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21 Abstract

22 Rare variant association tests (RVAT) have been developed to study the contribution of rare variants 

23 widely accessible through high-throughput sequencing technologies. RVAT require to aggregate rare 

24 variants in testing units and to filter variants to retain only the most likely causal ones. In the exome, 

25 genes are natural testing units and variants are usually filtered based on their functional consequences. 

26 However, when dealing with whole-genome sequence (WGS) data, both steps are challenging. No 

27 natural biological unit is available for aggregating rare variants. Sliding windows procedures have been 

28 proposed to circumvent this difficulty, however they are blind to biological information and result in a 

29 large number of tests.

30 We propose a new strategy to perform RVAT on WGS data: “RAVA-FIRST” (RAre Variant Association 

31 using Functionally-InfoRmed STeps) comprising three steps. (1) New testing units are defined genome-

32 wide based on functionally-adjusted Combined Annotation Dependent Depletion (CADD) scores of 

33 variants observed in the GnomAD populations, which are referred to as “CADD regions”. (2) A region-

34 dependent filtering of rare variants is applied in each CADD region. (3) A functionally-informed burden 

35 test is performed with sub-scores computed for each genomic category within each CADD region. Both 

36 on simulations and real data, RAVA-FIRST was found to outperform other WGS-based RVAT. Applied 

37 to a WGS dataset of venous thromboembolism patients, we identified an intergenic region on 

38 chromosome 18 that is enriched for rare variants in early-onset patients and that was that was missed 

39 by standard sliding windows procedures. 

40 RAVA-FIRST enables new investigations of rare non-coding variants in complex diseases, facilitated by 

41 its implementation in the R package Ravages.

42

43
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44 Author Summary

45 Technological progresses have made possible whole genome sequencing at an unprecedented scale, 

46 opening up the possibility to explore the role of genetic variants of low frequency in common diseases. 

47 The challenge is now methodological and requires the development of novel methods and strategies 

48 to analyse sequencing data that are not limited to assessing the role of coding variants. With RAVA-

49 FIRST, we propose a novel strategy to investigate the role of rare variants in the whole-genome that 

50 takes benefit from biological information. Especially, RAVA-FIRST relies on testing units that go beyond 

51 genes to gather rare variants in the association tests. In this work, we show that this new strategy 

52 presents several advantages compared to existing methods. RAVA-FIRST offers an easy and 

53 straightforward analysis of genome-wide rare variants, especially the intergenic ones which are 

54 frequently left behind, making it a promising tool to get a better understanding of the biology of 

55 complex diseases.

56
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57 Introduction

58 With advance in sequencing technologies, it is now possible to explore the role of rare genetic variants 

59 in complex diseases. Different rare variant association tests (RVAT) have been developed that gather 

60 rare variants into testing units and compare rare variant content in these testing units between cases 

61 and controls (1–3). While the impact of rare variants has already been shown in several complex 

62 diseases (4–6), RVAT face two key challenges: (i) the definition of the testing units and (ii) the selection 

63 of the qualifying rare variants to include in these units. The proportion of causal variants in the testing 

64 units being a major driver of power, especially for burden tests, it is indeed important to ensure that 

65 qualifying variants are enriched in variants likely to have some functional impact (3,7). When exome 

66 analyses are undertaken, rare variants are most often grouped by genes and included in the analysis 

67 depending on their impact on the corresponding protein (8,9). Nevertheless, the gene definition is not 

68 always optimal as differences in rare variants burden between cases and controls could sometimes 

69 only be found in a sub-region of a gene. This is for example the case in the RNF213 gene where an 

70 enrichment in rare variants located in the C-terminal region is found in Moyamoya cases (10). Defining 

71 testing units and qualifying variants is also much more challenging in the non-coding genome due to 

72 the lack of defined genomic elements and the higher difficulty to predict the functional impact of non-

73 coding variants (11). It is yet a question of interest as several studies have shown the importance of 

74 rare non-coding variants in the development of complex diseases (12–14). Functional elements such 

75 as enhancers or promoters can be used as testing units (5,15,16) but they prevent the analysis of all 

76 rare variants in the genome and can be too small to get a sufficient number of rare variants for 

77 association analysis. On the other hand, sliding windows procedures such as SCAN-G (17) or WGSCAN 

78 (18) can be used to test for association over the whole genome. Nevertheless, they present several 

79 limits including the window definition that is arbitrary and blind to biological information, the high 

80 number of tests and the associated computation time. With overlapping windows, there is also a 

81 strong correlation between tests performed in the different testing units that requires the use of 
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82 permutation procedures to account for multiple testing. Finally, to filter rare variants in the testing 

83 units, pathogenicity scores are often used but without guidelines on which score to use and which 

84 threshold to apply. 

85 In this paper, we propose RAVA-FIRST (RAre Variant Association using Functionally InfoRmed STeps), a 

86 new strategy for analysing rare variants in the coding and the non-coding genome that addresses the 

87 previous issues. First, we provide pre-defined testing units in the whole genome called “CADD regions” 

88 based on the Combined Annotation Dependent Depletion (CADD) scores of deleteriousness of variants 

89 observed in the GnomAD general population. These regions prevent the use of sliding windows 

90 procedures while enabling the study of rare variants in the whole genome. Second, we propose a 

91 filtering approach based on CADD scores with region-dependant thresholds to represent the genetic 

92 context of each CADD region and avoid the use of a fix threshold along the genome. Finally, we 

93 integrate functional information into the burden test to detect an accumulation of rare variants in 

94 specific genomic categories within CADD regions. Through a statistical description of these testing 

95 units, we show that they preserve the integrity of the majority of functional elements in the genome. 

96 We also show that the RAVA-FIRST filtering strategy enables a better discrimination between 

97 functional and non-functional variants within the testing units. We applied RAVA-FIRST to real whole-

98 genome sequencing data from individuals with venous thromboembolism (VTE) and detected an 

99 intergenic association signal that would have been missed with sliding windows and a classical filtering 

100 of rare variants. RAVA-FIRST is implemented in the R package Ravages available on the CRAN and 

101 maintained on github (19,20). 

102

103
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104 Description of the Method

105 RAVA-FIRST is developed to test for association with rare variants in the whole genome. It deals with 

106 all steps from the definition of testing units and the filtering of rare variants, to the association test 

107 accounting for functional information. The main steps are represented in S1 Fig and further details are 

108 presented hereafter. 

109 Testing units in RAVA-FIRST: the CADD regions

110 Following Havrilla et al. (2019) (21), we seek to identify some genomic regions that were significantly 

111 depleted in functional variants to use them as testing units in RVAT. For that purpose, Havrilla et al. 

112 (2019)  defined “constrained coding regions” (CCR) as exonic regions where no important functional 

113 variation (defined as being at least missense) was found in the general population of GnomAD (22). In 

114 our experience, two limits prevent the direct use of CCR as testing units in the whole genome: they are 

115 too small to gather a sufficient number of rare variants (224 bp being the maximum length of a CCR) 

116 and their definition relies on the consequence of the variants on the translated protein, not available 

117 in the non-coding genome. We therefore decided to expand the proposed approach by estimating the 

118 functionality of variants through CADD scores (23). CADD scores were chosen because of their 

119 availability for every substitution in the genome and because they rank well in the comparison test of 

120 functional annotation tools (24). 

121 Coding variants tend to present higher CADD values than non-coding variants (23). A selection based 

122 on a CADD threshold would therefore result in a majority of coding variants selected. In order to avoid 

123 this pattern, we adjusted the RAW CADD scores on a PHRED scale within each of three genomic 

124 categories: “coding”, “regulatory” and “intergenic” regions. Coding regions correspond to CCDS (25) 

125 and represent 1.2% of the genome. Regulatory regions represent 44.3% of the genome and are defined 

126 by the union of introns, 5’ and 3’ UTR, promoters and enhancers, all being involved in gene regulation 

127 (26). Enhancers and promoters have been obtained with the SCREEN tool from ENCODE which enables 
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128 the definition of a large number of regulatory elements in diverse cell types (27). Finally, intergenic 

129 regions correspond to all regions not being described as coding or regulatory regions, representing 

130 54.5% of the genome. More details are given in the Supporting Information.

131 Adjusted CADD scores were used to select the variants that will bound the “CADD regions”. First, we 

132 selected the variants with an adjusted CADD score greater than 20, that is the top 1% of variants with 

133 the highest predicted functional impact within each of the three genomic categories. Then, among 

134 those variants, only the ones observed at least two times in GnomAD r2.0.1 genomes were further 

135 selected and used as boundaries of CADD regions. For CADD regions to be used as testing units in RVAT, 

136 they need to be large enough to contain several rare variants. Contiguous small regions of less than 

137 10 kb were therefore grouped together to form clusters of variants with high adjusted CADD scores. 

138 Non-sequenced regions and low-covered regions in GnomAD containing potential important 

139 functional variants were excluded from CADD regions, leading to gaps within CADD regions of at least 

140 one base pair (i.e. no CADD region overlap them to avoid artificially long regions due to a lack of 

141 variants in GnomAD). Finally, CADD regions are only defined for regions where CADD scores are 

142 available (removing among others centromeres and telomeres). Note that CADD regions can overlap 

143 different genomic categories (coding, regulatory or intergenic). More details about the steps and 

144 parameters used for the definition of CADD regions are presented in the Supporting Information. 

145

146 The RAVA-FIRST filtering strategy

147 In addition to the definition of new testing units in the whole genome, we propose a new filtering 

148 strategy in RAVA-FIRST to select qualifying variants. Using gene-specific CADD thresholds rather than 

149 a fixed threshold for all genes was previously found to improve prediction (28). Building on the same 

150 idea, we defined thresholds that are specific to each CADD region. To define these region-specific 

151 thresholds, we derived the median of all adjusted CADD scores of variants observed at least two times 

152 in GnomAD in each CADD region. This value represents the median score level that is tolerated in the 
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153 general population within each CADD region. Adjusted CADD scores refer here to the PHRED CADD 

154 scores computed respectively for coding, regulatory and intergenic genomic categories as defined 

155 before. Qualifying variants are then defined as rare variants with an adjusted CADD score above the 

156 threshold specific to their region. Note that because CADD scores are only available for SNVs, other 

157 types of variants are excluded from the analyses. 

158

159 Burden test in RAVA-FIRST: taking into account functional information

160 As mentioned before, several of the CADD regions overlap different genomic categories (coding, 

161 regulatory or intergenic, Figs S1 and S3). As the effects of variants belonging to these different genomic 

162 categories may not be the same, we extended the burden test defined as:

163 ln
𝑃(𝑌𝑗 = 1)
𝑃(𝑌𝑗 = 0) = 𝛽0 + 𝛽𝐶𝑜𝑣𝑋𝐶𝑜𝑣 + 𝛽𝐺𝑋𝐺

164 With 𝑌𝑗 the vector of phenotypes for the n individuals: 0 for the group of controls and 1 for the group 

165 of cases. 𝛽0 represents the intercept of the model and 𝑋𝐶𝑜𝑣 the matrix of covariates (if any) with their 

166 associated effect, 𝛽𝐶𝑜𝑣. 𝛽𝐺 corresponds to the estimated effect of the burden 𝑋𝐺, computed for 

167 example using WSS (1) which corresponds to a weighted sum of rare alleles based on their frequency, 

168 the rarest alleles having the highest weights.

169 To take into account functional information, we integrated a sub-score for each genomic category into 

170 the regression model, similarly to the analysis of rare and frequent variants proposed by Li and Leal 

171 (2008) (7):

172 ln
𝑃(𝑌𝑗 = 1)
𝑃(𝑌𝑗 = 0) = 𝛽0 + 𝛽𝐶𝑜𝑣𝑋𝐶𝑜𝑣 +

𝐺={𝑐𝑜𝑑;𝑟𝑒𝑔;𝑖𝑛𝑡𝑒𝑟}
𝛽𝐺𝑋𝐺

173

174 Sub-scores 𝑋𝐺 are constructed for each genomic category within a CADD region, with at most three 

175 sub-scores (coding, regulatory or intergenic). The p-value can be determined using a likelihood ratio 
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176 test comparing this model to the null model where the sub-scores are not included. This sub-score 

177 analysis, also called RAVA-FIRST burden test, is also available for continuous and for categorical 

178 phenotypes using the extension of burden tests developed in Bocher et al. (2019) (19). The RAVA-FIRST 

179 burden test coupled with the region-specific filtering on the adjusted CADD score enables to keep the 

180 most important functional variants within each genomic category and to take into account those 

181 categories in the association test while performing only one test by CADD region. 

182

183 Verification and Comparison

184 Statistics on CADD regions and comparison with genomic elements

185 A total of 135,224 CADD regions were defined covering 93.2% of the genome (in build GRCh37). Among 

186 CADD regions, several are very small in size, despite our approach to combine small regions, due to 

187 the removal of low-covered regions, preventing their use in RVAT. We therefore decided to focus on 

188 the 106,251 CADD regions larger than 1kb, which cover 93% of the genome. Among those CADD 

189 regions, 28.3% span only one type of genomic category, 58.5% span two of the three types of genomic 

190 categories, and 13.2% overlap the three genomic categories (S3 Fig). Some CADD regions are extremely 

191 large, mainly around the centromeres (Table 1). About 80% of CADD regions have a size between 5 

192 and 50 kb with a mean of 25 kb, making them completely compatible with the size of genes commonly 

193 used as testing units used in RVAT. 

194

195 Table 1: Summary statistics of the lengths of CADD regions (larger than 1 kb) 

Quantiles

0% 25% 50% 75% 100%
Mean

Length (kb) 1 10.790 16.579 29.116 1,731.228 25.224
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196

197 We then compared the position of genomic elements relative to the defined CADD regions (Table in 

198 S1 Table shows how the different genomic elements have been obtained). A large majority of genomic 

199 elements are entirely included into a single CADD region and thus their integrity is preserved (Table 2). 

200 This is expected as all these genomic elements are substantially smaller than the CADD regions and 

201 therefore have a high probability of being included in a CADD region. For larger elements such as 

202 introns or lncRNA, the percentage decreases but remains high (more than 80% of lncRNA are 

203 overlapped by at most 2 CADD regions). The genomic elements spanning more than one CADD region 

204 are on average longer than the ones being entirely included into a single CADD region. However, when 

205 comparing CCR and CADD regions, it is interesting to note that the CCRs entirely encompassed within 

206 a single CADD region are the longest ones that should also represent the most constrained regions. 

207 Table 2: Percentage of genomic elements entirely encompassed within a CADD region

Enh-PromExon 
CCDS

Protein 
domains CCR Introns/UTR

DECRES ENCODE
Silencers CTCF lncRNA

97.8% 81.8% 99.2% 85.9% 93.1% 96.4% 95.1% 95.8% 65.5%

208

209 Performance of RAVA-FIRST filtering based on adjusted CADD scores

210 To assess the performance of the adjusted CADD scores and the RAVA-FIRST filtering, we evaluated its 

211 capacity in discriminating benign from pathogenic variants using the Clinvar database (29). We 

212 computed true positive rate (TPR), true negative rate (TNR) and precision for the RAVA-FIRST filtering 

213 and compared the results to the ones obtained by applying a fixed CADD threshold of 10, 15 or 20 on 

214 variants annotated with CADD scores v1.4. After the selection of rare variants included in RVAT (see 

215 the Supporting Information), the dataset of analysis contains 70,931 variants of which 25,931 are 

216 benign and 45,000 are pathogenic. All filtering strategies show a very high TPR (Fig 1A), meaning that 

217 the majority of pathogenic variants would be selected as qualifying variants for RVAT. The TNR 
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218 increases with the increasing CADD score threshold which is expected as less variants, and therefore 

219 less benign variants, are included in the analysis. The RAVA-FIRST filtering shows the highest TNR and 

220 the highest precision. While the TPR value is extremely important to select the most probable causal 

221 variants in RVAT, it is also important to have a high TNR value, otherwise the signal will be diluted by 

222 a high proportion of non-causal variants. The precision value summarises the TPR and TNR parameters 

223 and therefore, to a certain extent, is representative of the percentage of causal variants among 

224 selected variants. Therefore, we show that the RAVA-FIRST filtering strategy is the most accurate to 

225 select qualifying rare variants for RVAT. Focusing on the coding genome, we also compared the 

226 performance of RAVA-FIRST filtering approach against two others approaches classically used on genes 

227 as testing units: (1) filter for variants with a functional impact expected to change the protein 

228 (“missense_variant", "missense_variant&splice_region_variant", "splice_acceptor_variant", 

229 "splice_donor_variant", "start_lost", "start_lost&splice_region_variant", "stop_gained", 

230 "stop_gained&splice_region_variant", "stop_lost", "stop_lost&splice_region_variant" and 

231 "stop_retained_variant”), and (2) filter on the MSC value, a gene-specific CADD threshold(28). These 

232 two filtering approaches resulted in a slightly higher TPR than our proposed strategy but lower TNR 

233 and lower precision (Fig 1B). Therefore, even in an exome analysis, the RAVA-FIRST filtering 

234 outperforms classical filtering strategies to select qualifying rare variants for RVAT. 

235 Figure 1: TPR, TNR and precision of different filtering strategies on the whole Clinvar dataset or 

236 only Clinvar coding variants.

237 Finally, we investigated the performances of these different strategies on different classes of non-

238 coding variants (S4 Fig). All the performances are lower than in the coding genome, especially the TPR 

239 that is much lower for strategies based on a fixed CADD threshold, highlighting the fact that CADD 

240 values are lower in the non-coding genome and adjusted CADD threshold may therefore be preferred. 

241 RAVA-FIRST filtering using region-dependant thresholds keeps the highest precision in the different 

242 classes of variants, except for UTR variants where a slight decrease of TNR and precision is observed. 
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243 Note however that these results may not be as accurate as those obtained on the coding regions as 

244 much fewer variants are included: 2,309, 4,048 and 617 for UTR, introns and intergenic variants 

245 respectively compared to 54,664 coding variants. 

246

247 RAVA-FIRST burden test – Simulations

248 To validate the RAVA-FIRST burden test, we performed simulations under the null hypothesis and 

249 under different scenarios of association using data from the 1000 Genomes European populations (30) 

250 in the LCT gene. We simulated 1,000 controls and 1,000 cases using the simulations based on 

251 haplotypes implemented in the R package Ravages (19). A total of 201 variants was considered in the 

252 LCT gene. These variants were polymorphic in the European populations and rare variants were 

253 defined with a MAF lower than 1%. Two CADD regions overlap the LCT gene, R019233 and R019234, 

254 containing respectively 75 and 126 variants, both overlapping coding and regulatory categories. 

255 Type I error

256 We first simulated data under the null hypothesis to verify that the RAVA-FIRST burden test maintains 

257 appropriate type I errors. We simulated two groups of 1,000 individuals in the R019234 CADD region 

258 without any genetic effect and we applied the classical WSS and the RAVA-FIRST WSS. Type I errors 

259 were computed using 5∙106 simulations at three significance levels: 5∙10-2, 10-3 and 2.5∙10-6 (the usual 

260 threshold for whole exome rare variant association tests). The RAVA-FIRST WSS maintains good type I 

261 error levels at these different significance thresholds, similar to the ones obtained with the classical 

262 WSS (Table in S2 Table).

263 Power analysis

264 We then performed a power study based on simulations at two levels: at the level of the R019234 

265 CADD region and at the level of the LCT gene. In both cases, we simulated 50% of causal variants 

266 randomly in the whole unit (scenarios S1 and S3), in the coding regions (scenarios S2A and S4A) or in 
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267 the regulatory regions (scenarios S2B and S4B). All the scenarios are summarised in Table 3. We 

268 compared the classical WSS to the RAVA-FIRST WSS using the gene or the two CADD regions as testing 

269 units. When CADD regions were used as testing units, analyses were performed for each of the two 

270 CADD regions and the minimum p-value was taken and multiplied by two to correct for multiple 

271 testing. A total of 1,000 replicates were simulated for each scenario and power was assessed at a 

272 genome-wide significance threshold of 2.5∙10-6. 

273 Table 3: Scenarios of association simulated to assess the performance of the RAVA-FIRST burden test

LCT gene

R019233 R019234

Coding Regulatory Coding Regulatory

S1 50%

S2A 50% 0%

S2B 0% 50%

S3 50%

S4A 50% 0% 50% 0%

S4B 0% 50% 0% 50%

274

275 Table 4 presents the power results obtained from this simulation study for both the classical WSS and 

276 the RAVA-FIRST WSS. Similar trends were observed between the two analyses, regardless if the 

277 simulations are performed at the scale of CADD regions or at the scale of the gene. When the causal 

278 variants were randomly sampled across the entire region (scenarios S1 and S3), the classical WSS with 

279 only one score for the entire region slightly outperformed the RAVA-FIRST method with sub-scores. 

280 Nevertheless, the loss of power for the latter was modest (less than 10%). By contrast, when causal 

281 variants were present only in the coding categories (scenarios S2A and S4A), which represent a small 

282 proportion of the entire region (approximately 15%), the RAVA-FIRST strategy was much more 

283 powerful than the classical WSS (approximately 50% gain in power). When causal variants were 

284 present in the regulatory categories only (scenarios S2B and S4B), both strategies showed similar 
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285 power. All these results highlight the gain of power using the RAVA-FIRST WSS when a cluster of causal 

286 variants is present within a functional category of the CADD region while maintaining good power 

287 levels when causal variants are spread all across the region. When comparing the simulations with 

288 causal variants sampled at the gene level or at the CADD region level, burden tests gathering variants 

289 within the corresponding testing units show, as expected, the highest levels of power. Nevertheless, 

290 the loss of power when using CADD regions as testing units instead of the entire gene is lower when 

291 causal variants are sampled across the entire gene (scenario S3) than the gain of power they present 

292 when causal variants are sampled within a specific CADD region (scenario S1). This is particularly true 

293 for the RAVA-FIRST WSS.

294 Table 4: Power at the genome-wide significance level of 2.5∙10-6 under the different simulation 

295 scenarios using either the classical WSS or the RAVA-FIRST WSS at the scale of either the entire gene 

296 or CADD regions

By gene By CADD regions

Classical WSS RAVA-FIRST WSS Classical WSS RAVA-FIRST WSS

S1 0.409 0.370 0.782 0.701

S2A 0 0.431 0.002 0.602

S2B 0.408 0.404 0.689 0.706

S3 0.751 0.678 0.512 0.433

S4A 0.004 0.564 0.012 0.474

S4B 0.657 0.64 0.39 0.391

297
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298 Applications

299 Ethics Statement 

300 The MARTHA study was approved by its institutional ethics committee and informed written consent 

301 was obtained in accordance with the Declaration of Helsinki. Ethics approval were obtained from the 

302 “Departement santé de la direction générale de la recherche et de l’innovation du ministère” (Projects 

303 DC: 2008-880 and 09.576).

304 RAVA-FIRST analysis

305 RAVA-FIRST was used on whole genome sequence (WGS) data from patients affected by venous 

306 thromboembolism (VTE). VTE is a multifactorial disease with a strong genetic component (31). There 

307 exists a huge heterogeneity between patients in the age at first VTE event. To study the role of rare 

308 variants on VTE age of onset, WGS data were used from 200 individuals from the MARTHA cohort (32). 

309 These individuals were selected among patients with unprovoked VTE event who were previously 

310 genotyped for a genome-wide association study (33) and present no known genetic predisposing 

311 factor. Individuals were dichotomized based on the age at first VTE event either before 50 years of age 

312 (early-onset) or after (late-onset). The threshold of 50 years was chosen based on the results of recent 

313 studies (34) that hint toward a genetic heterogeneity between these two groups. A quality control (QC) 

314 of the sequencing data was performed using the program RAVAQ 

315 (https://gitlab.com/gmarenne/ravaq). After QC, 184 individuals were included for analysis with 127 

316 presenting an early-onset VTE and 57 a late-onset VTE. Only variants passing all QC steps and with a 

317 MAF lower than 1% in the sample were considered in the association tests comparing early and late-

318 onset groups. For these comparisons, rare variants were gathered either by CADD regions or by using 

319 the sliding windows procedure implemented in WGScan (18). Qualifying variants were selected based 

320 on CADD scores and using two filtering strategies: a fixed CADD threshold of 15 (as recommended by 

321 https://cadd.gs.washington.edu/info, version v1.4) or the RAVA-FIRST CADD region-specific filtering 
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322 (applied on adjusted scores). Association was tested using the WSS burden test. When the RAVA-FIRST 

323 filtering was used, the corresponding WSS test with sub-scores was applied. Table 5 shows the number 

324 of testing units and variants kept under each strategy. For all tests with CADD regions, only regions 

325 containing at least 5 rare variants were kept. WGScan was used with default parameters, i.e. with 

326 testing units of 5, 10, 15, 25 or 50 kb.

327 Table 5: Number of testing units and variants kept under the three strategies

Testing units Filtering
Number of 

testing units
Number of 

variants
WGScan

Fixed CADD threshold
Sliding windows

MAF ≤ 1%
CADD v1.4 ≥ 15

377,092 96,347

RAVA-FIRST units 
(CADD regions)

Fixed CADD threshold

MAF ≤ 1%
CADD v1.4 ≥ 15

10,389 96,294

RAVA-FIRST units 
(CADD regions)

RAVA-FIRST filtering

CADD regions
MAF ≤ 1%

Adjusted CADD ≥ median
95,690 3,641,502

328

329 QQ-plots for the WSS tests using those three strategies are shown in Fig 2. As expected, a lower 

330 significance threshold is required to reach genome-wide significance with the sliding window 

331 procedure due to the higher number of testing units. Accordingly, the computation time was much 

332 lower for the two analyses by CADD regions (6min when filtering based on a fixed CADD score 

333 threshold and 25min when using the region-specific CADD thresholds) than for the sliding windows 

334 procedure (47min). Our dataset contains less than 200 individuals, suggesting that the gain in 

335 computation time of CADD regions compared to sliding window procedures would be even greater in 

336 larger WGS datasets. No significant result was found when selecting variants with a CADD score greater 

337 than 15 using neither the sliding window strategies nor the CADD regions to gather rare variants, 

338 whereas one association reached borderline significance (p = 6.41∙10-7) when using the RAVA-FIRST 

339 strategy. 
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340 Figure 2: QQ-plot of WSS analyses on VTE data using the three strategies of analysis. Early-onset 

341 patients (<50 years old) were compared to late-onset patients (≥50 years old).

342 This association maps to R126442, a CADD region of 21 kb on chromosome 18:66788277-66809402 

343 that contains 31 rare variants after RAVA-FIRST filtering. In this region, none of the variants observed 

344 in VTE patients or in GnomAD achieved a CADD score above 15. This explains why the association could 

345 not have been detected by the two other strategies based on fixed CADD score ≥ 15. The median of 

346 CADD scores observed for GnomAD variants in this region is 1.44 and the adjusted CADD scores of 

347 selected variants range from 1.62 to 8.50. These observations emphasize the need to adapt thresholds 

348 depending on the genomic region under analysis. Interestingly, only early-onset VTE patients carry 

349 qualifying rare variants and have non-null WSS scores (Fig 3). Among early-onset patients, a trend is 

350 also observed for WSS scores to decrease with increasing age of onset.

351 Figure 3: WSS scores in the CADD region depending on the age at first VTE event. The dashed line 

352 corresponds to the age 50 discriminating early onset from late onset events.

353 The CADD region R126442 was then tested for association with 20 biological VTE biomarkers available 

354 in MARTHA patients: antithrombin, basophil, eosinophil, Factor VIII, Factor XI, fibrinogen, hematocrit, 

355 lymphocytes, mean corpuscular volume, mean platelet volume, monocytes, neutrophils, PAI-1, 

356 platelets count, protein C, protein S, prothrombin time, red blood cells count, von Willebrand Factor, 

357 and white blood cells count. For this, a linear regression model was used where adjustment was made 

358 on age at sampling and sex. At the Bonferonni threshold of 0.0025, one significant association 

359 (p = 7.1∙10-4) was observed, VTE patients with a non-null WSS score exhibiting decreased haematocrit 

360 levels, a surrogate marker of red blood cells (Table in S3 Table). A similar trend (p = 4.6∙10-3) was 

361 observed with red blood cell count. 

362 We also investigated the association of the identified region with 376 plasma protein antibodies that 

363 were selected to be involved in thrombosis-related processes and that have been previously profiled 

364 in MARTHA (32,35). Regression analysis were conducted on log transformed values of antibodies and 
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365 were adjusted for age, sex, and three internal control antibodies. In order to handle the correlation 

366 between measured protein antibodies, we used the Li and Ji method (36) to estimate the number of 

367 effective independent tests. This number, calculated to be 163, was then used to define a Bonferroni 

368 threshold for declaring study-wide statistical significance. While not reaching the study-wise 

369 significance level of p = 3.1∙10-4 after correction for multiple testing, it is worth noting that the two 

370 proteins that exhibited the strongest significance with marginal association at p < 0.001, procalcitonin 

371 tagged by the HPA043700 antibody (p = 7.2∙10-4) and PDPK1 tagged by HPA035199 (p = 7.5∙10-4), have 

372 been both proposed to be involved in red blood cell biology (37,38). 

373 According to ENCODE data, the R1246442 CADD region overlaps “intergenic” and “regulatory” 

374 categories with one distant enhancer-like signature. To describe this region further, we looked at TADs 

375 positions in https://dna.cs.miami.edu/TADKB/brows.php in HUVEC and HMEC cell lines, two cell types 

376 known to be relevant for VTE pathophysiology. We found that the CADD region is included into the 

377 topological associated domains (TADs) 18:66450000-68150000. By studying TADs described by 

378 Lieberman-Aiden et al. 2009 in other cell lines such as KBM7, K562 or GM12878, we retrieved a TAD 

379 with similar positions, giving additional evidence for the presence of this TAD around the CADD region 

380 associated with early-onset patients. We then explored this TAD region for the presence of candidate 

381 VTE genes whose regulation could be influenced by the enhancer region that maps our R1246442 

382 region. Using the UCSC genome browser (40) integrating information about interactions between 

383 GeneHancer regulatory elements and genes expression (see S5 Fig), we identified CD226 as a strong 

384 biological candidate. CD226 codes for a glycoprotein expressed at the surface of several types of cells, 

385 including blood cell, and several studies have shown that it was associated with vascular endothelial 

386 dysfunction (41–43). Genetic variants in CD226 have also been found associated with several blood 

387 cell traits including platelets, white blood cells (e.g. neutrophil, eosinophil) (44) and reticulocyte counts 

388 (45), another red blood cell biomarker.

389
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390 Discussion

391 Even though whole genome sequencing data are now more often available on cases and controls, rare 

392 variant association tests (RVAT) usually remain restricted to the coding part of the genome. This is 

393 explained by the lack of tools to explore rare variant associations outside genes (11). Indeed, RVAT 

394 requires the definition of testing units that are easily defined through genes in coding regions and the 

395 selection in these regions of the most functionally-relevant variants. This is also easier in the coding 

396 genome as most prediction tools were developed and tested through the effects of variants on 

397 encoded proteins. In the non-coding genome, testing units can be defined based on functional 

398 elements such as enhancers or silencers, or through the use of sliding window procedures. The first 

399 solution prevents RVAT from being applied to all rare variants in the genome as biological units are not 

400 defined over the entire genome. The second strategy with sliding windows results in a large number 

401 of tests and the need to adjust p-values to take into account the multiple correlated tests performed. 

402 In this work, we propose an entire new strategy of analysis of rare variants in the coding and the non-

403 coding genome, RAVA-FIRST, which is composed of three steps. Firstly, RAVA-FIRST proposes some 

404 new testing units to gather rare variants, the so-called “CADD regions” that we defined over the entire 

405 genome based on CADD scores of variants observed in GnomAD. These CADD regions are large enough 

406 to include a sufficient number of rare variants to allow RVAT. They tend to preserve functional 

407 elements that, for a majority of them, are not split into several CADD regions. Secondly, RAVA-FIRST 

408 filters variants based on region-specific adjusted CADD thresholds that allow to select the best 

409 candidate variants within each region. This filtering approach was found to be more efficient than 

410 traditional approaches to discriminate between benign and pathogenic variants within a set of 

411 variants. Indeed, our benchmarking study using a set of Clinvar variants showed that the other filtering 

412 strategies we considered were good at identifying true causal variants (true positive rates were high) 

413 but bad at finding the non-causal variants (true negative rates were low). Both true positive and true 

414 negative rates are important to achieve a high percentage of causal variants within testing units, this 
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415 percentage being the main driver of power in RVAT, especially in burden tests (2,3,7). Thus, the RAVA-

416 FIRST filtering strategy is expected to result in an appreciable increase of power as compared to 

417 classically used strategies. Indeed, RAVA-FIRST enables to keep the most important functional variants 

418 within coding, regulatory and intergenic categories of the genome by adapting CADD score threshold 

419 to the genomic context. Finally, RAVA-FIRST includes a burden test that integrates information on 

420 genomic categories in the regression and that, coupled with the region-specific filtering, leads to a 

421 better detection of causal variants, should they cluster in one of these genomic categories only. We 

422 also showed through simulations that good power levels were maintained using RAVA-FIRST burden 

423 test when causal variants were randomly sampled. 

424 RAVA-FIRST was applied on real WGS data from VTE patients where an accumulation of rare variants 

425 in patients with early-onset events was investigated. We did not detect any significant signal using the 

426 sliding window procedure or CADD regions when qualifying rare variants were selected based on a 

427 fixed CADD threshold. However, we detected an association signal using both the grouping and filtering 

428 of rare variants proposed in RAVA-FIRST. The associated CADD region is intergenic, contains a 

429 predicted enhancer and is surrounded by a TAD containing 5 genes including CD226, a strong candidate 

430 for blood cell traits that are new well recognized to be key players in VTE physiopathology (31). All rare 

431 variants in this region present low CADD scores and were not even included in analyses based on a fix 

432 CADD threshold, highlighting the importance of taking into account the genetic context to detect the 

433 most important predicted functional variants within each CADD region. These 31 rare variants are 

434 exclusively observed in early-onset cases. Fourteen of these variants are absent from GnomAD, and 10 

435 of the 17 remaining variants have a lower frequency in GnomAD population than in our sample. This 

436 reinforces the value of the association signal in this CADD region, although it should be further 

437 described and validated using functional experiments. Preliminary investigations that need to be 

438 further explored, at both experimental and epidemiological levels, strongly suggest that this region is 

439 associated with several inflammatory markers impaired in anaemia of inflammation (38,46) and in 

440 platelets, both mechanisms being involved in thrombotic processes (47).
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441 Some limits can be pointed out on our RAVA-FIRST approach. Firstly, the definition of CADD regions 

442 relies on the GnomAD population and on the adjusted CADD threshold. We chose to use the whole 

443 GnomAD dataset but it could be of interest to select some of the populations to be more specific. It 

444 has for example been suggested that different expression patterns could be found between different 

445 populations (48). Nevertheless, in classical exome analyses, rare variants are mostly filtered based on 

446 the maximum frequency observed among multiple populations. Furthermore, CADD regions are not 

447 defined for low-covered and non-sequenced genomic regions in GnomAD and their definition could 

448 therefore be improved in the future. Concerning the definition of the genomic categories, we decided 

449 to include all genomic elements directly implicated into regulatory functions to define the regulatory 

450 regions of the genome, but we did not include silencers or lncRNA for example. However, the choice 

451 of elements to include as the regulatory category will only impact the adjusted CADD scores that are 

452 similar between regulatory and intergenic regions, and won’t therefore have a huge impact on CADD 

453 regions definition. As an example, using DECRES (49) to predict enhancers and promoters instead of 

454 SCREEN results in a very high correlation between the definition of CADD regions, 80% of them being 

455 identical. 

456 On the other hand, the pre-definition of regions in the whole genome offers several advantages, 

457 including the region-specific filtering mentioned before. In addition, the newly defined CADD regions 

458 can be used in existing software that require regions as input parameters (50,51), enabling to apply a 

459 wide variety of RVAT available in those programs to the whole genome. Especially, Bayesian methods 

460 which have been shown to be of great promise in the analysis and filtering of rare variants (52,53) 

461 could be applied beyond genes by using CADD regions. 

462 To our knowledge, CADD regions represent predefined testing units for RVAT that cover the highest 

463 proportion of the genome. These regions have been made publicly available (cf “Data availability” 

464 section below). CADD regions are part of a whole new strategy of rare variant analysis in the whole 

465 genome, RAVA-FIRST, that further benefits from the integration of functional information both for the 
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466 filtering of rare variants and their analysis with burden tests. RAVA-FIRST has been implemented in the 

467 package R Ravages available in the CRAN and on Github, offering an easy and straightforward tool to 

468 perform RVAT in the whole genome. We believe that our developments will help researchers to 

469 explore the role of genome-wide rare variants in complex diseases. Firstly, through the redefinition of 

470 testing units in the coding genome where cluster of causal variants can be found within genes and 

471 retrieved using CADD regions (10). Secondly, through the study of non-coding variants, especially 

472 intergenic ones, which are currently often excluded from the analysis. Going beyond the gene and the 

473 consequences on proteins, RAVA-FIRST will help for a better understanding of biological mechanisms 

474 behind complex diseases. 

475 Data availability

476 The files containing the positions of CADD regions, the positions of genomic categories and the 

477 adjusted CADD scores are available at https://lysine.univ-brest.fr/RAVA-FIRST/. All the functions 

478 needed for RAVA-FIRST to annotate, group, filter and analyse rare variants have been implemented in 

479 the package R Ravages (https://cran.r-project.org/web/packages/Ravages/, 

480 https://github.com/genostats/Ravages) which directly downloads the files from https://lysine.univ-

481 brest.fr/RAVA-FIRST/. 

482 Information about the CADD region R126442 that was found associated with VTE age at first event is 

483 available in the Supporting Information File 2. Information about individuals (WSS score, age and sex) 

484 and variants (position, adjusted CADD score and weight in WSS) are given.
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