with our main text analysis, 
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we included random effects on  and  but not  to avoid numerical instability of 

parameter estimates (Supplementary Text). From these estimates, we calculated the proportion of 

the total variance of log-abundance attributable to persistent intrinsic species differences, 

responses to environmental fluctuations, and demographic and sampling variance 

(overdispersion), as in the original analysis. 

 

Testing the robustness of statistical inferences drawn from VPRSA 

Once we had our reef-level variance component estimates, we then assessed the robustness 

of estimated proportional variance components to violations of model assumptions (scenarios ii 

through iv). For these simulations, we used average values of density dependence and 

environmental variance and covariance parameters (across species) for computing “expected” 

proportional variances (i.e., according to eq. 7 in the main text) in scenarios of varied intra- and 

inter-specific interactions (scenarios ii and iii) and environmental variances and covariances 

(scenarios iv and v). Thus, for example, for the case of variable intra-specific density-

dependence, we compared the variance components obtained from analysis of the simulated data, 

with the theoretical expectation under the assumption that all species exhibited the average level 

of density dependence (i.e., the average d to substitute d in eq. 7 in the main text) for that 

simulation. Our goal is to determine whether the proportional variance estimates produced by 

applying the VPRSA approach, to simulated data that violate the model assumptions, produce 

estimates that are consistent with the overall relative importance of persistent species differences 

versus stochastic fluctuations in those simulated data. 

 

In addition, we calculated, analytically, an alternative measure of theoretical expected 

proportional variances to take more explicit account of between-species heterogeneity, species 

interactions, and covariances in response to environmental fluctuations (termed the “Robust” 

predictions, below). We did this by exploiting general analytical solutions (52) for the 

environmental variance and variance in equilibrium abundance for the discrete time, stochastic, 

multivariate Gompertz model as follows: 

 (eq. 21) 

 (eq. 22) 

0
kRr kRr¥

d

( ) ( ) 1ˆvar log varrn
-é ù= = -ë ûN I B A

( ) ( )1
e e avg diag vecn -é ùé ù= = - Äë ûë û
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 (eq. 23) 

 (eq. 24) 

where 9( is the among-species variance of equilibrium population sizes (on a logarithmic scale), 

and 9$ represents the average species-level variance of log-abundance due to environmental 

stochasticity. In (eq. 21),  represents the species’ abundances at stationary or equilibrium 

states, “var” represents the variance operator, B is the interaction matrix (as per eq. 9), A is a 

vector of intrinsic growth rates (as per eq. 9). In (eq. 22),  is the average of the diagonal of the 

environmental variance-covariance matrix at stationary states, “avg” represents the arithmetic 

mean function, and “diag” and “vec” are the diagonal and vectorization operators. The symbol 

 represents the Kronecker or tensor product. From equations 23-24, the two variance 

components are generalized to account for heterogeneity in intra-specific and inter-specific 

density dependences through the interaction matrix B, as well as heterogeneity in environmental 

variances and covariances through the environmental variance-covariance matrix . 

 

Importantly, under the assumptions of the Baseline scenario, the approximate measures of 

9( and 9$ above (eqs. 21-24) collapse to discrete-time analogous of Engen and colleagues’ 

functional forms of :( and :$ (eq. 7 in the main text) (where the density-dependent parameter 

; ≡ 1 − (''). However, once species interactions or heterogeneity in density-dependence are 

incorporated (e.g., scenarios ii and iii), #(%  would cease to be directly proportional to the 

variance in species’ equilibrium log-abundances, so we would expect this modified version of 9( 

(eq. 21) to better measure the relative importance of persistent niche structure than Vr from the 

original theory (eq. 7 in the main text). Similarly, in the presence of environmental covariances 

or heterogeneity in environmental variances among species (e.g., scenarios iv and v), the 

functional relationship between Ve in eq. 7 and the overall contribution of environmentally 

mediated population fluctuations to variance in species-abundances may also break down, 

rendering eq. 22 a more robust measure. Consequently, for scenarios (ii)-(v), we test estimated 

variance components from our fits against theoretical variance components calculated according 

to both the original theory (eq. 7 in the main text), and the generalized forms above (eqs. 21-24). 

However, as noted above, the model from which these generalized forms are derived (eqs. 21-
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22) omits demographic stochasticity; thus, if the contribution of Vd  in eq. 7 is non-negligible, 

then analytically-calculated proportional variance components from eqs. 23-24 will be biased. 

Consequently, to maximize the comparability of these quantities 9( and 9$ with the original 

VPRSA forms, we normalized the variance components of the former :( and :$ (eq. 7) as 

follows: 

:
^
( = +"

+",+#
≡ +"

-$%$& .+'
   (eq. 25)  

:
^
$ = +#

+",+#
≡ +#

-$%$& .+'
   (eq. 26) 

 

As expected, estimated variance components from data simulated according to our 

“baseline” scenario were highly consistent with the theoretical expectation. In Simulation Study 

Fig. 2, each point represents variance component estimates for one reef in one simulation. The 

colored line represents the theoretical expectation for the variance component due to persistent 

species differences (red), and environmental stochasticity (blue), and demographic and sampling 

variance (green). The black line is a smoothed fit to the simulated data. Thus, the discrepancy 

between the black line and the corresponding colored line represents the difference between the 

underlying trend in the simulated data, versus the theoretical expectation according to the 

original theoretical model. For this baseline scenario, there is a slight tendency to overestimate, 

by a few percentage points on average, the contribution of persistent species differences relative 

to stochastic fluctuations, particularly when the contribution of stochastic fluctuations is large. 

This discrepancy is not markedly increased by the incorporation of species interactions, 

interspecific variation in sensitivity to environmental fluctuations, or covariation between species 

in fluctuations, but is slightly larger in the presence of variation in intra-specific density-

dependence (Simulation Study Fig. 3). 

 

Our “robust approach” seems to better capture the behavior of the variance components 

than the original theory (Simulation Study Fig. 4 and Fig. 5). Specifically, the central tendency 

of the variance component estimates aligns much more closely with the variance components 

predicted by the more general theoretical model given by eqs 21-24 than it does to the 

predictions of the original theory (Simulation Study Figs. 4-5). To understand this, it is important 

to note that, conceptually, the variance attributable to “persistent species differences” is the 
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variance in deterministic equilibrium population sizes (on a logarithmic scale). In Engen et al.’s 

(2002) original model, as in the baseline scenario, this is equal to #(%/;% in eq. 7 (i.e., >/ in eq. 

1) in the main text. However, when there is heterogeneity among species in intra-specific density 

dependence (i.e., the “varIntra” scenario; Simulation Study Fig. 4A-B) or species interactions 

(i.e., the “varInter” scenario; Simulation Study Fig. 4C-D), or when there are different species 

responses to environmental fluctuations (i.e., the “varEnv” and “varcovEnv” scenario; 

Simulation Study Fig. 5), this is no longer true, and thus the original analytical expectation (eq. 7 

in the main text) itself may be less representative of the true variance components of relative 

species abundance. In this context, it is encouraging that the VPRSA estimates produced by 

analysis of the autocorrelation function align well with the “robust” formulation that takes the 

additional heterogeneity among species into account with the appropriate multivariate Gompertz 

expressions (eqs. 21-24) (Simulation Study Fig. 4 and Fig. 5). In other words, the estimated 

proportional variance component for persistent species differences appears to provide a very 

good estimate of the relative amount of the variance in species’ log-abundances that is due to 

variance in their long-term equilibrium values, relative to the variance due to their temporal 

fluctuations. Notably, the modified expressions (eqs. 21-24) also perform better in the baseline 

scenario (i.e., when species differ only in intrinsic growth rates), compared to the original 

analytical expressions (eq. 7 in the main text) (Simulation Study Fig. 6), which suggests that 

some of the discrepancy may be due to the discrete-time nature of the simulations (since the 

original theoretical model was developed for continuous-time dynamics, whereas the theoretical 

model underpinning our “robust approach” is formulated in discrete time). 

 

These supplementary simulation results suggest that proportional variance estimates from 

VPRSA provide robust information about the relative importance of persistent species 

differences (determinism) versus stochastic environmental fluctuations in shaping patterns of 

commonness and rarity among species, even when key simplifying assumptions about 

community dynamics made by the original theory are violated. We conclude from this that 

VPRSA may well be much more broadly applicable than previously realized, particularly when 

the variance component due to persistent species differences is conceptualized as representing 

the proportional variance in species abundances due to differences in their long-term mean 

abundances (as in our derivations from the more general theory), rather than specifically to 
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differences in their intrinsic growth rates (as in the original theory used to derive the variance 

components). Of course, our simulation study cannot be a comprehensive exploration of the 

robustness of this approach to all possible assumption violations. However, the robustness that 

we have identified suggests that VPRSA is more robust than one might have assumed, given the 

original model of community dynamics that inspired it. 
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Simulation Study Figs. 1 to 6: 
 

 
Simulation Study Fig. 1. (A) Density distribution of estimated overall variance of Poisson-

lognormal species-abundance distributions. (B) Density distribution of sample completeness 

measured as the ratio of observed (sampled) species richness to estimated species richness from 

Poisson-lognormal fits. Curves are probability density distributions from empirical and simulated 

data. Red curves represent the empirical LTMP data. Green curves (light green, intermediate, 

and dark green) are ‘baseline’,’varcovEnv’, and ’varEnv’ scenarios, respectively. Light- and 

dark-gray curves are ‘varIntra’ and ‘varInter’ scenarios, respectively.  
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Simulation Study Fig. 2. Relationships between true environmental variance and VPRSA-

estimated variance components of persistent species differences, environmental stochasticity, 

and a combination of demographic or sampling stochasticity for the “Baseline” scenario. Red, 

blue, and green colors represent the VPRSA-estimated proportional variance driven by persistent 

species differences (niche structure), environmental stochasticity, and demographic or sampling 

stochasticity, respectively. Each point, irrespective of color, represents one simulated time series 

for one spatial replicate (reef) (i.e., for each color, n = 40 spatial replicates with varied 

environmental variance × 100 simulations = 400 points). All community dynamics data (points) 

are simulated from the baseline scenario. Red, blue, and green colored lines represent the kernel 

smoothing of proportional variance estimates, respectively, obtained using local polynomial 

regression fitting. Black lines represent the analytical predictions of Engen et al. 2002 (eq. 7 in 

the main text) using the true parameters from the simulations. 
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Simulation Study Fig. 3. Relationships between true environmental variance and estimates of 

variance components under different community dynamics scenarios. Red, blue, and green colors 

represent the proportional variance components due to persistent species differences, 

environmental stochasticity, and demographic or sampling stochasticity. Colored (red, blue, and 

green) lines represent the kernel smoothing of proportional variance estimates, respectively, 

obtained using local polynomial regression fitting. Black lines represent the analytical prediction 

of Engen et al. 2002 (eq. 7 in the main text) using the true parameters from the simulations. (A) 

The “varIntra” scenario, which includes species differences in intra-specific density dependence. 
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(B) The “varInter” scenario, which includes species differences in inter-specific density 

dependence. (C) The “varEnv” scenario, which includes species differences in the magnitude of 

environmental variance. (D) The “varcovEnv” scenario, in which species’ responses to 

environmental fluctuations covary. 
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Simulation Study Fig. 4. Relationships between variance estimate of persistent species 

differences and its analytical prediction. The black line is the unity line indicating perfect 

agreement between VPRSA estimates and analytical predictions.  The red line is a quantile 

regression through the median of the VPRSA estimates of variance components of persistent 

species differences. (A, C) The relationship between VPRSA estimates and the original 

analytical prediction of Engen et al. 2002 (eq. 7 in the main text), and (B, D) the relationship 

between VPRSA estimates and the generalized analytical prediction from the discrete-time 

multivariate Gompertz model (eqs. 21-24) under the (A, B) “varIntra” and (C, D) “varInter” 

community dynamics scenarios. 
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Simulation Study Fig. 5. Relationships between variance estimate of persistent species 

differences and its analytical prediction. The black line is the unity line indicating perfect 

agreement between VPRSA estimates and analytical predictions. The red line is a quantile 

regression through the median of the VPRSA estimates of variance components of persistent 

species differences. (A, C) The relationship between VPRSA estimates and the original 

analytical prediction of Engen et al. 2002 (eq. 7 in the main text), and (B, D) the relationship 

between VPRSA estimates and the generalized analytical prediction from the discrete-time 

multivariate Gompertz model (eqs. 21-24) under the (A, B) “varEnv” and (C, D) “varcovEnv” 

community dynamics scenarios. 
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Simulation Study Fig. 6. Relationships between variance estimate of persistent species 

differences and its analytical prediction under baseline scenario. The black line is the unity line 

indicating perfect agreement between VPRSA estimates and analytical predictions. The red line 

is a quantile regression through the median of the VPRSA estimates of variance components of 

persistent species differences. (A) The relationship between VPRSA estimates and the original 

analytical prediction of Engen et al. 2002 (eq. 7 in the main text), and (B) the relationship 

between VPRSA estimates and the generalized analytical prediction from the discrete-time 

multivariate Gompertz model (eqs. 21-24). 
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