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Abstract 
Solving the half-century old protein structure prediction problem by DeepMind’s AlphaFold is 

certainly one of the greatest breakthroughs in biology in the twenty first century. This breakthrough 
paved the way for tackling some previously highly challenging or even infeasible problems in structural 
biology. In this study, we propose strategies to use AlphaFold to address several fundamental problems: 
(1) protein engineering by predicting the experimentally measured stability changes using the 
representations extracted from AlphaFold models; (2) estimating the designability of a given protein 
structure by combining a protein design method (e.g. ProDCoNN), sequential Monte Carlo, and 
AlphaFold. The designability of a protein structure is defined as the number of sequences that encode 
that protein structure.; (3) predicting protein stabilities using natural sequences and designed sequences 
as training data, and representations extracted from AlphaFold models as input features; and (4) 
understanding the sequence-structure relationship of proteins by computational mutagenesis and testing 
the foldability of the mutants by AlphaFold. We found the representations extracted from AlphaFold 
models can be used to predict the experimentally measured stability changes accurately. For the first 
time, we have estimated the designability for a few real proteins. For example, the designability of chain 
A of FLT3 ligand (PDB ID: 1ETE) with 134 residues was estimated as 3.12±2.14E85. 

 

Introduction 
Protein structure prediction (PSP) has been one of the most challenging problems in computational 

biology1. It is also a problem whose solution will have a profound impact in many areas of biology and 
biomedical sciences. Not surprisingly, the problem has attracted researchers from many different 
disciplines for half a century since it was originally proposed2. Critical Assessment of Structure 
Prediction (CASP) was initiated in 1994 to provide a blind test of methods for PSP3,4, which has played 
a key role for advancing PSP methods since then. Except the early years of CASP with some substantial 
progress, the field had come to a standstill for quite some years, until in 2018 when Google’s DeepMind 
joined the game with their deep learning powered method, AlphaFold, which substantially improved the 
prediction accuracy in CASP135. And in CASP14 held in 2020, AlphaFold26 (we will call it AlphaFold 
in the rest of the paper) has pushed the numbers so much so that the organizers of CASP declared that 
the PSP problem has been finally solved4. Since then, DeepMind team has applied AlphaFold to predict 
more than 350,000 protein structures in human and other species, and released the structures for 
biological community to use freely7. These predicted protein structures will help biologists understand 
the functions of these proteins and the mechanisms of those biological processes or diseases, in which 
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these proteins are involved. In a follow-up study8, and also by Baker and co-workers who developed 
RoseTTAFold using a deep learning framework inspired by AlphaFold9, it has been shown that the 
protein-protein interaction problem can be considered as a protein structure prediction problem by 
putting two or more protein chains together to predict their complex structure. 

High accuracy protein structure prediction enabled new research strategies to tackle previously 
highly challenging or infeasible problems. Since the release of AlphaFold, our group has explored some 
potential applications by using it alone or combined with other methods. In this paper, we report our 
preliminary results and propose some novel strategies, enabled by AlphaFold, to address some 
fundamental problems in structural biology.  

We first looked at the modeling of point mutations, which was generally considered as not suitable 
for AlphaFold. Indeed, our first finding was that the output confidence scores of AlphaFold correlates 
poorly with the experimentally measured stability changes. However, further investigation showed that 
the representations extracted from AlphaFold models can be used to predict stability changes very 
accurately. We obtained the state-of-the-art performance using a relatively simple model with a much 
smaller training dataset compared to existing methods.  

We then used AlphaFold to predict the structures for the sequences designed to fold to target 
structures using a protein design method we developed recently, ProDCoNN10. ProDCoNN used a deep 
neural network architecture to model the local three dimensional environment of individual residues. It 
achieved the best performance for the inverse protein folding (IPF) problem tested on benchmark 
datasets. We found that some designed sequences can fold to structures quite close (<4Å RMSD) to the 
target structures while others cannot (as predicted by AlphaFold). AlphaFold can thus be used to select 
promising sequences designed for an IPF problem. We then propose a new framework by combining 
AlphaFold, ProDCoNN, and sequential Monte Carlo (SMC) to estimate the designability of a given 
protein structure. The designability of a given protein structure is defined as the number of sequences 
that encode the structure11,12. A sequence encodes a structure if it can fold to a structure very close to 
that structure. Here we can use RMSD to measure the similarity between two structures and select a 
reasonable cutoff value to define designability. For the first time, we have estimated the designability of 
a real protein structure, chain A of FLT3 ligand (PDB ID: 1ETE) with 134 residues, as 3.12±2.14E85. 

In many applications, especially protein engineering and design, it is important to know the stability 
of the designed protein. However, predicting stability for any given sequence is still a question not 
answered by AlphaFold. We believe this is a major weakness of AlphaFold since it cannot guarantee 
that the predicted structure can actually fold stably. We propose a strategy that can take natural protein 
sequences (positive cases) and design sequence (negative cases) as training data, and use the 
representations extracted from AlphaFold models as input features to build machine learning models to 
predict whether a sequence has stability comparable to natural proteins. 

Finally, we proposed that we can study the sequence-structure relationship of proteins by performing 
computational mutagenesis and testing the foldability of the mutants using AlphaFold. This may help 
identify the minimum elements for folding (MEF) for a protein structure, where MEF for a protein 
structure is defined as the minimum requirement at each residue position for a sequence to fold to the 
structure. Such studies may shed light on the fundamental principles of protein folding. 

 

Method and Data 
AlphaFold and RoseTTAFold programs were obtained from their GitHub release. 
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Point mutations with experimentally measured stability changes 

To study the correlation between AlphaFold confidence scores and the experimentally measured 
stability changes, we randomly selected 3507 experiments from protein single-point mutants stability 
database FireProtDB13, corresponding to 1251 mutants from 86 protein chains. The dataset contains 
2557 experiments with Gibbs free energy changes (ΔΔG) upon mutation and 952 experiments with 
changes in melting temperatures (ΔTm). There are 328 stabilized single-point mutant experiments, 1842 
destabilized mutants, and 1337 neutral ones. The stabilization status follows the definition in 
FireProtDB, such as stabilizing mutations (ΔTm > 1 or ΔΔG < 1 kcal/mol), destabilizing (ΔTm < 1 or 
ΔΔG > 1 kcal/mol), and neutral (–1 ≤ ΔTm ≤ 1 or – 1 ≤ ΔΔG ≤ 1 kcal/mol).  

To train a model for predicting point mutation stability changes, we randomly select 7777 
experiments from FirProtDB with a valid ΔΔG, corresponding to 2854 mutants from 114 protein chains. 
There are 499 stabilized single-point mutant experiments, 3653 destabilized mutants, and 3625 neutral 
ones. We calculate the median of ΔΔG if multiple experiments are taken for each mutant sequence, 
which results in 2854 data points, with 149 stabilized mutant, 1311 destabilized mutant, and 1394 
neutral ones. The dataset is separated into 10 folds for 10-fold cross-validation. The separation is 
residue-based and guaranteed that two mutants at the equivalent site from two homologous proteins 
were always in the same fold. The homologous proteins are defined as sequence identity higher than 
25%, which is calculated by using T-coffee14. 

Designed sequences for inverse protein folding problem 

We used a modified ProDCoNN10 to design sequences for 9 protein structures selected from SCOPe 
database15 which belong to 7 major classes defined by SCOPe. Specifically, two structures are from the 
all alpha proteins class (3lynA, 1e2aA), two structures from all beta proteins (1g6vK, 1kexA), one 
structure from each of the alpha and beta (a/b) (1h4yA), alpha and beta(a+b) (1a2pA), multi-domain 
(2avuF), membrane and cell surface (1g4yB), and coiled coil proteins (1ujwB) classes. The lengths of 
the proteins range from 76 to 156 residues. All the selected protein structures from PDB are single 
chains without missing residues and uncommon amino acids. No binding ligands were included. 

The original ProDCoNN10 was not suitable for sampling protein sequences from the space of all 
possible sequences following certain probability distributions. To sample a sequence, we used a 
sequential Monte Carlo approach16-23 by sampling one residue at a time. A new residue is sampled 
conditioning on the residues sampled before it. This required us to train a partial protein design model 
based on ProDCoNN. The partial model takes a backbone structure with the types of some of the 
residues already sampled and sample one additional residue conditioning on the already sampled 
residues. The sampling order (which residue should be sampled the first, which residue the second, etc.) 
is decided based on the calculated entropy along the sequence:   

Entropy�x
  �   ∑ p� lnp�� , 

where pi is the probability that residue x is predicted as amino acid type i. And the sampling probability 
is normalized by 

�� ~ �������	
���/�� , 

which includes a parameter temperature T1. The residues with lower entropy have a higher chance to be 
sampled first, while different sampling orders could be generated by different sampling iterations. 

When the sampling order is decided, the types of amino acids at each position will be sampled based 
on the predicted probabilities of the twenty amino acids by the trained partial model. To adjust the 
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relative probabilities of the types with non-zero probabilities, we used the following normalized 
probability: 

��  ~ �	�/��  1. 

In our sampling, the parameter T1 was set to 1 and T2 was set to 0.05. The goals of tuning T1 and T2 
are to have enough diversification in sampled sequences while also make sure a significant of the 
sequences are foldable. The similarities between the sampled sequences and the wild type sequences 
range from 15.8% to 36%.  

Estimating the designability of a protein structure 

To estimate the designability of a protein structure, we first used the SMC strategy described above 
to sample a number of sequences for the protein structure. We then used AlphaFold to predict the 
structures of these sequences. Those sequences with predicted structures with RMSD smaller than 4 Å to 
the target structure are considered as foldable and used for estimating the designability. The other 
sequences are discarded. Each sampled sequence using SMC has a weight, which is updated recursively 
as follows: �� � ����/��, where wt is the weight at step t, wt-1 is the weight at step t-1 and pt is the 
probability the actual amino acid type at step t is sampled. The designability can then be estimated using 

the equation: � �  
�

�
∑ ��
�
� , where D is designability, wi is the weight of sequence i, and n is the total 

number of foldable sequences. 

Deep learning model for predicting point mutation stability changes 

We implemented a multilayer perceptron regression model for ΔΔG prediction using features 
extracted from the representations of AlphaFold models as input.  

We first used AlphaFold to predict the structures of both wild type and mutant sequences. We then 
extracted the feature vectors from the position of the mutated residue from the “single representation” of 
the AlphaFold models for both wild type and mutant sequences as model input. We additionally include 
the subtraction of the two vectors from wild type and mutant as the input feature. As the dimension for 
each residue for the single representation is 384, the dimension of the final input feature vector is 3x384 
= 1,152. 

We built the model with four linear projections with input and output feature dimensions (1,152, 
1,152), (1,152, 512), (512, 512), and (512, 1), and used the output in the last layer as the ΔΔG value. 
Non-linear activation function ReLU was inserted between the linear projections. We used Adam 
optimizer and set the batch size as 1,024, learning rate as 1e-4, and training epochs as 1,000. The model 
was trained with Smooth L1 Loss. 

Definition of foldable sequences 

In this study, we define a foldable sequence to a given structure as one that can fold to a structure 
with a RMSD smaller than 4Å to the given structure. Since we use AlphaFold to predict the structures of 
designed sequences, the foldability is predicted, not experimentally measured. In fact, the designed 
sequences, even predicted as foldable, may not have stabilities similar to real proteins. Our assumption 
here is that even a designed sequence is not actually foldable, there is a sequence in the neighborhood of 
it, which is actually foldable. Here the neighborhood of a sequence is defined as sequences with small 
number of mutations (i.e. smaller than 5) from the given sequence.  
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Results 
Predicting stability changes of point mutations 

We first tested AlphaFold on the point mutation dataset to see whether there is any relationship 
between the confidence scores it outputs and the experimentally measured stability changes. For a 
protein, p, we used AlphaFold to predict structures for both its wild type sequence and single-point 
mutant to generate two structures Sp,w and Sp,m, respectively.  

We examined the correlation between the stability changes and confidence scores output by 
AlphaFold. There are two different measures of stability changes for the mutants from FireProtDB 
database, ΔΔG and ΔTm. There are also two different confidence scores (CSs) for the predicted 
structures, predicted TM-score, pTM, and predicted LDDT value for the mutated residue, pLDDT. It 
more meaningful to look at the changes in pTM and pLDDT between Sp,w and Sp,m. We plotted the 
scatter plots for all four possible pairs between stability changes and CS changes upon mutation (Fig 
None of the pairs showed any significant correlations.  

 
Fig 1: Difference of confidence score from AlphaFold (top row: whole sequence score ΔpTM; bottom row: residue 
wise score ΔpLDDT) vs. Gibbs free energy changes upon mutation ΔΔG (left column) and changes in melting 
temperatures ΔTm (right column) 

We then extracted some features from the “single representations” of AlphaFold models and built
simple neural network model to predict ΔΔG. We used 10-fold cross validation and the Pearson’s 
correlation coefficient is 0.58, which is significantly higher than those observed between the confiden
scores and stability changes. It is also slightly higher than the state-of-the-art performance achieved b
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recent deep learning method24. Fig 2 shows the scatter plot between ΔΔG and the predicted ΔΔG from a 
10-fold cross-validation.  

 

Fig 2. The scatter plot for the experimentally measured stability changes, ΔΔG, vs predicted ΔΔG 
for point mutations. The red dots are outliers.  

 

Predicting structures for sequences designed for inverse protein folding (IPF) 
It is understandable that the predicted structures for point mutations by AlphaFold are always very 

close to the wild type structures since that is the only pattern it can learn from PDB. What about new 
sequences that significantly differ from any of the natural sequences? We next used AlphaFold to 
predict structures for sequences designed to fold to certain target protein structures. Designing sequences 
that fold to a given protein structure is also called the inverse protein folding (IPF) problem. We selected 
several proteins from different fold classes from SCOPe database. The sequences were designed using a 
modified ProDCoNN10 (see Method and Data for details). The similarities between designed sequences 
and the corresponding wild type sequences range between 16-36%. Fig 3 shows the predictions from 
AlphaFold for 4 different proteins. We can see that a significant number of the designed sequences are 
predicted to fold to relatively small RMSDs compared to the target structures. Our result indicates that 
AlphaFold can be used to select promising foldable sequences and filter out sequences that are not 
foldable.  
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Fig 3. The RMSD of AlphaFold predicted structures to the target structures vs. the sequence identities of the designed 

sequences for 4 proteins.  

 

Characterizing foldable sequences  

For designed sequences, some are predicted to be foldable, while others are not. Studying the 
foldable sequences may reveal the key residues important for the folding and stability of a protein 
structure. Fig 4 showed two sequence logos, one plotted using foldable and one using homologous 
sequences obtained from multiple sequence alignment (MSA) for protein 1a2p. Clearly, despite 
significant similarity in many positions, the foldable sequences showed marked differences from 
homologous sequences at certain positions. This indicates that those conserved residues among the 
homologous sequences may be important for functions instead of stability. The comparison may shed 
light on potential point mutations that may increase the stability of the protein. It is worth noting that the 
MSA of 1a2p has much stronger conservations than the foldable sequences. The average entropy for 
MSA and foldable designed sequences are 0.813 and 1.367, respectively. The numbers of residues with 
entropy smaller than 1 for MSA and foldable sequences are 65 and 29, respectively. That indicates that 
the natural sequences may have only explored part of the foldable sequence space for this protein 
structure. 
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Fig 4. The logo plots for foldable designed sequences and multiple sequence alignment (MSA) of chain A of protein 
1a2p. The part of the sequence with good alignment is shown (residues 49-107 out of total 108 residues). The figure with all 
the residues is provided in Supplementary material. The MSA of 1a2p has much stronger conservations than the foldable 
sequences. The average entropy for MSA and foldable designed sequences are 0.813 and 1.367, respectively. The numbers of 
residues with entropy smaller than 1 for MSA and foldable sequences are 65 and 29, respectively. Top panel: The logo plot 
for the foldable sequences whose predicted structures are within 3Å to the target structure. Bottom panel: The logo plot from 
multiple sequence alignment of 1a2p.  

 

Conclusion and Discussion 
In this study, we used engineered and designed sequences to investigate the applicability of 

AlphaFold to problems other than structure prediction for naturally occurring sequences. We used 
mainly two types of sequences: point mutations with experimentally measured stability changes13; and 
sequences designed to fold to target protein structures using a modified algorithm based on 
ProDCoNN10. We found that the representations extracted from AlphaFold models can accurately 
predict the stability changes of point mutations. We also found that AlphaFold predicted the ProDCoNN 
designed sequences with a wide range of RMSDs to the target structures, indicating that some are more 
foldable than others. Finally, comparing the foldable sequences for a target protein with its homologous 
sequences from a multiple sequence alignment showed significant differences between the two profiles. 
Studying such differences may shed light on the role of the conserved residues in the two profiles. Based 
on the findings in this study, we propose four fundamental questions that can be immediately addressed 
with the help of AlphaFold when combined with other previously developed methods.  

Protein engineering 

Although the stability changes of point mutations cannot be directly inferred from the confidence 
scores of AlphaFold predictions, we found that the representations AlphaFold learned during the 
prediction process can be used to predict the stability change accurately. Several improvements may 
significantly increase the prediction accuracy. Firstly, the dataset we used can be substantially increased 
by using the data in a recent study24, which used more than 5000 point mutations. With more than 
doubled training data, we expect the model to have substantially improved performance; second, the 
“pair representation” generated during AlphaFold prediction should also be very useful for predicting 
stability changes. Of course, the dimensionality of the input also increased significantly, which may 
need to be regularized; third, in this study, we only took the information of the mutated residue from the 
single representation. Information of other residues will be very helpful to further improve the prediction 
performance. For example, we can take a fix number of residues from the sequence neighbors or spatial 
neighbors of the mutated residue. These improvements are being investigated by us currently.  

Estimating the designability of protein structures 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.03.467194doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467194
http://creativecommons.org/licenses/by-nc-nd/4.0/


Natural proteins have the capability to withstand a wide range of environmental stress and mutations. 
As seen from the point mutation data, a large number of mutated sequences of a protein can also fold to 
its native structure. The larger number of mutations a protein can tolerate, the more robust the protein 
structure and function is. The “designability” of a protein structure, defined as the number of sequences 
that encode that structure, has been proposed as an important property that contributes to the functional 
robustness of proteins11. Since protein structures can be organized as a hierarchy15,25-27 with four levels 
from folds to super families, to families, and to sequences, the designability of a protein fold is similarly 
defined as the number of families that take the fold as their native structures. A study has found that 
many disease-related proteins have folds with relatively few families, and a number of these proteins are 
associated with diseases occurring at high frequency12. This indicates that there is indeed a correlation 
between designability and functional robustness of proteins.   

However, simply looking at the number of families under each fold is not a reliable measure for the 
fold’s designability and its functional robustness, because it has been found that the age of a fold 
correlates with its “usage” among natural proteins. For instance, eukaryotic folds found only in human, 
mouse, and yeast contain approximately 2.5 families, on average, compared to an average of 13.8 
families per fold for all human proteins12. This observation has two implications: firstly, since the 
number of sequences exists in nature that can fold to a particular protein structure is not necessary a 
good indicator of its designability, we need to estimate the designability of a protein structure to have a 
better understanding of its functional robustness; second, since new folds have been much less “explored” 
by nature, there must exist new families, not related to any families found previously, that can fold to 
one of the newer folds. These new protein families may be hosts for some interesting, new functions. It 
is now possible to design new sequences using a program such as ProDCoNN to specifically target on 
uncharted regions in the foldable sequence spaces and test the design with AlphaFold.  

Recently, we have formulated a framework for estimating the designability of a protein structure by 
combining a protein design algorithm, sequential Monte Carlo (SMC), and AlphaFold28. To estimate 
designability, we need to sample foldable sequences using SMC. SMC is a special type of Monte Carlo 
method that allows one to estimate the partition function of a system23, which is usually very 
challenging to estimate. We have applied SMC in the past to estimate the entropy of lattice polymers20, 
the side chain entropy of proteins19, and other ensemble properties18,21,29. The total number of foldable 
sequences of a given protein structure can be expressed as a partition function, which can be estimated 
by SMC. In a preliminary study, for the first time, we have estimated the designability of a real protein 
structure, chain A of FLT3 ligand (PDB ID: 1ETE) with 134 residues, as 3.12±2.14E8528. 

Predicting protein stability using natural and design sequences  

As shown earlier, the representations learned by AlphaFold can be used to predict stability changes 
of point mutations. However, for a designed sequence by a program such as ProDCoNN, we still don’t 
know whether the structure predicted by AlphaFold is stable enough. Stability prediction for any given 
sequence is one of the key questions in protein folding unanswered by AlphaFold. Although predicting 
the exact stability can be quite challenging, it may be feasible to predict binary outcomes, such as 
whether a sequence has the stability as that of natural proteins. To address this with machine learning 
methods, we need to have stable sequences and unstable sequences. The protein sequences in PDB 
structures can serve as stable sequences. To obtain unstable sequences, one can randomly sample 
sequences, but these sequences are not challenging enough to train quality models to distinguish 
between foldable and unfoldable designed sequences. One reasonable option is to use all the designed 
sequences as negative sequences or use the designed sequences that are predicted to have RMSD to the 
target structure greater than certain threshold. We hypothesize that it may work fine if we use all the 
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designed sequences as negative sequences because it is unlikely a designed sequence will have stability 
comparable to natural proteins. Even some designed sequence do have stability comparable to nature 
sequences, the number of such sequences should be quite small, which will not impose serious issues for 
training high quality models. With the sequence decoys and natural protein sequences, we can then train 
a model to perform a binary prediction: whether a sequence has stability comparable to natural proteins. 
When constructing the predictive models, we can again use the representations extracted from 
AlphaFold models as the input.  

In protein design practice, we can select the sequences with small RMSDs to the target structure and 
optimize them by computational mutagenesis using a model for predicting stability changes for point 
mutations (e.g. the model we developed in this study). The stability of the optimized sequences can then 
be predicted by the binary model to check whether their stabilities are good enough. This provides a 
practical pipeline for designing sequences to meet the requirement of real applications. 

Using AlphaFold to perform computational mutagenesis to understand the sequence-structure 
relationship of proteins.  

By studying the foldable sequences, we may identify residues that are important for the folding and 
stability of a protein structure and gain a deeper understanding of the sequence-structure relationship of 
proteins. This is a fundamental problem in structure biology. To help the discussion, we call the set of 
key residues for the folding of a protein as the minimum elements for folding (MEF). Using multiple 
sequence alignment (MSA) may not be ideal for detecting MEF because some residues may be 
conserved for binding or dynamics. In addition, the available sequences obtained from a MSA may be a 
limited or biased subset of all foldable sequences for a protein structure as shown in this study that 
natural proteins may not have explored the whole foldable sequence space. Starting from foldable 
sequences, one can perform computational mutagenesis to search for MEF for a protein structure. Each 
new sequence can be tested by AlphaFold for its foldability to keep updating the sets of foldable 
sequences. The search may eventually converge to certain sequence pattern satisfying the requirement of 
a MEF.   
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