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Abstract 9 

Characterizing photosynthetic productivity is necessary to understand the ecological contributions and 10 

biotechnology potential of plants, algae, and cyanobacteria. Light capture efficiency and photophysiology 11 

have long been characterized by measurements of chlorophyll fluorescence dynamics. However, these 12 

investigations typically do not consider the metabolic network downstream of light harvesting. In contrast, 13 

genome-scale metabolic models capture species-specific metabolic capabilities but have yet to 14 

incorporate the rapid regulation of the light harvesting apparatus. Here we combine chlorophyll 15 

fluorescence parameters defining photosynthetic and non-photosynthetic yield of absorbed light energy 16 

with a metabolic model of the pennate diatom Phaeodactylum tricornutum. This integration increases the 17 

model predictive accuracy regarding growth rate, intracellular oxygen production and consumption, and 18 

metabolic pathway usage. Additionally, our simulations recapitulate the link between mitochondrial 19 

dissipation of photosynthetically-derived electrons and the redox state of the photosynthetic electron 20 

transport chain. We use this framework to assess engineering strategies for rerouting cellular resources 21 

toward bioproducts. Overall, we present a methodology for incorporating a common, informative data 22 

type into computational models of light-driven metabolism for characterization, monitoring and 23 

engineering of photosynthetic organisms. 24 
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Introduction 28 

There is great interest in characterizing light-driven metabolism due to the ecological importance and 29 

engineering potential of phototrophic microorganisms and plants. Oxygenic photosynthesis utilizes light 30 

energy to generate an oxidized protein complex capable of extracting electrons from water at 31 

Photosystem II, while concurrently re-energizing the extracted electron to reduce NADP+ at Photosystem 32 

I. These “light harvesting” reactions drive electron transport, ATP generation, and subsequent CO2 fixation 33 

through the Calvin-Benson-Bassham cycle in addition to the other energy consuming reactions 34 

throughout the cell. 35 

Light absorption by a photosynthetic cell is not constant. Light fluxes can vary across the day and due 36 

to local ecological or climatological features. It is common for photosynthetic microorganisms to absorb 37 

more photons than what can be utilized by metabolism during these natural fluctuations in sunlight. If 38 

this energy is not dissipated, it results in over reduction of the photosynthetic electron transport chain 39 

(ETC). Reactive oxygen species are then formed, causing oxidative damage to proteins, lipids, and nucleic 40 

acids (Niyogi, 2000; Dietz et al, 2016). When the damage resulting from excess light capture results in a 41 

decrease in photosynthetic efficiency it is termed photoinhibition. The photosystem II (PSII) D1 subunit is 42 

the primary photoinhibition target in the photosynthetic ETC (Edelman & Mattoo, 2008). A complex repair 43 

cycle characterized by removal, degradation, and de novo synthesis is constitutively active to counter this 44 

damage and it is energetically expensive (Nixon et al, 2005). To prevent photoinhibition, excess energy 45 

can be dissipated upstream of the photosynthetic ETC complexes via a variety of mechanisms 46 

encompassing nonphotochemical quenching (NPQ), which harmlessly converts excitation energy to heat 47 

(Nicol et al, 2019). While this protects the photosynthetic system from oxidative stress, it also reduces the 48 

overall efficiency of light-biomass conversion. 49 

Here we coin the term Excess Electron Transport (EET) as an additional important physiological 50 

feature at the intersection of photophysiology and bioengineering. This comprises several components 51 
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that act either as shunts within the ETC (Jallet et al, 2016b; Ware et al, 2020) or downstream of the 52 

photosynthetic machinery within the broader metabolic network. It relieves over reduction of the 53 

photosynthetic ETC by dispelling electrons generated by excess light (Jallet et al, 2016b). Usually these 54 

reactions are considered metabolically “futile” as the electrons are deposited on elemental oxygen to 55 

generate water, for instance. However, they are important in relieving photosynthetic ETC over-reduction. 56 

There is interest in the bioengineering field to redirect these electrons away from metabolic futility 57 

towards bioproducts of interest, while maintaining the beneficial effects on ETC redox balance (Levering 58 

et al, 2015; Lassen et al, 2014). Harnessing excess reductant can convert endogenous carbon sinks, such 59 

as carbohydrates, into more energy dense products such as lipids. Indeed, recently it was shown 60 

engineered reductant sinks can actually increase carbon fixation and overall photosynthetic efficiency 61 

(Santos-Merino et al, 2021). Thus, downregulating evolutionarily beneficial processes for photosynthetic 62 

individuals in favor of mass culture productivities offers promising avenues for increasing bioproduct and 63 

biofuel efficiency. Quantitative characterization of the push-pull of light capture upstream and dissipation 64 

in the metabolic network downstream of the photosynthetic ETC would enable design and optimization 65 

of these engineered reductant sinks. 66 

Properly accounting for EET facilitates this bioprocess optimization and provides insight into 67 

photoprotection strategies. Previous work in photosynthetic microorganisms (diatoms and green algae) 68 

used photophysiology parameters derived from chlorophyll fluorescence measurements to estimate EET 69 

(Wagner et al, 2006). In this previous framework, EET was calculated as the difference between the total 70 

absorbed photons and the excitation energy required for biomass production and cellular maintenance. 71 

Additionally, the fraction of total absorbed light energy lost upstream of the photosynthetic ETC was 72 

estimated using chlorophyll fluorescence data, which have long been employed to assess phototrophic 73 

physiology (Krause & Weis, 1991). 74 
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Chlorophyll fluorescence primarily quantifies the fate of absorbed light energy directed to PSII; 75 

however, there is evidence of contributions from photosystem I (PSI) as well (Giovagnetti et al, 2015; 76 

Pfündel et al, 2013). This excitation energy has three primary fates: it can perform photochemistry at PSII; 77 

it can be dissipated as heat through NPQ processes; or it can be dissipated by other, less well characterized 78 

non-radiative and fluorescence processes (NO). All of these can be quantified through the use of pulse 79 

amplitude modulation (PAM) chlorophyll fluorimetry (Kramer et al, 2004). When these values are 80 

normalized to the total excitation energy routed to PSII, they are annotated as the quantum yields Y(II), 81 

Y(NPQ) and Y(NO), respectively, the sum of which is always one. These techniques have unveiled the 82 

diverse photoprotective strategies employed by photosynthetic microorganisms to include extensive NPQ 83 

in the diatom Phaeodactylum tricornutum (Lavaud et al, 2002). However, these important aspects of 84 

photosynthesis have not been integrated in to models of total cellular metabolism. 85 

Constraint-based modeling coupled with flux balance analysis (FBA) has successfully been 86 

employed to characterize and engineer a wide range of biological systems (O’Brien et al, 2013). 87 

Constraint-based modeling relies on a reconstruction of the metabolic content of the organism of interest. 88 

The resulting computational framework, known as a genome scale model (GEM), can then be used to 89 

compute a variety of cellular phenotypes. There have been several, recent advances in the metabolic 90 

modeling of photosynthetic organisms to include cyanobacteria (Broddrick et al, 2016, 2019b), green 91 

algae (Zuñiga et al, 2017; Chang et al, 2011), and diatoms (Levering et al, 2016). Recent modeling in the 92 

diatom Phaeodactlyum tricornutum quantified growth rates, excitation energy partitioning between the 93 

photosystems and cross-compartment energetic coupling of the chloroplast and mitochondrion 94 

(Broddrick et al, 2019a). However, that study used simplified assumptions regarding light harvesting, 95 

possibly affecting the accuracy of absolute fluxes predicted by the model. The metabolic network that 96 

underpins GEMs is assembled from the reactant and product stoichiometry of biochemical reactions; thus, 97 

it should be feasible to couple the representation of chlorophyll fluorescence parameters as a fraction of 98 
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light energy routed to PSII as a stoichiometrically balanced biochemical equation. Such a framework would 99 

enable the explicit integration of chlorophyll fluorescence data and EET as a constraint on photosynthetic 100 

metabolic processes towards an increased understanding of photoacclimation, photoprotection and 101 

bioengineering of phototrophic metabolism. 102 

Results 103 

Cell physiology of P. tricornutum at low and high light 104 

P. tricornutum was acclimated and cultured at a high light irradiance of 600 µmol photons m-2 s-1 105 

(HL, n=4) and a low light irradiance of 60 µmol photons m-2 s-1 (LL, n=3).  The range of growth rates for P. 106 

tricornutum was 0.026-0.029 (n=3) and 0.052-0.053 (n=4) hr-1 at LL and HL, respectively. Cell volumes for 107 

cultures grown at both light levels differed by approximately 10% (202 ± 43 versus 184 ± 47 µm3 at HL 108 

(n=94) and LL (n=46), respectively). Dry cell weight was also similar between the cultures (Table 1). 109 

  Growth rate Cell volume Cell weight Chla Chlc Chla/Chlc  Total chl 

  (h-1) (μm-3) (pgDW/cell) (pg/cell) (pg/cell)   (LL:HL) 

Low Light 0.026-0.029 184±47 19.1±2 0.384±0.006 0.073±0.001 6.0 2.8 

High Light 0.052-0.053 202±43 20.4±1.4 0.142±0.014 0.024±0.003 5.2   

Table 1. Physiology parameters of P. tricornutum acclimated to low and high light. 110 
 111 

There were differences in the chlorophyll content of cells adapted to different light regimes, as is 112 

typical for microalgae (Falkowski & Owens, 1980). Total chlorophyll (chlorophyll a (chla) and chlorophyll c 113 

(chlc)) at LL was 2.8-fold higher than at HL (Table 1) and resulted in a 3-fold increase in the cell normalized 114 

absorption coefficient (a*cell, Fig. 1A, B); suggesting light capture efficiency remained constant at both 115 

acclimated light conditions. The chla to chlc ratio varied slightly from 6.0 at LL to 5.2 at HL. Overall, the 116 

chlorophyll content per cell was consistent with previous observations of photoacclimation in P. 117 

tricornutum (Nymark et al, 2009; Broddrick et al, 2019a). 118 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.467239doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467239


6 
 

 119 

Figure 1. Photophysiology of P. tricornutum acclimated to low and high light. (A) Cell-specific absorption coefficient (B) Pigment-120 
specific absorption coefficient. The pigment mass includes chlorophyll a and chlorophyll c. Shaded areas represent one standard 121 
deviation from the mean (HL: n=4, LL: n=3). (C) Cell-specific PO versus QF curve. (D) Fraction of closed reaction centers (1-qL) versus 122 
QF curve. (E) Chlorophyll fluorescence parameters vs. quantum flux for cells acclimated to low light. (D) Chlorophyll fluorescence 123 
parameters vs. quantum flux for cells acclimated to high light. Vertical dashed lines represent the mean quantum flux received by the 124 
cultures at the experimental irradiance. Abbreviations and definitions: LL: low light, HL: high light, QF: quantum flux, Y(II): quantum 125 
efficiency of photosystem II, NPQ: non-photochemical quenching, Y(NO): unregulated, non-radiative dissipation of excitation energy. 126 
Data based on n=3 biological replicates for LL and n=4 biological replicates for HL. 127 
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Photophysiology of P. tricornutum at low and high light 128 

Using a rapid light curve (RLC) protocol (Jallet et al, 2016a) we concurrently determined 129 

chlorophyll fluorescence parameters and oxygen evolution. The genome-scale model (GEM) was 130 

constrained with the photon uptake rate (quantum flux, QF) and the oxygen evolution rate in a manner 131 

similar to recent modeling efforts in cyanobacteria and diatoms (Broddrick et al, 2019a, 2019b). 132 

Accounting for the change in absorbed QF across the culture due to cellular self-shading, we report both 133 

the maximum QF (QFmax) and the mean QF (QFmean), representative of the highest and the average photon 134 

capture rate across the full path length. As PAM measurements require high cell densities to generate 135 

sufficient fluorescence signal, we used a similar approach to account for cell shading in the PAM sample 136 

cuvette (Broddrick et al, 2019b). This calculated QFmean was used as the independent variable for PO vs. QF 137 

curves as well as plots of chlorophyll fluorescence parameters vs. QF. 138 

The growth rate differences between HL and LL acclimated cultures were largely attributed to 139 

photophysiology differences between the two conditions. Despite the HL acclimated cells absorbing 3.3 140 

times more photons than the LL acclimated cells, the HL maximum oxygen evolution rate was only 1.3-141 

fold higher (Pomax, Table 2). However, this ratio increased to 1.7-fold at the mean oxygen evolution rate 142 

(Table 2, Pomean), quantifying the impact of self-shading from the increased pigment content at LL on 143 

overall productivity. The PO vs. QF curve initial slopes were 9.5x10-2 and 9.8x10-2 mol O2 mol photon-1 for 144 

HL and LL, respectively. This similarity in values was also observed with the initial slope of the total 145 

chlorophyll (chla+chlc) normalized-PO vs. PAR curves which was determined to be 2.6x10-4 mol O2 mol 146 

photon-1 m2 mgChl-1 for both HL and LL (Fig. S1). 147 

 
QFmax* QFmean* Pomax† Pomean† Fv/Fm   Y(II) ‡   Y(NPQ) ‡  1-qL‡   

Pomax 

(HL:LL) 
Pomean 

(HL:LL) 

Low Light 0.23 0.15 0.014± 0.000  0.010 ± 0.000  0.68 0.63 0.00 0.25 
1.3  1.7 

High Light 0.77 0.59 0.018± 0.002  0.017± 0.002  0.63 0.32 0.00 0.69 

* fmol photons cell-1 s-1 148 
† fmol O2 cell-1 s-1 149 
‡ Value at QFmean 150 
Table 2. Comparison of photophysiology in P. tricornutum acclimated to low and high light. 151 
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Overall, trends in the chlorophyll fluorescence parameters plotted against quantum flux (PAM vs. 152 

QF) were similar between the two light regimes (Fig. 1D-F). The effective quantum yield of PSII, [Y(II)], 153 

decreased rapidly with increasing QF for both light regimes. Non-photochemical quenching, contributed 154 

almost no excitation energy dissipation at either HL or LL (Table 2 and Fig. 1E, F). As Y(II) accounts for the 155 

fraction of QF performing photochemistry and Y(NPQ) is the fraction of QF lost as heat, the balance, Y(NO), 156 

accounts for the remaining fraction of QF that is dissipated in unregulated, non-radiative processes. Y(NO) 157 

accounted for approximately 68% and 37% of PSII-directed excitation energy at QFmean for HL and LL, 158 

respectively. The fraction of closed reaction centers (1-qL) is a proxy for the redox state of the 159 

plastoquinone pool and it was almost identical across the entire QF range for HL and LL acclimated 160 

samples (Fig. 1D). Additionally, NPQ had similar activation profiles in both LL and HL acclimated cultures. 161 

For both LL and HL acclimated cultures, Y(NPQ) activated at a QF of approximately 0.7 fmol photons cell-1 162 

s-1, 1-qL values of 0.70-0.75 and approximately 90% of their respective maximum photosynthetic rates 163 

(Fig. S2). 164 

The cell densities used, and photosynthetic rates observed, at high light suggested carbon 165 

limitation in the samples during analysis. Initially, we did not supplement the PAM samples with 166 

bicarbonate as we were trying to assess the photophysiology of the experimental culture, which was only 167 

sparged with air. However, to assess the possibility of carbon limitation and its influence on light capture 168 

efficiencies, we repeated the PO vs. QF and PAM experiments supplementing the samples with 5 mM 169 

bicarbonate. The resulting differences in PO vs. QF for P. tricornutum suggested a 15% underestimation of 170 

oxygen evolution capacity at QFmean for the HL acclimated condition, but additional bicarbonate 171 

supplementation had no impact on the LL condition. (Fig. S3A, B). Additionally, PAM results were 172 

comparable between samples with and without added bicarbonate (Fig. S3C), suggesting the carbon 173 

limitation was minor enough to not affect quantum efficiency. 174 

Simulating photoautotrophic growth of P. tricornutum at low and high light 175 
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We simulated photoautotrophic growth at low and high light by translating the photophysiology 176 

results into modeling constraints (Broddrick et al, 2019a, 2019b). The photon uptake rate for the model 177 

was derived from a*cell coupled with the experimental PAR intensity and the emission spectrum of the 178 

fluorescent light used during culturing. This value, equivalent to QF, was used to determine the oxygen 179 

evolution rate of the culture (using the curves in Fig. 2), which constrained the oxygen exchange reaction 180 

for the simulations. 181 

Next, we incorporated the chlorophyll fluorescence data with our modeling construct. GEMs are 182 

built using biochemical reaction stoichiometry. Chlorophyll fluorescence parameters are normalized as 183 

fractional values of excitation energy routed to photosystem II, which can be formulated in a similar 184 

manner to stoichiometry in canonical biochemical reactions. Thus, we added a pseudo-reaction to the 185 

model that imposes this fractionation between excitation energy lost in the pigment bed (1- Fv/Fm), 186 

photochemical yield [Y(II)], regulated non-photochemical quenching [Y(NPQ)], and unregulated non-187 

photochemical quenching [Y(NO)] (Fig. S4). When the model simulates photoautotrophic growth, it 188 

predicts the excitation energy split between the photosystems to satisfy the reductant and ATP needs for 189 

biomass production. The chlorophyll fluorescence parameters apply a constraint on the excitation energy 190 

split as only the Y(II) fraction can perform photochemistry at PSII. 191 

A final constraint added to the model accounted for photodamage of the PSII D1 subunit. We 192 

determined the D1 damage rate at the experimental irradiance for both LL and HL acclimated cells by 193 

comparing the maximum quantum yield of PSII (Fv/Fm) with and without lincomycin, a plastid protein 194 

synthesis inhibitor (Fig. S5A, B). We determined the D1 damage first-order rate constant to be between 195 

5x10-4 and 7x10-4 (n=3) and 2.22x10-2 and 2.52x10-2 (n=3) for LL and HL acclimated samples, respectively. 196 

Through Western blot analysis we determined the D1 protein to be approximately 1.1% of total protein 197 

for both LL and HL acclimated samples. From these values, we calculated the D1 damage constraint to be 198 

7±2 x10-6 and 2.53±0.51 x10-4 mmol D1 gDW-1 hr-1 for LL and HL acclimated samples, respectively. These 199 
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values were added as a maintenance energy reaction to the model requiring 360 mmol ATP and 720 mmol 200 

GTP to be consumed at the plastid ribosome to polymerize 1 mmol of D1 protein. A summary of these 201 

values can be found in Table S1. 202 

With the suite of photophysiology constraints incorporated into the GEM, we simulated 203 

photoautotrophic growth for both light conditions. To account for experimental variability on the model 204 

predictions, we simulated growth using a parameter space that included the mean and plus or minus one 205 

standard deviation of the experimentally determined PO vs. QF curves (Fig. 1C), a*cell (Fig 1A) and dry cell 206 

weight (Table 1). Simulated growth rates were consistent with experimental values (Fig. 2). The model 207 

predicted a LL mean growth rate of 0.027 ± 0.002 h-1 (n=27 parameter combinations), in good agreement 208 

with the experimental range of 0.026-0.029 h-1 (n=3). For the HL condition the model predicted a mean 209 

growth rate of 0.046 ± 0.004 h-1 (n=27 parameter combinations) compared to an experimental range of 210 

0.052-0.053 h-1 (n=4). The predicted mean growth rate for the HL acclimated condition was 211 

underestimated by approximately 12%; however, adjusting the PO vs. QF curve based on the bicarbonate 212 

spiked data (Fig. S3A) resulted in a simulated mean growth rate of 0.052 ± 0.005 (Fig. 6). 213 

 214 
Figure 3. Experimental versus simulated growth rates for P. tricornutum acclimated to low and high light. Experimental values 215 
represent the growth rate for independent biological replicates (HL: n=4, LL: n=3). For the simulation values, the data points represent 216 
the simulated growth rate using the mean, +1 standard deviation and -1 standard deviation of the O2 vs QF curves, a*

cell and cell dry 217 
weight (n=27 parameter combinations). Abbreviations. Exp: experimental, Sim: simulated, +HCO3

-: simulated, bicarbonate spiked. 218 
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Hierarchy of photophysiology constraints for simulating photoautotrophy 219 

We assessed the relative contribution of various constraints on the accuracy of model predictions, 220 

specifically photon uptake, oxygen evolution, photosystem II repair requirements and photochemical 221 

yield as constraints on growth rate (Table 3). For the LL simulations, the model was parameterized with 222 

the mean values for PO vs. QF, a*cell and dry cell weight. For the HL simulations, we used the mean values 223 

for all but PO vs. QF, where we used the bicarbonate spike-adjusted data, as it most accurately represented 224 

the photophysiology of the experimental cultures (Fig. 2). 225 

Constraining the photon uptake (hv) alone overestimated the growth rate for all conditions (+40% 226 

and +160% compared to the experimental mean for LL and HL, respectively – Table 3). This over estimation 227 

is to be expected as it assumes all the light captured by the cell is converted into photochemical energy. 228 

Using the oxygen evolution rate (PO) as the sole constraint resulted in accurate growth rate predictions 229 

(within the range of experimentally observed growth rates for both LL and HL). Combining constraints on 230 

photon uptake, PO and D1 repair requirements, as well as photon uptake, PO, D1 repair, and photochemical 231 

yield [Y(II)], did not change the predicted growth rates as compared to PO alone. Constraining the 232 

simulations with only the photon uptake and Y(II) resulted in an accurate prediction at LL (+5% compared 233 

to the experimental mean). For HL acclimated cells, the prediction was more accurate than photon uptake 234 

alone but still over-estimated the growth rate (+18% compared to experimental mean). 235 

 P. tricornutum 

 HL LL 

Experimental 0.052-0.053 0.026-0.029 

hv 0.136 0.038 

PO 0.052 0.027 

hv, PO, D1 0.052 0.027 

hv, Y(II) 0.062 0.030 

hv, PO, D1, Y(II) 0.052 0.027 

hv, PO, DM20%  0.052 0.027 

Table 3: Hierarchy of constraints for P. tricornutum simulations. Abbreviations: hv – photon uptake, PO – oxygen evolution rate, 236 
D1 – PSII D1 protein repair, Y(II) –  PSII quantum yield, DM20% – previous modeling assumption of 20% of absorbed photons lost 237 
upstream of the photosystems (Broddrick et al, 2019a). Values are given in units of h-1. 238 
 239 
Constraining D1 repair and Y(II) affects metabolic pathway predictions in P. tricornutum 240 
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Next, we investigated how the D1 repair requirement and Y(II) constraints affected predictions of 241 

metabolic pathway usage. Intracellular reaction fluxes provide insight into the metabolic phenotype and 242 

form the basis of GEM-based bioengineering strategies. In previous modeling efforts in P. tricornutum 243 

acclimated to high light, the predicted rate of intracellular oxygen consumption was higher than that 244 

which was observed experimentally (Broddrick et al, 2019a). The previous modeling effort assumed up to 245 

20% of the photon flux could be dissipated upstream of the photosystems. While this assumption did not 246 

affect the predicted growth rate (Table 3), we hypothesized the over-estimation of intracellular oxygen 247 

consumption could affect metabolic pathway activation and absolute flux values. Additionally, D1 protein 248 

repair cost was not included in these previous model simulations. Thus, we simulated photoautotrophic 249 

growth in P. tricornutum with both the previous 20% assumption and with our experimentally derived 250 

Y(II) values and D1 damage rates; comparing the model predictions with experimental O2 exchange values 251 

derived from membrane inlet mass spectrometry (MIMS).  252 

We defined the model predicted intracellular oxygen consumption as the ratio of the oxygen 253 

evolution and the PSII oxygen generation rates. For the LL acclimated condition, both the Y(II) and 20% 254 

assumption resulted in almost identical predictions of intracellular O2 consumption [24-33% and 24-35% 255 

of total PSII O2 generation for the Y(II) constrained versus the 20% assumption, respectively; ranges based 256 

on Flux Variability Analysis (FVA)]. These values were consistent with previously reported experimentally 257 

determined values in LL acclimated P. tricornutum of 35±5% (Broddrick et al, 2019a). For P. tricornutum 258 

acclimated to HL, the predicted intracellular oxygen consumption values were dramatically different 259 

between the 20% assumption and the Y(II) constrained simulation (63-67% and 40-46% respectively; 260 

ranges based on FVA). Using MIMS, we experimentally determined the fraction of PSII O2 generation 261 

consumed by light-independent mechanisms (maintenance), consumed by light-dependent mechanisms 262 

(EET), and evolved (net PO) by cells acclimated to high light (600 µmol photons m-2 s-1). For this HL condition, 263 

we determined 42±5% of the PSII generated O2 was consumed via intracellular consumption, compared 264 
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to the Y(II) constrained simulation range of 40-46%. Additionally, the MIMS experiment determined 265 

15±3% of PSII generated O2 was consumed via light-independent mechanisms (maintenance), compared 266 

to the Y(II) constrained simulation range of 13-14%. Finally, we measured 26±4% of PSII generated O2 was 267 

consumed via light-dependent mechanisms, compared to the Y(II) constrained simulation range of 26-268 

32%. Overall, while constraining the model with chlorophyll fluorescence data did not affect the growth 269 

rate prediction (Table 3), it did result in highly accurate predictions of intracellular oxygen consumption. 270 

Table 4 summarizes the Y(II) constrained model predicted photosynthetic parameters. 271 

        Fraction of QF 
Charge 

Separations 
      

 QF1 ETR2 
Quantum 
demand3 

PSII PSI PSI/PSII ΦCO2
4 ΦO2

4 

  High light  6.1x10-10  1.4x10-10  16.4 0.76 0.24 0.97 0.023 0.033 

 Low light  1.3x10-10 0.5x10-10  10.5 0.60 0.40 1.05 0.044 0.066 

1 µmol photon cell-1 s-1 

2 µmol electron cell-1 s-1 

3 QF x (0.25 x ETR)-1; mol photon x mol-1 O2 

4 µmol x µmol-1 photon 

Table 4. Predicted excitation energy flow in P. tricornutum acclimated to low and high light. Values are for simulations 272 
constrained to account for 100% of absorbed quanta. ΦCO2: quantum yield of net carbon fixation, ΦO2: quantum yield of net oxygen 273 
evolution. Abbreviations: QF: quantum flux, ETR: electron transport rate, PSII: photosystem II, PSI: photosystem I, Y(NO): unregulated 274 
excitation energy dissipation, NPQ: non-photochemical quenching. 275 
 276 

Next, we investigated how incorporating chlorophyll fluorescence data affected predictions of 277 

cross-compartment coupling. Previous modeling in P. tricornutum hypothesized excess reductant was 278 

shunted from the chloroplast to the mitochondrion (Broddrick et al, 2019a), consistent with experimental 279 

evidence of energetic coupling of these compartments (Bailleul et al, 2015; Murik et al, 2019). This 280 

previous work suggested photorespiration, branch-chain amino acids, and an ornithine-mediated 281 

chloroplast-mitochondrion shunt were the dominant mechanisms for cross-compartment coupling 282 

(Broddrick et al, 2019a). However, the Y(II) constrained model, validated with the O2 values from the MIMS 283 

experiment, suggested P. tricornutum acclimated to high light has a substantially reduced effective 284 

quantum yield at the experimental irradiance [Y(II), Table 2]. Thus, excess excitation energy not 285 

performing photochemistry (e.g. NPQ) likely reduces the need for cross-compartment coupling. 286 
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We investigated this hypothesis by comparing model predicted intracellular flux using the 20% 287 

excitation energy assumption (hereafter 20% assumption) and the combined Y(II) and D1 repair 288 

constraints [hereafter Y(II) constrained]. First, we determined the total EET in the system, defined as the 289 

excitation energy captured in excess of biomass and maintenance requirements (units: mmol electrons 290 

gDW-1 h-1), as a function of QF for both the 20% assumption and the Y(II) constraints. The results reflected 291 

the inaccuracy of the 20% assumption for both LL and HL conditions (Fig. 3A). The biomass normalized 292 

EET flux was consistent between LL and HL conditions, and both sets of constraints up to a QF value of 293 

approximately 0.3 fmol photons cell-1 s-1. However, the 20% assumption was a linear constraint applied 294 

upstream of both PSII and PSI; thus, the model-predicted EET flux increased linearly with QF. In contrast, 295 

EET in the Y(II) constrained model began to plateau (Fig 3), reflecting the decrease in Y(II) and increase in 296 

NPQ as QF increased (Fig 2).  297 

 298 

Figure 3. Chlorophyll fluorescence and D1 damage constraints affects model predictions for cross-compartment metabolic 299 
coupling. (A) Predicted EET as a function of quantum flux for cells acclimated to LL (triangles) or HL (circles). Open markers: 300 
simulations where a fixed 20% of captured photons are lost upstream of the photosystems; filled markers: simulations with Y(II) and 301 
D1 repair constraints. Vertical dashed lines represent the mean quantum flux received by the cultures at the experimental irradiance. 302 
(B) Total metabolic flux shunted to the mitochondrion via different metabolic pathways for P. tricornutum acclimated to high light. Black 303 
bars: Simulations where a fixed 20% of captured photons are lost upstream of the photosystems; white bars: simulations with Y(II) 304 
and D1 repair constraints; gray bars: simulations with Y(II) and D1 repair constraints and NGAM routed to PTOX. Abbreviations: AOX: 305 
alternative oxidase; BCAA: branched-chain amino acid; Glyco_m: mitochondrial glycolysis; Orn: ornithine shunt; PR: photorespiration 306 
(reducing: glycine cleavage system; oxidizing: glyoxylate transaminases); PTOX: plastid terminal oxidase; ROS: reactive oxygen 307 
species detoxification; TCA: mitochondrial tricarboxylic acid cycle.    308 

 309 
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Next, we investigated the intracellular EET pathways connecting the plastid and mitochondrion 310 

for cells acclimated to HL. The 20% assumption predicted 107% more photosynthetically derived electrons 311 

were shuttled to the mitochondria compared to the Y(II) constrained simulation. This difference in cross-312 

compartment energetic coupling resulted in similar cross-compartment shuttles as previously reported 313 

(Broddrick et al, 2019a); however, the absolute flux through these pathways was altered (Fig. 3B). The 314 

Y(II) constrained simulations predicted decreased flux through all pathways, apart from mitochondrial 315 

glycolysis, compared to the 20% assumption simulations (Fig 3B). We also explored whether the 316 

compartmentalization of light-independent O2 consumption [non-growth associated maintenance 317 

(NGAM)] affected EET predictions. When we constrained NGAM to the plastid terminal oxidase (PTOX), a 318 

thylakoid membrane-localized EET reaction, there was a slight decrease in absolute flux values predicted 319 

in mitochondrial EET pathways commensurate with the reduction in photosynthetically derived electrons 320 

leaving the plastid ETC. However, the overall trends were consistent with mitochondrial targeted NGAM 321 

simulations. An unexplored, potential cross-compartment shuttle suggested by these simulations was the 322 

amino acid lysine. However, lysine catabolic flux in the mitochondrion was similar for all conditions (Fig. 323 

3B) suggesting this particular cross-compartment shuttle may not be used as an EET pathway. 324 

Our simulation predictions suggested three routes for plastid-derived reductant consumption: the 325 

mitochondrial alternative oxidase (AOX), scavenging of reactive oxygen species (ROS), and conversion of 326 

reduced carbon skeletons (glutamate and alanine) to more oxidized forms (alpha ketoglutarate and 327 

pyruvate) during glyoxylate transaminase reactions. These last two categories function to detoxify 328 

glycolate produced via photorespiration. A unique feature of photorespiration is that it performs both 329 

reduction and oxidation of mitochondrial cofactors. Glycine produced by transaminase reactions during 330 

the detoxification of glycolate was predicted to be consumed by the glycine cleavage system producing 331 

NADH. This reductant then helped fuel the AOX reaction. This linkage between photorespiration, ROS, 332 

and AOX is consistent with studies showing AOX to be activated by ROS stress and important in 333 
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maintaining redox balance in P. tricornutum (Murik et al, 2019). Our flux predictions come with the same 334 

caveat as previous modeling efforts in P. tricornutum: experimentally determined intracellular fluxes for 335 

this organism have not been adequately determined (e.g., 13C metabolic flux analysis) and as such our flux 336 

predictions are not yet validated. 337 

 338 
Model-based exploration of bioengineering potential 339 

GEMs account for every known biochemical reaction in the organism and can calculate accurate 340 

assessments of resource requirements for biomass components and bioproducts (Dinh et al, 2018). We 341 

calculated the fraction of linear electron transport (LET) used to biosynthesize each biomass 342 

macromolecular fraction (Table 5). The results provided insight into the relative reductant cost of each 343 

macromolecular component, which ranged from 177 mmol e- gDW-1 of carbohydrate to 411 mmol e- gDW-344 

1 of membrane lipids. Using these values and the amount of excess photosynthetically generated 345 

reductant in the system, we calculated the theoretical yield of different biomass components if that EET 346 

could be rerouted for biomass biosynthesis. The predictions were inversely related to reductant cost with 347 

20.0 mg carbohydrates gDW-1 h-1 being the highest yield and membrane lipids the lowest at 8.6 mg lipids 348 

gDW-1 h-1 (Table 5).  349 

 350 

Biomass 
component 

Biomass 
percent 

%LET 
Reductant 

cost3 
Theoretical 

yield4 

Protein 70.0 43.3 304 11.6 

Structural carb 6.0 2.2 177 20.0 

DNA 0.3 0.2 254 13.9 

Membrane lipids 3.0 2.5 411 8.6 

Pigments 2.2 1.7 388 9.1 

Plastid lipids 3.7 2.6 347 10.2 

RNA 2.7 1.4 253 14.0 

Storage1 10.0 5.2 258 13.7 

EET N/A 29.1 N/A N/A 

Other2 N/A 11.9 N/A N/A 

1 2.1 to 1.0 molar ratio of a β-1,3-glucan and triacylglycerol (16:1(9Z)/16:1(9Z)/16:0) 

2 Maintenance, vitamins, and cofactors 

3 Millimole photosynthetically generated electrons per gram dry weight of molecule class (mmol e- gDW-1) 
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4 Milligram dry weight component per gram dry weight biomass per hour (mg gDW-1 h-1) 

Table 5. Photosynthetically generated electron requirements for different biomass components for cells acclimated to high 351 
light. Abbreviations: LET: linear electron flow; EET: alternative electron transport. 352 
 353 

 Finally, we explored model-driven engineering strategies to produce high value bioproducts. 354 

Bioengineering of photosynthetic microbes has typically targeted fuel or nutraceutical precursors and 355 

these targets are normally derived from three different precursors – fatty acids, aromatic amino acids and 356 

terpenoids (Brey et al, 2020; Kumar et al, 2020). We evaluated engineering intracellular pathways to 357 

increase flux through plastid fatty acid biosynthesis (hexadecanoate), the shikimate pathway (chorismate), 358 

and isoprenoid precursors (isopentenyl pyrophosphate). In our simulation, downregulation of EET 359 

provided extra reductant for bioproducts; however, carbon and other elements were also diverted from 360 

other biomass components. We simulated diverting up to 50% of cellular biomass to bioproduct synthesis, 361 

in increments of 10%, and evaluated changes in the intracellular reaction fluxes that could enable light-362 

drive production of these compounds (Fig 5). 363 

 364 

Fig 5. Metabolic engineering potential of P. tricornutum acclimated to high light. Changes in metabolic reaction flux towards the 365 
bioproducts hexadecanoate, isopentenyl pyrophosphate and chorismate are shown on the flux map. The heatmap above the reactions 366 
indicate an increase or decrease in flux towards chorismate (c), hexadecanoate (h), or isopentenyl pyrophosphate (i). Values represent 367 
the difference between the baseline simulation fluxes [Y(II) constrained] and bioproduct formation with 30% of biomass rerouted to 368 
the desired product. Graphs indicate bioproduct yield as a function of %biomass diverted as well as the carbon-normalized yields. 369 
Abbreviations are based on the BiGG Models database (King et al, 2016). Abbreviations (Reactions): ACCOAC- acetyl-CoA 370 
carboxylase; ENO- enolase; FBA- fructose-1,6-bisphosphate aldolase; FBP- fructose-1,6-bisphosphase; GAPDH- glyceraldehyde-3-371 
phosphate dehydrogenase; PDH- pyruvate dehydrogenase; PGAM- phosphoglycerate mutase; PGK- phosphoglycerate kinase; PYK- 372 
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pyruvate kinase; RUBISC- ribulose-1,5-bisphophate carboxylase; RUBISO- ribulose-1,5-bisphophate oxygenase; TKL2- 373 
transketolase 2. Abbreviations (metabolites): 13dpg- D-glycerate 1,3-diphosphate; 2pg- 2-phospho-D-glycerate; 2pglyc- 2-374 
phosphoglycolate; 3pg- 3-phospho-D-glycerate; 3psme- 5-O-(1-carboxyvinyl)-3-phosphoshikimate; accoa- acetyl-CoA; co2- carbon 375 
dioxide; dhap- dihydroxyacetone phosphate; e4p- D-erythrose-4-phosphate; f6p- beta-D-fructose 6-bisphosphate; fdp- beta-D-376 
fructose 1,6-bisphosphate; g3p- glyceraldehyde-3-phosphate; malcoa- malonyl-CoA; o2- oxygen; pep- phosphoenolpyruvate; pyr- 377 
pyruvate; rb15bp- ribulose-1,5-bisphosphate; skm5p- shikimate-5-phosphate; xu5p- D-xyulose 5-phosphate. 378 
 379 
 380 
 The model predicted a linear increase in product yield as a function of increased biomass diverted 381 

to bioproducts. Production rates were 0.15, 0.50, and 0.37 mmol bioproduct gDW-1 h-1 FractionBiomass
-1 for 382 

hexadecanoate, isopentenyl pyrophosphate, and chorismate, respectively. When normalized to the 383 

number of carbons in each of these end products, the yields were 2.4, 2.5, and 3.7 mmol C fixed in 384 

bioproduct gDW-1 h-1 FractionBiomass
-1 for hexadecanoate, isopentenyl pyrophosphate, and chorismate, 385 

respectively. There were no major differences in predicted EET as a result of bioproduct synthesis. We 386 

compared the baseline EET [Y(II) constrained simulations above] to the EET of the production strains with 387 

30% of biomass diverted to bioproduct synthesis. The baseline EET was 3.13 mmol e- DW-1 h-1 compared 388 

to 3.08, 3.21, and 3.09 mmol e- gDW-1 h-1 hexadecanoate, isopentenyl pyrophosphate, and chorismate, 389 

respectively. This result suggested the reductant cost of hexadecanoate and chorismate are higher than 390 

the mean biomass reductant cost, while the reductant cost of isopentenyl pyrophosphate is lower. 391 

 The flux simulations identified metabolic pathways where rerouting of flux is required for 392 

bioproduct synthesis. We compared model-predicted metabolic flux routing at an intermediate biomass 393 

diversion value of 30%. All three metabolites, hexadecanoate, isopentenyl pyrophosphate, and 394 

chorismate, require plastid glycolytic precursors (acetyl-CoA, pyruvate, and phosphoenolpyruvate, 395 

respectively). Additionally, chorismate and isopentenyl pyrophosphate both require Calvin-Benson-396 

Bassham Cycle (CBBC) intermediates (D-erythrose-4-phosphate and glyceraldehyde-3-phosphate, 397 

respectively) for biosynthesis. These requirements were evident in the reaction flux differences between 398 

the reference simulation [Y(II) constrained] and the bioproduct simulations (Fig 5). Hexadecanoate 399 

biosynthesis required the largest flux rerouting through lower plastid glycolysis as all the carbon required 400 

for its biosynthesis is sourced from acetyl-CoA. For chorismate, six of its ten carbons come from lower 401 
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glycolysis, requiring increased flux through the reactions phosphoglycerate mutase and enolase. The 402 

remaining four carbons are sourced through the CBBC resulting in a slight increase in flux through these 403 

reactions, to include a predicted increase in carbon fixation at RUBSICO. While initiation of isopentenyl 404 

pyrophosphate biosynthesis utilizes the lower glycolytic metabolite pyruvate, the model predicted the 405 

source of this metabolite was recycling of carbon from plastid-mitochondrial metabolic coupling, not 406 

redirection of flux away from the CBBC. This result shows how GEMs can result in non-intuitive flux routing 407 

towards engineering bioproducts. 408 

Discussion 409 

In this study, we characterized photoautotrophic metabolism in P. tricornutum through integrated 410 

chlorophyll fluorescence measurements and genome-scale modeling. Our observations in P. tricornutum 411 

were consistent with photophysiology under fluctuating and sinusoidal light (Wagner et al, 2006) and 412 

photoacclimation (Nymark et al, 2009). P. tricornutum exhibited efficient photoacclimation with the 413 

quanta absorbed per pigment remaining consistent between low and high light (Fig. 1B). This efficiency 414 

was also observed when looking at the initial slope of the cell-normalized PO versus QF curves (Fig. 1C) 415 

and the chlorophyll-normalized PO versus PAR curves (Fig. S1), which were consistent between both low 416 

and high light acclimated cultures. This efficiency across a range of photoacclimation conditions likely 417 

contributes to the ecological success of diatoms in dynamic light environments (Behrenfeld et al, 2021). 418 

Our interpretation of photophysiology was heavily influenced by analyzing the Po and PAM data with 419 

quantum flux (QF) as the independent variable. The 1-qL versus QF curves (Fig. 1D), the shape of the 420 

chlorophyll fluorescence parameters versus QF curves (Fig. 1 E, F), and the D1 content as a fraction of 421 

total protein (Table S1) were consistent between low and high light. Contrasting PAM vs. QF (Fig. 1E, F) 422 

with PAM vs. PAR (Fig. S5A, B) illustrates how interpreting photophysiology from a QF perspective affects 423 

conclusions about photophysiology. Using QF as the independent variable not only normalized the 424 

comparisons across light regimes (fluorescent bulb for culturing, red LED for PAM experiments) and 425 
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experimental apparatus (e.g., Roux flasks for culturing versus a round cuvette for PAM measurements), 426 

this approach also accounted for inherent changes in photophysiology (e.g., pigment content, 427 

photochemical efficiency). 428 

We observed very little dissipation of excitation energy via NPQ at the experimental QF values (Fig. 429 

1E, F). For the HL conditions, this lack of NPQ was coupled with an effective quantum yield of PSII [Y(II)] 430 

value of 0.32 (Table 2) suggesting the presence of alternative dissipative mechanisms [Y(NO)]. NPQ has 431 

been shown to be an important excitation energy dissipation mechanism in dynamic light conditions 432 

(Olaizola et al, 1994; Lavaud et al, 2002; Wagner et al, 2006); however, our results suggest these other 433 

dissipative mechanisms are sufficient to prevent photoinhibition under stable light environments. Overall, 434 

these data suggest P. tricornutum employs a photoacclimation strategy that emphasizes rapid utilization 435 

and dissipation of light energy. This strategy results in conditions where the overall photosynthetic 436 

apparatus is under-utilized, as in our low light acclimated cultures. However, our rapid-light-curve 437 

experiments suggest this allows P. tricornutum to immediately respond to an increase in available photon 438 

flux without the need to biosynthesize additional macromolecules, evident from consistency in total 439 

photosystem II content per cell and the redox state of the plastoquinone pool as a function of quantum 440 

flux (Fig. S2A, B). 441 

Translating the QF to a photon uptake constraint and PO into an oxygen evolution constraint in the 442 

genome-scale model resulted in accurate predictions of photoautotrophic growth (Fig. 6). Growth rate in 443 

the HL condition was underestimated by 12%; however, this was likely due to the beginning of carbon 444 

limitation in the sample during short-term measurements of photosynthetic capacity (Fig. S3A). We chose 445 

not to spike in exogenous bicarbonate for our O2-evolution measurements as we were interested in 446 

measuring photosynthetic parameters relevant to our culturing conditions. However, our simulations 447 

underestimated the growth rate at high light, suggesting the carbon environment needs be considered 448 

when performing rapid light curves (indeed, standard protocol is to include several mM NaHCO3
- in these 449 
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assays to avoid carbon limitation). Our efforts to establish the hierarchy of constraints suggested photon 450 

uptake and chlorophyll fluorescence constraints alone accurately predict growth rate at low acclimation 451 

irradiances (Table 3). This opens the possibility for non-invasive monitoring of culture health and 452 

productivity for biotechnology applications. Bypassing a portion of a production culture through a passive 453 

sampling window with integrated chlorophyll fluorescence and spectral absorption analysis, coupled with 454 

data on surface irradiance, would recreate the chlorophyll fluorescence and photon uptake constraints. 455 

As bioproduction conditions are usually high density, which would likely result in low cell-specific quantum 456 

flux, integrating non-invasive sampling with our modeling construct could result in accurate 457 

measurements of photoautotrophic metabolism in these settings. 458 

Constraining biomass accumulation with QF and PO automatically predicts relevant photosynthetic 459 

parameters in a manner similar to previous investigations (Wagner et al, 2006; Jakob et al, 2007). However, 460 

GEMs also predict the optimal distribution of excitation energy between PSI and PSII, an advantage 461 

compared to previous work where it was assumed 50% of the absorbed quanta were directed to each 462 

photosystem. Our simulations predicted a two-fold increase excitation energy was utilized by PSII under 463 

high light conditions compared to low light conditions, resulting in approximately 76% of absorbed quanta 464 

directed to PSII. However, there was a similar number of charge separation events at both photosystems 465 

(Table 4). This is consistent with the observation that there is minimal cyclic electron flow (CEF) around 466 

PSI in P. tricornutum (Bailleul et al, 2015) and energy dissipation of light energy at PSII Y(NO), which would 467 

result in roughly equivalent charge separations at both photosystems. Our model derived ETR differs from 468 

methodologies that assume equal excitation energy routed to both photosystems and a lower predicted 469 

quantum demand at experimental QF values (Table 4). For an organism like P. tricornutum that does not 470 

employ extensive CEF, the advantage of this approach is diminished. However, for microalgae that 471 

dynamically reroute excitation energy between the photosystems and adjust their biomass 472 

macromolecular composition as part of their photoacclimation strategy [e.g. Chlamydomonas reinhardtii  473 
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(Davis et al, 2013; Lucker & Kramer, 2013)], implicitly calculating excitation routing between 474 

photosystems using our modeling framework will result in better approximations of ETR. 475 

Incorporation of chlorophyll fluorescence measurements as a GEM constraint increased the accuracy 476 

of model predictions. Accounting for photon loss upstream of the photosystems resulted in a more 477 

accurate prediction of intracellular oxygen production and reductant-mediated oxygen consumption. 478 

These new constraints affected predictions related to excess reductant in the system (EET) and cross-479 

compartment metabolic coupling (Fig. 3A, B). The plateau in EET flux as a function of QF (Fig. 3A) was 480 

correlated to NPQ activation (Fig. 1F), suggesting saturation of EET pathways triggers this photoprotective 481 

mechanism. Our results suggest the following model of photophysiology in P. tricornutum in a stable light 482 

environment: up to a QF of approximately 0.3 fmol photons cell-1 s-1, Y(NO) dissipates excess excitation 483 

energy until the steady-state reduction of the plastoquinone pool is approximately 50%. At this point, EET 484 

is activated to facilitate re-oxidation of the photosynthetic electron transport chain. At a QF of 485 

approximately 0.6 fmol photons cell-1 s-1, the EET pathways are saturated, the steady-state reduction of 486 

the plastoquinone pool reaches 70%, and NPQ is activated to assist in dissipating captured photons. 487 

Therefore, the model accurately recreates the onset of NPQ that occurs when light absorption outpaces 488 

the ability to utilize this energy within metabolism. Interestingly, this model is consistent for cells 489 

acclimated to both low and high light, and Phaeodactylum is known to maintain high capacity for NPQ in 490 

both light conditions (Taddei et al, 2018). 491 

Currently, experimentally derived photoautotrophic metabolic flux values for P. tricornutum do 492 

not exist, thus our flux predictions are hypotheses that still require validation. Still, the approach outlined 493 

in this study is generally applicable to all phototrophic genome-scale model simulations and previous 494 

efforts using experimentally-derived electron transport efficiencies, as opposed to PAM, showed good 495 

agreement with 13C metabolic flux analysis (Broddrick et al, 2019b). 496 
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The interest in integrating light-driven metabolism into bioengineering and synthetic biology 497 

necessitates an iterative framework for bioprocess development. The design-build-test-learn (DBTL) 498 

paradigm is one such approach that has been leveraged to rapidly increase bioproduct titers (Petzold et 499 

al, 2015; Carbonell et al, 2018). Computational tools are integral to these workflows. Relevant to the 500 

design step of the process, GEMs have been extensively used to rationally engineer metabolism to 501 

generate a wide variety of phenotypes (Czajka et al, 2021; Bang et al, 2020; Li et al, 2019).  We explored 502 

implementing the modeling framework towards light-driven bioproduct formation, as adoption of these 503 

approaches is underrepresented in phototrophic systems. Initial assessments quantified the reductant 504 

cost of cellular macromolecules, which provided insight into the theoretical yield of different compound 505 

classes (Table 5), with protein biosynthesis being the predominant sink of photosynthetic energy. EET was 506 

found to consume 29% of LET in high light. These EET pathways serve to oxidize the photosynthetic 507 

electron transport chain and resupply low energy cofactors to autotrophic metabolism. However, they 508 

are generally viewed as wasteful as this energy could be utilized to increase biomass yields (Peers, 2014). 509 

We utilized our model to estimate the metabolic consequences of redirecting metabolism towards 510 

important chemical precursors. The overexpression of plastid fatty acids (hexadecanoate), the shikimate 511 

pathway (chorismate), and isoprenoid precursors (isopentenyl pyrophosphate) were only partially fueled 512 

by reductant that would normally be dissipated by EET, showing there is still considerable potential 513 

associated with the engineering of primary photosynthetic metabolism to increase the overall yields of 514 

bioproducts. 515 

Furthermore, our modelling suggests that increasing the relative flux of reduced carbon to 516 

metabolic precursors of industrial interest may require significant engineering of central carbon 517 

metabolism. For instance, increasing the production of our three selected metabolites increased the flux 518 

of 3-phospho-D-glycerate (3pg) through the plastid glycolytic pathway (Figure 5). Additionally, the 519 

increased flux of carbon to isoprenoid biosynthesis or through the shikimate pathway puts an increased 520 
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demand for biosynthetic intermediates that are sourced from the CBBC (glyceralde-3-phosphate and D-521 

erythrose-4-phosphate, respectively). Photosynthetic microorganisms, which include diatoms, naturally 522 

redirect carbon and energy to storage molecules under conditions of nutrient deprivation, such as 523 

nitrogen limitation (Alipanah et al, 2015). This phenotype forms the basis for much of the interest in 524 

biofuel applications of these phototrophs (Levering et al, 2015). Thus, a reasonable strategy and potential 525 

future direction is the diel separation of carbon fixation and bioproduct formation. It may be that 526 

rerouting these metabolites from sugar polymer degradation via the pentose phosphate pathway or 527 

mitochondrial β-oxidation of lipids (Jallet et al, 2020) may alleviate some of the pressure on the CBBC. 528 

The next step is to build and test these strains to initiate the first iteration of the DBTL cycle. 529 

During the test phase, the model constraints provide a roadmap for relevant process parameters and a 530 

framework to evaluate process performance, to include assessments on the efficiency of EET usage. It is 531 

important to note our design simulations do not include possible changes in photophysiology due to strain 532 

engineering (e.g., an increase in PO). However, physiological outputs from the testing of the strain designs 533 

proposed can be re-integrated into the modeling framework described here to include changes in 534 

experimentally derived constraints. This contributes to the learn step of the DBTL cycle, closing the loop 535 

on the first iteration and enabling an updated design strategy for the next iteration. 536 

Taken together, our results show integrating relevant measurements of photosynthetic 537 

physiology with genome-scale models results in quantitative predictions of condition-specific phenotypes. 538 

This paves the way for iterative design and real-time process control of photobioproduction platforms. 539 

  540 
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Methods 541 

Culture conditions 542 

Phaeodactylum tricornutum CCAP 1055/1 was grown axenically in silicon-free Instant Ocean 543 

artificial seawater (salinity 35‰). Nutrients were added according to the stoichiometry described in 544 

(Guillard, 1975) but at 2.3 fold higher concentrations to avoid nutrient limitation. Cells were cultured at 545 

18°C in 400 mL medium in 1 L Roux flasks. Flasks were bubbled with air (1 L air L-1 culture minute-1) under 546 

continuous illumination in a temperature-controlled incubator. Cultures were light acclimated (low light 547 

(n=3) at 60 µmol photons m-2 s-1, high light (n=4) at 600 µmol photons m-2 s-1) for 72 hours, diluted and 548 

grown until mid-exponential phase before being harvested.  549 

Cell physiology measurements 550 

Cell densities were determined using a BD Accuri C6 flow cytometer as described in (Jallet et al, 551 

2016a). Growth rates were determined based on the change in cell counts from inoculation to harvest. 552 

Cell dry weight was determined by taking 50 mL of culture (n=3) and filtering onto a GF/C glass microfiber 553 

filter (diameter: 47mm). Filters containing cellular biomass and media controls (n=3) were dried at 95°C 554 

overnight. Cellular dry weight was determined by subtracting the post-drying mass from the pre-drying 555 

mass, after normalizing to the media control.  556 

Determination of cell dimensions 557 

One µL of Lugol’s solution was added to 1 mL of culture and the sample was stored at 4°C until 558 

analysis. For imaging, thin pads of 1% (wt/vol) agarose were prepared using Mini-PROTEAN R Tetra Cell 559 

Casting Module. From this gel, 1-2 cm square pads were cut and placed onto a microscope slide and 2-5 560 

µl cell culture liquid was added to the pad and let dry. Then a microscope slide cover was gently placed 561 

onto of the agarose pad and cells were imaged using a DeltaVision inverted epi-fluorescence microscope 562 

(Applied Precision, Issaquah, WA). Images were captured using a CoolSnap HD charge-coupled device 563 

(CCD) camera (Photometrics, Tucson, AZ). Cell length and width were determined using the straight-line 564 
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tool in ImageJ (Schindelin et al, 2015) and used to determine cell volume [high light (n=94) and low light 565 

(n=46) acclimated cells]. P. tricornutum was modeled as a core ellipse with two cones extending away 566 

from the core ellipse. The core ellipse was calculated according to the following equations: 567 

𝑉𝑜𝑙 =  
4

3
𝜋(𝑆𝑚𝑎𝑗 ×  𝑆𝑚𝑖𝑛

2 )   Eq. 1 568 

𝑆𝑚𝑎𝑗 =
(𝑙−2𝑤)

2
   Eq. 2 569 

𝑆𝑚𝑖𝑛 =
𝑤

2
   Eq. 3 570 

where l is the cell length and w is the cell width. 571 

The cones were calculated according to the following equation: 572 

𝑉𝑜𝑙 =  
1

3
𝜋((𝑟2)2 + (𝑟2𝑟1) + (𝑟1)2)ℎ   Eq. 4 573 

where r2 is equal to w/4, r1 is equal to 1 µm and h the cell width. Mean and standard deviation were 574 

determined using the Python Numpy package (Harris et al, 2020). 575 

Pigment extraction 576 

Cells (4 mL of liquid culture) were collected by centrifugation at 10,000 x g at 5°C for 15 minutes. 577 

The supernatant was discarded and the cell pellet was frozen at -80°C until processing. Chlorophyll was 578 

extracted with 50 µL DMSO and 1950 µL of methanol, incubated in the dark for 30 minutes, and 579 

centrifuged at 10,000 x g at 5°C for 15 minutes. The pigment containing supernatant was transferred to a 580 

1 cm path length cuvette. Absorbance spectra were collected using a Cary 60 UV-Vis Agilent 581 

spectrophotometer in scan mode (350-800 nm, scan interval of 1 nm). Chlorophyll a and c concentrations 582 

were determined using the equations for methanol (Ritchie, 2008).  583 

Cellular absorption coefficients  584 

Cellular absorption coefficients were determined based on published protocols (Moore et al, 585 

1995). Approximately 5x107 cells were collected by filtration onto a GF/A glass microfiber filter (21 mm 586 

diameter). The filter was cut to fit in a 1 cm path length cuvette and placed against the inside of the 587 
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cuvette. Absorbance spectra were collected used a Cary 60 UV-Vis Agilent spectrophotometer in scan 588 

mode (350-800 nm, scan interval of 1 nm). A total of 4 technical replicates were collected per sample and 589 

averaged. To decrease the noise from filter scattering, the absorbance spectra were smoothed using a 590 

Savitzky-Golay filter (width= 17 nm, polynomial = 2nd order) as implemented in SciPy (Virtanen et al, 2020). 591 

The resulting spectra were blank subtracted against the appropriate media and normalized to an OD750 592 

value of 0. The wavelength specific absorption coefficient was determined, along with correcting for filter 593 

amplification according to the following equation: 594 

𝑎𝜆 = 2.303 (𝐴(𝑂𝐷𝜆) + 𝐵(𝑂𝐷𝜆
2))   Eq. 5 595 

where ODλ is the absorbance at a given wavelength and A and B are species-specific coefficients for the 596 

β-factor correction (0.388 and 0.616) (Finkel & Irwin, 2001). The cell normalized absorption coefficient 597 

(a*cell, units: cm2 cell-1) and the pigment normalized coefficient (a*pigm, units: cm2 µg-1 pigments) were 598 

determined by dividing aλ by either the total number of cells deposited on the filter or the total pigment 599 

mass, respectively, and then multiplying the resulting value by the filter area onto which the cells were 600 

deposited (2.1 cm2 for the 21 mm diameter GF/A filter). 601 

Simultaneous oxygen evolution and chlorophyll fluorescence parameters 602 

Rapid light curves (RLCs) were performed as outlined previously (Jallet et al, 2016a; Broddrick et 603 

al, 2019b). A Walz Dual PAM 100 fluorometer in a temperature controlled custom cuvette holder and a 604 

FireSting Optical Oxygen Meter were used for the simultaneous measurement of chlorophyll fluorescence 605 

and oxygen evolution. Approximately 30 mL of culture was removed, and cells were pelleted by 606 

centrifugation (3000 x g, 10 minutes at the experimental temperature). Cell pellets were resuspended in 607 

fresh media to the target cell density (HL: 2x107 cells mL-1, LL: 1x107 cells mL-1) and kept in the dark for 10 608 

minutes prior to analysis. For select experiments, the cells were reconstituted in fresh media 609 

supplemented with 5 mM sodium bicarbonate. Dark respiration rates were collected for approximately 610 

10 minutes prior to running RLCs. A red actinic light (635 nm) was used to provide a saturating pulse (600 611 
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ms, 10,000 µmol photons m-2 s-1) for fluorescence measurements. Cells were step illuminated (HL: 60 612 

seconds, LL: 90 seconds) at the following increasing intensities (µmol photons m-2 s-1): 613 

HL: 0, 8, 24, 43, 75, 109, 146, 195, 259, 339, 435, 547, 674, 844, 1033, 1565, 2386, 2924 614 

LL: 0, 8, 24, 43, 75, 109, 146, 195, 259, 339, 435, 547, 844, 1565, 2386, 615 

followed by the red actinic saturating pulse. 616 

The chlorophyll fluorescence parameters Fv/Fm, Y(II), 1-qL and NPQ were determined as described 617 

(Schreiber et al, 1995; Kramer et al, 2004). Shading in the round cuvette was accounted for by calculating 618 

the attenuation across the cuvette path length as described previously (Broddrick et al, 2019b): 619 

𝑄𝐹𝐼𝑜
= 2 ∫ ∫ 𝐼𝑜𝜆

𝑦=𝑟

𝑦=0
(𝜆) −

𝜆=700

𝜆=400
𝐼𝑜𝜆

(𝜆)𝑒−𝑎𝑐𝑒𝑙𝑙
∗ (𝜆)⋅𝑐⋅2(𝑟2−𝑦2)

1
2𝑑𝑦 𝑑𝜆   Eq. 6 620 

where QFIo is the quantum flux in µmol photons m-2 s-1 at a given PAR value (Io), λ is the wavelength, Ioλ 621 

(λ) is the fraction of the PAR at a given wavelength λ, r is the radius of the cuvette (0.56 cm), a*cell is the 622 

wavelength-specific absorption coefficient in cm2 cell-1, and c is the cell density in cells cm-3. QF was 623 

converted to µmol photons cell-1 s-1 by multiplying QFIo by the rectangular surface area of the cuvette 624 

(width = 0.56 cm, height = 1.15 cm), converted to m2 and divided by the total number of cells in the cuvette. 625 

This QF value was used as the independent variable in plots of oxygen-based photosynthesis (PO) versus 626 

QF. 627 

 Time-course measurements of oxygen evolution were exported from the FireSting O2 Logger 628 

software as a .txt file. The data was aligned to the PAM data irradiance values and the first 10 seconds of 629 

data after each increase in irradiance was discarded as the O2 evolution rate stabilized at the new 630 

irradiance value. The oxygen evolution rate was determined by taking the slope of the O2 versus time plot 631 

for the remaining time interval (50 seconds for HL, 80 seconds for LL) using the Python SciPy package 632 

(scipy.stats.linregress) (Virtanen et al, 2020). The resulting oxygen evolution rates were then normalized 633 

to cell counts. Dark period respiration rates were determined in a similar manner by taking the slope of 634 

the oxygen consumption versus time curve for the last 2 minutes of the 10-minute dark acclimation period. 635 
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Membrane inlet mass spectrometry (MIMS) 636 

Membrane inlet mass spectrometry was measured similarly to (Broddrick et al, 2019a) and (Ware 637 

et al, 2020). Cells were collected for chlorophyll quantification according to (Jallet et al, 2016a), with 638 

spectrophotometric quantification performed in 100% methanol according to the equations provided in 639 

(Ritchie, 2008). Samples corresponding to 4 µg chlorophyll a mL-1 were collected and resuspended in fresh 640 

f/2 media. All steps were performed at 18°C.  2 mL of culture was loaded into a custom made cylindrical 641 

Accura ClearVue SLA cuvette. Oxygen evolution and consumption was measured using a quad mass 642 

spectrometer (Pfeiffer PrismaPlus QMG220, Quadera v4.62). Dissolved gas was pulled through a silicon 643 

membrane, connected to the mass spectrometer via a stainless-steel tube with a vapor trap (ethanol and 644 

dry ice). Cells were bubbled with N2 to deplete oxygen (16O2, m/z = 32) from the suspension to 645 

approximately 50% of atmospheric oxygen concentrations. Cells were kept under constant stirring via a 646 

magnetic stir bar. The suspensions were injected with 18O2 (Cat #490474, Aldrich) and mixed for 10-15 647 

minutes until equilibration was achieved. 18O2 was then purged from the sample using a stopper leaving 648 

a 1.4 mL final culture volume. Gas consumption was measured in the dark for 5 minutes to calculate the 649 

respiration rate. Cells were then illuminated with a blue measuring light (Walz, Dual-PAM-100) to achieve 650 

a 0.2V fluorescence signal for 15 minutes to relax photoprotective processes. A white LED programmed 651 

to achieve 600 or 60 µmol photons m-2 s-1 (measured with Walz, ULM-500, US-SQS/L attachment) was 652 

used to illuminate cultures to their corresponding in situ light intensity for 7 minutes. The slopes of oxygen 653 

consumption (16O2, m/z = 32, and 18O2, m/z = 36) and evolution (16O2, m/z = 32) were calculated according 654 

to (Beckmann et al, 2009) using the mass charge (m/z) change on a per second basis, calculated over the 655 

last 30s of illumination. Argon (m/z = 40) was used to normalize oxygen concentrations, minimizing the 656 

effects of pressure change and abiotic gas consumption (Bailleul et al, 2015). 657 

Genome-scale metabolic modeling 658 
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Model and constraints: We used the P. tricornutum genome-scale model (GEM) iLB1034 659 

(Broddrick et al, 2019a). Simulations were performed in a similar manner to (Broddrick et al, 2019b). The 660 

biomass objective function was updated to account for differences in pigments between the low and high 661 

light conditions (Table 1). Photoautotrophic growth was simulated for a 12-hour (high light) or 24-hour 662 

(low light) growth period broken into 20 minute pseudo-steady-state segments. Light was modeled 663 

coming from the side of the flask. The Roux flasks had approximately 375 mL of culture at the time of the 664 

experiments resulting in a light-facing surface area of 80 cm2 and a path length of 4.7 cm. At the beginning 665 

of each simulation, the appropriate constraints were updated. First, the total biomass in the culture was 666 

divided by the cell dry weight to determine the total cells in the culture. Next, the photon uptake rate was 667 

determined by calculating the total light absorption along the 4.7 cm path length. We used the spectral 668 

distribution of photon flux for the given light source at the experimental irradiance (Io(λ)), the cell specific 669 

spectral absorption coefficient (a*λ), and the cell density (cells mL-1), to determine the photon uptake flux 670 

(Ia) in units of µmol photons (time interval)-1 using the following equation: 671 

𝐼𝑎 = ∫ 𝐼𝑜(𝜆) − 𝐼𝑜(𝜆)
700

400
𝑒−𝑎𝑐𝑒𝑙𝑙

∗ (𝜆)∗
𝑐𝑒𝑙𝑙

𝑚𝐿
∗𝑙𝑑𝜆   Eq. 7 672 

The sum of absorbed light at each wavelength between 400 and 700 nm was used to set the reaction 673 

bounds of the photon exchange reactions in the GEM (reaction ID: EX_photon_e). 674 

The PO vs. QF curves were fit to a Platt [128] equation for photosynthesis prediction (P), using 675 

quantum flux as the independent variable.  676 

𝑃 = 𝑃𝑚𝑎𝑥 (1 − 𝑒
−

𝛼×𝑄𝐹

𝑃𝑚𝑎𝑥) 𝑒
−

𝛽×𝑄𝐹

𝑃𝑚𝑎𝑥    Eq. 8 677 

Pmax is the maximum photosynthetic rate, and α and β are parameters that describe the initial slope of the 678 

curve, and the photoinhibition (if present), respectively. The respiration rate was added to all values prior 679 

to generating the fit since the Platt curve is forced through the origin. The respiration rate was then 680 

subtracted from the fit to return the curve to the gross oxygen evolution rate. These curves were used to 681 
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determine the oxygen evolution rate based on the total absorbed quantum flux and used to set the 682 

bounds of the oxygen exchange reaction in the GEM (reaction ID: EX_o2_e). 683 

Integrating chlorophyll fluorescence measurements into the genome-scale model: Chlorophyll 684 

fluorescence parameters were incorporated into the GEM based on the experimental values for Y(II), 685 

Y(NPQ) and Y(NO). The Y(II) vs. QF data was fit to an exponential decay function (HL: 𝑌(𝐼𝐼) =686 

0.64𝑒−1.17𝑥109∗𝑄𝐹, R2 = 0.99; LL: 𝑌(𝐼𝐼) = 0.70𝑒−8.54𝑥108∗𝑄𝐹, R2 = 0.99). Y(NPQ) vs. QF was fit to a Hill 687 

function: 688 

𝑌(𝑁𝑃𝑄) =  
1

1+(
𝐾𝑎
𝑄𝐹

)𝑛
   Eq. 9 689 

Where HL: n=5.5, Ka = 1.37 x 10-9 and LL: n=3, Ka=2.30 x 10-9. For each simulation, the calculated QF was 690 

used to determine the Y(II) and Y(NPQ) values. Y(NO) was defined as: 691 

𝑌(𝑁𝑂) = 1 − (1 −
𝐹𝑣

𝐹𝑚
) − 𝑌(𝐼𝐼) − 𝑌(𝑁𝑃𝑄)   Eq. 10 692 

The fraction of absorbed photons available to perform photochemistry was constrained using the 693 

following model reaction: 694 

𝑃𝐻𝑂_𝑃𝑆𝐼𝐼𝑡_𝑢: 𝑝ℎ𝑜𝑡𝑜𝑛_ℎ → 𝐴 𝑝ℎ𝑜𝑡𝑜𝑛_1 − 𝐹𝑣𝐹𝑚_𝑢 + 𝐵 𝑝ℎ𝑜𝑡𝑜𝑛_𝑌𝐼𝐼_𝑢 + 𝐶 𝑝ℎ𝑜𝑡𝑜𝑛_𝑌𝑁𝑃𝑄_𝑢 + 𝐷 𝑝ℎ𝑜𝑡𝑜𝑛_𝑌𝑁𝑂_𝑢  Eq. 10 695 

Where PHO_PSIIt_u is the model reaction name, photon_h is the pool of excitation energy available to 696 

both PSII and PSI to perform photochemistry (equivalent to quantum flux, QF), A is the fraction of 697 

excitation energy lost upstream of the photosystems, B is the Y(II) value at the experimental QF, C is the 698 

Y(NPQ) at the experimental QF, and D is Y(NO) at the experimental QF. Only photon_YII_u was included 699 

in the model PSII reaction; thus, limiting the amount of excitation energy to perform photochemistry to 700 

the Y(II) fraction.  701 

Non-growth associated maintenance (NGAM): NGAM was calculated from the experimental dark 702 

respiration rate. This value was set as the lower bound for a fictional quinone oxidase (reaction ID: NGAM), 703 
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which forces a minimal amount of reductant mediated oxygen consumption consistent with the observed 704 

dark respiration rate. 705 

Determination and integration of damage to the D1 subunit of PSII: Cells were cultured as outlined 706 

above. Exponential phase cultures were split into control and lincomycin treatments in biological 707 

triplicates. Lincomycin infiltration was achieved by inoculating cultures with 500 µg mL-1 lincomycin for 10 708 

minutes in the dark (Key et al, 2010). Samples were collected for cell counts, absorption spectra, Fv/Fm 709 

and Western blots at 0, 15, 30, 60 and 90 minutes. 2 mL of cells were collected in Eppendorf tubes and 710 

transferred to 10 μmol photons m−2 s−1 with a red-light filter for 20 minutes to relax NPQ. Cells were 711 

collected on a glass fiber prefilter (Merck Millipore Ltd). A measuring light intensity was applied to elicit a 712 

0.15-0.2 V instrument response at the experimental irradiance. It was provided for 30 sec for accurate 713 

determination of F0. A saturating pulse (600 ms, 10,000 μmol photons m−2 s−1, 635 nm) was applied to 714 

determine Fm, and calculate the maximum photochemical quantum yield of PSII (Fv/Fm). The D1 715 

concentration as a fraction of total protein was determined by SDS-PAGE and Western blots as detailed 716 

in (Jallet et al, 2016a) with some minor modifications. For Western blot analysis, 0.8 µg of total sample 717 

protein in 25 µl total volume was loaded into Novex WedgeWell 10-20% Tris-Glycine Gels. Alongside 718 

samples, PsbA D1 protein quantitation standards (Agrisera, #AS01 016S) were run. Standards were loaded 719 

at the same volume as samples, being diluted in the same sample buffer  (Jallet et al, 2016a). D1 protein 720 

standards were loaded at three concentrations, ensuring samples fell within linear range. Standards and 721 

samples D1 protein content was quantified by densitometry (ImageJ, v1.53 722 

https://imagej.nih.gov/ij/download.html). Values from the quantification of sample D1 protein 723 

concentration were divided by total protein loaded to calculate D1 protein as a percentage of total protein. 724 

 The D1 decay rate in lincomycin treated cells was determined using equation 5 from (Campbell & 725 

Tyystjärvi, 2012).  726 

[𝐴]𝑡 = [𝐴]0𝑒−𝑘𝑃𝐼𝑡   Eq. 11 727 
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The first-order decay constant, kPI was calculated from the from the change in the maximum quantum 728 

yield of PSII (Fv/Fm) between cells with and without lincomycin treatment. [A]0 was determined from the 729 

D1 content as a fraction of total protein calculated from the Western blot analysis. The steady-state D1 730 

damage rate in percent total protein h-1 is equal to the first derivative of the above equation solved at a 731 

given steady-state fraction of D1 subunits undergoing repair:  732 

𝐷1𝑑𝑎𝑚𝑎𝑔𝑒 =  −𝑘𝑃𝐼[𝐴]0𝑒−𝑘𝑃𝐼𝑡   Eq. 12 733 

We approximated the steady-state fraction undergoing repair using the difference between Fv/Fm and Y(II) 734 

values in the RLCs with a 10 s blue light treatment, at the experimental QF (Fig. S4), under the hypothesis 735 

the residual decrease in quantum efficiency was due to inactive PSII complexes undergoing repair. The 736 

final D1 damage constraint in mmol D1 gDW-1 h-1 was calculated with the following equation: 737 

𝑁𝐺𝐴𝑀_𝐷1 =
𝑔 𝐷1

𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 × ℎ𝑜𝑢𝑟
 × 

𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑔 𝐷𝑊
 ×  

1 𝑚𝑚𝑜𝑙 𝐷1

39.651 𝑔 𝐷1
   Eq. 13 738 

Where the first term is the steady-state damage rate, the second term is the protein fraction of the total 739 

biomass (0.70 for high light, 0.64 for low light) and the third term is the formula mass of the P. tricornutum 740 

D1 subunit (39,651 Da). The model constraint was set from the mean steady-state damage rate and the 741 

upper and lower bounds were calculated by combining the variances of ±1 percent standard deviation of 742 

the Western blot analysis, ±1 percent standard deviation of the kPI value from the lincomycin treatment 743 

data, and a 5% error on the biomass protein fraction for a total of 20% standard deviation for the high 744 

light value and a 29% standard deviation for the low light value. 745 

Genome-scale model simulations: The simulation was performed by maximizing the biomass 746 

objective function (BOF) reaction using the parsimonious FBA function (Lewis et al, 2010) as implemented 747 

in COBRApy (Ebrahim et al, 2013). The flux through this reaction is equal to the biomass accumulation in 748 

milligrams over the 20-minute time interval. This biomass was added to a running total of the total culture 749 

biomass and used to parameterize the next 20-minute simulation interval. The simulations included the 750 

mean and ±1 standard deviation of the a*cell values, cell dry weight to determine the cell count at each 751 
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time interval, and the oxygen evolution rate versus QF. This resulted in a set of 27 parameters for which 752 

growth rate was determined using the following equation: 753 

𝜇 =  
ln (

𝑁𝑡
𝑁0

)

𝑡
   Eq. 14 754 

The mean, maximum and minimum growth rates are reported. For the bicarbonate spiked simulation, the 755 

mean values were used for all parameters except the oxygen uptake rate which was parameterized using 756 

a Platt fit through the bicarbonate spiked PO vs. QF curve. Reaction fluxes were exported into a csv file 757 

with Python and visualized in Escher (King et al, 2015). 758 

For simulations with varying constraints, the model was parameterized with a combination of the 759 

following constraints (unconstrained refers to an arbitrarily high value that doesn’t limit growth): photons 760 

(hv): the model photon exchange reaction (EX_photon_e) was set to the calculated QF value; oxygen 761 

evolution (PO): the model reaction EX_o2_e lower bound was set to the experimental oxygen evolution 762 

rate at the calculated QF; D1: the D1 damage rate was included; Y(II): the pseudo-reaction PHO_PSIIt_u 763 

that accounts for the 1-Fv/Fm, Y(II), Y(NPQ) and Y(NO) fractions was included. To calculate excess energy 764 

in the system a demand reaction was added to the model upstream of the photosystems that allowed any 765 

excess QF to leave the model (reaction ID: DM_photon_c). The flux through this reaction is equal to the 766 

excitation energy in excess of the requirements to generate biomass and satisfy NGAM (see above). For 767 

all other simulations, the bounds of this reaction were set to 0. For analyses that required a range of 768 

feasible fluxes through a model reaction, flux variability analysis (FVA) was used as implemented in 769 

COBRApy (Ebrahim et al, 2013) with the ‘loopless’ option set to ‘True’. 770 

Bioengineering applications simulations: Linear electron transport (LET) was defined as the flux 771 

through photosystem I (PSI) minus the flux through cyclic electron flow (CEF). To determine the %LET 772 

allocated to each biomass component, we first determined the EET in the system by opening the 773 

DM_photon_c reaction, set the lower bound of biomass objective function (BOF) to 99.9% of maximum 774 

and then maximized the DM_photon_c flux. This set the baseline LET required for generating biomass. 775 
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We then iterated over each biomass component, removing the component from the BOF and then 776 

adjusting the BOF reaction bounds to (1-biomass component fraction) * maximum. Flux through the 777 

DM_photon_c reaction was once again maximized and the difference between this flux value and that for 778 

the full BOF was considered the photons necessary to produce the removed biomass component. 779 

 Bioproduction of representative compounds were performed by selecting a model metabolite for 780 

biosynthesis (plastid fatty acids: hexadecanoate, model id: hdca_h; the shikimate pathway: chorismate, 781 

model id: chor_h; and isoprenoid precursors: isopentenyl pyrophosphate, model id: ipdp_h). The default 782 

model was solved for maximum biomass (in mg cell dry weight), and subsequent simulations fixed the 783 

biomass production at 10% intervals from 50% to 90% of this maximum. A demand reaction was added 784 

to the model allowing the representative pathway metabolite (hdca_h, chor_h, or ipdp_h) to leave the 785 

system. The model objective was set to maximize this demand reaction. EET was determined as outlined 786 

above for all combinations of biomass reallocation and metabolite production. All calculations and 787 

simulations were performed using in-house scripts developed in IPython (Fernando et al, 2007). For 788 

pathway engineering analysis, the reaction fluxes for the 70% biomass results (30% of cellular biomass re-789 

routed to bioproduct formation) were exported into a csv file with Python and visualized in Escher (King 790 

et al, 2015). All simulation code, models, flux simulations and metabolic maps are available in the 791 

Supplemental Material. 792 

Data Availability 793 

 All code used to analyze and generate the results and figures for this study, along with input data, 794 

can be found at https://github.com/JaredTBrod/PAM_GEMs. 795 
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Supplemental Figures and Tables 958 

 959 

  
D1 damage 

constant 
D1 protein 

D1 damage 
constraint* 

Maintenance cost 

  (min-1) (% total protein) (mmol D1 gDW-1 h-1) (mmol NTP gDW-1 h-1) 

Low Light 6±1 x10-4 1.1±0.2 7±2 x10-6 8±2 x10-3 

High Light 2.33±0.17 x10-2 1.1±0.1 2.53±0.51 x10-4 0.27±0.06 

Table S1: Photosystem II D1 subunit damage rates and resulting maintenance cost for P. tricornutum acclimated to high and 960 
low light. 961 
* Protein fraction in the model biomass function is 0.70 for HL and 0.64 for LL. 962 

 963 

 964 

 965 
Figure S1. Chlorophyll-normalized photosynthetic rate versus quantum flux. Chlorophyll normalized PO versus PAR curve. 966 
Abbreviations and definitions: LL: low light, HL: high light, PAR: photosynthetically available radiation. Data based on n=3 biological 967 
replicates for LL and n=4 biological replicates for HL. 968 
 969 
 970 

 971 

 972 
Figure S2. Correlation between physiology parameters at Low and High Light acclimation. (A) Oxygen evolution, 1-qL (fraction 973 
of closed reaction centers (RCs)) and Y(NPQ) versus quantum flux for cells acclimated to low light. (B) Oxygen evolution, 1-qL and 974 
Y(NPQ) versus quantum flux for cells acclimated to high light. Vertical dashed line indices the quantum flux value where Y(NPQ) 975 
exceeds 5% of the Fv/Fm fraction. 976 
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  977 

 978 
 979 
Figure S3. Impact on photosynthetic parameters with and without 5mM bicarbonate. (A) Cell-specific PO versus QF curve for P. 980 
tricornutum acclimated to high light with and without 5 mM sodium bicarbonate. Vertical dashed lines represent the quantum flux 981 
received by the cultures at the experimental irradiance. (B) Cell-specific PO versus QF curve for P. tricornutum acclimated to low light 982 
with and without 5 mM sodium bicarbonate. Vertical dashed lines represent the quantum flux received by the cultures at the 983 
experimental irradiance. (C) Chlorophyll fluorescence measurements (PAM) of P. tricornutum acclimated to high light with and without 984 
bicarbonate additions. Filled in symbols: +5mM sodium bicarbonate; empty symbols: -5mM sodium bicarbonate. Abbreviations. HL: 985 
high light, QF: quantum flux. 986 
 987 
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 988 

 989 
 990 

Figure S4. Incorporation of chlorophyll fluorescence parameters in the genome-scale model. Values for the pseudo-991 
reaction are representative of the high light acclimated samples.  Abbreviations: hν: photon flux, QF: quantum flux, PSI_QF: 992 
quantum flux allocated to photosystem I, Fdxox/red: oxidized/reduced ferredoxin, PCox/red: oxidized/reduced plastocyanin, PQ: 993 
oxidized plastoquinone, PQH2: reduced plastoquinone.  994 

 995 
 996 

 997 

 998 

 999 

 1000 

Figure S4. Maximum quantum yield of photosystem II with and without lincomycin treatment. Maximum quantum yield of 1001 
photosystem II (Fv/Fm), with and without lincomycin treatment, for cells acclimated to (A) high light (n=3) and (B) low light (n=3). 1002 

 1003 
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 1004 
 1005 
 1006 

 1007 
Figure S5. (A) Chlorophyll fluorescence parameters vs. PAR for cells acclimated to low light. (B) Chlorophyll fluorescence parameters 1008 
vs. PAR for cells acclimated to high light. Vertical dashed lines represent the PAR at the experimental irradiance. Abbreviations and 1009 
definitions: LL: low light, HL: high light, PAR: Photosynthetically available radiation, Y(II): quantum efficiency of photosystem II, NPQ: 1010 
non-photochemical quenching, Y(NO): unregulated, non-radiative dissipation of excitation energy. Data based on n=3 biological 1011 
replicates for LL and n=4 biological replicates for HL. 1012 
 1013 
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