Thymic macrophages consist of two populations with distinct localization and origin

Tyng-An Zhou¹, Hsuan-Po Hsu¹, Yueh-Hua Tu²,³, Chih-Yu Lin¹, Nien-Jung Chen¹, Jin-Wu Tsai⁴, Ellen A. Robey⁵, Hsuan-Cheng Huang²,⁶, Chia-Lin Hsu¹, and Ivan L. Dzhagalov¹*

¹Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
²Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan
³Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
⁴Brain Research Center, National Yang-Ming University, Taipei, Taiwan
⁵Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
⁶Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan

*Correspondence to Ivan L. Dzhagalov: ivan.dzhagalov@nycu.edu.tw, ORCID: 0000-0001-9209-4582

Mailing Address: Ivan L. Dzhagalov, Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, #155, Sec. 2, LiNong Street, Beitou, Taipei City, 11221, TAIWAN
Tissue-resident macrophages are essential for protection from pathogen invasion and maintenance of organ homeostasis. The ability of thymic macrophages to engulf apoptotic thymocytes is well appreciated, but little is known about their ontogeny, maintenance, and diversity. Here, we characterized the surface phenotype and transcriptional profile of these cells and found out that they express typical tissue-resident macrophage genes yet also exhibit organ-specific features. Thymic macrophages were most closely related to spleen red pulp macrophages and Kupffer cells and shared the expression of the transcription factor SpiC with these cells. Using shield chimeras, transplantation of embryonic thymuses, and fate mapping, we found that three distinct waves of precursors generate thymic macrophages. Moreover, some of them proliferated in situ. Single-cell RNA sequencing showed that the macrophages in the adult thymus are composed of two populations with distinct localization and origin. Altogether, our work defines the phenotype, origin, and diversity of thymic macrophages.
Introduction

Tissue-resident macrophages are present in every organ and maintain local homeostasis through diverse functions ranging from protection against pathogens to tissue repair[1]. To perform their roles efficiently, macrophages acquire specialized phenotypes depending on the tissue microenvironment, and as a consequence, multiple subtypes exist, frequently within the same organ. For example, the spleen harbors red pulp macrophages specialized in red blood cell phagocytosis, marginal zone macrophages and metallophilic macrophages that are the first defense against blood-borne pathogens, T cell zone macrophages that silently dispose of apoptotic immune cells, and tingible-body macrophages that engulf less fit B cells in the germinal center[2-4]. Thus, tissue-resident macrophages represent a fascinating developmental system that allows enormous plasticity.

The last decade has seen a paradigm shift in our understanding of the development of tissue-resident macrophages. Contrary to the long-held belief that all macrophages derive from circulating monocytes[5], multiple studies have shown that many of them are long-lived cells with an embryonic origin that can maintain themselves in the tissues (reviewed in[6]). Three waves of distinct progenitors settle the tissues and contribute in various degrees to the resident macrophages in each organ. The first wave consists of yolk sac (YS)-derived primitive macrophages that enter all tissues and establish the earliest macrophage populations[7,8]. In all organs, except for the brain and, partially, the epidermis, primitive macrophages are replaced by the next wave consisting of fetal monocytes[9-12]. The third wave comes from hematopoietic stem cell (HSC)-derived monocytes that contribute to various degrees to the
macrophage pool in different tissues. For example, these cells contribute little to the microglia in the brain, Langerhans cells in the epidermis, and alveolar macrophages in the lungs but substantially to most other organs[13-16]. Moreover, the kinetics and timing of HSC-derived monocytes infiltration vary in different parts of the body. For some macrophage populations, such as the arterial macrophages and subcapsular lymph node macrophages, monocytes replace embryonic macrophages soon after birth and self-maintain after that with little contribution from circulating cells[17,18]. Others, such as heart macrophages, osteoclasts, and pancreatic isles macrophages are progressively replaced at a low rate[14,19-23]. A third group, such as the macrophages in the dermis and most of the gut macrophages, are constantly replaced by blood monocytes with relatively fast kinetics[24,25]. These conclusions have been extended to many different macrophage populations such as Kupffer cells, liver capsular macrophages, red pulp macrophages, testicular macrophages, large and small peritoneal macrophages, and T zone macrophages in the lymph nodes[2,13,14,16,26-30].

The recent revitalization in macrophage research has yet to reach thymic macrophages. Although their prodigious phagocytic ability is well appreciated[31], little is known about the origin, diversity, and maintenance of these cells. This gap in our knowledge is, in part, due to the lack of a consensus about the surface phenotype of thymic macrophages. Various groups have used different markers to identify these cells, such as F4/80 and Mac-3 (LAMP-2)[31], or CD4 and CD11b[32], or Mac-2 (galectin 3), F4/80 and ED-1 (CD68)[33]. Most commonly, researchers employ F4/80 and CD11b[34-37]. However, none of these markers is macrophage-specific: F4/80 is also
expressed on eosinophils and monocytes[38,39], while CD11b is present on most myeloid cells. The lack of a clear phenotypic definition of thymic macrophages has translated into the absence of models that target genes specifically in this population. For example, although macrophages in various organs have been successfully targeted with Lyz2^Cre, Csft1r^Cre, or Cx3cr1^Cre, very few studies have used these models in the thymus[37,40,41].

Only a handful of studies has explored the origin of thymic macrophages. Several reports have indicated that these cells could be derived from T cell progenitors in the thymus based on an improved single cell in vitro culture and in vivo transplantation experiments[42,43]. However, these conclusions have been questioned based on fate-mapping experiments using Il7r^Cre that found very limited contribution of lymphoid progenitors to thymic macrophages in vivo in unperturbed mice[44]. Most recently, Tacke et al. used parabiosis to rule out circulating monocytes as a major source for thymic macrophages[37]. The same study also performed fate-mapping experiments to show that most thymic macrophages descend from Flt3^+ HSC-derived progenitors. However, the contribution of earlier waves of hematopoiesis has not been explored.

Here, we aimed to bring our knowledge of thymic macrophages on par with other tissue-resident macrophages. We started by providing a clear definition of thymic macrophages according to the guidelines set by the Immunological Genome Consortium (IMMGEN)[38] and characterized their surface phenotype and transcriptional signature. Using single-cell RNA sequencing (scRNA-Seq), we identified two populations of thymic macrophages with distinct localization. We explored the origin of these cells through genetic fate mapping, shield chimeras, and embryonic thymus transplantation and
documented that three separate waves of progenitors give rise to resident thymic macrophages. Altogether our work fills an important gap in our understanding of resident thymic macrophages and provides the framework for future functional characterization of these cells.

Results:

**CD64, F4/80, and MerTK identify the macrophages in the thymus**

To unambiguously and comprehensively identify macrophages in the thymus, we evaluated several of the prototypical macrophage markers, MerTK, CD64, and F4/80[38]. Only MerTK identified a population that stained completely with the other two markers (Fig. 1a). F4/80 labeled Siglec F^{SSC hi} eosinophils and CD64^{CD11b^+} monocytes, in addition to MerTK^{+} cells (Fig. S1a). CD64 identified CD11b^{+}F4/80^lo monocytes (Fig. S1b). Thus, MerTK appeared to be the best marker for macrophages in the thymus. However, staining with MerTK and F4/80 was relatively dim even when the brightest fluorochromes (e.g., PE) were used and could not be resolved fully from the isotype control (Fig. S1c). For practical purposes, to identify macrophages, we used CD64 together with F4/80 and CD11b to exclude monocytes (Fig. S1d). In addition, we also employed forward scatter (cells size) to exclude cells that appeared MerTK^{+}, CD64^{+}, F4/80^{+}, but were much smaller and less granular than the rest of the macrophages, and many of them were Thy1^{+} (Fig. S1e).

The CD64^{+}F4/80^{+}MerTK^{+}CD11b^{lo}FSC^{hi} cells had typical macrophage morphology with abundant cytoplasm (Fig. 1b). These cells did not express lineage markers characteristic of T cells (CD3e), B cells (CD19), eosinophils...
(Siglec F), NK cells (NK1.1), neutrophils (Gr1), or plasmacytoid dendritic cells (Siglec H) (Fig. 1c). However, they expressed phagocytic receptors such as TIM4, CD51, and Axl (Fig. 1d).

To ascertain that our gating strategy identifies all macrophages in the thymus in an unbiased way, we performed scRNA-Seq of sorted $Csf1r^{GFP^+}$ and $Cd11c^{YFP^+}$ thymic cells. $Csf1r$ is required for the survival of most macrophages and is considered their definitive marker[45,46], while $Cd11c^{YFP}$ is expressed in many myeloid cells, including macrophages[47]. Both reporters identified an overlapping set of cells (Fig. S2a). Two clusters expressed the macrophage/monocytes-specific transcription factor $Mafb$ and high levels of $Fcrg1$ (CD64), $Mertk$, and $Adgre1$ (F4/80), indicating that they are macrophages (Fig. 1e). An additional cluster expressed $Mafb$ together with $Fcgr1$ and $Adgre1$ but not $Mertk$, fitting the description of monocytes.

Altogether the scRNA-Seq data confirmed that our flow cytometry gating had identified all macrophages in the thymus. Importantly, MerTK+ cells could not be labeled by intravenously injected CD45 antibody (Fig. 1f), proving that they reside in the parenchyma of the organs and not in the blood vessels. Based on the above data, we will refer to CD64+F4/80+MerTK+CD11bloFSChi cells as thymic macrophages. The smaller CD64+F4/80loCD11b+FSChi population did not express MerTK, but most of them expressed Ly6C, and we classify them as thymic monocytes.

Thymic macrophages expressed CD11c, MHC2, and SIRPα that made them partially overlap with CD11c+MHC2+ classical dendritic cells (cDCs), thus making problematic the unambiguous identification of thymic cDCs based only on these two markers (Fig. S1f). Proper identification of cDC in the
thymus requires the exclusion of macrophages based on CD64 or MerTK staining. Otherwise, the cDCs, particularly the SIRPα+ cDC2 subset, would be contaminated with macrophages that account for ~25% of cDC2 (Fig. S1g).

Thymic macrophages were ~0.1% of all the cells in the thymus of young adult mice and numbered ~4x10^5 on average per mouse (Fig. 1g). We did not find statistically significant differences in their percentages between 4 and 11 weeks of age. Still, there was a significant decline in their numbers with age, consistent with the beginning of thymic involution (Fig. 1h).

To determine if thymic macrophages are avid phagocytes, we evaluated their participation in the phagocytosis of apoptotic cells in the thymus by TUNEL staining. We used TIM4 and MerTK as single stains to identify macrophages in tissue sections because they are not expressed on any other cell type in the thymus instead of following our multiple-label flow cytometry strategy. Most of the TUNEL+ cells could be found clearly inside or closely associated with MerTK+ and TIM4+ cells in the thymus (Fig. S3a and b). On average, ~85% of all TUNEL+ cells were within 5 µm of MerTK+ cells, indicating that thymic macrophages are the major phagocytic population in the thymus (Fig. S3c). The degree of co-localization between TUNEL+ cells and TIM4+ cells was slightly lower, ~75% on average, possibly reflecting the absence of TIM4 expression on a small proportion of thymic macrophages (Fig. 1d).
Figure 1. Thymic macrophages (ThyMacs) can be identified by the expression of CD64, MerTK and F4/80. a Flow cytometric analysis of enzymatically digested thymus tissue with macrophage markers CD64, MerTK, F4/80, and CD11b. More details about the confirmation of the identities of eosinophils and monocytes can be found in Fig. S1a and b. b Pappenheim (Hemacolor Rapid staining kit) staining of sorted ThyMacs. c Lack of expression of lineage markers associated with other cell types on ThyMacs. d The expression on ThyMacs of three receptors for phosphatidylserine that participate in the phagocytosis of apoptotic cells. e scRNA-Seq data showing the expression of prototypical macrophage genes Mafb, Fcgr1 (CD64), Mertk, and Adgre1 (F4/80) among thymus cells sorted.
as Csf1r<sup>GFP</sup> and Cd11c<sup>YFP</sup>.  

**f** Labeling of ThyMacs with intravenously injected anti-CD45-PE antibody or PBS. The labeling of blood leucocytes is shown for comparison.  

**g** Average numbers and percentages of ThyMacs in 4-11 weeks old mice, n=82.  

**h** Comparison of the numbers and percentages of ThyMacs in mice of different ages, n=82. All flow cytometry plots are representative of at least 3 independent repeats. The numbers in the flow cytometry plots are the percent of cells in the respective gates. Data in **g** and **h** represent mean±SEM. Statistical significance in **h** was determined with one-way ANOVA.

**Transcriptional signature of thymic macrophages**

To further understand the identity and functions of the thymic macrophages, we sorted and subjected them to RNA sequencing analysis as part of the IMMGEN's Open Source Mononuclear Phagocyte profiling. Thymic macrophages displayed a transcription profile consistent with tissue-resident macrophages and did not express genes characteristic of other lineages (Fig. 2a). Then, we examined the expression of the core signature macrophage genes[38] and found that they were enriched in thymic macrophages but not in Sirp<sup>a</sup> or Xcr1<sup>+</sup> thymic cDCs (Fig. 2b). On the contrary, cDC core signature genes were abundantly expressed in both thymic cDC subsets but not in thymic macrophages. These findings establish that although thymic macrophages and cDCs share the thymic microenvironment and expression of CD11c and MHC2, they have distinct transcriptional profiles.
We then compared the gene expression profile of thymic macrophages to that of other well-characterized macrophage populations available from IMMGEN. Because of the abundance of samples, we limited our comparison to only nine types of tissue-resident macrophages under steady-state conditions – splenic red pulp macrophages, Kupffer cells, broncho-alveolar lavage macrophages, large peritoneal cavity macrophages, white adipose tissue macrophages, aorta macrophages, central nervous system microglia, and spinal cord microglia. Hierarchical clustering revealed that thymic macrophages were most closely related to splenic red pulp macrophages and Kupffer cells (Fig. 2c).

To better identify the unique functions of thymic macrophages, we looked for genes that were differentially expressed in these cells compared to other tissue-resident macrophages. We set three criteria: 1) high expression in thymic macrophages (>500); 2) >5 fold higher expression than the average value in the nine populations of non-thymic macrophages; 3) expression in thymic macrophages is higher than any non-thymic macrophage samples. A total of 44 genes met these criteria, and we consider them to constitute the transcriptional signature of thymic macrophages (Fig. 2d). These included several degradation enzymes and their inhibitors (Cst7, Mmp2, Mmp14, Dnase1l3, Serpina3g, Acp5), non-classical MHC molecules (H2-M2, H2-Q6, H2-Q7), metabolic enzymes (Chst2, Ass1, Kynu, Cp, Dgat2, Sorl1, Lap3), molecules involved in innate immunity (Ifit2, Ili8bp, Mefv, Lgals3bp) and extracellular signaling molecules and their receptors (Pdgfa, Cxcl16, Il2rg, Gpr157). We also looked for transcription factors (TFs) highly expressed in thymic macrophages and could potentially regulate critical gene networks in
these cells. A total of 25 TFs were highly expressed in thymic macrophages (>250) and were at least 2-fold higher as compared to the non-thymic macrophages (Table S1). Among them were several TFs involved in type I interferon (IFN-I) signaling (Stat1, Stat2, Irf7, and Irf8) and lipid metabolism (Nr1h3, Pparg, Srebf1, and Rxra) (Fig. 2e). Notably, Runx3 that is important for the development and function of cytotoxic T lymphocytes[48], innate lymphoid cells[49], and Langerhans cells[50] was highly expressed in thymic macrophages. SpiC that has well-documented roles in the development of red pulp macrophages in the spleen, and bone marrow macrophages[51,52] was also highly expressed in thymic macrophages, further strengthening the argument for the similarity between thymus, spleen and liver macrophages. To confirm the expression of SpiC in thymic macrophages, we analyzed the thymus of SpiC-GFP mice[52]. We found that all SpiC-GFP+ cells were macrophages (Fig. S4a and b), making them the most specific thymic macrophage reporter strain compared with Lyz2GFP, MAFIA (Csf1rGFP), Cd11cYFP, and Cx3cr1GFP mice (Fig. S4c-e). However, only ~80% of thymic macrophages were SpiC-GFP+ suggesting heterogeneity within the cells (Fig. S4f and g).

Several dominant pathways emerged when we grouped the 500 most highly expressed genes in thymic macrophages according to gene ontology (GO) terms (Fig. 2f). It was notable that five of the ten most highly enriched GO pathways concerned antigen presentation of both exogenous and endogenous antigens. These data complement our flow cytometry findings of expression of MHC2 and suggest that thymic macrophages could be potent antigen-presenting cells and might play a role in negative selection or agonist
selection of thymocytes. Two other highly enriched GO pathways were involved in lysosomal biogenesis and functions, highlighting the high capacity of these cells to degrade phagocytosed material. Thus, our transcriptional analysis has revealed that thymic macrophages are bona fide macrophages that bear significant similarity to spleen and liver macrophages and are specialized in lysosomal degradation of phagocytosed material and antigen presentation.

Figure 2. Transcriptional profile of thymic macrophages (ThyMacs). a Expression of lineage-specific genes in ThyMacs and peritoneal cavity macrophages (PC Macs). b Expression of cDC-specific genes (gene names in
Yolk-sac progenitors contribute to embryonic thymic macrophages

The ontogeny of thymic macrophages has been examined by only one study since the realization that many tissue-resident macrophages are descendants from embryonic progenitors[37]. Based on Flt3Cre fate-mapping, the authors concluded that most adult thymic macrophages derive from HSCs. To determine if yolk-sac (YS) progenitors contribute to embryonic thymic macrophages, we used Cx3cr1CreER fate mapping[53]. Injection of 4-OHT at E9.5 in ROSA26<sup>LSL-GFP</sup> mouse mated with a Cx3cr1CreER male...
permanently tags YS progenitors and their descendants with GFP (Fig. 3a). Indeed, E19.5 microglia that are exclusively derived from YS progenitors were labeled to a high degree (Fig. 3b). After adjusting for incomplete labeling based on the microglia, we found that at E15.5 >50% of thymic macrophages were fate mapped, i.e. from YS origin (Fig. 3c). However, GFP+ thymic macrophages decreased to just ~11% at E19.5, suggesting that YS progenitors establish the embryonic thymic macrophage pool but are quickly replaced by subsequent wave(s) of fetal liver monocytes or HSC-derived macrophages.

To pinpoint when do the HSC-derived progenitors enter the thymus, we devised two complementary experiments. First, we evaluated the contribution of circulating adult monocytes to thymic macrophages without the confounding effect of radiation damage on the thymus. We created shield chimeras by subjecting CD45.1 mice to a lethal dose of irradiation while protecting their upper body and the thymus with a 5 cm lead shield followed by reconstitution with CD45.2 bone marrow (Fig. 3d). While the donor-derived monocytes in the blood were, on average 20%, less than 2% of thymic macrophages were CD45.2+ (Fig. 3e and f), suggesting a relatively minor (<10%) contribution of adult circulating monocytes to the thymic macrophage pool consistent with a previous report[37]. Second, we transplanted E15.5 embryonic thymuses expressing GFP ubiquitously under the control of the ROSA26 locus (ROSA26GFP) under the kidney capsule of adult mice and analyzed them six weeks later (Fig. 3g). By that time, >99% of thymocytes were derived from GFP+ host HSCs (Fig. 3h and i). As a positive control for donor-derived cells, we used the thymic epithelial cells. The vast majority of
EpCAM⁺ thymic epithelial cells (>90%) were still GFP⁺. An identical proportion of thymic macrophages was also GFP⁺. The results from our transplantation experiments show that the progenitors of almost all thymic macrophages are of embryonic origin. Altogether our results suggest that resident thymic macrophages are derived from multiple waves of progenitors. Initially, the thymus is settled by YS-derived progenitors that contribute substantially to the thymic macrophage pool during the embryonic period. In parallel with them, YS-independent progenitors infiltrate the thymus before E15.5 and establish themselves as the dominant population before birth.

Adult HSC-derived monocytes contribute relatively little to the pool of thymic resident macrophages in young adult mice.

**Figure 3.** Yolk sac (YS)-derived and non-YS-derived embryonic progenitors sequentially contribute to the thymic macrophage pool.
Scheme of the YS-progenitor labeling experiments. E9.5 pregnant ROSA26<sup>LSL-GFP</sup> mice mated with Cx3cr1<sup>CreER</sup> males were injected with 4-hydroxytamoxifen (4-OHT) and sacrificed at E15.5 or E19.5. b Representative flow cytometry plots of the Cx3cr1<sup>GFP</sup> expression in microglia (CD45<sup>-</sup>CD11b<sup>+</sup> cells in the brain) and ThyMacs of the pups. c Frequencies of GFP<sup>+</sup> ThyMacs at E15.5 and E19.5 adjusted to the degree of labeling of microglia. d Scheme of the shield chimera experiments. Congenic CD45.1 mice were lethally irradiated with their upper body protected by a 5 cm thick lead shield and then injected with CD45.2<sup>+</sup> bone marrow. e Representative flow cytometric analysis of ThyMacs and CD115<sup>-</sup>CD11b<sup>+</sup> blood monocytes for donor-derived (CD45.2<sup>+</sup>) cells. Non-chimeric CD45.1 and CD45.2 samples serve as controls for the gating. f Frequencies of donor-derived ThyMacs and blood monocytes. g Scheme of the thymus transplantation experiments. h Representative flow cytometry plots of GFP expression in thymocytes (Thy), CD45<sup>-</sup>EpCAM<sup>+</sup> thymic epithelial cells (TECs), and thymic macrophages (ThyMacs) six weeks after the transplantation. The host thymus (endogenous thymus) serves as a negative control. The percentages of GFP<sup>+</sup> cells are indicated in the plots. i Frequencies of GFP<sup>+</sup> cells in different cell populations in the transplanted thymus. Data in c, f, and i are mean±SEM with two litters, three, and five mice per group, respectively. The numbers in the flow cytometry plots are the percent of cells in the respective gates. Each dot is an individual mouse or embryo.

**Thymic macrophages can proliferate in situ**
The fact that macrophages can persist for many weeks in the thymus without constant replacement from blood monocytes suggests that they can divide in situ. Staining for the proliferation marker Ki-67 revealed that ~4% of the cells expressed this marker compared to an isotype control (Fig. 4a and b). To obtain further proof that thymic macrophages are proliferative, we tested the incorporation of the nucleotide analog 5-Ethynyl-2’-deoxyuridine (EdU). Short-term EdU labeling experiments unexpectedly revealed that thymic macrophages become EdU+ with faster kinetics than thymocytes (Fig. 4c). The most likely explanation for this puzzling result is that some of the thymic macrophages have engulfed apoptotic thymocytes that have recently divided and incorporated EdU. Thus, EdU could have accumulated in these macrophages through phagocytosis and not through cell division. To circumvent this caveat, we designed a pulse-chase experiment (Fig. 4d). Mice were injected daily with EdU for 21 days so that all cells that proliferate in that period would incorporate the label. The vast majority of thymocytes and thymic macrophages became EdU+ at d. 21 (Fig. 4e). After 21 more days of “chase period”, only ~0.2% of thymocytes had retained the EdU label, consistent with the existence of a very small population of long-term resident thymocytes consisting mainly of regulatory T cells and NKT cells[54] (Fig. 4e and f). However, ~5% of the thymic macrophages were EdU+, suggesting they divided during the labeling period. Finally, we sorted thymic macrophages and subjected them to cell cycle analysis. Although almost all thymic macrophages were in G0/G1 phase, a small population of ~3% was in G2/M phase of the cell cycle (Fig. 4g and h). Collectively, three independent approaches documented that 3-5% of thymic macrophages are actively...
dividing under homeostatic conditions within the thymus. These findings can explain the long-term maintenance of these cells within the organ without a constant influx of progenitors.

Figure 4. Thymic macrophages exhibit a low degree of proliferation. 

Example flow cytometry plots of Ki67 staining of thymic macrophages (ThyMacs). 

Frequency of Ki67+ thymic macrophages. 

Example flow cytometry plots of the EdU accumulation in thymocytes and thymic macrophages 2 hours after 1 mg EdU i.p. or vehicle injection. The numbers inside flow plots are the percentage of EdU+ cells from mice injected with
EdU. Data are representative of three independent experiments. **d** Scheme of EdU pulse/chase experiment: mice were injected daily with 1 mg EdU i.p for 21 days and then rested for 21 more days. **e** Example flow cytometry plots of EdU staining of thymocytes (upper row) and ThyMacs (lower row). **f** Frequencies of EdU$^+$ cells among thymocytes (top graph) and ThyMacs (bottom graph). **g** Example flow cytometry plot of cell cycle analysis of FACS sorted ThyMacs. **h** Frequencies of ThyMacs in different stages of the cell cycle. The numbers in the flow cytometry plots are the percent of cells in the respective gates. Data are mean±SEM from three mice (**b** and **h**) or 6-7 individual mice (**f**). Each dot is an individual mouse.

**Expression of Timd4 and Cx3cr1 can distinguish two populations of thymic macrophages**

To determine if thymic macrophages are heterogeneous, we turned to our scRNA-Seq data. Once we zoomed onto Mafb expressing cells, we could distinguish three separate populations: 1) monocytes that expressed high levels of Ly6c2 and Itgam (CD11b) but did not express Mertk; 2) Timd4$^+$ (encoding TIM4) macrophages that also expressed high levels of SpiC and Slc40a1, but low levels of Cx3cr1; 3) Cx3cr1$^+$ macrophages that expressed low levels of Timd4, SpiC, and Slc40a1 (Fig. 5a and b). Both macrophages and monocytes expressed Fcgr1 (CD64). A minority of macrophages expressed high levels of Mki67, indicating that they might be proliferating, corroborating our earlier data. Interestingly, most of the Mki67 expressing macrophages belonged to the Cx3cr1$^+$ population.
We confirmed the results from scRNA-Seq by flow cytometry. We could identify discrete TIM4\(^+\)Cx3cr1\(^{GFP-}\) and TIM4\(^-\)Cx3cr1\(^{GFP+}\) macrophages (Fig. 5c). There was even TIM4\(^+\)Cx3cr1\(^{GFP+}\) intermediate population that could not be distinguished in the scRNA-Seq dataset, likely because of the lack of statistical power. To determine the localization of the two distinct macrophage populations, we stained thymic sections from Cx3cr1\(^{GFP}\) mice with an antibody to MerTK. The Cx3cr1\(^{GFP}\)-MerTK\(^+\) cells correspond to Timd4\(^+\) macrophages, while the Cx3cr1\(^{GFP+}\)MerTK\(^+\) cells would be the Cx3cr1\(^{GFP+}\) macrophages. Strikingly, the two macrophage populations showed distinct localization. Timd4\(^+\) macrophages were located in the cortex, while the Cx3cr1\(^{GFP+}\) macrophages resided in the medulla and the cortico-medullary junction (Fig. 5d).

To better understand the differences between the two populations of thymic macrophages, we looked for differentially expressed genes. We included the thymic monocytes in the comparison, as these cells clustered the closest to macrophages. Timd4\(^+\) macrophages expressed the highest levels of the transcription factors Spic, Maf, and Nr1h3; the receptors for apoptotic cells Axl, Mertk, and Timd4; and many Slc transporters such as Slc40a1, Slc1a3, Slco2b1, Slc11a1, and Slc7a7 (Fig. 5e and Table S2). Cx3cr1\(^+\) macrophages expressed high levels of the transcription factor Runx3; a distinct set of phosphatidylserine receptors such as Stab1, Anxa5, and Anxa3; many degradative enzymes such as Mmp2, Mmp14, Dnase1l3, Acp5, Lyz2, Ctsz, Ctss, Ctsd, Ctsl; cytokines such as Pdgfa, Cxcl16, and Ccl12; and molecules involved in MHC1 antigen presentation such as B2m, H2-M2, H2-K1, H2-Q7. Thymic monocytes were characterized by differential expression of the typical
monocyte genes Ly6c2, Ccr2, and S100a4, and genes involved in MHC2 antigen presentation such as Ciita, H2-DMb1, H2-Ab1, and Cd74.

Figure 5: Two populations of macrophages with distinct localization exist in the thymus. a UMAP clusters from Fig. S2 with high expression of the transcription factor Mafb fall into three groups: monocytes, Timd4+ macrophages, and Cx3cr1+ macrophages. b Expression of the indicated genes in the three Mafb-positive clusters. c A flow cytometry plot of Cx3cr1GFP and TIM4 expression in ThyMacss. The plot is representative of >10 individual experiments. The numbers inside the plot are the percentages of the cell populations in the respective gates. d Immunofluorescent staining of the thymus of Cx3cr1GFP mouse stained with MerTK (a marker for all macrophages) and Keratin 5 (a marker for medulla). The scale bar is 150 µm. Areas in the cortex, medulla, and the cortico-medullary junction (CMJ) represented by the dashed boxes are enlarged below to show the co-
 localization of Cx3cr11\textsuperscript{GFP} and MerTK signal in CMJ and medulla, but not in cortex. The scale bars in the images below are 20 µm. The images are representative of three individual mice. e Differentially expressed genes among Timd4\textsuperscript{+} thymic macrophages, Cx3cr1\textsuperscript{+} thymic macrophages, and thymic monocytes. The negative log\textsubscript{10} p-values for the genes expressed in each cluster were calculated as described in the Materials and Methods, and the top 50 differentially expressed genes were plotted in the figure. Ten of these genes are listed on the left.

**Cx3cr1\textsuperscript{+} cells give rise to Timd4\textsuperscript{+} cells during embryonic development**

To determine if the two populations of thymic macrophages are related, we first analyzed the kinetics of their appearance during embryonic development. At the earliest time point (E14.5), all thymic macrophages were Cx3cr1\textsuperscript{+}, and only ~20% of them were also TIM4\textsuperscript{+} (Fig. 6a and b). The proportion of TIM4\textsuperscript{+} cells increased at E17.5, and TIM4\textsuperscript{+}Cx3cr1\textsuperscript{-} cells started to appear. In the neonatal period, almost all macrophages were TIM4\textsuperscript{+}, and very few remained TIM4\textsuperscript{-}. The proportion of TIM4\textsuperscript{-} cells increased in 6 weeks old mice, but TIM4\textsuperscript{+} macrophages remained the dominant population. These kinetics (Fig. 6c) are consistent with Timd4\textsuperscript{+} macrophages developing from Cx3cr1\textsuperscript{+} cells before birth. Another plausible scenario is that distinct progenitors give rise to different thymic macrophages populations (e.g., YS-progenitors give rise to Cx3cr1\textsuperscript{+}Timd4\textsuperscript{-} and HSC-derived progenitors develop into Timd4\textsuperscript{+} macrophages). To test the latter hypothesis, we re-visited the fate mapping of YS progenitors results (Fig. 3a). Although a larger part (~60% at E15.5) of Cx3cr1\textsuperscript{+}TIM4\textsuperscript{-} cells were derived from YS progenitors (Fig. 6d), a substantial
proportion (~40% at E15.5) of YS-derived TIM4+ macrophages could clearly be identified at both E15.5 and E19.5, suggesting that YS progenitors can give rise to both Cx3cr1+ and Timd4+ cells. Extrapolating from the data, the non-YS-derived progenitors (GFP- cells) can also give rise to both Timd4+ and Timd4+ cells. Thus, the simplest explanation for our findings is that Timd4+ cells develop from Cx3cr1+ cells during embryonic development. This transition is complete in the first week after birth as there were essentially no Cx3cr1+ thymic macrophages remaining at d.7 (Fig. 6a and b).

Figure 6. Timd4+ thymic macrophages are derived from Cx3cr1+ cells during embryonic development. a Example flow cytometry plots for the expression of Cx3cr1GFP and TIM4 on thymic macrophages at different times during embryonic development (E14.5, E17.5), immediately after birth, at 7 days, and 6 weeks of age. b Frequencies of Timd4+Cx3cr1+ (Timd4 single-positive or Timd4SP), Timd4+Cx3cr1+(double-positive or DP), and Cx3cr1+Timd4+ (Cx3cr1 single-positive or Cx3cr1SP) thymic macrophages at
the indicated time points. c Kinetics of the changes in different subpopulations of thymic macrophages from E14.5 to 6 weeks. d Frequencies at E15.5 and E19.5 of GFP-labeled cells among TiM4+ or TiM4- cells in Cx3cr1CreER X ROSA26LSL-GFP embryos treated with 4-OHT at E9.5. Data is from at least two independent experiments for each panel. Each symbol is an individual mouse or embryo.

Timd4+ thymic macrophages self-maintain, while Cx3cr1+ cells slowly accumulate with age

To understand how are the resident thymic macrophage populations maintained during adult life, we induced recombination in Cx3cr1CreER X ROSA26LSL-GFP mice during the neonatal period (Fig. 7a) or at 6 weeks of age (Fig. 7c) and compared the proportion of GFP+ cells 3 and 42 days after labeling. The extent of labeling of Timd4+ thymic macrophages did not change within these 6 weeks, no matter whether the mice were treated with Tamoxifen in the first week after birth or at 6 weeks (Fig. 7b and d), suggesting steady-state maintenance and absence of a significant influx from unlabeled cells (e.g., monocytes). In contrast, the proportion of labeled Timd4+ thymic macrophages decreased significantly 6 weeks after Tamoxifen injection in both neonatal and adult mice, suggesting that this population was being diluted by unlabeled cells. To further substantiate these findings, we examined older WT mice and found out that the proportions of Timd4+ thymic macrophages increased with age, and in mice >8 months old, they accounted for ~70% of all macrophages in the organ (Fig. 7e). Thus, we conclude that Timd4+ macrophages can maintain themselves for long periods in the cortex.
of the thymus, Since the first week of life, Cx3cr1+ cells are slowly being recruited to the medulla and cortico-medullary junction, and in aging mice form the predominant phagocytic population in the organ.

**Figure 7.** Timd4+ thymic macrophages self-maintain during adult life, while Cx3cr1+ cells slowly accumulate with age. 

a Scheme of the neonatal fate mapping: A nursing dam was injected twice with Tamoxifen (Tam) or vehicle (Veh) in the first week after giving birth to Cx3cr1CreER X ROSA26LSL-547GFP pups. Three or 42 days after the last injection, the pups were sacrificed, and the degree of labeling of Timd4+ and Timd4− thymic macrophages was examined by flow cytometry. 

b Frequencies of GFP+ Timd4+ or Timd4− thymic macrophages from neonatally fate mapped mice after 3 and 42 days. Vehicle injected nursing dam litters (Veh) served as a control for non-specific labeling.

c Scheme of the adult fate mapping: Six weeks old Cx3cr1CreER X ROSA26LSL-547GFP mice were injected twice with Tamoxifen (Tam) or vehicle (Veh). Three or
42 days after the last injection, the mice were sacrificed, and the degree of labeling of $Timd^4+$ and $Timd^4-$ thymic macrophages was examined by flow cytometry. d Frequencies of GFP$^+$ $Timd^4+$ or $Timd^4-$ thymic macrophages from adult fate mapped mice after 3 and 42 days. e Frequencies of TIM4$^-$ thymic macrophages at different ages. The data is mean±SEM from 2 independent experiments (b) or at least 3 individual mice per time point (d and e). Each symbol is an individual mouse. Statistical significance was determined with unpaired Student’s t-test.

Discussion

Here, we have described the phenotype, transcriptional profile, localization, diversity, ontogeny, and maintenance of macrophages in the thymus. These cells express the typical macrophage markers CD64, MerTK, and F4/80 and are transcriptionally most similar to splenic red pulp macrophages and liver Kupffer cells. However, they have a unique expression profile dominated by genes involved in antigen presentation and lysosomal degradation. We found that thymic macrophages consist of two populations with distinct localization. $Timd^4+$ macrophages occupied the cortex, while $Cx3cr1^+$ cells were located in the medulla and the cortico-medullary junction. While YS-derived macrophages dominated the early stages of thymus development, they were quickly replaced by non-YS embryonic progenitors that gave rise to the $Timd^4+$ thymic macrophages that could proliferate and self-maintain. $Cx3cr1^+$ macrophages started slowly accumulating after birth and in old mice became the most abundant population.
Altogether our data depict thymic macrophages as typical tissue-resident macrophages with origin from multiple hematopoietic waves, ability to self-maintain, and expression of the core macrophage-specific genes. They were most similar transcriptionally to splenic red pulp macrophages and Kupffer cells, which is not surprising considering that they all specialize in efferocytosis and have efficient lysosomal degradation machinery. These three populations also shared expression of the transcription factor Spic that is induced by heme released following red blood cells phagocytosis[52]. However, the thymus is not known as a place for erythrocyte degradation. Thus the mechanism for Spic up-regulation in thymic macrophages is unclear.

The unique features of thymic macrophages include high expression of genes involved in the IFN-I pathway, antigen presentation, and lysosomal degradation. The up-regulation of IFN-I-stimulated genes such as Stat1, Stat2, Irf7, and Irf8 can be explained by the constitutive secretion of IFN-I by thymic epithelial cells[55,56]. The purpose of IFN-I expression in the thymus in the absence of a viral infection is unclear. Still one possibility is that it mediates negative selection to IFN-dependent genes as part of central tolerance.

Thymic macrophages highly express molecules involved in antigen presentation, including MHC1 and MHC2, although the latter is expressed at lower levels than in cDCs. Thus, they have the potential to present antigens for both negative selection and agonist selection. These two activities have traditionally been assigned solely to cDCs[57]. However, recent evidence suggests that negative selection is most efficient when the cell that presents the antigen to auto-reactive thymocytes is also the one that phagocytoses...
So, macrophages participation in thymocyte selection needs to be re-evaluated with optimized isolation procedures and specific genetic tools. The extraordinary ability of thymic macrophages to engulf and degrade apoptotic thymocytes has been appreciated for a long time[31], and our RNA-Seq data provides additional supporting evidence for this function by highlighting the up-regulation of pathways involved in lysosomal degradation. An interesting topic for future research would be to understand how the metabolites derived from apoptotic cells are returned to the microenvironment to support the proliferation of immature thymocytes. A Solute Carrier (Slc) genes-based program has been described in vitro[59], but its relevance to tissue-resident macrophages remains to be determined. Altogether, our study demonstrates that thymic macrophages are a unique subset of tissue-resident macrophages and support the idea that resident macrophage phenotype is determined by the combination of ontogeny, microenvironment, and other factors[60].

Together with the study by Tacke et al., our work builds the following model for thymic macrophage origin[37]: Thymic macrophages develop in three distinct waves: YS-derived progenitors dominate the early stages of thymus development but are replaced before birth by a second wave of YS-independent embryonic progenitors that forms the bulk of thymic macrophages after birth and can self-maintain into adulthood. With age, there is a slow and steady influx of Timd4+ Cx3cr1+ macrophage precursors that occupy the medulla and cortico-medullary junction, becoming the major phagocytic population in the thymus of older mice (>8 months). The second wave of YS-independent macrophages is most likely the progeny of
embryonic HSCs based on Flt3Cre fate mapping that showed that >80% of thymic macrophages in adult mice are descendants of HSCs[37]. Whether HSC-independent fetal liver monocytes contribute to thymic macrophages and to what extent awaits the creation of models that can specifically target this population of progenitors. Recruitment of circulating monocytes to the resident macrophage pool in the thymus has been ruled out previously by parabiosis and Ccr2−/− mice[37]. Our shield chimera experiments have arrived at similar conclusions. However, the relatively short duration of these experiments and their focus on the bulk thymic macrophages have prevented the recognition of the gradual accumulation of Timd4− macrophages. Once we zoomed in on this minor cell population in young mice, the fate mapping clearly showed an influx of unlabeled progenitors. Whether the progenitors of Timd4− macrophages are monocytes remains to be formally demonstrated. However, in all macrophage populations exhibiting replacement in adults examined to date, monocytes have been singled out as the source[12,19,22,24,25,30]. An alternative possibility involves thymocyte progenitors that under certain circumstances have been shown to differentiate into macrophages and granulocytes in the thymus[42,43]. However, if this occurs in unmanipulated mice at a steady-state remains unclear.

The strict spatial segregation of the two macrophage populations in the thymus implies that they might have distinct functions. Timd4+ cells are restricted to the cortex and are particularly abundant in the deeper cortex, close to the medulla. Both positive and negative selection of thymocytes occur there, so we speculate that Timd4+ macrophages might be specialized in efferocytosis of CD4+CD8+ (double-positive) thymocytes that cannot interact...
with cortical thymic epithelial cells and die by neglect or are auto-reactive and undergo clonal deletion in the cortex\[61\]. On the other hand, $Cx3cr1^+$ macrophages accumulate in the medulla; the thymic region specialized in negative selection to tissue-restricted antigens (TRA). They might contribute to the process in several ways: 1) by carrying TRAs from blood and peripheral organs. A similar process has been described for cDC2 (SIRP\(\alpha^+\) DCs)[62]. In fact, $Cx3cr1^+$ thymic macrophages could have contributed to this role because they were not distinguished from cDC2 in this study. 2) By capturing TRAs from $Aire^+$ medullary thymic epithelial cells and presenting them to auto-reactive thymocytes as shown for DCs[63-65]. 3) By phagocytosing apoptotic TRA-specific medullary thymocytes, a process we have observed before[58]. The exact involvement of thymic macrophages in the selection events in the thymus remains to be determined.

The accumulation of the $Cx3cr1^+$ cells in older mice has clear implications for thymus aging. One key feature of thymus involution is the accumulation of extracellular matrix produced by fibroblasts and the emergence of white adipocytes[66]. The $Cx3cr1^+$ subset is the predominant producer of the growth factor PDGF\(\alpha\) that is required for the maintenance of adipocyte stem cells and can stimulate tissue fibrosis[67,68]. The gradual accumulation of $Cx3cr1^+$ macrophages could increase the availability PDGF\(\alpha\) in the aging thymus stimulating extracellular matrix production and differentiation of precursors into adipocytes. This model predicts that limiting the influx of $Cx3cr1^+$ macrophage precursors could delay thymus involution.

Recent work described a novel phagocytic and antigen-presenting cell type in the thymus called monocyte-derived DCs[65]. The phenotype of these cells...
overlaps with the CD64+F4/80loCD11b+ cells in our study. However, we favor
the classification of these cells as monocytes based on their expression of
Mafb, CD64, and Ly6C (Fig. 5b) and lack of expression of the defining DC
transcription factor Zbtb46 (Fig. S2c)[69]. As monocytes can differentiate into
cDC2, particularly in the context of inflammation[70], the precise identity and
the relationship of this population to thymic cDC2 remain to be established.

In the past several years, scRNA-Seq has come to the forefront of
biologists’ efforts to disentangle the cellular diversity of tissues. Several
comprehensive studies have included samples from mouse or human
thymus[71-73]. However, in these studies, too few thymic macrophages were
sampled to give meaningful clustering results. Efforts specifically targeting
the thymus have provided considerably more information[74,75], but
macrophage diversity was still not recognized. Characterization of rare
populations such as thymic macrophages (~0.1% of all cells in the thymus)
requires optimized enzymatic digestion procedures and enrichment strategies,
as has been demonstrated already for thymic epithelial cells[76,77]. Our
scRNA-Seq dataset provides a rich resource for the unbiased characterization
of myeloid cells in the thymus and will greatly aid in the understanding of the
myeloid landscape of the thymus.

In summary, our work comprehensively characterizes macrophages in the
thymus and paves the way for exploration of their functions.

Materials and methods

Mice
C57BL/6Narl (CD45.2) mice were purchased from the National Laboratory Animal Center, Taipei, Taiwan. MAFIA (MAcrophage Fas-Induced Apoptosis) [78], Cx3cr1GFP [79], SpiGFP [52], Cx3cr1CreER [53], and B6.SJL-Ptprc

Pepcb/BoyJ (CD45.1) mice were purchased from the Jackson Laboratories.

Cd11cYFP [80] and Lyz2GFP [81] mice have been described. Mice ubiquitously expressing GFP from the ROSA26 locus were generated by breeding PdgfrαCre [82] and ROSA26LSL-ZsGreen (also known as ROSA26LSL-GFP or Ai6) mice[83] (both from the Jackson Laboratories). A mouse from this cross was identified, in which the STOP cassette was deleted in the germline. It was designated ROSA26GFP and subsequently bred to C57BL/6 mice. All mice were used at 4-10 weeks of age unless otherwise specified. Mice were bred and maintained under specific pathogen-free conditions at the animal facility of National Yang-Ming University. All experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of National Yang-Ming University.

Treatment with 5-Ethynyl-2’-deoxyuridine (EdU)

Mice were i.p. injected with 1 mg EdU (Carbosynth) dissolved in PBS daily for 21 days and then rested for 21 more days. Cells from the thymus were harvested on day 21 or 42. In some experiments, the mice were sacrificed 2 hours after the first EdU injection.

Shield chimera generation

CD45.1 mice were anesthetized by i.p. injection of 120 µg/g body weight Ketamine hydrochloride (Toronto Research Chemicals) and 12 µg/g body
weight Xylazine hydrochloride (Sigma). Anesthetized mice were taped to a 5 cm thick lead block so that the lead block covered the head and the chest down to the bottom of the rib cage. Then, they were irradiated with a lethal dose (1000 rad) from a $^{137}\text{Cs}$ source (Minishot II, AXR) so that only their abdomen and hind legs were exposed. After recovery from anesthesia, the mice were transfused i.v. with $10^7$ bone marrow cells from a congenic (CD45.2) donor. Then, they were given Trimerin (0.5 mg/mL Sulfadiazine + 0.1 mg/mL Trimethoprim, China Chemical and Pharmaceutical Co., Tainan, Taiwan) in the drinking water for the first two weeks after the irradiation and analyzed after six weeks.

Cell isolation from thymus, blood, and peritoneal cavity

Thymocytes were obtained by mechanical disruption of the thymus with a syringe plunger. For myeloid cell isolation, mouse thymuses were cut into small pieces and digested with 0.2 mg/mL DNase I (Roche) and 0.2 mg/mL collagenase P (Roche) in complete DMEM for 20 min at 37°C with frequent agitation. 1.6 mg/mL Dispase I (ThermoFisher) was added to the enzymatic mixture for thymic epithelial cell isolation. In some experiments, thymic myeloid cells and thymic epithelial cells were enriched by 57% Percoll PLUS (GE Healthcare) discontinuous gradient centrifugation at 4°C, 1800 rpm, for 20 min without brake. Cells at the interface were collected and washed with PBS to remove residual silica particles. Then the cells were resuspended in PBS with 0.5% BSA (HM Biological), filtered through a 70 µm filter, and kept on ice.
Blood was isolated by cardiac puncture of sacrificed mice and immediately diluted with PBS. After centrifugation, the cell suspensions were treated with ammonium chloride-potassium lysis buffer for 3 min on ice once or twice. Peritoneal cavity cells were obtained by lavage with 5 mL PBS + 2 mM EDTA (Merck). Following gentle massage, the cavity was opened with an abdominal incision, and lavage fluid was collected.

**Flow cytometry**

Single-cell suspensions (0.5 – 2X10^6 cells) from thymus, blood, or peritoneal cavity were blocked with supernatant from 2.4G2 hybridoma (a kind gift by Dr. Fang Liao, Academia Sinica, Taipei, Taiwan) and stained with fluorochrome- or biotin-labeled antibodies for 20 min on ice in PBS + 0.5% BSA + 2 mM EDTA + 0.1% NaN₃ (FACS buffer). The following antibodies were used: CD11b (clone M1/70), MHC2 (M5/114.15.2), CD11c (N418), F4/80 (BM8), CD115 (AFS98), SIRPα (P84), CD45 (30-F11), NK1.1 (PK136), TIM4 (RMT4-54), Gr-1 (RB6-8C5), CD64 (X54-5/7.1), Siglec H (551), Ly6C (HK1.4), CD3ε (145-2C11), CD8α (53-6.7), CD19 (6D5), B220 (RA3-6B2), CD4 (GK1.5), CD51 (RMV-7), CD45.1 (A20), CD45.2 (104), CX3CR1 (SA011F11), and EpCAM (G8.8) from BioLegend; Axl (MAXL8DS), MerTK (DS5MMER), and Ki67 (SolA15) were from eBioscience; Siglec F (E50-2440), CD90.2 (30-H12), and CD11c (HL3) were from BD Biosciences. Cells were washed, and if necessary, incubated for 20 more min with fluorochrome-labeled Streptavidin: Streptavidin-AF647 (Jackson Immunoresearch) or Streptavidin-APC/cy7, Streptavidin-BV421, Streptavidin-BV605 (BioLegend). After the last wash, the cells were resuspended in FACS buffer containing
DAPI (BioLegend), Propidium Iodide (Sigma), or DRAQ7 (BioLegend) and analyzed immediately on an LSR Fortessa flow cytometer running Diva 8 software (BD Biosciences). Typically, 500,000 cells were collected from thymus samples. Data were analyzed using FlowJo software (TreeStar).

For intracellular staining, after surface antibody staining, the cells were labeled with Zombie Aqua (BioLegend) for 30 min in ice. Then, the cells were fixed with 2% paraformaldehyde (Electron Microscope Sciences) in PBS for 20 min on ice, permeabilized with either 0.5% Triton-X 100 (Sigma) for 20 min on ice, or with Foxp3 staining kit (eBioscience) according to the protocol provided by the manufacturer, and stained with antibodies for intracellular markers for 40-60 min on ice.

For cell cycle analysis, 1-5X10^5 sorted thymic macrophages were fixed with 70% ethanol for 2 h on ice. The cells were spun down at 1800 rpm for 20 min at 4°C, washed with PBS, and stained with 1 µg/ml DAPI (BioLegend) for 30 min at room temperature in the dark.

For EdU staining, after surface marker and Zombie Aqua staining, cells were fixed with 2% paraformaldehyde in PBS for 20 min on ice and permeabilized with 0.5% Triton X-100 in PBS at room temperature for 20 min. EdU was detected by adding an equal volume of 2X Click reaction buffer consisting of 200 mM Tris, 200 mM ascorbic acid (Acros), 8 mM CuSO_4 (Acros), 8 µM Cy5-azide (Lumiprobe) to the permeabilized cells resuspended in 0.5% Triton X-100 in PBS and incubation at room temperature for 30 min.
Cells were washed twice with 0.5% Triton X-100 in PBS and analyzed on a flow cytometer.

**Cell sorting**

The sorting of thymic macrophages was done following the IMMGEN guidelines. Briefly, the thymuses of 3 male C57BL/6Narl mice were harvested in ice-cold staining buffer containing phenol red-free DMEM (Gibco) with 10 mM HEPES (Sigma), 0.1% NaN₃, and 2% FBS (Gibco). Single-cell suspensions were prepared as described in the Flow cytometry section. Percoll PLUS was used to enrich mononuclear cells. The cells were resuspended at 10⁵/mL in staining buffer and labeled with appropriate antibodies for 15 min in ice. To sort thymic macrophages, the cells were first labeled with biotinylated antibodies to lineage markers (Lin) – CD3, CD8, Gr1, B220. After washing, the cells were stained with antibodies to CD11b, F4/80, CD45, CD64, and Streptavidin-APC/cy7 for 15 min in ice. For sorting thymus XCR1⁺ and SIRPα⁺ cDCs, antibodies to XCR1, SIRPα, CD11c, MHC2, CD64, and F4/80 were used. For sorting peritoneal cavity macrophages, antibodies to ICAM2 and F4/80 were used. Immediately before sorting, the dead cells were excluded with DRAQ7 or PI. For RNA Sequencing experiments, the cells were double-sorted on FACS Melody, or Aria cell sorters (BD Biosciences) and 1000 cells were directly deposited in TCL buffer (Qiagen), frozen in dry ice and sent to IMMGEN for RNA sequencing. Four biological replicates were prepared. For cytospin and cell cycle analysis, 1-5X10⁵ cells sorted on FACS Melody were collected in staining buffer.
Cytospin

Sorted cells were mounted on Superfrost PLUS slides (Thermo Scientific) using a Cytospin centrifuge (Cytospin 3, Shandon) for 5 min at 500 rpm. Cells were fixed with 2% paraformaldehyde for 10 min at room temperature and stained with the Hemacolor Rapid Staining Kit (Merck Millipore). Images were collected on BX61 upright microscope (Olympus) using 100X objective with immersion oil and captured with a CCD camera. Images were then analyzed and processed with ImageJ (NIH) and Adobe Photoshop 5.5 (Adobe).

RNA sequencing analysis

RNA sequencing was done at IMMGEN using Smart-seq2 protocol[84,85] on a NextSeq500 sequencer (Illumina). Following sequencing, raw reads were aligned with STAR to the mouse genome assembly mm10 and assigned to specific genes using the GENCODE vM12 annotation. Gene expression was normalized by DESeq2[86] and visualized by Morpheus (https://software.broadinstitute.org/morpheus). Hierarchical clustering was done with Cluster 3.0 and visualized with Java TreeView. Only genes with SD>20 were used (10602 genes). The metric used was Pearson correlation (uncentered), and the clustering method was average linking. Gene expression of mouse transcription factors[87] was visualized in MultiplotStudio of GenePattern[88]. GO enrichment was calculated and visualized in R by using clusterProfiler[89].

Timed pregnancies and embryonic thymus analysis
To set up timed pregnancies, each male mouse (Cx3cr1\textsuperscript{CreER/CreER}, Cx3cr1\textsuperscript{GFP/GFP} or C57BL/6) and female mouse (ROSA26\textsuperscript{LSL-GFP/LSL-GFP} or C57BL/6) were housed together in the same cage for one night and separated on the next day, which we defined as embryonic day 0.5 (E0.5). Female mice were assumed to be pregnant if their weight gain was over 2 g at E8.5\cite{90}.

Thymuses from E14.5 and E17.5 embryos, neonatal, 1-weeks-old pups, and adult mice (older than 6-weeks-old) were harvested, mechanically dissociated with plastic sticks in 1.5-mL centrifuge tubes, and enzymatically digested with 0.2 mg/mL DNase I and 0.2 mg/mL collagenase P in complete DMEM for 20 min at 37°C with frequent agitation. The cells were resuspended in PBS with 0.5% BSA, filtered through a 70 µm filter, kept on ice, and used for flow cytometric analysis as described in the Flow Cytometry section.

**Genetic fate mapping – E9.5, neonatal and adult**

For genetic fate mapping, timed pregnancies of Cx3cr1\textsuperscript{CreER/CreER} male and ROSA26\textsuperscript{LSL-GFP/LSL-GFP} female mice were set up as described. To label the Cx3cr1\textsuperscript{+} erythromyeloid progenitors derived from embryonic yolk sac\cite{8}, 4-hydroxytamoxifen (4-OHT from Sigma) was administered i.p. to pregnant females on E9.5 at a dose of 75 µg/g (body weight). To improve the survival of embryos and reduce the risk of abortions, Progesterone (Sigma) was co-injected at a dose of 37.5 µg/g (body weight)\cite{91}. To label the Cx3cr1\textsuperscript{+} thymic macrophages in Cx3cr1\textsuperscript{CreER} X ROSA26\textsuperscript{LSL-GFP} neonates and adult mice, Tamoxifen (TAM from Sigma) was injected i.p. at a dose of 2 mg/mouse to lactating dams on postnatal day 3 and 4 (P3 and P4) or to adult mice for 2
consecutive days. Thymuses were harvested and analyzed 3 days or 6 weeks after the last injection by flow cytometry.

**scRNA-Seq – sorting, library generation, and sequencing**

scRNA-Seq was performed at the Genomics Center for Clinical and Biotechnological Applications of NCFB (NYCU, Taipei, Taiwan). Briefly, the thymuses of one female MAFIA and 2 male 11cYFP mice were harvested and enzymatically digested as described previously. Mononuclear cells were enriched by 57% Percoll PLUS discontinuous centrifugation, washed to remove silica particles, and resuspended at 10^6/mL in PBS with 0.04% BSA. The cell suspensions were filtered through Falcon 35 μm strainer (Corning) and stained with viability dye (PI or DAPI) immediately before sorting. Cell sorting was performed on a FACS Melody sorter (BD Biosciences) running FACS Chorus (BD Biosciences) software in purity mode. 3X10^5 GFP or YFP positive cells under the live/singlet gating were collected into 5 ml round bottom tubes pre-coated with 0.04% BSA in PBS. Sorted cells were washed and resuspended in 300 μL PBS with 0.04% BSA and then filtered again into 1.5-mL DNA LoBind tubes (Eppendorf) through a 35 μm strainer. The viability of the cells was evaluated by Countess II (Invitrogen) and Trypan Blue (ThermoFisher), and samples with cell viability rates higher than 85% were used for encapsulation and library preparation. Single-cell encapsulation and library preparation were performed using Single Cell 3' v3/v3.1 Gene Expression solution (10x Genomics). All the libraries were processed according to the manufacturer’s instruction and sequenced on NovaSeq 6000 (Illumina) platform at the NHRI (Zhubei, Taiwan). Post-processing and quality control included alignment against reference genome and transcripts.
control were performed by the NYCU Genome Center using the CellRanger package (v. 3.0.2, 10x Genomics). Reads were aligned to mm10 reference assembly. Primary assessment with CellRanger reported 9,973 cell-barcodes with 11,385 median unique molecular identifiers (UMIs, transcripts) per cell and 3,076 median genes per cell sequenced to 71.0% sequencing saturation with 94,260 mean reads per cell for MAFIA mouse sample; 9,801 cell-barcodes with 13,467 median UMIs per cell and 3,211 median genes per cell sequenced to 74.9% sequencing saturation with 119,820 mean reads per cell for the first Cd11cYFP mouse sample; 12,938 cell-barcodes with 14,439 median UMIs per cell and 3,199 median genes per cell sequenced to 71.4% sequencing saturation with 108,585 mean reads per cell for the second Cd11cYFP mouse sample.

Analysis of scRNA-Seq

Preprocessing

The Scanpy[92] pipeline was used to read the count matrix. Three batches of samples (one from GFP+ cells from MAFIA mouse and two from YFP+ cells from Cd11cYFP mice) were preprocessed independently and integrated later. Cells that expressed <200 genes and genes that were expressed in <3 cells were filtered out. The percentage of mitochondrial genes was calculated and cells with >10% mitochondrial genes were removed. Cells with >7,000 genes or <1,000 genes were also removed. Read counts were normalized to library size 10,000 and log-transformed with scanpy.pp.log1p function.

Datasets integration and batch effect correction
Read count matrices and spliced/unspliced matrices were merged first.

Principal Component Analysis was applied to reduce dimensions to 70.

BBKNN[93] was then used to remove batch effects with the `scanpy.external.pp.bbknn` function with default parameters.

Visualization and clustering

UMAP[94] provided by `scanpy` was used to visualize data with default parameters. K-nearest neighbor and Leiden clustering were applied sequentially to cluster cells into groups. K-nearest neighbor graph construction was done by `scanpy.pp.neighbors` with parameters `n_neighbors=12` and `n_pcs=70`. Leiden clustering was then performed by `scanpy.tl.leiden` with parameter `resolution=0.15`. To improve UMAP visualization, `scanpy.tl.paga` was applied, and we trimmed unnecessary graph edges by `scanpy.tl.paga` with `threshold=0.018`.

Marker genes and statistics

Wilcoxon rank-sum tests were applied to examine differentially expressed genes. Clusters were selected from the result of Leiden clustering.

Differentially expressed genes of a cluster against other clusters were identified by `scanpy.tl.rank_genes_groups` and `scanpy.pl.rank_genes_groups`.

P-values were collected for each cluster and transformed by negative log10 for better visualization. The top 50 differentially expressed genes were visualized in the figure.

**Immunofluorescent staining**

Dissected thymus lobes from C57BL/6 mice were cleaned of connective tissue and fixed in 4% paraformaldehyde (Sigma) for 1 h at 4˚C, washed in
PBS, submerged in 10% sucrose, and then in 30% sucrose for 12 h each. The tissue was then frozen in Tissue-Tek OCT compound (Sakura Fintek) for cryostat sectioning. 10 or 20 µm thick sections were prepared with CryoStar NX50 (ThermoFisher) on Superfrost PLUS (ThermoScientific) microscope slides, dried overnight, and stored at -80˚C until used. Before staining, the sections were fixed with acetone (Sigma) at -20˚C for 10 min, air-dried, then blocked with 5% goat serum + 5% donkey serum (both from Jackson Immunoresearch) in PBS for 2 h and stained with primary antibodies: rat monoclonal to MerTK (DS5MMER, eBioscience), rat monoclonal to TIM4 (RMT4-54, Bio-X-Cell) or rabbit polyclonal to Keratin 5 (BioLegend) overnight at 4˚C in a humidified chamber. After washing in PBS, the sections were labeled with goat anti-rat-Alexa Fluor 647 (Invitrogen) or goat anti-rat Cy3 (Jackson Immunoresearch) and donkey anti-rabbit AF647 (Jackson Immunoresearch) secondary antibodies for 2 hours at room temperature, followed by 5 min staining with DAPI. TUNEL Assay was done with the Click-iT Plus TUNEL Assay Alexa Fluor 647 kit (Invitrogen) according to the manufacturer’s recommendations. A positive (pre-incubation with DNase I for 30 min at room temperature) and negative (no TdT enzyme) controls were always included. The sections were mounted with 0.1% n-propyl gallate (Sigma) in glycerol (Sigma) and imaged with an AxioObserver 7 (Carl Zeiss) wide-field microscope equipped with Plan Apochromat 20x NA=0.8 objective (Zeiss) and AxioCam 702 mono camera (Zeiss) and controlled by Zen 2.3 Blue (Zeiss) software. Image analysis was performed with Imaris 8.0.2 (Bitplane).
The co-localization scoring for MerTK and TIM4 with TUNEL was done with Imaris 8.2 (Bitplane). TUNEL+ cells were detected with the Spots function, while MerTK+ and TIM4+ cells were detected with the Surface function. Spots that co-localize with Surfaces were identified with the “Find Spots close to Surface” function of Imaris XT. The threshold for co-localization was set to 5 µm. The results were manually curated so that Spots categorized as “not co-localized” that were: 1) at the edge of the imaging field were excluded from consideration; 2) with clear Surface signal around them were re-categorized as "co-localized". The ratio of co-localized Spots to all Spots was calculated and presented as the co-localization index.

Thymus transplantation

To obtain E15.5 embryos, ROSA26GFP homozygous male and C57BL/6 female mice were mated in a cage overnight and separated on the next day. Pregnant mice were sacrificed 15 days later, the viable embryos were harvested, and the thymuses were isolated in ice-cold PBS. C57BL/6 recipients were anesthetized by i.p injection of Ketamine hydrochloride (120 µg/g, Toronto Research Chemicals) and Xylazine hydrochloride (12 µg/g, Sigma). The fur on the left flank was removed, and the left kidney was exposed by cutting the skin, muscle layer, and peritoneum. The kidney capsule was nicked with a G23 needle, and the fetal thymus was pushed into the pocket under the kidney capsule with a G23 needle equipped with a plunger from a spinal needle. After the kidney was re-positioned back into the peritoneal cavity, the peritoneum was sutured, and the skin was stapled with metal clips. Rymadil (Carprofen, 5 µg/g, Zoetis) was given subcutaneously to
ease the wound pain, and Trimerin (Sulfadiazine at 0.5 mg/mL + Trimethoprim at 0.1 mg/mL) were given in the drinking water for the first two weeks after the surgery. The metal clips were removed from the skin after the first week, and the transplanted thymus and recipient’s endogenous thymus were harvested and analyzed six weeks after the kidney transplantation.

**Statistical analysis**

Comparison between groups was made with Prism 6 (GraphPad Software). Comparisons between two groups were carried out with unpaired Student's t-test. When more than two groups were compared, a one-way ANOVA with Tukey correction was used. Differences were considered significant if p<0.05.

**Data availability**

The RNA Sequencing data of thymic macrophages and thymic dendritic cells is available at NCBI Gene Expression Omnibus (GEO) as part of GSE122108 and at [www.immgen.org](http://www.immgen.org). The single cell RNA sequencing data is deposited at NCBI GEO under accession number. The source data underlying Fig. 1g-h, Fig. 3c, f, i, Fig. 4b. f, h, Fig. 6b, d, Fig. 7b, d, e, Fig. S1h, Fig. S3c, and Fig. S4b, d, e, g are provided in the Source Data files. All other data supporting the findings of this study are available within the article and its figures and tables.

**Abbreviations:**

cDC – classical dendritic cell

DC – dendritic cell
References:


renewing resident arterial macrophages arise from embryonic
CX3CR1+ precursors and circulating monocytes immediately after birth.

doi:10.1038/ni.3343


47. Hume DA. Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in
doi:10.1189/jlb.0810472


69. Satpathy AT, KC W, Albring JC, Edelson BT, Kretzer NM, Bhattacharya CC.


Acknowledgments

We are grateful to the IMMGEN consortium for performing the RNA sequencing of our samples and providing access to its database. We thank the following core facilities at National Yang-Ming Chiao-Tung University: Instrumentation Resource Center for providing access to its sorting and imaging facility and the Animal Facility for mouse husbandry. We are very grateful to Wan-Chun Chang, Bing-Xiu Guo, Chien-Yi Tung, and Kate Hua from the Genomics Center for Clinical and Biotechnological Applications of NCFB (NYCU, Taipei) for help with scRNA-Seq. Special thanks go to Dr. Fang Liao, Academia Sinica, Taipei, for help with cell sorting and for providing the 24G2 hybridoma, and Chang-Feng Chu for technical assistance. We are very grateful to Ms. Su-Hua Jiang at Veterans General Hospital, Taipei, for help with using the irradiator. Some figures were made with BioRender.

This work was supported by the Ministry of Science and Technology (grants # 106-2320-B-010 -026 -MY3, and 107-2320-B-010 -016 -MY3 to IL Dzhagalov and grants # 107-2320-B-010-020, and 108-2628-B-010-005 to CL
Hsu), the Yen-Tjing Ling Medical Foundation (grants # CI-107-6 and CI-108-5 to IL Dzhagalov), and the Cancer Progression Research Center (NYCU). The authors declare no competing financial interests.

**Author contributions**

TA Zhou designed experiments, performed research, analyzed and interpreted data, and wrote the manuscript; HP Hsu and CY Lin performed research, analyzed and interpreted data; YH Tu and HC Huang analyzed the scRNA-Seq data; NJ Chen, JW Tsai, EA Robey, and CL Hsu provided expertise, shared critical reagents, and edited the manuscript; IL Dzhagalov conceptualized the studies, designed experiments, performed research, analyzed, interpreted the data, and wrote the manuscript.
Supplementary figures and tables

Figure 1 – Figure supplement 1: Phenotype of thymic macrophages and other myeloid cells positive for F4/80 and CD64. a Example flow cytometry plots breaking down F4/80+ cells in the thymus into macrophages (MerTK+), eosinophils (CD11b+MerTK−Siglec F+) and monocytes (CD11b+MerTK−Siglec F−). b An example flow cytometry plot dividing CD64+ cells into macrophages (F4/80+CD11blo) and monocytes (CD11b+CD64lo). c Representative flow cytometry staining of enzymatically digested thymus single-cell suspension for CD64, MerTK, and F4/80 and respective isotype controls. d Gating strategy routinely used to identify thymic macrophages as CD64+F4/80+CD11bloFSChi cells. e Example flow cytometry plots showing that
CD64+FSClo cells include Thy1+ cells (most likely thymocytes). f Expression of CD11c, MHC2, and SIRPα on ThyMacs with respective controls. g Example flow cytometry plots showing that gating on CD11c-MHC2+ thymus cells, in addition to DCs, also includes macrophages, especially among SIRPα+ cells. h Frequency of MerTK+ cells among CD11c-MHC2+SIRPα+ cells. The data are mean±SEM from 5 individual mice. Each dot is an individual mouse. The flow cytometry plots are representative of ≥5 individual experiments.

Figure 1 – Figure Supplement 2: UMAP clustering of single-cell RNA-Sequencing (scRNA-Seq) data. a Clustering of the scRNA-Seq data shows that the cells from the three samples (one from GFP+ cells in MAFIA mice and two from YFP+ cells in Cd11cYFP mice) overlap considerably. b Identification of the clusters from the scRNA-Seq data based on lineage-specific markers. c Expression of lineage-specific markers in different clusters.
**Figure 1 – Figure Supplement 3:** Most TUNEL+ apoptotic cells co-localize with thymic macrophages. 

**a** Example images showing co-localization of TUNEL+ apoptotic cells and MerTK+ ThyMacs. 

**b** Example images showing co-localization of TUNEL+ apoptotic cells and TIM4+ ThyMacs. Scale bars in **a** and **b** are 50 µm. 

**c** Frequencies of the co-localization of TUNEL+ signal with MerTK+ and TIM4+ cells. All immunofluorescent images are representative of at least 3 independent repeats. Data in **c** represent mean±SEM. Each dot is an individual mouse.
Figure 2 – Figure Supplement 1: Expression of SpicGFP marks most thymic macrophages. a Example of the gating strategy to identify ThyMacs among SpicGFP+ cells. b Frequencies of ThyMacs among SpicGFP+ cells. c Representative flow cytometry plots of the expression of four reporter alleles in ThyMacs. d Frequencies of GFP/YFP+ cells among ThyMacs. e Frequencies of ThyMacs among GFP/YFP+ cells. f Representative flow cytometry plots of the expression of SpicGFP in ThyMacs. g Frequencies of SpicGFP+ cells among ThyMacs. All flow cytometry plots are representative of at least 3 independent repeats. Data in b, d, e, and f represent mean±SEM. Each dot is an individual mouse. The numbers in the flow cytometry plots are the percent of cells in the respective gate.

<table>
<thead>
<tr>
<th>Gene</th>
<th>ThyMacs</th>
<th>non-ThyMacs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irf7</td>
<td>3879.32</td>
<td>300.82</td>
</tr>
<tr>
<td>If8</td>
<td>3528.27</td>
<td>1474.35</td>
</tr>
<tr>
<td>Stat1</td>
<td>2403.69</td>
<td>522.04</td>
</tr>
<tr>
<td>Dnmt3a</td>
<td>1515.94</td>
<td>647.81</td>
</tr>
<tr>
<td>Znf1</td>
<td>1379.89</td>
<td>635.36</td>
</tr>
<tr>
<td>Stat2</td>
<td>1210.35</td>
<td>472.53</td>
</tr>
<tr>
<td>Nr1h3</td>
<td>1182.17</td>
<td>147.05</td>
</tr>
<tr>
<td>Srebfl</td>
<td>975.09</td>
<td>399.06</td>
</tr>
<tr>
<td>Rxra</td>
<td>760.26</td>
<td>298.55</td>
</tr>
<tr>
<td>Trps1</td>
<td>746.36</td>
<td>232.48</td>
</tr>
<tr>
<td>Runx3</td>
<td>723.14</td>
<td>9.76</td>
</tr>
<tr>
<td>Relb</td>
<td>715.53</td>
<td>293.92</td>
</tr>
<tr>
<td>Sp100</td>
<td>696.94</td>
<td>324.47</td>
</tr>
<tr>
<td>Zbp1</td>
<td>639.19</td>
<td>69.83</td>
</tr>
<tr>
<td>Tfec</td>
<td>588.72</td>
<td>74.66</td>
</tr>
<tr>
<td>Spic</td>
<td>573.11</td>
<td>34.36</td>
</tr>
<tr>
<td>Nfkbie</td>
<td>569.74</td>
<td>226.76</td>
</tr>
<tr>
<td>Ncoa4</td>
<td>550.69</td>
<td>249.15</td>
</tr>
<tr>
<td>Rest</td>
<td>548.22</td>
<td>269.22</td>
</tr>
<tr>
<td>Meis3</td>
<td>530.8</td>
<td>120.91</td>
</tr>
<tr>
<td>Bhlhe40</td>
<td>490.59</td>
<td>99.56</td>
</tr>
<tr>
<td>Parp12</td>
<td>414.11</td>
<td>126.82</td>
</tr>
<tr>
<td>Arid5b</td>
<td>374.03</td>
<td>177.08</td>
</tr>
<tr>
<td>Creb5</td>
<td>295.14</td>
<td>47.91</td>
</tr>
<tr>
<td>Pparg</td>
<td>276.54</td>
<td>33.24</td>
</tr>
</tbody>
</table>

Figure 2 – Table Supplement 1: Expression of differentially up-regulated transcription factors in thymic macrophages. Transcription factors that were highly expressed in thymic macrophages (>250) and up-regulated in ThyMacs compared to non-ThyMacs.
regulated >2-fold in thymic macrophages compared to non-thymic macrophages were listed alphabetically, and the geometric mean of 4 replicates of thymic macrophages (ThyMacs) and two replicates of each of the 9 non-thymic macrophage populations (non-ThyMacs) were recorded. Non-thymic macrophages are: spleen red pulp macrophages, Kupffer cells, bronchoalveolar lavage macrophages, peritoneal cavity macrophages, aorta macrophages, heart macrophages, white adipose tissue macrophages, central nervous system microglia, spinal cord macrophages.

Table S2. List of the differentially expressed genes among Timd4+ thymic macrophages, Cx3cr1+ thymic macrophages, and thymic monocytes

<table>
<thead>
<tr>
<th>CX3CR1+ ThyMacs</th>
<th>Tim4+ ThyMacs</th>
<th>ThyMonos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene name</td>
<td>adjusted p-value</td>
<td>Gene name</td>
</tr>
<tr>
<td>Ctsz</td>
<td>0</td>
<td>Hpgd</td>
</tr>
<tr>
<td>Cd63</td>
<td>0</td>
<td>Serpinb6a</td>
</tr>
<tr>
<td>Pmepa1</td>
<td>0</td>
<td>Slc40a1</td>
</tr>
<tr>
<td>Zmynd15</td>
<td>0</td>
<td>Cd81</td>
</tr>
<tr>
<td>Olfml3</td>
<td>0</td>
<td>Vcam1</td>
</tr>
<tr>
<td>Mmp2</td>
<td>0</td>
<td>Cfp</td>
</tr>
<tr>
<td>AU020206</td>
<td>1.60E-290</td>
<td>Spic</td>
</tr>
<tr>
<td>Plxnd1</td>
<td>1.59E-285</td>
<td>Trf</td>
</tr>
<tr>
<td>Cst7</td>
<td>8.66E-279</td>
<td>Actn1</td>
</tr>
<tr>
<td>Dnase113</td>
<td>2.45E-270</td>
<td>Maf</td>
</tr>
<tr>
<td>Timp2</td>
<td>2.15E-267</td>
<td>Pld3</td>
</tr>
<tr>
<td>Lgals3bp</td>
<td>8.69E-263</td>
<td>Il18</td>
</tr>
<tr>
<td>Pdgfa</td>
<td>6.87E-255</td>
<td>Mrc1</td>
</tr>
<tr>
<td>Mmp14</td>
<td>2.33E-253</td>
<td>Crip2</td>
</tr>
<tr>
<td>Fam46c</td>
<td>9.99E-235</td>
<td>Tmem65</td>
</tr>
<tr>
<td>Chst2</td>
<td>1.19E-226</td>
<td>Igf1</td>
</tr>
<tr>
<td>Cp</td>
<td>5.36E-225</td>
<td>Epb4113</td>
</tr>
<tr>
<td>Camk1</td>
<td>7.12E-225</td>
<td>Timd4</td>
</tr>
<tr>
<td>B2m</td>
<td>1.09E-222</td>
<td>Blvrb</td>
</tr>
<tr>
<td>Lhfpl2</td>
<td>4.52E-217</td>
<td>Clec1b</td>
</tr>
<tr>
<td>Acp5</td>
<td>5.90E-216</td>
<td>Cd68</td>
</tr>
<tr>
<td>Lag3</td>
<td>3.91E-213</td>
<td>Axl</td>
</tr>
<tr>
<td>Lyz2</td>
<td>1.28E-209</td>
<td>Paqr9</td>
</tr>
<tr>
<td>H2-M2</td>
<td>1.22E-199</td>
<td>Sdc3</td>
</tr>
<tr>
<td>Psap</td>
<td>7.26E-198</td>
<td>Myo9a</td>
</tr>
<tr>
<td>Gatm</td>
<td>1.33E-192</td>
<td>Scp2</td>
</tr>
<tr>
<td>Cpd</td>
<td>1.50E-192</td>
<td>Selenop</td>
</tr>
<tr>
<td>Gene</td>
<td>Log2FoldChange</td>
<td>p-Value</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>B4galnt1</td>
<td>2.45E-113</td>
<td>5.92E-159</td>
</tr>
<tr>
<td>Fam3c</td>
<td>1.64E-112</td>
<td>1.14E-158</td>
</tr>
<tr>
<td>Tmem173</td>
<td>1.54E-111</td>
<td>1.42E-158</td>
</tr>
<tr>
<td>Ski</td>
<td>3.59E-111</td>
<td>1.09E-156</td>
</tr>
<tr>
<td>Anpep</td>
<td>5.85E-111</td>
<td>2.57E-156</td>
</tr>
<tr>
<td>Gng2</td>
<td>2.37E-110</td>
<td>4.83E-155</td>
</tr>
<tr>
<td>Nceh1</td>
<td>2.88E-110</td>
<td>4.08E-154</td>
</tr>
<tr>
<td>H2-Q7</td>
<td>4.94E-108</td>
<td>1.34E-152</td>
</tr>
<tr>
<td>Rtn1</td>
<td>1.28E-106</td>
<td>1.78E-152</td>
</tr>
<tr>
<td>Sorl1</td>
<td>1.31E-103</td>
<td>3.64E-152</td>
</tr>
<tr>
<td>Glipr1</td>
<td>1.22E-102</td>
<td>4.81E-152</td>
</tr>
<tr>
<td>Gsn</td>
<td>2.00E-102</td>
<td>6.97E-152</td>
</tr>
<tr>
<td>Afdn</td>
<td>4.54E-102</td>
<td>4.22E-151</td>
</tr>
<tr>
<td>Ak2</td>
<td>1.11E-101</td>
<td>1.32E-147</td>
</tr>
<tr>
<td>Ntpcr</td>
<td>2.21E-98</td>
<td>1.14E-146</td>
</tr>
<tr>
<td>Scarb2</td>
<td>3.16E-97</td>
<td>2.38E-145</td>
</tr>
<tr>
<td>Creb5</td>
<td>5.41E-97</td>
<td>3.05E-145</td>
</tr>
<tr>
<td>Gsto1</td>
<td>5.56E-97</td>
<td>4.52E-145</td>
</tr>
<tr>
<td>Ncf1</td>
<td>4.26E-96</td>
<td>1.82E-143</td>
</tr>
<tr>
<td>Ppfia4</td>
<td>4.97E-96</td>
<td>1.53E-142</td>
</tr>
<tr>
<td>Chchd10</td>
<td>7.77E-96</td>
<td>4.21E-142</td>
</tr>
<tr>
<td>Gna12</td>
<td>1.23E-95</td>
<td>9.07E-142</td>
</tr>
<tr>
<td>Mvb12b</td>
<td>1.80E-95</td>
<td>1.54E-141</td>
</tr>
<tr>
<td>Rasal3</td>
<td>1.45E-94</td>
<td>4.04E-141</td>
</tr>
<tr>
<td>Scoc</td>
<td>6.86E-94</td>
<td>4.04E-141</td>
</tr>
<tr>
<td>Cfb</td>
<td>6.00E-93</td>
<td>1.11E-139</td>
</tr>
<tr>
<td>Lmna</td>
<td>1.04E-92</td>
<td>5.34E-138</td>
</tr>
</tbody>
</table>

**Figure 5 – Table Supplement 1: List of the differentially expressed genes among Timd4+ thymic macrophages, Cx3cr1+ thymic macrophages, and thymic monocytes.** The top 100 differentially expressed genes among the three clusters are listed by their negative log10 transformed p-value.