Autoinhibition and regulation by phosphoinositides of ATP8B1, a human lipid flippase associated with intrahepatic cholestatic disorders

Thibaud Dieudonné¹, Sara Abad Herrera³, Michelle Juknaviciute Laursen⁵, Maylis Lejeune², Charlott Stock⁶, Kahina Slimani⁷, Christine Jaxel⁸, Joseph A. Lyons⁹, Cédric Montigny⁴, Thomas Günther Pomorski¹⁰,¹¹, Poul Nissen⁵,¹² and Guillaume Lenoir¹³,¹⁴

¹ Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
² Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, 44870, Bochum, Germany
³ DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
⁴ Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
⁵ Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
¹¹ Current address: DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
¹² Current address: Institut Pasteur, Université de Paris, CNRS UMR3528, Structural Bioinformatics Unit, F-75015 Paris, France

These authors contributed equally to this work
* Corresponding author; E-mail: thomas.guenther-pomorski@ruhr-uni-bochum.de
* Corresponding author; E-mail: pn@mbg.au.dk
* Corresponding author; E-mail: guillaume.lenoir@i2bc.paris-saclay.fr

Running title: Regulatory mechanism of the human flippase ATP8B1
Abstract

P-type ATPases from the P4 subfamily (P4-ATPases) are primary active transporters that maintain lipid asymmetry in eukaryotic cell membranes by flipping lipids from the exoplasmic to the cytosolic leaflet. Mutations in several human P4-ATPase genes are associated with severe diseases. For instance, mutations in the ATP8B1 gene result in progressive familial intrahepatic cholestasis, a rare inherited disorder that usually progresses toward liver failure. ATP8B1 forms a binary complex with CDC50A and displays a broad specificity to glycerophospholipids, but regulatory mechanisms are unknown. Here, we report the cryo-EM structure of the human lipid flippase ATP8B1-CDC50A at 3.1 Å resolution. The lipid flippase complex is autoinhibited by the N- and C-termini of ATP8B1, which in concert form extensive interactions with the catalytic sites and flexible domain interfaces of ATP8B1. Consistently, ATP hydrolysis by the ATP8B1-CDC50A complex requires truncation of its C-terminus as well as the presence of phosphoinositides, with a marked preference for phosphatidylinositol-3,4,5-phosphate (PI(3,4,5)P3), and removal of both N- and C-termini results in full activation. Restored inhibition of ATP8B1 truncation constructs with a synthetic peptide mimicking the C-terminus further suggests molecular communication between N- and C-termini in the autoinhibition process and demonstrates that the regulatory mechanism can be interfered with by exogenous compounds. A conserved (G/A)(Y/F)AFS motif in the C-termini of several P4-ATPase subfamilies suggests that this mechanism is employed widely across P4-ATPase lipid flippases, including both plasma membrane and endomembrane P4-ATPases.

Keywords: Lipid transporter/Autoinhibition/Phosphoinositides/P4-ATPases/Progressive familial intrahepatic cholestasis/Cryo-EM

Introduction

Transbilayer lipid asymmetry is a fundamental characteristic of eukaryotic cell and organelle membranes (Kobayashi and Menon, 2018; van Meer, 2011; van Meer et al., 2008; Verkleij et al., 1973). In most cell types choline-containing phosphatidylcholine (PC) and sphingomyelin (SM) are chiefly located in the exoplasmic leaflet while the aminophospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE), as well as phosphoinositides (PPIns), mostly occupy the cytoplasmic leaflet (Bretscher, 1972; Murate et al., 2015). Phospholipid asymmetry plays an important role in eukaryotic cell function. A well-studied example is the asymmetric distribution of PS in membranes of the late secretory/endocytic pathways, where it confers a high surface charge to these membranes, thereby facilitating the recruitment of polybasic motif-containing protein effectors such as the small G proteins K-Ras (Hancock et al., 1990; Yeung et al., 2009), Cdc42 and ROP6, as well as other proteins like protein kinase C (PKC), synaptotagmin, and the membrane fission protein EHD1 (Bohdanowicz and Grinstein, 2013; Lee et al., 2015; Lemmon, 2008; Leventis and Grinstein, 2010; Platre et al., 2019). Thus, there is a direct link between PS sidedness and regulation of cell polarity, cell signaling and vesicular trafficking. Phospholipid asymmetry is maintained by flippases and floppases, which use ATP for inward and outward movement of lipids across membranes, respectively (Andersen et al., 2016; López-Marqués et al., 2015; Montigny et al., 2016). In contrast, scramblases comprise a third category that passively equilibrates lipids across the bilayer, often controlled by gating (Pomorski and Menon, 2016). Whereas floppases belong to the superfamily of ATP-binding cassette (ABC) transporters, most flippases characterized thus far are from the type 4 subfamily of P-type ATPases, hereafter referred to as P4-ATPases. Similar to many ion-transporting P-type ATPases, P4-ATPases consist of a transmembrane domain containing ten membrane-spanning α-helical segments, as well as three cytosolic domains, the actuator (A), nucleotide-binding (N), and phosphorylation (P) domains involved in catalysis (Fig. 1A). Importantly, most P4-ATPases form obligatory binary complexes with members of the CDC50 protein family, which are essential for correct targeting of the flippase complex to its final destination and for its transport activity (Coleman and Molday, 2011; Lenoir et al., 2009; Poulsen et al., 2008; Saito et al., 2004; Segawa et al., 2018). Conformational changes in the membrane domain, required to facilitate lipid transport, are coupled to phosphorylation and dephosphorylation events in the cytosolic ATPase domains, thereby allowing efficient lipid transport against concentration gradients. The different steps of the transport cycle are collectively described as the Post-Albers scheme (Albers, 1967; Post et al., 1972), where the P-type ATPase cycles between different conformations, E1, E1P, E2P and E2 (P for phosphorylated) (Fig. 1B). The transport substrate, a lipid for P4-ATPases, is recognized
in the E2P conformation, and its binding triggers dephosphorylation leading to E2 and eventually release of the lipid in the opposing leaflet. Recent high-resolution structures of the yeast Drs2-Cdc50, Dnf1,2-Lem3 and the human ATP8A1-CDC50A and ATP11C-CDC50A flippase complexes have illuminated the molecular mechanism of lipid transport, providing a framework for understanding how these transporters are able to move lipids (Bai et al., 2020, 2019; Hiraizumi et al., 2019; Lyons et al., 2020; Nakanishi et al., 2020; Timcenko et al., 2021, 2019). A key feature that has emerged from these high-resolution structures is the mechanism by which the C-terminus of yeast Drs2 and human ATP8A1 autoinhibits their respective activities (Hiraizumi et al., 2019; Timcenko et al., 2019). Furthermore, structures obtained in the presence of phosphatidylinositol-4-phosphate (PI(4)P) shed light on the specific regulation of Drs2 by this phosphoinositide, as previously observed using purified enzyme and activity assays (Azouaoui et al., 2017; Natarajan et al., 2009; Zhou et al., 2013).

The human genome encodes 14 P4-ATPases. Mutations in ATP8A2 and ATP11A have been reported to cause severe neurological disorders (Onat et al., 2013; Segawa et al., 2021) while mutations in ATP8B1 are associated with intrahepatic cholestatic disorders, such as benign recurrent intrahepatic cholestasis (BRIC1), intrahepatic cholestasis of pregnancy (ICP1), and the more severe progressive familial intrahepatic cholestasis type 1 (PFIC1). PFIC1 is a rare inherited liver disorder characterized by impaired bile flow, fat malabsorption and progressive cirrhosis and fibrosis (Jacquemin, 2012; van der Mark et al., 2013). The subcellular localization, heteromeric interactions with CDC50 proteins and lipid transport activity of ATP8B1 have been thoroughly investigated using cell-based assays (Bryde et al., 2010; Takatsu et al., 2014; van der Velden et al., 2010). In contrast, ATP8B1 remains poorly studied from a molecular standpoint. In particular, while several other P4-ATPases, and P-type ATPases in general, are tightly regulated by lipid co-factors, protein partners, or by their terminal extensions (Azouaoui et al., 2017; Chalat et al., 2017; Holemans et al., 2015; Saffioti et al., 2021; Tsai et al., 2013), the way ATP8B1 activity is regulated remains unknown.

In this report, we purified human ATP8B1-CDC50A complex, amenable for detailed study of its threedimensional structure and catalytic activity. We determined the high-resolution structure of an autoinhibited ATP8B1-CDC50A by cryo-electron microscopy (cryo-EM). In keeping with the binding mode of the C-terminal tail of ATP8B1 with the cytosolic domains, the ATP8B1-CDC50A complex displayed ATPase activity only after removal of its C-terminus. Using protease cleavage sites within the N-terminus or immediately after the last transmembrane segment of ATP8B1, we demonstrate that ATP8B1 is primarily autoinhibited by its C-terminal extension, but that the N-terminal extension is involved in a synergistic manner. In addition to the importance of these autoregulatory elements, we show that PPIIns are critical activators of ATP8B1 activity.
Results

Cryo-EM structure of the ATP8B1-CDC50A complex in the autoinhibited E2P state

Recent studies revealed that flippases can be autoregulated by their terminal extensions. In particular, (G/A)(Y/F)AFS motifs in the C-termini of Drs2 and ATP8A1 occupy the nucleotide binding site, thereby preventing conformational changes required for lipid transport (Hiraizumi et al., 2019; Timcenko et al., 2019). This motif is well-conserved also in ATP8B1 as 1208AYAF1212S (Fig. 1A), suggesting a regulatory role of the ATP8B1 C-terminus. To gain insight into the mechanism of ATP8B1 regulation, we devised a procedure for co-overexpression of ATP8B1 and CDC50A in *Saccharomyces cerevisiae* and purification of the complex (Fig. S1A and S1B). ATP8B1 and CDC50A co-expressed well in yeast and were solubilized from yeast membranes using n-Dodecyl-β-D-Maltoside (DDM) supplemented with cholesteryl hemisuccinate (CHS). Following streptavidin-based affinity chromatography and on-column cleavage of the biotin acceptor domain (BAD) tag with TEV protease, we obtained a highly pure ATP8B1-CDC50A complex (Fig. 1C and Fig. S1C). Treatment of the purified ATP8B1-CDC50A complex with Endoglycosidase H resulted in consolidation of multiple bands into a single band around 40 kDa, the expected molecular weight of histidine-tagged CDC50A, reflecting various glycosylation levels of its polypeptide chain (Fig. S1C). The stoichiometry between ATP8B1 and CDC50A was found to be 1:1, as determined by in-gel fluorescence (Fig. S1D and S1E). P-type ATPases couple autophosphorylation from ATP and subsequent dephosphorylation of a catalytic aspartate in the P-domain to structural changes in the membrane domain, thus transporting substrates across the membrane against steep concentration gradients (Fig. 1B). To ascertain functionality of the purified complex, we investigated its ability to undergo phosphorylation from [γ-32P]ATP on its catalytic aspartate. The results confirm that the phosphoenzyme involves formation of an aspartyl-phosphate bond on residue D454 (Fig. 1D). For structural studies, DDM was exchange for lauryl maltose neopentyl glycol (LMNG). The resulting sample showed a high degree of monodispersity on size-exclusion chromatography (Fig. 1E).
Figure 1 – Purification and functional assessment of the ATP8B1-CDC50A complex expressed in Saccharomyces cerevisiae.

(A) Predicted topology of ATP8B1-CDC50A with the transmembrane domain of ATP8B1 in tan and the Actuator domain (A), the Nucleotide binding domain (N) and the Phosphorylation domain (P) in yellow, red, and blue, respectively. CDC50A with two transmembrane spans and a large exoplasmic loop in pink; predicted disulfide bridges (S-S) and glycosylation sites (green) are indicated. Sequence alignment of part of the C-terminus of ATP8B1, ATP8A1, ATP8A2, and Drs2 (CLC, Qiagen). The shading indicates conservation (blue 0% – red 100%). Accession numbers are P39524 for Drs2, Q9Y2Q0 for ATP8A1, Q9NTI2 for ATP8A2 and O43520 for ATP8B1.

(B) Post-Albers cycle for P4-ATPases. ATP8B1 mutation D454N prevents phosphorylation on the catalytic aspartate and thus blocks activity. Pi, inorganic phosphate; PL, phospholipid.

(C) SDS-PAGE analysis of ATP8B1-CDC50A affinity purification on streptavidin beads. Proteins contained in crude yeast membranes (Mb) and recovered upon TEV protease cleavage on streptavidin beads (E_{strep}) were visualized by Coomassie Blue staining. M, molecular weight marker. (D) Phosphoenzyme formation from \([\gamma-^{32}P]\)ATP of wild-type and catalytically-inactive D454N variant, as analyzed after electrophoretic separation on acidic gels. Coomassie Blue staining of the same gel was used to control the amount of wild-type and D454N subjected to \(^{32}P\) labeling. (E) Size-exclusion chromatography elution profile of the purified human ATP8B1-CDC50A complex used for cryo-EM studies. Arrows indicate the void volume of the column (v_0), as well as the elution volume of the ATP8B1-CDC50A complex and detergent micelles.
The structure of the full-length complex was then determined using single particle cryo-EM. To stabilize the complex in the autoinhibited E2P conformation (E2P\textsubscript{autoinhibited}), the sample was incubated in the presence of beryllium fluoride (BeF\textsubscript{3}, BeF\textsubscript{2}(OH)\textsubscript{2} referred to as BeFx) mimicking phosphorylation. The high-resolution map (overall resolution: 3.1Å) obtained by cryo-EM enabled us to model most of ATP8B1 and CDC50A sequences (Fig. 2 and Table S1), except flexible loops and termini. As expected, ATP8B1 harbors a typical P4-ATPase fold with a transmembrane helical bundle made of 10 α-helical segments, a nucleotide binding domain (N), a phosphorylation domain (P) and an actuator domain (A). Comparison with other P4-ATPase structures and the presence of an extra density in the phosphorylation site confirmed that our structure resembles an E2P\textsubscript{autoinhibited} state with bound BeFx (Fig. S2). In addition, the cryo-EM data displayed very clear densities for parts of the N- and C-termini of ATP8B1 (Fig. 3). Interestingly, the N-terminal region (Q16-D26) was found to interact tightly with the P- and A-domain of ATP8B1. The C-terminal tail of ATP8B1 was found to interact with the P-, N-, and A-domains, while the last 23 residues were not resolved in the cryo-EM map likely due to a high degree of flexibility (Fig. 3).
Figure 2 – Overall ATP8B1-CDC50A structure.

(A) Cryo-EM map of ATP8B1-CDC50A in the E2P autoinhibited state. The cytosolic A-, N- and P-domains of ATP8B1 are colored in yellow, red and blue, respectively. The transmembrane domain of ATP8B1 is colored in tan. The N- and C-terminal tails of ATP8B1 are colored in cyan and green, respectively. CDC50A is colored in pink. CHS densities and residual densities corresponding to detergent or less ordered unmodelled lipids are in grey. (B) Cartoon representation of the refined model. Colors are as in (A).
Figure 3 – Detailed interaction of ATP8B1-CDC50A N- and C-terminal tails with the cytosolic A-, N- and P-domains.

Overall and close-up views of the N- and C-terminal tails and their corresponding electron densities. The cytosolic A-, N- and P-domains of ATP8B1 are colored in yellow, red and blue, respectively. The transmembrane domain of ATP8B1 is colored in tan. The N- and C-terminal tails of ATP8B1 and their side chains are colored in cyan and green, respectively. CDC50A is colored in pink.

Autoinhibition of ATP8B1 by its N- and C-termini

To investigate the role of ATP8B1 N- and C-termini, we inserted 3C protease cleavage sites after residue P42 in the N-terminus, to remove most of the N-terminal tail including the Q16-D26 region found in the structure, and/or after residue E1174 at the end of the last transmembrane segment 10, to remove the C-terminus (Fig. S3). The various 3C protease constructs were purified by streptavidin affinity chromatography (Fig. 4A). Noteworthy, insertion of the 3C protease cleavage sites did not alter the interaction between ATP8B1 and CDC50A, as shown by immunoblotting of the fraction collected upon incubation of streptavidin beads with 3C and TEV (Fig. S4A). Removal of the N-terminus and/or the C-terminus was not sufficient to stimulate ATP8B1-CDC50A ATPase activity in the presence of its transport substrate PC, suggesting an additional regulatory mechanism (Fig. 4B).

PI(4)P has been shown to be essential to stimulate ATP hydrolysis by Drs2, a yeast homolog of ATP8B1 (Azouaoui et al., 2017). Considering that ATP8B1 is localized at the plasma membrane (PM), we reasoned that addition of PI(4,5)P_2, the most abundant phosphoinositide in the PM (Balla,
2013; Dickson and Hille, 2019), might be required to elicit ATP8B1 activity. As displayed in Fig. 4B, we observed a ~ four-fold increase in ATP hydrolysis upon addition of PI(4,5)P₂, for the C-terminally truncated construct. Interestingly, removal of both termini resulted in additional activation of ATP8B1 suggesting that, although the sole removal of the N-terminus is not sufficient to relieve autoinhibition, the N-terminus cooperates with the C-terminus for autoinhibition of the ATP8B1-CDC50A complex (Fig. 4B). Addition of BeFₓ inhibited the ATPase activity of ATP8B1 with an IC₅₀ of ~ 45 µM, consistent with the ability of this structural analog of phosphate to act as a general P-type ATPase inhibitor (Fig. S4B) (Danko et al., 2009). Finally, the purified ATP8B1-CDC50A complex showed a Kₘ of ~ 40 µM for MgATP (Fig. S4C).

Figure 4 - ATP8B1-CDC50A is autoinhibited by both its N- and C-terminal tails, and the presence of lipids is required for its activity.

(A) Efficient removal of N- and/or C-terminal extensions of ATP8B1 upon on-column cleavage of ATP8B1-CDC50A with both TEV and 3C proteases assessed by Coomassie blue stained SDS-PAGE. ΔN42 lacks residues 1-42 of ATP8B1 whereas ΔC1174 lacks residues 1175-1251 and ΔN42/ΔC1174 lacks both. M, molecular weight marker. (B) ATPase activity of wild-type (WT), N-terminally truncated (ΔN42), C-terminally truncated (ΔC1174) and both N- and C-terminally truncated (ΔN42/ΔC1174) ATP8B1 (~ 5 µg ml⁻¹ protein) in complex with CDC50A determined in DDM at 30°C. Data are a mean ± s.d. of 3 replicate experiments. The dotted line represents background NADH oxidation measured in the absence of purified protein and lipids.

To more precisely assess the involvement of the ATP8B1 C-terminal region in autoinhibition, we asked whether addition of a peptide mimicking the C-terminus of ATP8B1 inhibited the enzyme. To answer this question, a peptide encompassing the AYAFS motif (residues 1205-1251, Fig. S3) was chemically synthesized and incubated with ΔN42/ΔC1174 ATP8B1. Fig. 5A shows that this C-terminal peptide efficiently inhibited ATP hydrolysis by ATP8B1, with an IC₅₀ of ~ 22 µM (Fig. 5A and 5B).
Figure 5 – Autoinhibition of ATP8B1 by its N- and C-terminal extensions.

(A) Back-inhibition of ΔN42/C1174 ATP8B1 (~ 3-3.3 µg ml⁻¹ protein) by synthetic C-terminal peptides (C-ter, Phos C-ter). Activity was determined at 37°C. Data are mean ± s.d. of 3 replicate experiments. (B) Half-maximal inhibitory concentration (IC₅₀) of ATP8B1-CDC50A ATPase activity by C-terminal peptides deduced from curves in (A) and (D). Error bars represent the mean ± s.d. based on 33 to 47 data points. (C) Overall and close-up views of S1223 in the cleft formed by the A- and N-domains. The cytosolic A- and N-domains of ATP8B1 are colored in yellow and red, respectively, and are shown as surface and cartoon. The C-terminal tail of ATP8B1 is shown as cartoon with side chains in green. (D) Back-inhibition of ΔC1174 (~ 3-3.3 µg ml⁻¹ protein) ATP8B1 by C-terminal peptides. Activity was determined at 37°C. For panels (A) and (D), the beryllium fluoride-sensitive ATPase activity is plotted as % of the activity in the absence of peptide. The data were fitted to an inhibitory dose-response equation with variable slope. Data are a mean ± s.d. of 3-4 replicate experiments. (E) Specificity of ATP8B1 inhibition by its C-terminal tail. ATPase activity of DDM-solubilized Drs2-Cdc50 (20 µg ml⁻¹) and pig α1β1 Na⁺/K⁺-ATPase (10 µg ml⁻¹) in microsomal membranes was determined at 30°C and 37°C, respectively, in the absence or presence of 180 µM ATP8B1 C-terminal peptide. The results shown in this panel for ATP8B1 inhibition are the same as those displayed in panel D for a concentration of 180 µM C-terminal peptide. **** P < 0.0001 according to two-way ANOVA with Tukey’s test vs activity in the absence of peptide. ns: non significant. Data are a mean ± s.d. of 3 replicate experiments.
Large scale phosphoproteomic studies have shown that mouse ATP8B1 is phosphorylated at residue S1223 (Huttlin et al., 2010; Villén et al., 2007). Given that S1223 is conserved between mouse and human ATP8B1 and that this residue is located at the interface of the A- and the N-domain (Fig. 5C), we used the C-terminal peptide to address the effect of this putative phosphorylation on the autoinhibition mechanism. Remarkably, phosphorylation at S1223 impaired the ability of the C-terminal peptide to inhibit ATP8B1, with an IC₅₀ shifted to approximately 380 µM (Fig. 5A and Fig. 5B). Furthermore, inhibition of ΔC1174 ATP8B1, i.e. still containing the N-terminal tail, was about 270-fold more efficient (IC₅₀ ~ 0.08 µM) than ΔN42/ΔC1174 (Fig. 5B and Fig. 5D). Similar to the effect on the ΔN42/ΔC1174 variant, phosphorylation at S1223 decreased the ability of the C-terminal peptide to inhibit ATPase activity of the ΔC1174 ATP8B1 variant (Fig. 5B and Fig. 5D). These results strongly support a prominent role for the N-terminal tail of ATP8B1 in the autoinhibition mechanism. Importantly, inhibition was specific as neither the yeast P4-ATPase Drs2, nor the cation-transporting Na⁺/K⁺-ATPase (a P2-ATPase), could be inhibited by the C-terminal tail of ATP8B1 (Fig. 5E).

Together, our data reveal that the ATP8B1-CDC50A flippase is autoinhibited by its N- and C-terminal extensions in a cooperative mechanism and that PI(4,5)P₂ is a major regulator of its activity.

Lipid-dependence of ATP8B1 activity

We showed that ATP8B1-CDC50A required PC and PI(4,5)P₂ for enzyme turnover (Fig. 4B). We next explored the effect of other lipid species on the enzyme turnover in the presence of PI(4,5)P₂. Under these conditions, PE and to a lesser extent PS, but not cardiolipin (CL) and sphingomyelin (SM) could stimulate ATP8B1 activity (Fig. 6A). Plasma-membrane localized yeast P4-ATPases Dnf1 and Dnf2 have been shown to transport lyso-phosphatidylcholine (Lyso-PC) (Riekhof et al., 2007) and the alkylphosphocholine analogs miltefosine and edelfosine (Hanson et al., 2003), in addition to PC (Pomorski et al., 2003). Furthermore, when co-expressed with CDC50A, murine ATP8B1 was shown to increase uptake of the alkylphosphocholine analog perifosine in HeLa and HEK293T cells (Muñoz-Martínez et al., 2010). As compared with background levels, Lyso-PC induced a clear increase in the ATP hydrolysis rate of ATP8B1. Weak activation was also observed in the presence of edelfosine and miltefosine (Fig. 6A).
Figure 6 – Sensitivity of ATP8B1-CDC50A to phospholipids.

(A) ATPase activity of the ΔN42/C1174 ATP8B1 determined in the presence of various glycerophospholipids, lipid derivatives, and sphingomyelin. The specific activity measured in the presence of PC and PI(4,5)P$_2$ was taken as 100% (∼0.15-0.3 µmol min$^{-1}$ mg$^{-1}$). The dotted line represents the background activity measured in the absence of any added lipid. **** $P < 0.0001$, *** $P = 0.0002$, ** $P = 0.0071$, * $P = 0.0177$ according to unpaired two-tailed t test vs SM condition. ns: non significant. Data are mean ± s.d. of 3 replicate experiments.

(B) ATPase activity of the ΔN42/C1174 ATP8B1 (0.5 µg ml$^{-1}$) determined in the presence of mono, di, and tri-phosphorylated phosphoinositides. In all cases, activity was measured in the presence of 2 mM DDM, 115 µM PC and 23 µM of the indicated phosphoinositides. The specific activity of the wild-type measured in the presence of PC and PI(4,5)P$_2$ was taken as 100%. The dotted line represents the activity measured in the sole presence of PC. Data are mean ± s.d. of 3 replicate experiments.

(C) Apparent affinity of ΔN42/C1174 ATP8B1 (~3-3.3 µg ml$^{-1}$) for PI(4)P, PI(4,5)P$_2$ and PI(3,4,5)P$_3$. K_m for phosphoinositides was measured at 37°C in the presence of PC (POPC/DDM = 0.058 mol/mol). Plotted lines represent the best fit to a Michaelis-Menten equation.

(D) Variations of the maximum velocity (V_{max}) and apparent affinity (K_m) of ΔN42/C1174 ATP8B1 for phosphoinositides calculated from double reciprocal plots displayed in Fig. S5, with respect to that measured in the presence of PI(4)P. The data in (C) and (D) represent the mean ± s.d. of 3-4 replicate experiments.

To further dissect the regulatory mechanism of ATP8B1-CDC50A, we examined the specificity of the purified enzyme for PPIs. All PPI species were tested at the same molar concentration and at a fixed concentration of PC, and differed in the number and positions of phosphorylations on the
inositol headgroup. Phosphorylation of the headgroup appeared to be essential for stimulating ATP8B1 ATPase activity, as no activity could be detected above background using phosphatidylinositol (Fig. 6B). Monophosphorylated PPIn species, namely PI(3)P, PI(4)P, and PI(5)P, were equally efficient in stimulating ATP hydrolysis by ATP8B1. When the inositol ring was phosphorylated twice, the ATPase activity was increased about 2-fold compared to that observed with monophosphorylated PPIns (Fig. 6B), with no dramatic difference in activity between PI(4,5)P₂, PI(3,4)P₂, and PI(3,5)P₂. Tri-phosphorylated PI(3,4,5)P₃ increased further the activity of ATP8B1 by about 1.5 fold. Thus, although the number of phosphorylations on the inositol ring matters, the positions do not and ATP8B1-CDC50A can be activated by a wide variety of PPIns with increasing efficiency linked to the number of phosphorylations. The differential activation by PPIns observed in Fig. 6B could either be the result of a variation in the maximal velocity of ATP hydrolysis, the apparent affinity for PPIns, or both. To distinguish between these possibilities, we measured the rate of ATP hydrolysis by ATP8B1 in relation to the PPIn/detergent ratio (Fig. 6C), taking PI(4)P, PI(4,5)P₂ and PI(3,4,5)P₃ as representative examples of singly, doubly and triply phosphorylated PPIns, respectively. Whereas double-reciprocal plots indicated comparable maximum ATP hydrolysis rates in the presence of PI(4)P, PI(4,5)P₂ and PI(3,4,5)P₃, the apparent affinity of ATP8B1 for PI(3,4,5)P₃ was found much higher than for PI(4)P and PI(4,5)P₂ (Fig. 6D and Fig. S5). Thus, ATP8B1 exhibits a strong preference for PI(3,4,5)P₃ over other PPIns in vitro.
Discussion

Based on the cryo-EM structure of ATP8B1-CDC50A and dissection of its regulatory mechanism using biochemical assays, we identify the C-terminal extension of ATP8B1 as a central component in the regulation of its activity, and a cooperative contribution of the N-terminus of ATP8B1 in the autoregulatory mechanism. Furthermore, we report that PPIs are essential activators of ATP8B1 activity and identify in vitro a preference for P(3,4,5)P3 in the activation of ATP8B1. Truncation of the C- and N-termini of ATP8B1 allows switching ATP8B1 from a fully inhibited to an activated form, provided lipid transport substrate and PPIs are present. Addition of a C-terminal peptide rescues inhibition, and inhibition is subject to regulation by phosphorylation at S1223 of the C-terminal extension.

Autoinhibition of P4-ATPase flippases by their terminal tails: an evolutionarily conserved mechanism? – The autoinhibition of plasma membrane-localized ATP8B1 by its C-terminus is reminiscent of that observed for the yeast endomembrane homolog Drs2. While an intact Drs2-Cdc50 complex exhibits hardly any lipid-induced ATPase activity, once the C-terminus has been trimmed off by proteases, the complex becomes competent for ATP hydrolysis (Azouaoui et al., 2017). The ability of Drs2 to hydrolyze ATP requires not only displacement of its C-terminus but also the binding of P(4)P (Azouaoui et al., 2017; Timcenko et al., 2019). Cryo-EM structures show that the C-terminus of Drs2 binds in a cleft between the P-domain and the N-domain, thus providing a structural explanation for autoinhibition (Bai et al., 2019; Timcenko et al., 2019). The C-terminus also appears to play a role in autoinhibition of ATP8A2, although this enzyme does not seem to be regulated by PPIs (Chalat et al., 2017). In particular, the C-terminus of ATP8A1, a close relative of ATP8A2, was recently shown to extend through its cytosolic catalytic domains (Hiraizumi et al., 2019; Timcenko et al., 2019). This raises the question as to whether such autoregulatory mechanism is a conserved feature among P4-ATPases. By comparing the sequences of P4-ATPase termini from various organisms (Fig. 7 and Fig. S3 for a full alignment), it appears that although the C-termini of P4-ATPases are in general poorly conserved, one exception to this rule is the ATP8B1 AYAFS motif which occupies the ATP binding site. Furthermore, in the autoinhibited Drs2 and ATP8A1 structures, their C-termini overlap extensively despite a rather low sequence conservation (Fig. 7). Noteworthy, the C-terminal peptide of ATP8B1 did not exhibit an inhibitory effect on Drs2 (Fig. 5E), suggesting that autoinhibition per se is mainly driven by the region downstream the conserved motif, the latter mediating the interaction between the A and N domain. Thus, we predict that any P4-ATPase containing the (G/A)(Y/F)AFS motif is likely to be autoinhibited by its C-terminus.
Figure 7 – Proposed mechanism for autoinhibition and regulation by phosphoinositides of the ATP8B1-CDC50A complex.

(A) Comparison of the binding sites of ATP8B1, ATP8A1 (PDB ID: 6K7N) and Drs2 (PDB ID: 6ROH) C-terminal tails, respectively in green, orange and blue reveals a common architecture and location of the inhibitory C-termini, and specifically the conserved (G/A)(Y/F)AFS motif (AYAFS for ATP8B1, GYAFS for ATP8A1 and GFAFS for Drs2) located in the ATP binding pocket. (B) Sequence alignment of select P4-ATPases C-termini, including ATP8B1, ATP8A1 and Drs2 which are all known to be autoinhibited. The shading indicates conservation (blue 0% – red 100%). (C) Side view of the PI(4)P-binding site of Drs2 (left). PI(4)P (in stick representation) is bound in the membrane domain. The same region in ATP8B1 reveals a similar organization (middle) with the presence of a positively-charged cavity (right) suggesting a putative phosphoinositide binding pocket in ATP8B1. CDC50A and Cdc50 transmembrane helices are colored in pink.
Our study also identifies a previously unrecognized role for the N-terminal tail of ATP8B1 in the autoinhibition process. Although the precise mechanism is so far uncertain, our data indicate that the N-terminal tail of ATP8B1 has a strong synergistic effect on the autoinhibition by its C-terminal extension (Fig. 5D). Recent structures of Drs2, ATP11C and ATP8A1 have revealed a high degree of flexibility of the cytosolic domains when the proteins are in the E1P state (Hiraizumi et al., 2019; Nakanishi et al., 2020; Timcenko et al., 2021). The N-terminal tail might help to limit this flexibility via its interaction with the A- and P-domains, as observed in our structure. Only the N-domain would remain flexible, thereby facilitating C-terminus binding. A functional cooperation between N- and C-termini has previously been described for the plant H+-ATPase, a P-type ATPase from the P3 subfamily, where modifications in the N-terminus result in kinase-mediated phosphorylation in the C-terminus, eventually leading to activation of the pump (Ekberg et al., 2010). Moreover, recent cryo-EM structures revealed an autoinhibitory role for the N-terminus of the P5B-ATPase Ypk9 mediated by its interaction with the cytosolic domains (Fig. S6), and it was proposed in this study that the C-terminal tail of Ypk9 may also play a functional role owing to its interaction with the P-domain (Li et al., 2021).

Phosphorylation as a mechanism for the regulation of ATP8B1 activity – The inhibitory properties of a peptide derived from the C-terminus of ATP8B1 suggest that phosphorylation of residue S1223 may provide additional regulation. Identification of the corresponding residue (S1223) from the mouse orthologue ATP8B1 in large-scale phosphoproteomic studies (Huttlin et al., 2010; Villén et al., 2007), suggests that phosphorylation of S1223 in human ATP8B1 might be part of the autoinhibition relief mechanism in vivo. Consistent with this hypothesis, calcium/calmodulin-dependent protein kinase II (CaMKII) has been shown to phosphorylate a serine residue, S1138, in the autoinhibitory C-terminus of bovine ATP8A2. Substitution of S1138 to alanine resulted in a 33% loss of the PS-dependent ATPase activity of ATP8A2 (Chalat et al., 2017). Interestingly, numerous kinases, including PKC isoforms (Anwer, 2014), p38 mitogen-activated protein kinase (MAPK) (Kubitz et al., 2004) and protein kinase A (PKA) have been linked to bile salt homeostasis (Gautherot et al., 2012). More specifically, canalicular transporters also involved in inherited forms of intrahepatic cholestasis such as the bile salt export pump (PFIC2, ABC11B) have been found phosphorylated by PKC when overexpressed in insect cells (Noe et al., 2001) and the floppase ABCB4 (PFIC3), known to transport PC in the opposite direction compared to ATP8B1, was shown to be stimulated by PKA- and PKC-dependent phosphorylation (Gautherot et al., 2014). Future studies are required to identify kinases responsible for the phosphorylation of S1223 and to...
investigate the functional consequences of ATP8B1 phosphorylation on its activity, both in vitro and in vivo.

Regulation of ATP8B1-CDC50A by phosphoinositides – In this study, we identified PPIns as regulators of ATP8B1 ATPase activity. Whereas all PPIns showed the ability to stimulate ATP8B1 activity (Fig. 6), PI(3,4,5)P₃ displayed a much higher affinity for ATP8B1 than other PPIns. PI(3,4,5)P₃ is primarily localized at the plasma membrane, and one of the least abundant PPIns in mammalian cells, being virtually undetectable in quiescent cells. However, upon activation of cell-surface receptors and recruitment of class I PI3-kinases, PI(3,4,5)P₃ levels may rise up to 50-fold, albeit at levels that are 10% lower than cellular PI(4,5)P₂ (Clark et al., 2011). The tight control of PI(3,4,5)P₃ concentration stems from its critical role in key signaling pathways such as cell proliferation, survival and membrane trafficking (Marat and Haucke, 2016). The lower Kₘ of ATP8B1 for PI(3,4,5)P₃ than for other PPIns suggests that the cavity where PI(3,4,5)P₃ binds is specifically adjusted to this PPin, whereas other PPIns can fit as well, but less efficiently. To our knowledge, direct regulation of integral membrane proteins by PI(3,4,5)P₃ has not previously been shown. Intriguingly, despite addition of PI(3,4,5)P₃ during sample preparation for cryo-EM studies, no clear density could be observed for this lipid. However, the cavity lined by TM7, TM8 and TM10 on the structure of ATP8B1, which corresponds to the PI(4)P binding site in Drs2, consists of a large number of basic residues (Fig. 7) strongly hinting at a similar site in both Drs2 and ATP8B1. It is possible that PPIns can bind only once autoinhibition is relieved, at variance with Drs2 where PI(4)P has been shown to be important in the relief of autoinhibition. Irrespective of this, the physiologically relevant regulatory PPin is still unknown. Given the localization of ATP8B1 in the apical membrane of epithelial cells in mammals, and the subcellular localization and abundance of PPIns in cell membranes (Balla, 2013; Dickson and Hille, 2019), both PI(3,4,5)P₃ and PI(4,5)P₂ might fulfill this task. Future studies aimed at manipulating PPIns levels in living cells should help reveal whether ATP8B1 depends on specific PPIns in vivo.

Structural basis for catalytic deficiency induced by inherited ATP8B1 mutations – Our structural model of ATP8B1 enabled us to map the mutations found in patients suffering from PFIC1, BRIC1 or ICP1 (Bull et al., 1998; Deng et al., 2012; Dixon et al., 2017; Klomp et al., 2004; Painter et al., 2005) (Fig. 8A). Mutations are homogenously distributed along the protein sequence, and some mutations are likely to impair catalytic properties of ATP8B1 directly (Fig. 8B). Mutations D554N and H535L are located in the nucleotide binding pocket, suggesting that these mutations might prevent or affect ATP binding. The D554 residue is at interacting distance with the autoinhibitory C-terminus and its mutation might also strengthen autoregulation. Additionally, mutations S453Y, D454G and
T456M in the P-domain will abolish autophosphorylation of the catalytic aspartate (D454), thus resulting in an inactive ATP8B1.

Figure 8 – Structural map of the inherited intrahepatic disease-related mutations.
(A) Mutations found in PFIC1, BRIC1 or ICP1 patients are shown as red spheres on ATP8B1 \(\text{E2P}_{\text{autoinhibited}} \) structure (in grey). Mutations indicated in bold are presented in panel (B). (B) Close-up views of the nucleotide binding site within the N-domain of ATP8B1. The ATP molecule position was model by aligning ATP8B1 N domain with the N domain of ATP8A1 in E1-ATP bound state (PDB: 6K7J) (left). (Middle) the phosphorylation site in the P-domain with Mg\(^{2+}\) and the phosphate mimic BeF\(_3^-\) in green. (Right) the lipid transport pathway.
The structure of ATP8B1 presented in this report is locked in an E2Pautoinhibited state where the exoplasmic lipid pathway is closed (Timcenko et al., 2019). However, it is important to note that numerous mutations can be found in this region (Fig. 8B). The S403 residue, mutated to a tyrosine in PFIC1, is part of the PISL motif conserved in P4-ATPases. The PISL motif is located in TM4 and has been shown to interact with the phosphoglycerol backbone of PS, the transport substrate of Drs2 and ATP8A1 (Hiraizumi et al., 2019; Timcenko et al., 2019). A relatively conservative mutation of this Ser into Ala in ATP8A2 (S365A), has been shown to significantly diminish its ATPase activity and transport substrate affinity (Vestergaard et al., 2014). Moreover, mutations E981K and L127P have also been shown to impair ATP8B1-catalyzed transport of PC in vivo (Takatsu et al., 2014). Mutation of the corresponding residues in the PS-specific ATP8A2 alters ATPase activity and lipid specificity (Gantzel et al., 2017). Further functional and structural studies will be needed to better understand how these mutations may affect substrate recognition and translocation.

Conclusions – Our findings show that the plasma membrane P4-ATPase ATP8B1 is tightly regulated by its N- and C-terminal tails as well as PPIns and that the autoinhibitory mechanism can be mimicked by exogenous peptides. Understanding the regulatory mechanism of mammalian P4-ATPases will be instrumental for the subsequent design of molecules that would enforce/mimic or stimulate the release of the autoinhibitory C-terminus. We propose that the regulatory mechanism uncovered in this study may be a feature shared by other P4-ATPases, and by analogy with the yeast endomembrane flippase Drs2, that associated proteins are likely to be involved in the regulation of ATP8B1 activity. Moreover, these studies will pave the way towards detailed functional assessment of disease-associated ATP8B1 mutations found in PFIC1 patients.
Materials and Methods

Materials

Products for yeast and bacteria cultures were from Difco (BD Biosciences) and Sigma. DNA Polymerase, restriction and modification enzymes, as well as Endoglycosidase H-MBP, were purchased from New England Biolabs (NEB). Lauryl Maltose Neopentyl Glycol (LMNG, NG310) and \(n\)-dodecyl-\(\beta\)-d-maltopyranoside (DDM, D310) were from Anatrace, cholesteryl hemisuccinate (CHS) from Sigma (C6013). Brain phosphatidylinositol-4-phosphate (PI(4)P), brain phosphatidylinositol-4,5-bisphosphate (PI(4,5)P\(_2\)), 1,2-dioleoyl-sn-glycero-3-phospho-(1\(^\prime\)-myo-inositol-3\(^\prime\)-phosphate) (PI(3)P), 1,2-dioleoyl-sn-glycero-3-phospho-(1\(^\prime\)-myo-inositol-5\(^\prime\)-phosphate) (PI(5)P), 1,2-dioleoyl-sn-glycero-3-phospho-(1\(^\prime\)-myo-inositol-3\(^\prime\),4\(^\prime\)-bisphosphate) (PI(3,4)P\(_2\)), 1,2-dioleoyl-sn-glycero-3-phospho-(1\(^\prime\)-myo-inositol-3\(^\prime\),5\(^\prime\)-bisphosphate) (PI(3,5)P\(_2\)) and 1,2-dioleoyl-sn-glycero-3-phospho-(1\(^\prime\)-myo-inositol-3\(^\prime\),4\(^\prime\),5\(^\prime\)-trisphosphate) (PI(3,4,5)P\(_3\)) were from Avanti Polar lipids. Brain PS, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS), heart cardiolipin (CL), egg sphingomyelin (SM) and edelfosine were also from Avanti Polar lipids. Miltefosine (also known as Fos-choline-16, FC-16) was from Anatrace (F316) and 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (Lyso-PC) was from Sigma. The ATP8B1 C-terminal peptide RSSAYAFSHQRYADLISSGRSIRKKRSPLDAIVADGTAEYRRTGDS, encompassing residues 1205-1251, and its S1223 phosphorylated derivative, were ordered from Biomatik Company (Biomatik, Ontario, Canada). Both peptides were resuspended at 1 mM in 50 mM MOPS-Tris pH 7, 100 mM KCl, 1 mM dithiothreitol (DTT). ATP8B1 was detected using a mouse anti-ATP8B1 antibody from Santa Cruz Biotechnology (Epitope: 1161-1251, ref: SC-134967, no longer available). An anti-mouse HRP-coupled antibody (1706516) was from Biorad. His-tagged CDC50A was detected using a His-probe™-HRP from Thermo Scientific (15165). Precast stain-free gradient gels for tryptophan fluorescence (4568084) as well as Precision Plus Protein Standards (1610393) were from Biorad. Pyruvate kinase (P7768), lactate dehydrogenase (L1006), and an EDTA-free protease inhibitor cocktail (S8830) were from Sigma. [\(\gamma\)-\(^{32}\)P]ATP was purchased from Perkin-Elmer (BLU002A). Streptavidin-sepharose resin was from GE/Cytiva (17511301).

The pig kidney \(\alpha\)1\(\beta\)1 isoform of Na\(^+\)/K\(^+\)-ATPase was a kind gift from Mads Eskesen Christensen and microsomal membranes were prepared as previously described (Klodos et al., 2002).

Yeast strains and plasmids

The *Saccharomyces cerevisiae* W303.1b/\(\Delta{\text{pep4}}\) (MATa, *leu2-3, his3-11, ura3-1, ade2-1, \(\Delta{\text{pep4}}\), *canr*, *cir*) yeast strain was used for co-expression of ATP8B1 and CDC50A. The cDNAs encoding
human ATP8B1 (hATP8B1, Uniprot: O43520; A1154T natural variant) and human CDC50A (hCDC50A, Uniprot: Q9NV96) were a kind gift from Joost Holthuis (University of Osnabruck, Germany). hATP8B1 was supplemented at its 5' end with a sequence coding a biotin acceptor domain (BAD), and a sequence coding a TEV protease cleavage site. The cleavage site was flanked by 2 glycines toward BAD and 4 glycines toward hATP8B1. Similarly, a sequence coding a decahistidine tag was added at the 5' end of hCDC50A. The tagged genes were cloned in a unique co-expression pYeDP60 plasmid (Jacquot et al., 2012). In this vector, hATP8B1 and hCDC50A are both placed under the control of a strong galactose-inducible promoter, GAL10/CYC1. The D454N mutation was introduced by site-directed mutagenesis using the QuickChange™ II XL site-directed mutagenesis kit (Agilent technologies). An overlap extension PCR strategy was used to insert the 3C protease site (LEVLFQGP) between Pro42 and Glu43 and/or between Glu1174 and Ser1175.

Co-expression of ATP8B1 with CDC50A in yeast membranes
Yeasts were transformed using the lithium-acetate method (68). Yeast cultures, recombinant protein expression and membrane preparation were performed as described previously (45, 69). Briefly, yeast growth took place in a glucose-containing rich growth medium supplemented with 2.7% ethanol at 28°C for 36 h, whereas expression of the proteins of interest took place during an additional 18 h in the presence of 2% galactose, at 18°C. Yeast cells were harvested by centrifugation, washed first with ice-cold ddH₂O, then with ice-cold TEKS buffer (50 mM Tris-HCl pH 7.5, 1 mM EDTA, 0.1 M KCl, 0.6 M sorbitol), and finally resuspended in TES buffer (50 mM Tris-HCl pH 7.5, 1 mM EDTA, 0.6 M sorbitol) supplemented with protease inhibitors. The cells were subsequently broken with 0.5 mm glass beads using a "Pulverisette 6" planetary mill (Fritsch). The crude extract was then spun down at 1,000 g for 20 min at 4°C, to remove cell debris and nuclei. The resulting supernatant was centrifuged at 20,000 g for 20 min at 4°C, yielding S2 supernatant and P2 pellet. The S2 supernatant was further centrifuged at 125,000 g for 1 h at 4°C. The resulting P2 and P3 pellets were finally resuspended at about 30-50 mg ml⁻¹ of total protein in TES buffer. P2 and P3 membrane fractions were pooled and the ATP8B1 content was estimated, by immunoblotting, to be about 0.5% of total proteins.

Purification of the ATP8B1-CDC50A complex
Membranes obtained after co-expression of ATP8B1 and CDC50A (P2+P3) were diluted to 5 mg ml⁻¹ of total protein in ice-cold buffer A (50 mM MOPS-Tris at pH 7, 100 mM NaCl, 1 mM DTT, 20% (w/v) glycerol and 5 mM MgCl₂), supplemented with 1 mM PMSF and an EDTA-free protease inhibitor mixture. The suspension was stirred gently on a wheel for 5 min at 4°C. Washed membranes were pelleted by centrifugation at 100,000 g for 1 h at 4°C. For cryo-EM sample preparation, this
step was omitted and the membranes were directly incubated with DDM as follows. The pelleted membranes were resuspended at 5 mg ml⁻¹ of total protein in ice-cold buffer A supplemented with 1 mM PMSF and the EDTA-free protease inhibitor mixture. A mixture of DDM and CHS at final concentrations of 15 mg ml⁻¹ and 3 mg ml⁻¹, respectively, was added, resulting in a DDM/protein ratio of 3/1 (w/w). The suspension was then stirred gently on a wheel for 1 h at 4°C. Insoluble material was pelleted by centrifugation at 100,000 g for 1 h at 4°C. The supernatant, containing solubilized proteins, was applied onto a streptavidin-sepharose resin and incubated for 2 h at 6°C to allow binding of the BAD-tagged ATP8B1 to the resin.

For structural studies the DDM/CHS mixture was exchange to LMNG/CHS. The resin was washed twice with three resin volumes of ice-cold buffer B (50 mM MOPS-Tris at pH 7, 100 mM KCl, 1 mM DTT, 20% (w/v) glycerol and 5 mM MgCl₂), supplemented with 0.2 mg ml⁻¹ LMNG and 0.02 mg ml⁻¹ CHS in the presence of 1 mM PMSF and an EDTA-free protease inhibitor cocktail. The resin was then washed thrice with three resin volumes of ice-cold buffer B supplemented with 0.1 mg ml⁻¹ LMNG and 0.01 mg ml⁻¹ CHS. Elution was performed by addition of 60 µg of purified TEV per ml of resin and overnight incubation at 6°C. The eluted fraction was concentrated using a Vivaspin unit (100 kDa MWCO) prior to injection on a size-exclusion Superose 6 10/300GL increase column equilibrated with buffer C (50 mM MOPS-Tris pH 7, 100 mM KCl, 1 mM DTT, 5 mM MgCl₂, 0.03 mg ml⁻¹ LMNG and 0.003 mg ml⁻¹ CHS). The ATP8B1-CDC50A-containing fractions were pooled, concentrated using a Vivaspin unit (50 kDa MWCO) to concentrate the protein and the detergent micelles, and supplemented with LMNG and PI(3,4,5)P₃ to final concentrations of 0.35 mg ml⁻¹ and 0.05 mg ml⁻¹, respectively (PI(3,4,5)P₃/LMNG ratio of 0.15). The sample was then incubated for 1 h at room temperature and overnight at 6°C to allow lipid diffusion prior injection on a Superose 6 10/300GL increase column equilibrated with buffer C, to remove the excess of detergent/lipid micelles.

For functional studies, the resin was washed four times with three resin volumes of ice-cold buffer B supplemented with 0.5 mg ml⁻¹ DDM and 0.1 mg ml⁻¹ CHS in the presence of 1 mM PMSF and an EDTA-free protease inhibitor cocktail. Elution was performed by addition of 60 µg of purified TEV per mL of resin by overnight incubation at 6°C. For purifying the 3C protease site-containing version of ATP8B1, 240 µg of purified 3C protease per ml of resin were added together with the TEV protease. Purified ATP8B1-CDC50A complex was snap-frozen and stored at -80°C. ATP8B1 protein concentrations were calculated based on Coomassie-blue staining of SDS-PAGE gels using known amounts of purified Drs2.

Grid preparation for cryo-EM
The ATP8B1-CDC50A complex at a concentration of 0.8 mg ml\(^{-1}\) was supplemented with 1 mM BeSO\(_4\) and 5 mM KF to obtain the E2P conformation. The sample was incubated on ice for 1 h and 3 µl were added to freshly glow-discharged (45 seconds at 15 mA) C-flat Holey Carbon grids, CF-1.2/1.3-4C (Protochips), which were subsequently vitrified at 4°C and 100% humidity on a Vitrobot IV (Thermo Fisher Scientific).

Cryo-EM data collection

The Data were collected on a Titan Krios G3i (EMBION Danish National cryo-EM Facility – Aarhus node) with X-FEG operated at 300 kV and equipped with a Gatan K3 camera and a Bioquantum energy filter using a slit width of 20 eV and with 30° tilt. Movies were collected using aberration-free image shift data collection (AFIS) in EPU (Thermo Fisher Scientific) as 1.5 second exposures in super-resolution mode at a physical pixel size of 0.66 Å/pixel (magnification of 130,000x) with a total electron dose of 60e\(^{-}\)/Å\(^{2}\). A total of 3941 movies were collected.

Cryo-EM data processing

Processing was performed in cryoSPARC v3 (Punjani et al., 2017). Patch Motion Correction and Patch CTF were performed before low-quality micrographs (e.g. micrographs with crystalline ice, high motion) were discarded. Particles were initially picked using a circular blob on ~1000 micrographs. These were aligned in 2D to produce references for template picking on all movies. Particles were extracted in a 416-pixel box and Fourier cropped to a 104-pixel box (2.64 Å/pixel). Ab initio references were produced using a subset of all particles. One protein-like reference and multiple junk references were used in multiple rounds of heterogeneous refinement. Selected particles were then re-extracted in a 416-pixel box (0.66 Å/pixel) before non-uniform (NU) refinement (Punjani et al., 2020). The particle stack was then CTF-refined using Local CTF refinement and motion-corrected using Local motion correction before final non-uniform (NU) refinement. Data processing flow-chart is available in Fig. S7.

Model building

The ATP8B1-CDC50A model was built using a homology model of ATP8B1 generated by I-TASSER (Yang et al., 2015) with Drs2 E2P\(_{\text{autoinhibited}}\) (PDB: 6ROH) and from the CDC50A structure of the ATP8A1-CDC50A complex in E2P (PDB: 6K7L) as templates. The cryo-EM map was sharpened with a B factor of -84 Å\(^{2}\) using the Autosharpen tool in PHENIX (Terwilliger et al., 2018). The model was manually generated and relevant ligands added with COOT (Emsley et al., 2010) before real space refinement in PHENIX (Afonine et al., 2018) with secondary structure restraints. Model validation was performed using MolProbity (Chen et al., 2010) in PHENIX (Pd et al., 2010),
and relevant metrics are listed in Table S1. Representative map densities with fitted models can be seen in Fig. S2. Figures were prepared in ChimeraX (Pettersen et al., 2021).

Endoglycosidase treatment

For CDC50A deglycosylation, the purified sample was treated with EndoH-MBP according to manufacturer instructions. Briefly, about 1.5 µg of purified ATP8B1-CDC50A complex was denatured for 3 min at 96°C in the presence of 0.5% SDS and 40 mM DTT, in a final volume of 19.5 µl. The denatured proteins were then supplemented with 500 U of EndoH-MBP (EndoHf, NEB) and incubated 45 min at 37°C. Then 20 µl of urea-containing Laemmli denaturation buffer were added and the samples were incubated for 10 min at 30°C prior loading on an 8% SDS-PAGE.

Determination of subunit stoichiometry

About 6.5 µg of purified ATP8B1-CDC50A complex was denatured for 5 min at 96°C, in presence of 0.5% SDS and 40 mM DTT and in a final volume of 250 µl. The denatured proteins were then supplemented with 750 U of EndoH-MBP and incubated for 1 h at 37°C. Samples were then precipitated by adding 1 volume of 1 M trichloroacetic acid (TCA). After 45 min on ice, samples were centrifuged at 20,000 g for 25 min at 4°C. Supernatant was discarded and samples were centrifuged again at 20,000 g for 5 min at 4°C to remove traces of TCA. Pellets were then resuspended in 60 µl urea-containing Laemmli buffer (50 mM Tris-HCl pH 6.8, 0.7 M β-mercaptoethanol, 2.5% w/v SDS, 0.5 mM EDTA, 4.5 M urea, 0.005% w/v bromophenol blue). Thirty µl of each sample (about 3.25 µg of purified complex) were loaded on a 4-15% gradient TGX™ stain-free gel. After 90 min electrophoretic separation at 150 V and 40 mA, the gel was soaked in 5% (w/v) TCA for 10 min. The gel was then rinsed 3 times in ddH₂O. The gel was then exposed to UV (254 nm) for 5 min and images were collected after 20 s of exposure. The relative intensity of ATP8B1 and CDC50A was quantified from various amounts loaded onto gradient TGX™ stain-free gels using the ImageJ software.

Phosphorylation of ATP8B1-CDC50A by [γ-³²P]ATP

To study phosphorylation of the ATP8B1/CDC50A complex, about 0.5 µg of purified complex were supplemented with [γ-³²P]ATP at a final concentration of 2 µM (5 mCi µmol⁻¹) and incubated at 0°C in buffer B supplemented with 0.5 mg ml⁻¹ DDM and 0.1 mg ml⁻¹ CHS. Phosphorylation was stopped after 30 sec by addition of 1 sample volume of 1 M TCA, 5 mM H₃PO₄. Samples were then left for 40 min on ice for aggregation and 2 volumes of 0.5 M TCA in 2.5 mM H₃PO₄ were subsequently added to help aggregation. Proteins were then centrifuged at 14,000 g for 25 min at 4°C. The supernatant was removed, and the pellet was washed by addition of 0.5 M TCA in 0.5 mM H₃PO₄.
Samples were centrifuged again at 14,000 g for 25 min at 4°C. Supernatants were discarded, samples were centrifuged again at 14,000 g for 5 min at 4°C to remove residual TCA. Pellets were then resuspended at 4°C in 25 µl urea-containing Laemmli denaturation buffer. After resuspension, 15 µl of each sample (about 0.3 µg of purified complex) were loaded on acidic gels. The stacking gel contained 4% acrylamide, 65 mM Tris-H₃PO₄ pH 5.5, 0.1% SDS, 0.4% ammonium persulfate, and 0.2% TEMED, and the separating gel was a continuous 7% gel containing 65 mM Tris-H₃PO₄ pH 6.5, 0.1% SDS, 0.4% ammonium persulfate, and 0.05% TEMED. The gel tanks were immersed in a water/ice bath and the pre-cooled running buffer contained 0.1% SDS and 170 mM MOPS-Tris at pH 6.0. Dried gels were subsequently stained with Coomassie Blue before radioactivity was measured, using a PhosphorImager equipment (Amersham Typhoon RGB, GE Healthcare).

ATPase activity of purified ATP8B1-CDC50A

For the ATP8B1-CDC50A complex, the rate of ATP hydrolysis was monitored continuously using an enzyme-coupled assay, via its coupling to a drop of NADH absorption at 340 nm. ATPase activity was measured at either 30°C or 37°C in buffer B supplemented with 1 mM ATP, 1 mM phosphoenolpyruvate, 0.4 mg ml⁻¹ pyruvate kinase, 0.1 mg ml⁻¹ lactate dehydrogenase, 250 µM NADH, 1 mM NaN₃, 1 mg ml⁻¹ DDM (2 mM), and residual CHS at 0.01 mg ml⁻¹. In these experiments, 50-200 µl of the purified ATP8B1-CDC50A complex (final concentrations of 1-5 µg ml⁻¹) in the various experiments, was added to a total volume of 1.8 ml. For measurement of the half-maximum inhibitory concentration (IC₅₀), successive additions of the C-terminal peptide or its phosphorylated derivative (from a 1 mM stock solution) to purified ATP8B1-CDC50A incubated in 43 µg ml⁻¹ POPC (∼ 57 µM), 25 µg ml⁻¹ PI(4,5)P₂ (∼ 23 µM) and 0.5 mg ml⁻¹ DDM (∼ 1 mM) in the assay cuvette were performed. Similarly, to determine the maximum rate of ATP hydrolysis (Vₘₐₓ) and the apparent affinity (Kₘ) for PPI₃s, successive additions of DDM and POPC to purified ATP8B1-CDC50A preincubated with 43 µg ml⁻¹ POPC, 25 µg ml⁻¹ PI(4,5)P₂ and 0.5 mg ml⁻¹ DDM were performed, in order to gradually decrease the PIP/DDM ratio (while the POPC/DDM ratio remained constant). Conversion from NADH oxidation rates expressed in mAU s⁻¹ to ATPase activities expressed in µmol min⁻¹ mg⁻¹ was based on the extinction coefficient of NADH at 340 nm (∼ 6.2 mM⁻¹ cm⁻¹). For all experiments, photobleaching of NADH was reduced by inserting an MTO J310A filter that eliminates short wavelength UV exciting light. This setup reduced the spontaneous rate of NADH absorption changes down to ∼ 0.01 mAU s⁻¹.
Acknowledgments

We thank Thomas Boesen, Andreas Bøggild and Taner Drace for technical support during EM data collection at the EMBION Cryo-EM facility of Aarhus University, Jesper Lykkegaard Karlsen for scientific computing support, Joost Holthuis (University of Osnabruck, Germany) for kindly providing the ATP8B1 and CDC50A cDNAs, Rosa López-Marqués (University of Copenhagen, Denmark) for the gift of the *S. cerevisiae* Δpep4 strain and Mads Eriksen Christensen and Natalya Fedosova for generously providing the pig kidney α1β1 isoform of Na+/K+-ATPase. We also wish to thank David Stokes for critical reading of the manuscript and Philippe Champeil, Alenka Čopič, Guillaume Drin, Rasmus Kock Flygaard, Francis Haraux, Anaïs Lamy, José Luis Vázquez-Ibar and Marc le Maire for discussion and advice. Support for this work was provided by an ANR grant (ANR-14-CE09-0022) to G.L., by an EMBO short-term fellowship (7881), a PhD fellowship from the French ministry for higher education, research and innovation, and a Marie-Curie Individual Fellowship (LivFlip, grant agreement 101024542, H2020-MSCA-IF-2020) to T.D., by the French Infrastructure for Integrated Structural Biology (FRISBI; ANR-10-INSB-05), by the Centre National de la Recherche Scientifique (CNRS), by a professorship grant from the Lundbeck Foundation (R310-2018-3713) and by the German Research Foundation (GU 1133/11-1).

Data availability

The ATP8B1-CDC50A E2Pautoinhibited cryo-EM map described in this article has been deposited in the Electron Microscopy Data Bank (EMDB) (accession number: EMD-13711) and atomic models have been deposited in the Protein Data Bank (PDB) (accession number: 7PY4).

doi:10.1091/mbc.E16-06-0453

Hancock JF, Paterson H, Marshall CJ. 1990. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. *Cell* **63**:133–139. doi:10.1016/0092-8674(90)90294-o

pump from the Golgi to the canalicular membrane is regulated by the p38 MAP kinase. **Gastroenterology** **126**:541–553. doi:10.1053/j.gastro.2003.11.003

Muñoz-Martínez F, Torres C, Castanys S, Gamarro F. 2010. CDC50A plays a key role in the uptake of the anticancer drug perifosine in human carcinoma cells. **Biochem Pharmacol** **80**:793–800. doi:10.1016/j.bcp.2010.05.017

Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. 2017. cryoSPARC: algorithms for rapid

