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ABSTRACT

An emerging hallmark across many human diseases - such as cancer, autoimmune and
neurodegenerative disorders — is the aberrant transcription of typically silenced repetitive
elements. Once transcribed they can mimic pathogen-associated molecular patterns and bind
pattern recognition receptors, thereby engaging the innate immune system and triggering
inflammation in a process known as “viral mimicry”. Yet how to quantify pathogen mimicry,
and the degree to which it is shaped by natural selection, remains a gap in our understanding
of both genome evolution and the immunological basis of disease. Here we propose a
theoretical framework that combines recent biological observations with statistical physics
and population genetics to quantify the selective forces on virus-like features generated by
repeats and integrate these forces into predictive evolutionary models. We establish that
many repeat families have evolutionarily maintained specific classes of viral mimicry. We
show that for HSATII and intact LINE-1 selective forces maintain CpG motifs, while for a set of
SINE and LINE elements the formation of long double-stranded RNA is more prevalent than
expected from a neutral evolutionary model. We validate our models by showing predicted
immunostimulatory inverted SINE elements bind the MDAS5 receptor under conditions of
epigenetic dysregulation and that they are disproportionately present during intron retention
when RNA splicing is pharmacologically inhibited. We conclude viral mimicry is a general
evolutionary mechanism whereby genomes co-opt features generated by repetitive
sequences to trigger the immune system, acting as a quality control system to flag genome
dysregulation. We demonstrate these evolutionary principles can be learned and applied to
predictive models. Our work therefore serves as a resource to identify repeats with candidate
immunostimulatory features and leverage them therapeutically.
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MAIN TEXT

The ability to predict the presence of patterns sensed by the innate immune system is of considerable
theoretical and practical interest’. For instance, mathematical models of the evolution of human H1N1
influenza since the 1918 pandemic showed an attenuation of CpG motifs, leading to the prediction
such motifs are targeted by pattern recognition receptors (PRRs)?3, and trigger pro-inflammatory
responses. It was subsequently discovered that the protein ZAP (ZC3HAV1) is a PRR targeting CpG
motifs, indicating inferences drawn from genome evolution can predict new receptor specificities
relevant to emerging and adapting viruses*®, including SARS-CoV-28. It has been more difficult to
predict PRR specificities from structure prediction. There are multiple receptors known to recognize
long and short double stranded RNAs (dsRNAs). For example, MDA-5 (IFIH1l) recognizes long
dsRNA segments present during RNA virus replication and TLR-3 recognizes shorter segments, on
the order of tens of base pairs’. Surprisingly, it recently became clear that repetitive elements, which
represent most of the human genome and may derive from integrated viruses, can display “non-self"
pathogen-associated molecular patterns (PAMPs). Under aberrant conditions such as in cancer®,
repeats are frequently overexpressed, where they may display PAMPs, such as anomalous CpG
content and dsRNA®'4, Consistently, a growing body of literature has demonstrated the aberrant
expression of immunostimulatory repeats across an array of human diseases, such as in aging'® and
autoimmunity'®, implying “viral mimicry” may be a fundamental feature of inflammatory diseases.
Moreover, viral mimicry can be leveraged therapeutically: the expression of immunostimulatory
repeats is inducible by epigenetic drugs, leading to the triggering of innate sensors and induction of
an interferon response %14,

Several fundamental questions remain, such as which human sensors can be activated by which
repeats, if viral mimicry serves a functional role in the genome as an evolved checkpoint for loss of
epigenetic regulation or genome fidelity, and whether tumors and pathogens have learned to
manipulate mimicry to their own selective advantage'”'8. In one evolutionary scenario, repeats which
form features in somatically silenced, low-complexity regions can create PAMPs that offer a fitness
advantage to cells due to their ability to trigger PRRs under epigenetic stress, eliminating
dysregulated cells and maintaining tissue homeostasis'’"'8. Such features would then be maintained
by natural selection. Alternatively, in a neutral scenario, it may be that high RNA concentration
resulting from dysregulation can engage PAMPs non-specifically, and their sensing is a convenient
byproduct of dysregulation rather than selection acting on specific sequence features. Discriminating
between these scenarios is key to understanding how non-self mimicry by the self-genome has
evolved, and how it can be leveraged for emerging therapies and honed for existing ones. There is
therefore a pressing need for new approaches to quantify the presence of viral mimics, infer
parameters defining their immunological features, and quantify their evolutionary dynamics in this
reduced feature space. We propose a theoretical approach to quantifying immunostimulatory nucleic-
acid motifs and double-stranded structures under selection, and present two models for describing
the evolutionary dynamics of an immunological feature generated by repeats. In doing so we define
specific categories of repeat families that most likely were retained by natural selection to trigger
specific receptors of the innate immune system under aberrant conditions.
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Inference and evolutionary dynamics of immunostimulatory features

We generalize the framework of selective and entropic forces to infer anomalous sequence features?.
In our approach, genome segments, subject to constraints such as local nucleic acid content, are
randomized by entropic forces to resemble, on average, self-genomic material and are ordered by
selective forces acting on sequence features to oppose such randomization. Rather than using p-
values to compare the strength of avoidance or enhancement of a certain candidate
immunostimulatory feature, the “selective force” is an intensive parameter that can be readily
compared between sequences and is easily interpretable as the information theoretic cost of avoiding
or enhancing specific features in a sequence. To calculate selective forces, one uses exact transfer
matrix methods from statistical physics which, unlike previous approaches?, are computationally
efficient (scaling with the length of the sequence) and facilitate the analysis of longer sequences and
large databases. We calculate the degree to which any sequence displays a feature bias (as defined
in Methods). To apply this formalism to the evolutionary dynamics of immunostimulatory features, we
use this parameter for two approaches to study the population genetics of immunostimulatory
features in an ensemble of genome sequences.

The first approach uses relaxation dynamics for the evolution of repeats in the genome. In this
formalism, a new repeat with a force on an immunostimulatory feature will evolve until its force value
reaches an equilibrium determined by the specificity of PRRs in its host. For an analogy, the 1918
H1N1 influenza virus had one set of features in its original avian host, and then evolved towards a
new equilibrium in humans, where PRRs target CpG with greater affinity and therefore exert a greater
selective force®. The second approach uses a Wright-Fisher (WF) model that considers the evolution
of the probability of a sequence with given immunostimulatory feature content’®. While relaxation
dynamics was applied to the evolution of dinucleotides motifs under selective pressure in viral
genomes?, here we connect selective forces to intrinsic molecular mutational processes in human
genomes by use of population genetics (Methods). We implement the WF model numerically and
evolve, assuming haploid reproduction of sequences, a set of sequences according to a neutral
mutation model without a selection term to provide a null model of repeat evolution in the human
genome. For each simulation step, we pick a random base for each sequence in the ensemble and
mutate it to a randomly chosen different base with a given probability. We consider different possible
mutation probabilities depending on the type of base being mutated into, as well as on the local
nucleotide context. Additionally, in vertebrates and plants, mutations in CpG context are known to be
more common due to methylation induced hypermutability?®. Hence, we use different ratios of
mutation rates corresponding to nucleotide transitions and transversions in a CpG context and to
transitions and transversion in non-CpG context®®. We calculated the dinucleotide distribution
stationary value, obtained as the stationary vector of the stochastic matrix with entries corresponding
to probabilities of mutating from one dinucleotide to another dinucleotide (see Methods and Table 1).

Landscape of repeats with selective forces on CpG dinucleotides

A repetitive element is primarily defined by the presence of multiple copies (inserts) of its sequence.
We compare the evolution of dinucleotide motifs (quantified by calculating the selective force, x, on
a dinucleotide motif, s, as defined in Methods) between the original consensus sequence,
representing the sequence most likely to be close to the founding ancestral insertion, and its
subsequent copies in the genome (Fig. 1). We analyzed all repeat families annotated in the DFAM
database and calculated the dinucleotide forces for their consensus sequences as well the mean
force on all inserts from a given family?', finding outliers such as a set of Alu repeats and HSATII, the
later consistent with previous results® (Fig. 1). The greatest differences between the forces on
dinucleotides for a consensus sequence and its subsequent inserts were observed for CpG (Fig. 1A).
For all other dinucleotides, the force change with respect to the consensus is approximately 0, as
illustrated in Supplementary Figure 1. Typically, CpG content in the human genome is highly
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underrepresented (Extended Data Fig. 1) and CpG sites mutate at a much faster rate than the rest
of the genome due to their aforementioned hypermutability?>?2-23, As a result, understanding whether
the CpG content of a repeat has “relaxed" to a typical level or is held fixed by selection can indicate
whether a repeat transcript can be recognized by a PRR that senses CpG motifs. We evaluated the
mean force for all other annotated repeats longer than 150 bases. We plot the mean difference in
CpG force per repeat family versus the CpG force of the consensus ancestral insert (Fig. 1B).
Consistently, we see that families where the selective force on CpG dinucleotides for the progenitor
insert was greater than —1.9 have decreased their force to this value, while those less than —1.9 have
increased their value. We therefore establish a genome-wide equilibrium in line with equilibria
observed for human adapted viruses such as influenza and SARS-CoV-2228, If a repeat is not subject
to selection, one would expect its insertion to evolve according to a WF model with respective
mutation rates for transitions and transversions. This approach has been used in several sequence
evolution models to explain lower CpG content in vertebrate genomes?*?°. However, CpG motifs are
also functional. Methylation of CpGs in DNA is an important regulator of gene expression?’28, and
CpG-rich RNA can have immunostimulatory properties®. Therefore, one could expect selection to act
against depletion of functional CpG motifs, as observed in CpG islands located in gene promoters of
vertebrates?. Indeed, most repeat families show relaxation to the mean genome force expected from
the neutral model, further implying HSATII and Alu repeats may be specifically under selection to
trigger PRRs (Fig. 1C).

As LINE-1 elements have the most copies in the genome, they are most amenable to our approach.
They are estimated to constitute about 20% of human genome?°. Here we only consider full-length
inserts, as annotated in L1Base2, and contrast those designated as fully intact (denoted FLI), from
those full-length sequences designated as non-intact (FLnl)*'. Fully functional LINE-1 DNA
sequences are regulated by promoter hyper-methylation, which occurs at CpGs, to inhibit their
transcription®2. Indeed, we find FLI LINE-1 have higher CpG content than FLnl (Fig. 2A). We
calculated the mean Kimura distance®? to all FLI sequences for each of the FLnl sequences as proxy
for time since insertion, finding that as a LINE-1 genome insertion ceases to contain an intact copy,
its CpG content decays to the genome mean in a predictable way (Fig. 2B), reaching a plateau of -
2.0, within the margin of error for the equilibrium of -1.9. We would expect the most recent inserts into
the human genome to not have equilibrated. It is important to identify all such cases because the
families that have not saturated are candidates for viral mimicry such as, for example, when
overexpressed in tumors®35-%". The clearest instance is HSATII. The evolutionary dynamics of the
force relaxation fit for HSATII (Fig. 2B) corresponds to saturation at force approximately equal to 0.4,
well above the equilibrium distribution given by the WF model simulations (Fig. 2B, green line),
implying its ability to stimulate PRRs is maintained by selection. Other outliers comprise repeat
families that are still close in age to the original CpG-rich insert or families whose CpG force is
decreased at lower rate than observed for other repeat families, implying its features are maintained
by selection. For most of families the data points are scarce and noisy, making a relaxation fit such
as the one shown for HSATII and LINE-1 difficult. The full genome atlas of CpG-rich repeat families
is listed in the Supplementary Table 1 and the distribution of anomalous CpG hotspots is show in Fig.
2C, showing an enhancement in introns and depletion in intergenic regions (Fig. 2D). Most hotspot
loci have a Kimura distance from the consensus of less than 0.1 and belong to Alu subfamilies, these
species likely maintain their anomalous sequence features due to being evolutionary young
compared to the founding member of their repeat family. Other families besides HSATII with higher-
than-average Kimura distance from the consensus larger are MER21, TAR-1, and LTR6B families,
which may have CpG dinucleotides maintained by selection to trigger PRRs in a dysregulated state.
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Landscape and evolution of repeats with selective forces on double-stranded RNA formation

We extend our approach to the evolution of repeats that can trigger PRRs via double-stranded RNA
(dsRNA) formation. Known dsRNA receptors include TLR-3, RIG-I, and MDA-5’. While the detailed
mechanism of dsRNA motif recognition and receptor activation are still a subject of active research,
it is generally accepted that TLR-3 is activated by short (approx. 30 bp) endosomal dsRNA and RIG-
| (DDX58) by short (tens of bases) cytoplasmic dsRNA accompanied by a triphoshphate®, while
MDA-5 recognizes longer cytoplasmic dsRNA®*. We study the distribution of double-stranded
segments in annotated regions in human genome, quantified by the double stranded force, x
(Methods). It is analogous to forces on dinucleotide motifs, where x;, = 0 if, for a given sequence,
the length of its longest complementary segments corresponds to what one would expect from a
neutral model of a random sequence with the same nucleotide distribution and length. We quantified
xq4s for repetitive families as well as ncRNA and mRNA sequences. The histogram of observed
double-stranded forces is shown in Fig. 3A, along with a histogram of randomly generated sequences
of different lengths. While the mean value and standard deviation of functional mMRNA and ncRNA
sequences is essentially random, the consensus sequences of repeats contain multiple families with
long complementary segments, contributing to an increased average x;; value (Fig. 3A). Such
repeats therefore entered the genome with the potential ability to form dsRNA segments and, as with
CpG motifs, typically lost that ability over time due to mutations. While the general trend is to relax
the double-stranded force towards zero (Fig. 3B), there are several repeat families with large x4,
values, indicating a possible reservoir of double-stranded segments being maintained by selection
(Fig. 3C, Extended Data Fig. 2A). Many of these families were not detected by the selective force on
CpG dinucleotides, implying the selective forces on dinucleotides and RNA structures are largely
independent and detected by distinct PRRs. Several outliers have a high positive x;, values, including
the species Tigger4a and HSMAR (Extended Data Fig. 2B). While they are DNA transposons, we
found also their RNA transcripts in The Cancer Genome Atlas (TCGA - https://www.cancer.gov/tcga),
and hence their RNA may still be immunostimulatory when transcribed.

To locate possible sources of double-stranded segments originating from the same transcript, we
scan the entire genome (HG38 assembly), using a window of transcripts of length 3000bp,
comparable to typical lengths of long ncRNAs*. We scan these windows for two fully complementary
segments (through Watson-Crick or wobble base pairs). We quantified the sequence complexity of
such complementary segments (based on Kolmogorov complexity, as described in Methods), as
shown in Fig. 3D. The segments close to the low complexity limit typically contain a repeating motif
of only a few nucleic acids (such as poly(AT)) while the longest segments have higher complexity,
i,e. the long dsRNA are not exclusively being formed by simple repeats. The longest inserts with high
complexity correspond to segments that do not overlap with any known insert, annotated gene or
ncRNA. An atlas of all families of repeats analyzed are summarized in Supplementary Table 2&3.

We specifically explored which specific genome loci, as opposed to consensus repeats, can stimulate
MDA-5 receptors by forming long dsRNA segments, as their transcription has been implicated as a
response to genome-wide DNA demethylation®. Using a sliding window of the entire human genome,
with transcript length of 3000bp, we observed the two x, peaks, a major one close to 0 and a smaller
around 0.5 (Fig 4A), consistent with the results for consensus repeats found in Fig. 3. We found that
for the majority (74%) of regions with x;; > 0.5 the complementary segments in the 3000 bases long
regions overlap with known repeats. Greater than 90% of identified complementary segments
correspond to AluS and AluY, two inserts from Alu families, where a copy has inserted in a positive
orientation close to one in a negative orientation (inverted-repeat Alus IR-Alus) (Fig 4B). These
results, based solely on evolutionary analysis using our framework, are strikingly predictive of the
experimental observations that IR-Alus are the major source of self-RNA that form MDA-5 agonists™.
To test this hypothesis, we plotted a histogram of the transcripts found experimentally in Ref. 10 to
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bind MDA-5, both at baseline and after treatment with a DNA demethylating agent (Fig. 4A). Those
experimentally validated MDA-5 agonist dsRNAs indeed have a clear x; peak at 0.5 (Fig. 4A),
providing strong experimental support to the predictive power of our evolutionary model and, in turn,
the hypothesis that evolution selected this feature as an epigenetic checkpoint'’:'8. The mean length
of the longest complementary segments found in the dataset with x;; > 0.5 is 40 base pairs. We
further investigated a subset, consisting of regions that can form 100 base pairs or longer double-
stranded segments. In this subset, only 20% of the complementary segments overlap with known
annotated repeat segments. Besides the Alu subfamilies (which constitute about 40% of long
complementary segments that overlap with known inserts), we also identified complementary
fragments inserted in their positive and negative orientation from the ORF2 open reading frame of
LINE-1, which is lowly expressed compared to ORF1, the other LINE-1 open reading frame, in human
cancers.*

In addition, we observed most regions (56.9%) with x;; > 0.5 were over-represented at intronic
regions (Fig 4C). These results are consistent with a recent hypothesis that intronic repeats can form
dsRNA and induce viral mimicry as a checkpoint against intron retention*'*?. We therefore
hypothesized that predicted repeats with high dsRNA force would be disproportionately present when
introns are retained as a checkpoint against splicing abnormalities'®. To test this hypothesis, we
analyzed the effects of a class of inhibitors of RNA splicing which induce intron retention and exhibit
synthetic lethal interactions in cancers with mutations in RNA splicing factors such as SF3B143. We
examined RNA sequencing data from SF3B inhibitors (including the drugs E7107 and H3B-8800)
which cause the retention of introns in SF3B1 K700E mutant cells. Consistent with our model, we
found splicing agents which lead to intron retention over express the high double-stranded force
intronic repeats we predicted (Fig. 4D-E), simultaneously supporting the evolutionary role of inverted
SINE elements in guarding against intron retention and the potential ability to manipulate this feature
using a cancer therapeutic targeting RNA splicing. Consistently, for inhibitors less associated with
intron retention the effect was either weakened or not present (Extended Data Figs. 3&4).

Finally, we annotated long dsRNA segments formed by bidirectional transcription, which have been
implicated as potentially forming dsRNA due to their perfect complementarity'. To find plausible
sources of regions that can be transcribed in both directions, we analyzed available transcription
datasets from TCGA (Methods), finding multiple regions with long (over hundred base pairs) regions
that are transcribed bidirectionally, indicating a possible source of antagonists (Extended Data Fig.
5). We found different inserts of MIR, Alus and LINE-1, i.e., some of the most abundant repeat
families, to be the most represented among such transcripts. The respective loci for the top 1%
highest bidirectional transcript counts, along with the number of reads transcribed from either the
negative or positive strand, are listed in Supplementary Table 4.
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DISCUSSION

We quantify the evolution of non-self, pathogen-associated patterns, based on competition between
selective and entropic forces, within repeat families in the human genome. In doing so we find the
high-copy satellite RNA HSATII is likely under selection to maintain its pathogen-associated CpG
dinucleotide content and functional LINE-1 inserts maintain higher CpG content than expected. LINE-
1 promoters are controlled at the DNA-level by CpG methylation, and it has an internal, bi-directional
promoter transcribed with the 5'-UTR of the RNA*#° ensuring the promoter co-mobilizes with the
protein coding regions. HSATII may have a DNA regulatory function as well, as its DNA sequences
can sequester chromatin regulatory proteins and trigger epigenetic change*®. However, at the RNA-
level, CpGs can function evolutionarily as a danger signal to maintain fitness of tissues under
epigenetic stress for both LINE-1 and HSATII, whose immunostimulatory properties have been
documented.

Furthermore, we incorporate RNA secondary structure into evolutionary models and identify a
reservoir of anomalous repeats with likely immunostimulatory dsRNAs. We attempt to exhaustively
annotate regions where repeats evolutionarily maintain the ability to form long dsRNAs or present
anomalous CpG motifs, providing an atlas for mapping transcriptomes of cells which exhibit
stimulation of PRRs so one can identify the potential source of causal immunostimulatory self-
transcripts. As strong validation of our approach, repeats predicted through evolutionary analysis to
be dsRNA-forming were found to be MDA-5 agonists in a recently published MDA-5 protection assay
that profiled ligands induced upon response to epigenetic cancer therapy by DNA demethylating
agents'®. The repeats that are induced by epigenetic therapy come from regions of the genome which
may selectively maintain the ability to form dsRNA, implying the therapeutic condition mimics the
evolutionary role of these RNA species to safeguard tissue homeostasis by killing dysregulated cells.
Moreover, we find such repeats disproportionately arise within introns and can be disproportionately
induced by intron retaining splice-inhibitors*3, where they may be localized as a checkpoint against
intron retention'442 Furthermore, CpG sequences may make intronic repeats better targets for
RNA-binding proteins — without such insulation, repetitive elements within the introns of protein-
coding genes could lead to deleterious RNA processing, which is ultimately relieved as the elements
age by (presumably neutral) mutational decay*”*8.

Our work therefore has several implications for how we understand self versus non-self
discrimination. When one quantifies pathogen-associated features, specific repeats in the genome
not only display PAMPs capable of stimulating PRRs but, in some instances, seemingly maintain
such features under selection. For multicellular organisms with a high degree of epigenetic regulation
and chromosomal organization, this offers an opportunity to maintain stimulatory features to release
a danger signal when epigenetic control is lost, such as during the release of repeats after p53
mutations, where immunostimulatory repeats may offer a back-up for p53 functions such as
senesence'>*°, Our work supports the hypothesis that repeats are selected to maintain “non-self’
PAMPs to act as sensors for loss of heterochromatin as an epigenetic checkpoint of quality control
system and avoid genome instability generally'”'8. With our framework one may learn how to identify
which pathogen-associated features the genome maintains, which receptors they ligate, and, thereby,
learn what pathways the genome has evolved to agonize and when.

Specific genome repeats, such as HSATII and inverted SINE elements have been disproportionately
implicated in the ability to stimulate non-self detection pathways and we predict that they are
maintained under natural selection to do so. Each repeat likely engages a different receptor family.
For CpG motifs the ZAP receptor and TLR7/8 have been implicated, and inverted SINE elements are
likely detected by long dsRNA sensors such as MDA-5. Decoding viral mimicry by repeats using a
combination of physically interpretable machine learning and predictive evolutionary models may
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therefore shed light on the function of genomic “dark matter” across disease indications, in a manner
which may be further exploited therapeutically. For instance, it had been observed that early-stage
melanoma may manipulate epigenetic regulators to suppress immunostimulatory repeat expression,
and recent work has shown the possibility of targeting those proteins to reinvigorate the immune
response®®'. Furthermore, viruses and late-stage tumors may have learned to manipulate viral
mimicry to their own advantage: Y-RNAs have been implicated in RIG-I sensing during RNA virus
infection®? and herpesviruses derive a fitness advantage from induction of HSATII, which is also often
overexpressed in tumors®3. The implication is that we can learn a “repeat code” of self-agonists within
our genome held by selection to stimulate receptors under specific circumstances. We provide both
an annotated atlas of predicted repeats under selection (Supplementary Tables) and software for
building predictive models for this purpose. The lack of unbiased sequencing of repeats, which can
easily be missed in RNA sequencing that focuses only on mRNA or in whole exome or short read
whole genome DNA sequencing, is therefore a critical bottleneck. Once decoded we can better
understand the evolution of these surprisingly non-self features encoded within families of repeats in
our genome.
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FIGURE LEGENDS

Figure 1|Landscape of forces on CpG dinucleotides in the genome. A, Histogram of changes in
the force on CpG motifs across all repetitive elements in the human genome. B, Change in the CpG
force as a function of the force on the original (consensus) repeat insert over its evolutionary history.
Each point represents a family of repetitive elements, along with a linear fit. All repeats whose
consensus is above the mean force on CpG dinucleotides (-1.9) have decreased their CpG content.
Alu repeats (green) and HSATII (red) are highlighted as exceptions to the general trend. C, The mean
CpG force of all inserts in a repeat family as a function of the Kimura distance from the consensus
sequence for each family.

Figure 2|The evolution of CpG dinucleotides for LINE-1 and HSATII repeats. A, Scatter plot of
forces on CpG and UpA dinucleotides for LINE-1 functional (red) and non-functional (blue) elements
in the human genome. The white ellipse corresponds to one standard deviation distance (in the
principal axes directions along CpG and UpA forces) from the mean for the CpG and UpA forces on
FLI and FLnl LINE-1 inserts respectively. B, Force on CpG motif for FLnl inserts of LINE-1 and HSAT-
Il in human genome as a function of average distance from the intact FLI sequences (for LINE-1) or
the distance from the consensus sequence (for HSAT-II, marked with a red diamond). The force
relaxation evolutionary model fit is shown for both sequence families. C, Calculated forces acting on
CpG motifs for all inserts from the DFAM database in the human genome. The segments with no
inserts present are colored in grey, and the colorbar shows colors assigned to selected force values.
The length of the colored segment in the plot is proportional to the length of the sequence of the
insert. The mean CpG forces acting on all mMRNAs in human genome is —1.1, corresponding to white
in color code of the heatmap. D, Distribution of genomic regions containing repeats with high CpG
force greater than one standard deviation from the mean, illustrating an over-representation of
repeats from intronic regions, and a depletion from intergenic regions.

Figure 3| Double-stranded forces in the human genome. A, Histogram of dsRNA force calculated
for the following human genome transcripts: mRNA coding sequences (blue), non-coding RNAs
(green), inserts (red), consensus sequences of repeats (cyan), and sequences obtained by randomly
reshuffling mRNA coding sequences (violet). B, Mean of double-stranded force calculated for each
family of repeats as a function of the mean Kimura distance of all inserts for a repeat family from the
consensus sequence. The red curve corresponds to mean value (and standard deviation from it) for
all families binned into the same distance from consensus. C, Calculated double stranded forces all
inserts from the DFAM database in the human genome. The segments with no inserts present are
colored in grey, and the colorbar shows the colors assigned to selected force values. D, Complexity
of sequences in complementary regions found in the human genome (grey dots) as a function of the
segment length. The complementary regions that overlap with known repeat element or ncRNA or
mRNA are highlighted as red dots, and the ones where both regions contain insert of a repetitive
element from the same family are highlighted in red. The dashed lines correspond to the complexity
of a completely random sequence (top line) and trivial region consisting of a single nucleotide
(bottom). Complexity of both complementary segments are similar, so we only include the complexity
of one of the complementary transcripts.

Figure 4|Classes and genomics origins of repeats with large double-stranded forces. A, The
double-stranded force histograms in human genome (sliding window with transcript of length of 3000)
and compared to MDA-5 binding RNA transcripts. B, Distribution of classes of repeats from the peak
of large double-stranded forces in (B) illustrating an over-representation of repeats emanating from
SINE elements. C, Distribution of genomic regions containing repeats with high double-stranded
forces, illustrating an over-representation of repeats from intronic regions. D, Volcano plot of SINE
element expression of elements with double stranded force greater than 0.5 in SF3B inhibitor (H3B-
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8800) versus control (DMSO) treated SF3B1 K700E mutant K562 cell lines. E, Distribution of genomic
regions containing expressed repeats with high double-stranded forces and fold-change of greater
than 0.5 in H3B-8800 versus DMSO treated SF3B1 K700E mutant K562 cell line. Double-stranded
SINE elements from intronic regions are over-represented.

EXTENDED DATA FIGURE LEGENDS

Extended Data Figure 1|Dinucleotide distribution in human genome. Counts of dinucleotides
across the human genome (HG38 genome assembly).

Extended Data Figure 2| A, The mean of maximum lengths in a secondary structure in a single-
stranded RNA sequence (green line) and the mean maximum length of complementary segments
(blue line), along with respective fits of Eq. 12 from Methods. B, Double-stranded force on repeat
family Tigger4a. The force relaxation evolutionary model fit shows the relaxation of the inserts
compared to the relaxation simulated by neutral Wright-Fisher model.

Extended Data Figure 3| The genomic distribution of regions which under-represent dsRNA
sequences in the human genome. Only exons were shown to significantly under-represent dsRNA
formation.

Extended Data Figure 4| A, Volcano plot of SINE element expression between DMSO treated
SF3B1 K700E mutant and wild-type in K562 cell lines. B, Volcano plot of SINE element expression
between H3B-8800 and DMSO treated SF3B1 wild-type K562 cell lines. C, Volcano plot of SINE
element expression between H3B-8800 treated SF3B1 mutant & wild-type in K562 cell lines. D,
Volcano plot of SINE element expression between H3B-8800 and DMSO treated SF3B1 K700E in
Nalm6 cell lines. E, Volcano plot of SINE element expression between E7107 and DMSO treated
SF3B1-K700 in Nalm6 cell lines.

Extended Data Figure 5| A, The distribution of lengths of bidirectional transcripts identified in TCGA.
B, Scatter plot of maximum length of complementary segments in a single transcript vs the number
of occurrences of such transcript in respective TCGA datasets. We only considered transcripts that
come from genome regions of length 3000 that have double-stranded RNA force larger than 0.5. Only
transcripts with one or more occurrences are shown.
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Figure 1|Landscape of forces on CpG dinucleotides in the genome. A, Histogram of changes in the force on CpG
motifs across all repetitive elements in the human genome. B, Change in the CpG force as a function of the force
on the original (consensus) repeat insert over its evolutionary history. Each point represents a family of repetitive
elements, along with a linear fit. All repeats whose consensus is above the mean force on CpG dinucleotides
(-1.9) have decreased their CpG content. Alu repeats (green) and HSATII (red) are highlighted as exceptions to the
general trend. C, The mean CpG force of all inserts in a repeat family as a function of the Kimura distance from the
consensus sequence for each family.
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Figure 2| The evolution of CpG dinucleotides for LINE-1 and HSATII repeats. A, Scatter plot of forces on CpG and
UpA dinucleotides for LINE-1 functional (red) and non-functional (blue) elements in the human genome. The
white ellipse corresponds to one standard deviation distance (in the principal axes directions along CpG and UpA
forces) from the mean for the CpG and UpA forces on FLI and FLnl LINE-1 inserts respectively. B, Force on CpG
motif for FLnl inserts of LINE-1 and HSAT-1l in human genome as a function of average distance from the intact
FLI sequences (for LINE-1) or the distance from the consensus sequence (for HSAT-Il, marked with a red
diamond). The force relaxation evolutionary model fit is shown for both sequence families. C, Calculated forces
acting on CpG motifs for all inserts from the DFAM database in the human genome. The segments with no
inserts present are colored in grey, and the colorbar shows colors assigned to selected force values. The length
of the colored segment in the plot is proportional to the length of the sequence of the insert. The mean CpG
forces acting on all mRNAs in human genome is 1.1, corresponding to white in color code of the heatmap. D,
Distribution of genomic regions containing repeats with high CpG force greater than one standard deviation
from the mean, illustrating an over-representation of repeats from intronic regions, and a depletion from
intergenic regions.
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Figure 3| Double-stranded forces in the human genome. A, Histogram of dsRNA force calculated for
the following human genome transcripts: mRNA coding sequences (blue), non-coding RNAs (green),
inserts (red), consensus sequences of repeats (cyan), and sequences obtained by randomly reshuffling
mRNA coding sequences (violet). B, Mean of double-stranded force calculated for each family of repeats
as a function of the mean Kimura distance of all inserts for a repeat family from the consensus
sequence. The red curve corresponds to mean value (and standard deviation from it) for all families
binned into the same distance from consensus. C, Calculated double stranded forces all inserts from the
DFAM database in the human genome. The segments with no inserts present are colored in grey, and
the colorbar shows the colors assigned to selected force values. D, Complexity of sequences in
complementary regions found in the human genome (grey dots) as a function of the segment length.
The complementary regions that overlap with known repeat element or ncRNA or mRNA are highlighted
as red dots, and the ones where both regions contain insert of a repetitive element from the same
family are highlighted in red. The dashed lines correspond to the complexity of a completely random
sequence (top line) and trivial region consisting of a single nucleotide (bottom). Complexity of both
complementary segments are similar, so we only include the complexity of one of the complementary
transcripts.
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Figure 4|Classes and genomics origins of repeats with large double-stranded forces. A, The double-
stranded force histograms in human genome (sliding window with transcript of length of 3000) and
compared to MDA-5 binding RNA transcripts. B, Distribution of classes of repeats from the peak of large
double-stranded forces in (B) illustrating an over-representation of repeats emanating from SINE
elements. C, Distribution of genomic regions containing repeats with high double-stranded forces,
illustrating an over-representation of repeats from intronic regions. D, Volcano plot of SINE element
expression of elements with double stranded force greater than 0.5 in H3B-8800 versus DMSO treated
SF3B1-K700 mutant K562 cell lines. E, Distribution of genomic regions containing expressed repeats
with high double-stranded forces and fold-change of greater than 0.5 in H3B-8800 versus DMSO treated
SF3B1-K700 mutant K562 cell line. Double-stranded SINE elements from intronic regions are over-

represented.
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Extended Data Figure 1| Dinucleotide distribution in human genome. Counts of dinucleotides across the human
genome (HG38 genome assembly).
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Extended Data Figure 2| A, The mean of maximum lengths in a secondary structure in a single-stranded RNA
sequence (green line) and the mean maximum length of complementary segments (blue line), along with
respective fits of Eq. 12 from Methods. B, Double-stranded force on repeat family Tigger4a. The force relaxation
evolutionary model fit shows the relaxation of the inserts compared to the relaxation simulated by neutral
Wright-Fisher model.
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Extended Data Figure 3| The genomic distribution of regions which under-represent dsRNA

sequences in the human genome. Only exons were shown to significantly under-represent
dsRNA formation.
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Extended Data Figure 4| A, Volcano plot of SINE element expression between DMSO treated SF3B1-K700 mutant
and wild-type in K562 cell lines. B, Volcano plot of SINE element expression between H3B-8800 and DMSO
treated wild-type K562 cell lines. C, Volcano plot of SINE element expression between H3B-8800 treated SF3B1

mutant & wild-type in K562 cell lines. D, Volcano plot of SINE element expression between H3B-8800 and DMSO

treated SF3B1-K700 in Nalm6 cell lines. E, Volcano plot of SINE element expression between E7107 and DMSO
treated SF3B1-K700 in Nalmé cell lines.
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Methods

Quantification of sequence constraints

We quantify the sequence constraints as a parameter (force) =, acting on a particular sequence
motif m, which can be for instance CpG in a DNA or RNA sequence, but it could also correspond to
longer motifs (such as codons for example). Using the maximum entropy principle, the probability
of occurrence of sequence o with N* motifs is

™~

P(o]zs) = 7)exp (zsNg") (1)

where and f (¢7) is the probability of finding nucleotide ¢ on i-th position in the sequence. In the
case of sequences considered here, we use frequency of a given nucleotide (A, C, G, U) (i.e. the
number of occurrences divided by sequence length) for a given sequence o to obtain the estimates
of f. Z(x,) is the normalization factor

ZHf ) exp (z,N") (2)

T =1
where the sumiis carried out over all possible sequences T of the same length as sequence .

For instance, in the case of the respective sequences of LINE-1 and HSATII elements considered
in this work, the respective frequencies f correspond to the number of occurrence of a given
nucleotide (A,C,G or U) in the sequence divided by the sequence length. Force x; associated with
a given motif m (such as CpG) is then obtained so that the number of occurrences of the motif,
N,,, satisfies

B m  0log Z(xy)
_ ZP (o|zs) NT = (3)

A Newton-method based algorithm to efficiently (~ O(L?)) calculate x, such that () is satisfied
was derived in [1]. Note the positive value of force z; signifies that associated motif is enriched
compared to what would be expected from a random sequence with given frequencies of nu-
cleotides, and vice versa for a negative value. In this work, we use z¢,g to denote the value of
force z,; for CpG dinucleotides.

Evolutionary dynamics of a sequence motif with force relaxation formalism

It is possible to harness the formalism developed in ( - ( to study the evolutionary dynamics
of number of motifs N™, as it approaches the steady state (equilibrium) value Ngz;. We assume
that the sequence is evolving under action of two competing effects, a selective force 2, and an
‘entropic force’ z;.

0S  0S(xs) Oxg

rs(N") = gnm = Oz, ON™

(4)

where S is the entropy (using P from )):

S(xs) ==Y P(r|zs)log P (r|z,). (5)

The value of x4 that maximizes entropy S corresponds to the most likely sequence and corre-
sponding number of motifs N™ that one would obtain given the respective frequencies f for a

1
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sequence of length L. However, there is also a selection pressure acting on a motif m, specified
by a given value xg;: for a positive value the motif is under a positive selection, and for a negative
value the motif is under negative selection.

The sequence undergoes mutations, which cause changes in the number of motifs (and hence
associated value of x,;). To model the evolutionary dynamics of the sequences, we assume the
number of motifs (V") evolves according to the relaxation dynamics given by

AN (t)
dt

T

= —xs (N™(t)) + 7gq, (6)

where 7 sets the timescale. The number of motifs reaches its stationary (equilibrium) value when
Ts = xgq. Itis convenient to express ®) as

was
dt

where var (z4|N™) is the variance of z, for a given N™.

= — (—xs(t) + 25g) var (z,|N™), (7)

If we can express var (z,|N™) as a function of x,, it is possible to obtain a solution of (7)) that
can then be fitted to the dataset with timescale 7, thus providing the approximation of relaxation
dynamics, along with the estimate of the time it will take to z(¢) (and hence the number of the
corresponding sequence motif m ) to reach its equilibrium value. For the case of HSATIl and
LINE-1 we fit the var (5| N™) as a quadratic function of .

Quantification of double-stranded RNA content

Following-up on the quantification of dinucleotide content, we develop an analogous framework for
quantification of the length of duplex strands. We assume we are given a sequence s of length L.
We define frequency in the sequence f(c) for each nucleotide type ¢ (A,C,G or U) in the sequence.
If we divide sequence into N segments of maximum length K (N = L/K), then the probability
that two given of length K segments are fully complementary (i.e. that they can form K base pairs
long duplex region) is

p1 = (e"sa)" (8)
where « is the probability that randomly chosen pair of two nucleotides can form a base pair
o= fle)f(c), 9)

(cc*)

where the sum is over all permutations complementary of Watson-Crick or wobble base pairs (A-U,
C-G, G-U) with their respective frequencies f(c) (o = 0.375 for uniformly distributed nucleotides).
The parameter s is analogous to the dinucleotide force in Eq. (E]), and corresponds to bias that
increases (for positive z4s) or decreases (r4s < 0 ) the typical length of double-stranded region
in the sequence with respect to a randomly drawn sequence from nucleotide distribution f(c) (in
which case z4s = 0). The probability of having at least one pair of fully complementary segments
of length K is

N(N-1)

pas(K) =1— (1= (")) 7. (10)

We are interested in the typical length of the longest segment that is complementary in the en-
semble of sequences of length L with given distribution of nucleotides f(c). We look for K such

2
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that pgs ~ 1/2. Assuming that K < L and o < 1, we obtain from Eq. )

K~ 109k (11)
log 7=

for larger L > K. Hence we get the maximum length of the longest complementary segments of
the ensemble as a function of L, o and z4s as

log L
1

_09Y L (12)
log 7=

Amax ~

We fit the Eq. to a set of mean maximum length of segments of randomly generated RNA
sequences of lengths ranging up to 3000 bases (Extended Data Fig. 2A) and obtain ¢y = —2.2 and
xgs = 0.06. We also fit Eq. |12 to the mean of maximum duplex lengths in a secondary structure
(as obtained from folding the sequences by ViennaRNA tool [2]) of set of randomly generated
sequences, we obtain ¢ = —1.7 and z4s = —0.11. We note that the value of z4s is slightly
smaller for the longest double-stranded segment in the folded sequence, because the longest
complementary segments will not always form a duplex segment (e.g. due to entropic cost of
bringing the two segments together). The longest segments in folded sequences are therefore on
average slightly shorter than the lengths of maximum complementary segments.

Therefore, for a sequence of length L with frequencies of bases given by f(c) and with maximum
length of complementary segments Amax, We obtain z4s from Eq. ), thus obtaining a single metric
to compare distribution of double-stranded segments across various RNA sequence ensembles
and families.

Wright-Fisher model of population genetics for the evolution of sequence motifs

In addition to the force relaxation model introduced above, we present here a different approach
to study the evolution of nucleotide sequence motifs based on a Wright-Fisher (WF) population
genetics model, which assumes haploid reproduction of sequences. The probability distribution of
all sequences evolves in time according to

) (s = (6)) po0) + 3 (52 )20 = P (0T ), (13)
Y

where p,(t) is the probability of sequence o at time ¢, s, is a selection coefficient that depends
on the number of motifs N, with (s)! as its average value over the probability distribution of all
sequences at time t.

We implement the WF model numerically, and evolve a set of sequences according to a neutral
mutation model without a selection term to provide a null model of neutral sequence evolution. We
evolve a population of sequences (which either start all equal to the same one or from a distribu-
tion). For each simulation step, we pick a random base for each sequence in the ensemble, and
mutate it to randomly chosen different base with a given probability. We consider different possible
mutation probabilities depending on the type of base it is mutating into, as well as on the context
(identity of the bases in the neighborhood), as transversion (purine mutating to pyrimidine or vice
versa) and transition (purine mutating to purine or pyrimidine mutating to pyrimidine) substitutions
in sequences can have different likelihood [3].
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HTiCpG-HTvCpG-HTi-HTv Jf(e;(:)G
40:10:4:1 —-2.2
40:4:4:1 —-2.0
40:1:4:1 —-1.7

4:4:4:1 —0.8
20:4:4:1 —-1.5
27:2:4:1 —1.7

Table 1: The ratios of dinucleotide mutation rates (transition and transversion with and outside of
CpG context) and a corresponding value of equilibrium force on the CpG dinucleotide

Additionally, in vertebrates and plants, mutations in CpG context are known to be more common
due to CpG hypermutability [4]. Hence, for the mutation rates in the WF model implementation, we
use different ratios of mutation rates pricpg:1Tvepa: iz Ty (COrresponding to nucleotide transitions
and transversions in CpG context and to transitions and transversion in non-CpG context). In
particular, we consider the following ratios introduced in Ref. [3] and which are listed in Table .
For each ratio, we constructed the stochastic matrix, with entries corresponding to probabilities of
mutating from one dinucleotide into another dinucleotide. We calculated the stationary dinucleotide
distributon from the stationary vector of this matrix, from which one can calculate the corresponding
CpG force x4 using the fact that the force is approximately equal to the logarithm of relative
frequency of the dinucleotide motif z ~ log(f(CpG)/f(C)f(G)) [5]. The ratios 40:10:4:1, 40:4:4:1
and 40:1:4:1 provide the closest approximation to relaxation to the force observed in the genome.
For the neutral Wright-Fisher model evolution comparison of LINE-1 and HSATII inserts in Figure
2 in the main text, we used the 40:10:4:1 ratio as it was closer to the saturated value of z¢c,g of
the LINE-1 elements.

Sequence ensembles

The LINE-1 sequences were obtained from L1Base2 database [6]. We separately downloaded
all the sequences annotated as full-length intact and hence are more likely to still be active (146
for human genome and 2811 for mouse genome), and sequences annotated as full-length non-
intact (13148 for human genome and 14076 in mouse genome). We separately aligned each of the
non-intact sequences with each of the respective intact sequences using pairwise alignment and
calculated the Kimura distance between the sequences [7]. We then calculate the average dis-
tance for each of the non-intact sequences from the intact-sequences, and furthermore calculate
the number of CpG motifs in each sequence.

Sequences of all inserts of HSATII and all other Human Genome repetitive elements considered in
this work have been obtained from DFAM database [8] (version introduced in 2016). Each family
of sequences in the DFAM database contains sequences of all its inserts in the human genome
and their consensus sequence, as well as with the hidden Markov Chain Model (HMM) that we
use to align inserts with respect to the consensus sequence. For comparison of sequences of
insert with respect to their consensus sequence, we only consider inserts of length longer than
150 bases. To quantify the difference between the insert sequence and the consensus sequence,
we use the Kimura distance [7] between the consensus and the inserts.

We note that we use the Kimura distance [9] from the consensus sequence (for inserts from DFAM)
or from average of all full-length non-intact sequences (for LINE-1s from L1Base2) as a measure
of time, assuming that it is proportional to the time since insertion of the particular transposable

4
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element into the species genome. All the sequences studied in this work have been obtained from
HG38 genome assembly.

Search of long transcripts with complementary regions

We scanned the HG38 genome assembly for other tentative transcripts that can be possible source
of long (longer than 100 bp) duplex formation. For each window of length 3000 bases (taken in the
positive sense of the read), we calculate the double-stranded force by expressing x4s from ),
and using the respective nucleotide frequency to obtain « from Eq. (8). We find the maximum
length of complementary segments L in the given sequence of length N by filling an N x N base
compatibility matrix with 1 if two nucleotides can form a base pair (either by Watson-Crick or wobble
base pairing). We then find the longest antidiagonal stretch of 1s in the matrix, which corresponds
to the maximum length L of complementary segments.

Sequence complexity quantification

We use an approximation of Kolmogorov complexity [[10] to quantify how "non-trivial“ are the com-
plementary segments. Adopting the approach from Ref. [11], we use the size (in bytes) of the
sequence compressed with gzip software as a proxy of the Kolmogorov complexity. Simple se-
qguences, e.g. poly(AT) or poly(C) and poly(G), will have low complexity, as they can be com-
pressed to a smaller size than a completely random sequence of the same length (which would
have maximum complexity).

Transcriptome Analysis
Analysis of repeats from splice inhibitors

Raw RNAseq data (GSE95011) associated with the Seiler, et al., 2018 study [[12] were downloaded
from NCBI. Briefly, reads were trimmed and quality checked using first and then mapped to the
human genome (hg38) and repetitive elements from RepBase. In quality check, lllumina reads
were trimmed to remove N’s and bases with quality less than 20. After that, the quality scores
of the remaining bases were sorted, and the quality at the 20th percentile was computed. Reads
quality less than 15 at the 20" percentile or shorter than 40 bases were discarded. Only paired
reads that passed the filtering step were retained. Quality filtered reads were then mapped using
STAR aligner and assigned to genes (Gencode annotation) and repeat elements (RepeatMasker
annotation) using function of package using the external Ensembl annotation. To check the ex-
pression difference for a given repeat in a locus-specific manner, we modified the RepeatMasker
reference file and counted the reads that mapped to repeats at different locus separately.

Counts filtering, normalization and statistical analysis

Gene expression in terms of log2-CPM (counts per million reads) was computed and normalized
across samples using the TMM (trimmed-mean of M-values) method as implemented in the func-
tion in [13]. These low-count values (CPM < 2) were likely due to sequencing errors and were
removed before calculating the size factor for each sample. Then, filtered CPM was log2 trans-
formed and used in heat-map visualization and downstream statistical analysis. On the heatmap,
genes (rows) were scaled by z-score scaling. Heat maps were generated by the R statistical


https://doi.org/10.1101/2021.11.04.467016

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.04.467016; this version posted November 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

programming package. Differential expression analysis was performed using [14] between splic-
ing modulator H3B-8800 treated VS DMSO treated SF3B1-K700 mutated cell line k562 for a given
locus. The adjusted p-value was calculated using the Benjamini & Hochberg correction [[15].

Estimate of genome regions with high double stranded force

To estimate the dsRNA force for a given repeat loci, we intersect each repeat loci with the cal-
culated 3kb genomic windows that have high dsRNA forces (> 0.5). Then the Start and End
coordinates of the corresponding dsRNA sequence pairs, which overlap with the repeat loci that
match the criteria: |log2FC(treated /untreated)| > 0.5 and FDR < 0.05, were used to annotate dif-
ferent genomic features. We counted the genomic features of the dsRNA sequences that overlap
with the upregulated repeats (log2FC> 0.5 and FDR< 0.05), and of those that overlap with the
downregulated repeats (log2FC < —0.5 and FDR < 0.05). These counts have been compared
with the genomic feature counts of all dSRNA sequences that overlap with the transcribed repeats
to calculate the odds ratio and p-value using the Fisher Exact test. Donut plots for the genomic
feature proportions of the dsRNA sequences that overlap with upregulated and downregulated
repeats were plotted using the R package script.

Whole transcriptome analysis

We analyzed RNA-Seq data for the 38 TCGA patients for whom Total RNA-Seq data exist, as
defined in Ref. 34. These patients have one FFPE and one fresh frozen sample each. Unlike
the majority of (“canonical”) samples in TCGA, these samples were sequenced using stranded
protocol. These data are not a part of the “harmonized” samples set, and they are available the
from “legacy” section of TCGA archive. Reads were mapped to HG38 genome with Gencode an-
notation using STAR aligner. Transcripts were assembled taking strandedness of the protocol into
account using the stringtie program with the default settings. Reference annotation (Gencode) was
used as a guide for assembly. Overlapping transcripts from both strands were identified and the
length of the overlapping complementary sequences was computed. We computed intersection of
all assembled transcripts with regions having high dsRNA force (shown in Extended Data Figure
5B). We required that the transcript covers at least the region from startA to endB in the regions
with high dsRNA force (supp. table 3). For each region with high dsRNA force we computed the
number of times it is seen in the analyzed TCGA samples. If the same region overlapped assem-
bled transcripts in two (FFPE and fresh frozen) samples from the same patient, this was counted
as one occurrence.
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Supplementary Material

Supplementary Tables

Supplementary Tables are available separately in Microsoft Excel format (xIsx). The description of the
respective tables is provided below:

* Supplementary Table 1 contains the dinucleotide force calculated for CpG dinucleotides, zcpg, for
each repeat family, as annotated in the DFAM database. For each family, it includes x¢yg of the
consensus sequence and the mean z¢,g calculated for the inserts.

» Supplementary Table 2 contains the double-stranded force z4g calculated for each repeat family.
The table includes the x4 of the consensus sequence and mean double-stranded force T4 of the
insert sequences.

» Supplementary Table 3 contains a list of all segments identified in 3000 bases long windows in
human genome that had associated double-stranded force x4s larger than 0.5.

» Supplementary Table 4 contains all identified repeat transcripts that have been found in The Can-
cer Genome Atlas (TCGA) total RNA-Seq datasets to be transcribed in both positive and negative
sense.
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Supplementary Figures
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Supplementary Figure 1 | Histograms of dinucleotide force change between the inserts and their
consensus sequence for repeat families for respective dinucleotides.
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