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ABSTRACT   Two-dimensional (2D) cell culture systems have provided controlled, 22 

reproducible means to analyze host-pathogen interactions. Although inexpensive, straightforward, and 23 

requiring very short time commitment, these models recapitulate neither the functionality of multi-24 

layered cell types nor the microbial diversity of an infected human. Animal models have commonly 25 

been used to recreate the complexity of human infections. However, extensive modifications are 26 

commonly required to recreate interactions that resemble those in the human reproductive tract 27 

microbiologically and physiologically. Three-dimensional (3D) cell culture models have emerged as 28 

alternative means of reproducing key elements of human infections at a fraction of the cost of animal 29 

models and on a scale that allows for replicative experiments to be readily performed. Here we 30 

describe a new 3D model that utilizes transwells with epithelial cells seeded apically and a basolateral 31 

extra cellular matrix (ECM)-like layer containing collagen and fibroblasts. In this system, basal 32 

feeding creates a liquid/air interface on the apical side. The model produced tissues with close 33 

morphologic and physiological resemblance to human cervical and vaginal epithelia, including 34 

observable levels of mucus produced by cervical cells. Infection by both Chlamydia trachomatis 35 

and Neisseria gonorrhoeae was demonstrated as well as the growth of bacterial species observed in the 36 

human vaginal microbiota, enabling controlled mechanistic analyses of the interactions between host 37 

cells, vaginal microbiota and STI pathogens. Future experiments may include immune cells to mimic 38 

more closely the genital environment. Finally, the modular set up of the model makes it fully 39 

applicable to the analysis of non-genital host-microbiome-pathogen interactions. 40 

 41 

IMPORTANCE  Infected sites in humans are a complex mix of host and microbial cell types 42 

interacting with each other to perform specific and necessary functions. The ability to understand the 43 

mechanism(s) that facilitate these interactions, and interactions with external factors is paramount to 44 

being able to develop preventative therapies. Models that attempt to faithfully replicate the complexity 45 

of these interactions are time intensive, costly, and not conducive to high throughput analysis. Two-46 

dimensional (2D) models that have been used as a platform to understand these interactions, while 47 

cost effective, are generally limiting in experimental flexibility and structural/physiological relevance. 48 

Our three-dimensional (3D) models of the cervicovaginal epithelium can facilitate analysis of 49 

interactions between the host epithelium, sexually transmitted pathogens and bacteria present in the 50 

vaginal microbiota. Due to the modular design, additional cell types and environmental modulators can 51 

be introduced to the system to provide added complexity, approaching conditions in the infected 52 

human host. 53 

 54 
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 57 

Eukaryotic cell culture systems have been a staple of host-pathogenesis research for decades as 58 

they provide the means to model in vivo interactions in a controlled and reproducible in vitro 59 

environment. The mainstay of this approach is a flat surface 2-dimensional (2D) model where cells are 60 

grown as a monolayer on a solid impervious surface, usually plastic or glass treated with polymers that 61 

enhance cell adhesion. This method is inexpensive, accommodates many adherent cell types and 62 

imaging of the cells is relatively straightforward [1-3]. While 2D models have provided a wealth of 63 

information on host-pathogen interactions, they do not faithfully reproduce the physiological 64 

complexity of these interactions as they occur within or on the host organism. Notably, 2D cell culture 65 

systems may not be representative of in vivo cell morphology, lack true cellular junctional complexes 66 

and fail to account for the effect of differing cell types usually found within the environmental milieu 67 

[3, 4]. Experimentally, the design of the 2D systems is also limiting, as it does not allow the 68 

introduction of an air interface or the incorporation of extracellular matrices (ECM) that produce 69 

needed signaling and crosstalk molecules. This means that many of the predictions derived from 2D 70 

cell culture models do not hold true when applied to in vivo situations, as seen in cervical cancer 71 

models [5], and other pathogen-host models [6, 7].  72 

 To overcome these obstacles, models for multiple diseases and conditions have been developed 73 

in animals. These afford the ability to follow a progressing infection in a complex environment that 74 

can replicate many properties of the human host, e.g., local physiology and host response, but falls 75 

short on many others e.g., the structural and polymicrobial environments. Additional manipulations 76 

and modifications are also often required to maximize susceptibility to human-specific infectious 77 

agents [8-13]. The use of animal models for STI research is further complicated by the need to use 78 

animal-adapted pathogens strains, as is the case with C. trachomatis, or alternate species that have 79 

coevolved with their host, as is the case with Chlamydia caviae and Chlamydia muridarium [14-17]. 80 

Lastly, animal models are often expensive to develop and maintain. This high cost may limit the 81 

number of replicate experiments and thus exhaustive investigations are not usually undertaken.  82 

 Three-dimensional (3D) cell culture models provide a practical, cost-effective alternative to 83 

animal models while also greatly improving the modelling value of 2D culture systems. 3D models can 84 

capture many aspects of the native in vivo physiology including cell morphology, organization, and 85 

communication that cannot be replicated in typical 2D models. This includes, but is not limited to, the 86 

ability to replicate complex tissue interactions, create and maintain intercellular interactions including 87 
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junctional complexes, facilitate differentiation and polarization, mimic cellular behavior and integrate 88 

the site-specific microbial environment [4, 18-26]. Over the past decade various 3D cell culture 89 

reproductive tract model systems have been developed. These range from hydrogels [25, 27], and self-90 

assembled organoids [3, 28], to microfluidics organ-on-a-chip models [23]. Hydrogels are usually 91 

placed on a scaffold and cells can be grown within or on top of the hydrogel, with 7 to 21 days 92 

necessary for full differentiation. These models have been used to analyze bacterial growth patterns, as 93 

well as targeted aspects of pathogenicity for multiple pathogens including ZIKA, HSV, Chlamydia 94 

spp., Neisseria gonorrhoeae and HIV [22, 29-34]. Similarly, self-assembled organoids can be grown 95 

either on a scaffold (i.e., collagen-coated beads) or scaffold free where cells are placed in suspension 96 

and self-aggregate to form a more complex structure. Organoid-based models have been used for 97 

mechanistic studies of bacterial pathogenesis [21, 28, 35-38]. 3D models generally closely mimic 98 

infections of multiple pathogens [22, 27, 30, 34, 36, 39] as well as environmental parameters [8, 29, 99 

40] as they occur in vivo.  100 

 Whereas advances in hydrogel-based and organoid-based systems can recapitulate the 3D 101 

environment and multicellular nature needed to mimic aspects of the in vivo context, to an extent 102 

reproducibility is difficult owing to their stochastic cellular organization and/or time needed to 103 

establish the model. Organ on-a-chip models can overcome some of these limitations. Microfluidic 104 

modules that integrate parameters such as flow, mechanical stress, and the introduction of multiple 105 

environmental cues in any orientation around the cell(s) of interest can be developed [41-44]. This 106 

allows for organ-like systems that can be functionally maintained for extended periods of time 107 

allowing for more in-depth analysis. [20, 23]. However, the high cost of set up and maintenance of 108 

some of these models may not be feasible for many laboratories interested in studying host-pathogens 109 

interactions of the female reproductive tract. Indeed, there have been limited efforts towards the 110 

development of organ-on-a-chip systems to model infections of the reproductive tract. 111 

 In this study, we developed and characterized a 3D transwell cell culture model characterized 112 

by morphologically and physiologically differentiated vaginal and cervical epithelial cells that support 113 

the growth of bacteria found in the vaginal milieu and enable infection by both C. trachomatis [45] and 114 

N. gonorrhoeae. The transwell polyester membrane provides scaffolding support for the epithelial cells 115 

while allowing close proximity to an ECM and fibroblast network. By using the non-cancerous, mucin 116 

producing cell line (A2EN) [46], the model recapitulates critical aspects of the in vivo environment 117 

where mucins play an important role [47, 48]. Relatively low cost and short set-up time required to 118 

establish the model, enables the testing of multiple replicates in parallel under multiple conditions in a 119 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.11.04.467382doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467382


semi-high throughput process. This model may serve as a primer for the future development of more 120 

elaborate 3D organ-on-a-chip model systems. 121 

 122 

RESULTS 123 

The epithelial 3D transwell model structurally resembles in vivo cervical and vaginal 124 

epithelium. Transwells, basally coated with collagen and in the presence of human fibroblasts, 125 

mimicking the in vivo basement membrane of the epithelium, were used to develop a 3D model of the 126 

female reproductive tract epithelia (Fig. 1). In these models, basal only feeding and air interface 127 

exposure afforded the establishment of vaginal and cervical epithelia that morphologically closely 128 

resemble the structure of these epithelia in vivo (Figs. 2 and 3). Polarization of epithelial cells over 129 

time is usually an indication of their stage of development. We initially tested multiple types of 130 

collagen and coating methods to determine optimal conditions. Epithelial barrier integrity was 131 

evaluated using TEER values [49] measured over culture as the epithelial tissue formed. Basal 132 

collagen coating and fibroblast embedding showed a gradual increase in TEER values with peaks of 133 

approximately 600 ohms/cm2 on day 6 for A2EN cervical epithelial cells (Fig. 2A) and 1000 ohms/cm2 134 

on day 8 for VK2 vaginal epithelial cells (Fig. 3A). Other methods of collagen coating and fibroblast 135 

embedding, including apical coating (Figs. 2A and 3A), as well as basal or apical coating with 136 

embedded fibroblasts were tested (data not shown). Embedding of fibroblasts was detrimental to the 137 

integrity of the collagen layer and caused delamination from the transwell membrane.  138 

 Histology and electron microscopy were used to evaluate the structural and morphological 139 

features of the two epithelial cells models. Hematoxylin and eosin (H&E) staining confirmed the 140 

increased cell density and polarization of A2EN cervical epithelial cells (Fig. 2B) on day 6 as 141 

compared to day 1. Morphologically, the epithelial structure was similar to that observed in 142 

histological images of cervical tissue which comprises a compact single layer of epithelial cells (Fig. 143 

2B). Transmission electron microscopy (TEM) further confirmed these observations. The A2EN 144 

cervical epithelial cells form a monolayer of cells in tight contact with each other. An intact nucleus 145 

and cilia on the surface of the cell were also observed (Fig. 2C).  146 

 An important feature of cervical cells is their ability to produce mucus [50, 51]. A2EN cervical 147 

epithelial cells were selected for their demonstrated ability to produce mucus in a 2D model; a unique 148 

and important feature of this cell line [46].  Immunostaining for mucin 5B, a major protein component 149 

of mucus, shows that mucus is produced over a significant portion of the apical surface of the A2EN 150 

cervical epithelium (Fig. 2D), thus recapitulating a critical functional property of the cervical 151 

epithelium [51].  152 
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Histology and electron microscopy imaging of the VK2 vaginal epithelial model revealed a 153 

pronounced stratification at day 8 as compared to day 1 with multiple layers (up to 7) of cells observed 154 

(Fig. 3B and 3C). Further, maturation of VK2 epithelial cells was observed, with more mature cells in 155 

the upper layers and more immature cells in the lower layers. This organization mimics an integral 156 

feature of the vaginal epithelium, as glycogen, a key metabolite supporting the growth of the vaginal 157 

microbiota, accumulates in mature epithelial cells [52]. 158 

 3D cervical A2EN cells are infected by Chlamydia trachomatis and Neisseria gonorrhoeae. 159 

The ability of C. trachomatis (Ct) serovar L2 to infect cervical A2EN cells was assessed in both a 160 

conventional 2D model (Fig. 4A) of cells grown on coverslips and in the 3D transwell model described 161 

herein (Fig. 4B). While both models facilitated relatively robust infectivity (Fig. 4C), the A2EN 162 

cervical epithelium 3D model accommodated higher infection (71%) compared to the 2D model (57%) 163 

(p-value 0.019). Both models were both infected with 2x105 C. trachomatis elementary bodies 164 

representing a MOI of 2 and 1 for the 2D and 3D models respectively. Since the MOI was lower for 165 

the A2EN cervical epithelium 3D model, it demonstrated that a more efficient infection can be 166 

achieved in that model. The VK2 vaginal epithelium 3D model was also successfully infected with C. 167 

trachomatis (data not shown); however, as expected the level of infectivity was low (25%) since C. 168 

trachomatis predominantly infects cervical epithelial cells. TEM confirmed the infection, visualizing 169 

inclusions containing C. trachomatis at various developmental stages (Fig. 4D), with both elementary 170 

bodies (EBs) (infectious particles) and reticulate bodies (RBs) (metabolic/replicating particles) 171 

observed. While A2EN cervical epithelial cells are not robust producers of cytokines [46], we 172 

investigated the profiles of some common cytokines and found appreciable levels of IL-6, IL-8, IP10 173 

and RANTES (Fig. 4E). These results are similar to those observed in Buckner et al [46], where 174 

perceptible levels of IL-6, IL-8, IP10 and RANTES were detected. We observed that the cytokine 175 

response of the model in the presence or absence of a chlamydial infection was similar to that 176 

previously observed in this and other human and mouse cell lines [53-56]. These results indicate that 177 

the A2EN cervical epithelium 3D model could serve as a suitable platform for studies of chlamydial 178 

infection. 179 

 Another common sexually transmitted pathogen is N. gonorrhoeae [57], with anecdotal 180 

evidence suggesting that N. gonorrhoeae infection might lead to an increased risk of C. trachomatis 181 

infection [58, 59]. Utilizing wildtype and mutants of a common N. gonorrhoeae laboratory-adapted 182 

strain FA1090, we showed that transmigration of N. gonorrhoeae takes place within 6 hours in the 3D 183 

cervical A2EN model. This is similar to the transmigration period observed with a HEC-1-B 3D cell 184 

model (Fig. 5A), a cell line commonly used to analyze N. gonorrhoeae infections [60-63].  TEM 185 
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imaging shows N. gonorrhoeae attached to the surface of the A2EN cells (Fig. 5B), which is the first 186 

step in the pathogenic cycle. These results suggest that the 3D A2EN cervical epithelium model can 187 

also support investigations of N. gonorrhoeae pathogenesis. 188 

 The 3D vaginal model can sustain the growth of vaginal bacteria. The vaginal microbiota 189 

plays a key role in the cervicovaginal microenvironment [64]. We developed conditions that afford the 190 

growth of Lactobacillus crispatus and Gardnerella vaginalis on the 3D vaginal epithelium model. 191 

These two species are prominent members of vaginal bacterial communities that are found in optimal 192 

and non-optimal conditions, respectively [65]. These bacteria were used to inoculate on the 3D vaginal 193 

epithelium model and shown to grow for at least 48h under anaerobic conditions. Growth was first 194 

demonstrated by measuring the pH of culture medium in the apical compartment after 48h of growth. 195 

Media containing L. crispatus had a significantly lower pH of ~4.2 as compared to G. vaginalis (pH 196 

6.0) (Fig. 6A), As expected, L. crispatus acidified the microenvironment, while G. vaginalis did not. In 197 

vivo acidification is driven by the production of lactic acid by L. crispatus, typified with a higher 198 

proportion of D(-) lactate as compared to L(+) lactate [66-68]. A concentration of 7.41mM D(-) lactic 199 

acid was observed after 48h of growth with L. crispatus compared to 2.42 mM and 2.04mM with G. 200 

vaginalis or a no bacteria control, respectively (Fig. 6B). This finding demonstrates that L. crispatus is 201 

metabolically active and growing on the 3D vaginal epithelium model. Further microscopic analyses 202 

using both TEM (Fig. 6C i, ii, iii) and FISH (Fig. 6C iv, v, vi) showed the presence of live L. crispatus 203 

(Fig. 6C ii, v) and G. vaginalis (Fig. 6C iii, vi) on the model under anaerobic conditions after 48h 204 

growth. It is important to note that the model was gently rinsed with PBS before fixation thus any non-205 

adherent bacteria were removed, only bacteria attached to the epithelial surface or embedded in the 206 

mucin matrix were imaged. TEM afforded visualizing the physical localization of the bacteria in close 207 

proximity to the epithelial layer, while FISH staining confirmed the robust growth of the bacteria on 208 

the model. Viability staining (Fig. 6C vii, viii, ix) after 48h of bacterial growth indicated that vaginal 209 

epithelial cells remained viable (green staining on Fig. 6C), in contrast to a control comprising of 210 

epithelial cells exposed to 1% saponin which predominantly stain red and indicate dead cells (Fig. 6C 211 

x).  212 

 213 

 214 

 215 

 216 

DISCUSSION 217 
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2D cell culture models have been extensively used to study host-STI pathogen interactions. 218 

However, these models lack complexity and do not accurately mimic many of the physiological 219 

interactions that occur in host organisms, limiting interpretation and translation to complex human 220 

physiology. More specifically, 2D culture models are unable to recapitulate the native 221 

microenvironment including multicellularity, the composition of extracellular matrices (ECM), or 222 

various physicochemical properties and spatiotemporal molecular gradients [4, 69]. As such, many of 223 

the predictions derived using these 2D cell culture models often do not hold true when applied to 224 

conditions in vivo, as seen in cervical cancer models [5] and other pathogen-host models [6, 70]. We 225 

have advanced these models by developing 3D organotypic models of cervical and vaginal epithelia 226 

that include an interstitial compartment of collagen and associated fibroblasts. 3D epithelial models 227 

provide enhanced morphological and physiological cellular structures that can include inter-cellular 228 

interactions (i.e., junctional complexes), complex tissue interactions, differentiated and polarized 229 

epithelial structures, which taken together better mimic in vivo cellular behavior [4, 18-23, 25, 28]. The 230 

multi-layered structure of these models affords increases in complexity and experimental flexibility, 231 

such as the potential addition of different cell types, or even immune cells. 3D cell culture models 232 

partly fill a gap between the cost effectiveness of 2D cell culture and the complexity and high cost of 233 

organoids, organ-on-a-chip systems or animal models [8, 9, 11-13]. Animal models can be of limited 234 

use to study host-STI pathogen interactions because they are often lacking anatomical similarity to the 235 

human vaginal epithelium. For example, the lower reproductive tract of the mouse, an animal model 236 

commonly used in STI research, comprises of a keratinized stratified epithelium, while that of human 237 

is not keratinized. The 3D organotypic model we have developed is ideally suited for studies on the 238 

pathogenesis of STIs as it replicates many features of human cervicovaginal epithelia without the 239 

complexity, experiment-to-experiment variability and/or cost of organoids and animals. This proposed 240 

model will ultimately provide a way to study how the cervicovaginal microbiota interact with the host, 241 

and how these interactions increase or reduce the risk of infections by sexually transmitted pathogens.  242 

 We have shown that the model supports infection by C. trachomatis and N. gonorrhoeae, two 243 

of the most prevalent infections worldwide. C. trachomatis is an obligate human pathogen that requires 244 

host internalization for propagation while N. gonorrhoeae can replicate both outside and inside of 245 

epithelial cells. The 3D cervical model was able to reproduce characteristic features of infection by 246 

both pathogens. One can envision using these models to study co-infections or the role of a primary 247 

infection by C. trachomatis in susceptibility to infection by N. gonorrhoeae, or vice versa. Other 248 

potential co-infections, including with HSV, HPV or HIV could also be investigated. The model can be 249 
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enhanced further by adding more complex structures such as endothelial and/or immune cells to the 250 

basal compartment.  251 

 Importantly, the ability to grow vaginal bacteria on the 3D models of the vaginal and cervical 252 

epithelia is a critical first step toward modeling the in vivo complex microenvironment that includes a 253 

functional microbiota. Little is known about how the vaginal microbiota contributes to modulating the 254 

risk to STIs. Previous studies have postulated that indole-producing bacterial species such as 255 

Prevotella, Petpostreptococcus or Peptinophilus spp. can facilitate C. trachomatis replication [71-73], 256 

since C. trachomatis can use indole to synthesize tryptophan, an essential amino acid that genital C. 257 

trachomatis strains are incapable of producing. Tryptophan is present in the host extracellular and 258 

cytoplasmic compartments but can be depleted through the action of interferon (IFN)-γ which induces 259 

tryptophan catabolism by indoleamine-2,3-dioxygenase I (IDO) [74]. Mechanisms such as this have 260 

been difficult to study for at least three reasons: (1) it is unethical to perform many of these 261 

experiments in humans; (2) there are no cellular or biomimetic models of the cervicovaginal 262 

environment that include the microbiota; and (3) key features of the cervicovaginal space such as the 263 

dominance of Lactobacillus spp. and a low environmental pH (<4.5) are not found in other mammals 264 

that might otherwise be candidate animal models [75-77]. The 3D models developed in this study 265 

represent the first steps toward more advanced models that include complex microbiota. This 266 

component is critical, as the cervicovaginal microbiota exists in a mutualistic relationship with the 267 

cervicovaginal epithelium and is believed to play an important role in the risk to STIs. The microbiota 268 

is thought to constitute the first line of defense against STIs, but the mechanism(s) by which it exerts 269 

its protective effect(s) is/are unknown. Access to a model that reproduces the physiology and 270 

microbiology of the cervicovaginal space is thus critical. We have previously shown that an optimal 271 

microbiota dominated by Lactobacillus species, such as L. crispatus, produces copious amounts of 272 

lactic acid and a concomitant low environmental pH (<4.5). Lactic acid does not directly affect C. 273 

trachomatis bacteria but acts on the epithelium by decreasing epithelial cell proliferation, thus 274 

significantly inhibiting the infection process [45]. On the other hand, microbiota compositions 275 

associated with an increased risk to STIs tend to be similar to those observed in association with 276 

bacterial vaginosis (BV). BV is a condition that is generally defined by a high pH (>4.5), a microbiota 277 

characterized by the absence of Lactobacillus spp. and the presence of an array of strict and facultative 278 

anaerobes such as G. vaginalis, Atopobium vaginae, and Prevotella spp. The mechanisms by which a 279 

STI-permissive microbiota increase the risk to infection remains poorly understood. Based on our 280 

previous research we posit that a non-permissive indigenous microbiota interacts with the 281 

cervicovaginal epithelium to establish a homeostatic state that blocks STI and/or reduces disease 282 
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severity. Conversely, we propose that a permissive microbiota disrupts host epithelial cell homeostasis, 283 

thereby allowing STI to progress. Establishing reconstituted STI-permissive or non-permissive 284 

microbiota on an advanced 3D epithelial models will go a long way toward testing these hypotheses 285 

and improving our knowledge of the pathogenesis of STIs. 286 

 The 3D models developed in this study uses relatively inexpensive materials compared to 287 

organoids or organ-on-a-chip systems. These low-cost models afford performing replicate experiments 288 

in a semi high-throughput setup. In addition, this 3D model allows performing different analyses from 289 

one or replicate transwells, including resistance readings, measurements of pH, metabolite 290 

concentrations (i.e., lactate), cytokine concentrations, bacterial enumeration, and imaging 291 

(fluorescence, TEM) or omic analysis (DNA/RNA sequencing, proteomics, among others). Lastly, 292 

while we developed this system with A2EN cervical and VK2 vaginal cell lines, there is no barrier to 293 

using different cell lines more appropriate to the research questions at stake, or even from different 294 

organ systems or tissues.  295 

 296 

MATERIALS AND METHODS 297 

Abbreviations and all catalog numbers are listed in the supplemental materials. 298 

Cell Culture Model: collagen coating. Transwell inserts (Corning #3472) were removed from 299 

the 24-well plate using glass pipettes or tweezers and placed in an inverted orientation into 12-well 300 

plates. To form the collagen coating, all solutions were chilled and placed on ice. 200µl 5X RPMI (1:1 301 

mixture of 10X RPMI and tissue culture (TC) water) (Sigma #R1145) and 25µl 1M NaOH (Sigma 302 

#S5881) were combined and vortexed thoroughly for 10 secs. Rat tail collagen (800µl; Corning 303 

#354236) was added with gentle pipetting to avoid introducing excessive bubbles, and the pH of the 304 

mixture was tested. Additional NaOH or RPMI was added in 1µl or 10µl increments if needed to attain 305 

a pH of 6.5 (the final mixture should have a salmon pink color). A total of 70µl of the collagen mixture 306 

was added to the basal surface of each transwell insert, the plate was covered ensuring no contact with 307 

the collagen surface and the collagen allowed to gel in a Biosafety Level 2 (BSL2) hood at room 308 

temperature for ~30 min. (Fig. 1A). Using clean glass pipettes or tweezers the inserts were returned to 309 

the 24-well plate in the standard orientation and left under the hood for an additional 3h before transfer 310 

to 4°C for 48-72h. 311 

Cell Culture Model: addition of fibroblasts. After 48-72h, the transwells were inverted into a 312 

12-well plate using glass pipettes or tweezers. BJ fibroblast cells (ATCC #CRL 2522) at 70-90% 313 

confluency after growth in BJ complete medium (DMEM media (Cellgro #15-013-CV) supplemented 314 

with 10% FBS (Sigma #F4135)) were trypsinized using 1ml of 0.25% Trypsin (Gibco #25200-056) 315 
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and cell number determined using the Countess Automated Cell Counter. A total of 3x104 cells in a 316 

volume of 75-80µl were added to the basal surface of the transwells on top of the collagen (Fig. 1B). 317 

The dish was covered and placed in a 37°C, 5% CO2 incubator for 6h. Inserts were then transferred to 318 

the 24-well plate in the standard orientation and BJ complete medium added (200μl to the apical 319 

compartment, 500μl to the basal compartment). The transwells were then returned to the incubator for 320 

an additional ~42h. 321 

Cell Culture Model: addition of epithelial cells. Either A2EN cervical epithelial cells (kindly 322 

provided by Dr. Allison Quayle [46]) or VK2/E6/E7 vaginal epithelial cells (ATCC #CRL 2616) were 323 

used to make cervical or vaginal models respectively. A2EN cervical cells were grown in A2EN 324 

complete medium (EpiLife media (Gibco #MEPICFPRF) with 100X EDGS supplement (Gibco #S-325 

012-5) and 100X L-glutamine (Lonza #17-605E)) while VK2/E6/E7 vaginal cells (ATCC #CRL 2616) 326 

grown in VK2 complete medium (Keratinoctye-SFM (with BPE and EGF) (Gibco #10725-018) 327 

supplemented with 0.4M calcium chloride (Amresco #E506) and 100X L-glutamine (Lonza #17-328 

605E)). Cells were grown until 70-90% confluent then trypsinized using 1ml of 0.25% Trypsin. The 329 

number of cells was determined using the Countess Automated Cell Counter. BJ complete medium 330 

was removed from the transwells which were then gently rinsed with 500µl PBS. To seed the epithelial 331 

cell layer, using A2EN or VK2 complete medium (cervical and vaginal model respectively) a total of 332 

1x105 epithelial cells in 200 µl of media was added to the apical compartment and 500 µl of media was 333 

added to the basal compartment and the plate returned to the incubator. After 48h the apical and basal 334 

media were removed by vacuum aspiration and fresh medium added to the basal compartment only, to 335 

create an epithelial- air interface. Fresh medium (500µl) was added to the basal compartment every 336 

other day. Following culture A2EN: 6 days and VK2: 8 days epithelial cells were polarized and no 337 

medium could be observed entering the apical compartment from the basal compartment, indicating 338 

stable epithelial barrier formation. 339 

Chlamydia trachomatis infection, microscopy imaging and cytokine analysis. C. 340 

trachomatis serovar L2 (strain LGV/434/Bu) was propagated in HeLa monolayers as previously 341 

described in Tan et al. [78]. Briefly, serovar L2 was cultivated in 100mm2 tissue culture dishes 342 

containing HeLa cells grown at 37°C, 5% CO2. Monolayers were gently rocked for 2h, fresh medium 343 

was added, and the infection was allowed to progress for 48h. Lysates were harvested, and inclusion-344 

forming units (IFUs) calculated and stored in sucrose phosphate glutamate (SPG) [78] at -80°C. Seeds 345 

were used directly from -80°C stocks. C. trachomatis was inoculated at a multiplicity of infection 346 

(MOI) of 1 or 2.  347 
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The 3D model was inoculated with 50μl C. trachomatis in the apical compartment and rocked 348 

for 2h at room temperature. The C. trachomatis suspension was removed by pipetting, the cells were 349 

rinsed with 500µl PBS, fresh medium (500µl) added basally, and the model was incubated for an 350 

additional 46h at 37°C, 5% CO2. 351 

Following infection, the transwells were prepped for imaging as described in the fluorescence 352 

staining section and images were obtained using a Zeiss Duo 5 confocal microscope and 3 consecutive 353 

Z stack slices were compressed to create images for confocal analysis. For electronic microscopy, the 354 

transwells were placed in glutaraldehyde fixative for processing and imaged on the Tecnai T12 355 

Transmission Electron microscope. For comparative purposes A2EN cells were grown on coverslips 356 

(2D) for 2 days and then infected with C. trachomatis at MOI 2 [79]. Infection and staining were 357 

performed as described below with images obtained using a Zeiss Axio Imager Z1 (Zeiss). Infected 358 

cells were manually identified using the ImageJ software (NIH).  359 

For cytokine analysis, medium was removed from the basal compartment and stored at -80°C.  360 

Seven cytokines: EGF, IL-6, IL-8, IP10, MDC, PDGF-AA and RANTES were analyzed using a 361 

Luminex Multianalyte assay at the UMB Cytokine Core Laboratory.  362 

Neisseria gonorrhoeae infection and analysis. 3D models containing 2x105 A2EN cells was 363 

exposed apically to 100μl of N. gonorrhoeae FA1090 wildtype or N. gonorrhoeae Opaless (all opa 364 

genes deleted) or N. gonorrhoeae ΔpilEΔopa (pilE and all opa genes deleted) at MOI of 10 for 6h at 365 

37°C, 5% CO2. The basal medium (500μl) was then removed and dilutions were plated on GCK agar 366 

plates to determine the number of N. gonorrhoeae bacteria that transmigrated within the 6h incubation 367 

period. For comparison 2x105 HEC-1-B endometrial cells utilizing the same 3D set-up were exposed in 368 

parallel and the transmigrated N. gonorrhoeae bacteria were quantified.   369 

Bacterial growth (L. crispatus, G. vaginalis) and microscopy imaging. The optical densities 370 

(OD) of bacterial cultures grown overnight in their respective media (L. crispatus in NYCIII and G. 371 

vaginalis in TSB+5% horse serum) were determined using an OD to colony forming units (CFU) 372 

conversion of 1 OD represents 1x109 CFU.  A volume corresponding to 2x108 CFUs was added to the 373 

experiment culture medium (a 2:1 mixture of complete cell culture medium: bacteria culture medium) 374 

to produce a final volume of 1ml. A 10-fold dilution was then performed using experiment culture 375 

medium and 100μl was added to the apical compartment of the model (1x106 CFU). Cells exposed to 376 

bacteria or medium only (no bacteria control) were incubated for 48h under anaerobic conditions in a 377 

37°C incubator within a Coy chamber. Aliquots of media were removed from the apical compartment 378 

and the pH determined using an Apera Instruments PH8500 portable pH meter. Aliquots of 50μl were 379 
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used to determine the D(-) and L(+) lactic acid concentrations using the Boehringer Mannheim/R-380 

Biopharm D-Lactic acid/L-Lactic acid kit as per manufacturer’s instructions.  Cells were gently rinsed 381 

with PBS and either fixed in 2.5% glutaraldehyde (TEM imaging) or 2% PFA (fluorescence imaging). 382 

Cells for TEM imaging were taken to the Electron Microscopy Core Imaging facility for further 383 

processing and imaging as described below. Cells for fluorescence in situ hybridization (FISH) 384 

imaging were processed as described below and imaged on a Zeiss Duo 5 confocal microscope and 5 385 

consecutive Z stack slices were compressed to create images. Cells for histology and cell viability 386 

imaging were processed as described below and imaged on a Zeiss Duo 5 confocal microscope where 387 

3 consecutive Z stack slices were compressed to create images (viability) or a Zeiss Primo Star 388 

(histology). 389 

Hematoxylin and Eosin (H&E) staining. The transwell membrane was excised from the 390 

support by rinsing the cell surface with PBS and cutting the perimeter of the membrane with a No. 11 391 

blade on a scalpel. The membrane was then placed between two 32x25x3mm biopsy pads and secured 392 

in a histology cassette. The cassette was immersed in 10% formalin fixative solution for 24h and then 393 

processed by the UMB Pathology Histology Core using SOP NH306. Briefly, slides were placed in 394 

hematoxylin, rinsed with water, dipped in acid alcohol, rinsed with water, then sequentially placed in 395 

80% ethanol, eosin, 95% ethanol twice, 100% ethanol twice and xylene thrice. Mounting media and a 396 

coverslip were then added. Resultant slices were imaged at 100X on the Zeiss Primo Star microscope 397 

(Zeiss).  398 

Fluorescence staining. Briefly, cells were rinsed once with 500µl of Dulbecco’s Phosphate 399 

Buffered Saline (PBS), fixed with 4% paraformaldehyde (PFA) for 30 min and permeabilized with 400 

200μl 0.25% Triton X-100 in PBS for 10 min, followed by treatment with 300μl 0.1% Triton X-100 in 401 

PBS/Fish skin gelatin (FSG) (0.66%) for 20 min. The cells were then stained for chlamydial IFUs with 402 

10μl of 5μg/ml of mouse anti-human chlamydia LPS (primary Ab) (US Biological, MA) in Triton X-403 

100/PBS/FSG solution for 90 min. Secondary antibody staining was done by adding 2μl of 200μg/ml 404 

of goat anti-mouse Alexa Fluor 488 in Triton X-100/PBS/FSG solution and incubated 60 min in the 405 

dark. Host cells were stained with 2μl of 500μg/ml Hoechst in Triton X-100/PBS/FSG solution for 10 406 

min in the dark. Chlamydial inclusions stained green while host cells nuclei stained blue. Cells were 407 

imaged using a Zeiss Duo 5 confocal microscope and 3 consecutive Z stack slices were compressed to 408 

create images for analysis.  409 

Transmission electron microscopy (TEM) staining. Cells were rinsed with PBS after 410 

removal of media and fixed in 500µl of 2% paraformaldehyde, 2.5% glutaraldehyde and 0.1 M PIPES 411 
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buffer (pH 7.4) for at least 1 hour. Cells were then washed with 500µl of 0.1 M PIPES, quenched with 412 

500µl of 50mM glycine in 0.1 M PIPES buffer (pH 7) for 15 minutes, washed and post-fixed in 200µl 413 

of 1% (w/v) osmium tetroxide and 0.75% ferrocyanide in 0.1M PIPES buffer at 4oC for 60 min. 414 

Following washing, transwell membranes were sliced off the holding cup, stained with 200µl of 1% 415 

(w/v) uranyl acetate in water for 60 min, dehydrated by passage through a graduated ethanol series and 416 

embedded in spurr’s resin (Electron Microscopy Sciences, PA) following the manufacturer’s 417 

recommendations. Resin blocks were trimmed perpendicular to the monolayer grown on the transwell 418 

membrane. Ultrathin sections ~70nm thickness were cut on a Leica UC6 ultramicrotome (Leica 419 

Microsystems, Inc., Bannockburn, IL) and collected onto formva film coated SynapTek NOTCH-DOT 420 

grids (Electron Microscopy Sciences, Hatfield, PA) and examined in a Tecnai T12 transmission 421 

electron microscope (Thermo Fisher Scientific, formerly FEI. Co., Hillsboro, OR) operated at 80 keV. 422 

Digital images were acquired by using a bottom mount CCD camera and AMT600 software 423 

(Advanced Microscopy Techniques, Corp, Woburn, MA). 424 

Fluorescence in situ hybridization (FISH) staining. Cells were stained using a protocol 425 

modified from Meaburn et al. [80]. Briefly, cells were rinsed and fixed overnight at 4°C with 2% PFA 426 

then incubated in 200μl of 0.5% saponin/ 0.5% Triton X100/ PBS mixture for 40 min. This was 427 

followed by the addition of 200μl of 1N HCL for 20 min, 2X SCC for 10 min and 50% formamide/2X 428 

SCC for 30 min incubations. Cells were then incubated in 300μl of the hybridization mix containing 429 

the FISH probe EUB338-ATT0 for 10 min at 85°C then overnight in a humidity box at 37°C. Cells 430 

were washed with 500μl of multiple buffers (a) 50% formamide/2X SSC buffer at 45°C, (b) 1X SSC 431 

buffer at 45°C and (c) 0.05% Tween-20 in 4X SSC buffer at room temperature. Cells were then 432 

incubated with 300μl of Hoechst at 1:500 for 10 min and mounted for imaging. Cells were imaged on 433 

the Zeiss Duo 5 microscope (Zeiss) using the 63X objective with 488 and 546 filters.  434 

Viability staining. At 48h post-infection cells were incubated with 300μl of 4 μM Calcein-AM 435 

and 2 μM EthD-III from the Viability/Cytotoxicity Assay Kit for Animal Live and Dead cells (Biotium 436 

30002-T) for 45 min at room temperature as per manufacturer’s recommendations. Cells were imaged 437 

at 40X using the 488nm and 543nm excitation wavelengths on the Zeiss Duo 5 microscope (Zeiss).  A 438 

composite overlay of 3 Z stack slices were used to create a 3D image. 439 

 440 

 441 

 442 

 443 
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Supplemental Materials 783 

Transwell inserts (Corning #3472) 784 

12 well plates (Corning #3513) 785 

9” Glass pipettes (Corning #7095D) 786 

Countess Automated Cell Counter (Invitrogen #C10227) 787 

Mouse anti-human chlamydia LPS (US Biological #C4250-51F) 788 

Goat anti-mouse Alexa Fluor 488 (Invitrogen #A-11029) 789 

Rabbit anti-human MUC5B (Invitrogen #PA5-82342) 790 

Goat anti-rabbit Alexa Fluor 488 (Invitrogen #A-11034) 791 

Hoechst (Invitrogen #H3570) 792 

FISH probe - EUB338-ATTO [5’-/565/GCT GCC TCC CGT AGG AGT-3’] (Invitrogen) 793 

Histology fixative – 10% formalin solution (Sigma #HT501128) 794 

D/L Lactic acid assay kit (R-Biopharm #11 112 821 035) 795 

 796 

Rat tail collagen – 100mg (Corning #354236) 797 

10X RPMI media (Sigma #R1145) 798 

Sterile tissue culture water (Cellgro #25-055-CM) 799 

1M NaOH – sterile filtered (Sigma #S5881) 800 

0.25% Trypsin (Gibco #25200-056) 801 

BJ human fibroblasts (ATCC #CRL 2522) 802 

BJ complete media - DMEM media (Cellgro #15-013-CV) supplemented with 10% FBS (Sigma 803 

#F4135)  804 

A2EN cervical epithelial cells (kindly provided by Dr. Allsion Quayle [46]) 805 

A2EN complete media - EpiLife media (Gibco #MEPICFPRF) with 100X EDGS supplement (Gibco 806 

#S-012-5) and 100X L glutamine (Lonza #17-605E) 807 

VK2/E6/E7 human vaginal epithelial cells (ATCC #CRL 2616) 808 

VK2 complete media - Keratinoctye-SFM (with BPE and EGF) (Gibco 310725-018) supplemented 809 

with Calcium chloride (Amresco #E506) and 100X L glutamine (Lonza #17-605E) 810 

HeLa cervical epithelial cells (ATCC #CCL2) 811 

HeLa complete media - Dulbecco’s modified Eagle’s medium (Corning #15-013-CV) supplemented 812 

with 10% FBS (Sigma #F4135) 813 

HEC-1-B endometrial cells (ATCC #HTB-113) 814 
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HEC-1-B complete media – MEM alpha (1X) + GlutMaAX (GIBCO #32561-037) supplemented with 815 

10% FBS (Sigma #F4135)  816 

 817 

Chlamydia trachomatis serovar LGV II strain 434 (ATCC #VR 902B) 818 

Neisseria gonorrhoeae strain FA1090 – wildtype and isogenic mutants (kindly provided by Dr. Alison 819 

Criss [81, 82] 820 

Lactobacillus crispatus (ATCC #33197) 821 

Lactobacillus iners (ATCC #55195) 822 

Gardnerella vaginalis (ATCC #14018) 823 

Difco GC medium base (BD #228920) with 1% Kelloggs supplement prepared as per White and 824 

Kellogg [83].  825 

Bacteriological agar (Amresco #J637) 826 

NYCIII medium: 10 g/L proteose peptone, 10 g/l beef extract, 5 g/l yeast extract, 5 g/L NaCl, 1.2 g/L 827 

MgSO4, 2 g/L MnSO4.H2O, 5.7 g/L K2HPO4, 20 g/L glucose, 10% FBS.  828 

Tryptic Soy Broth (Fluka #T8907) supplemented with 5% Horse serum (GIBCO #26050-088) 829 

 830 
 831 
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Figures and Figure Legends: 

 

FIG 1 Model setup. 70µl of collagen was added to the basal portion of the inverted transwell (A) 

and stored at 4°C.  BJ’s were added to the basal membrane 2-3 days later at 3x104 in a volume of 

80-100µl and incubated at 37°C, 5%CO2 (B). Epithelial cells (A2EN or VK2) were apically 

added at 1X105 in a volume of 50-200µl (C). After 6-9 days incubation at 37°C, 5%CO2 cells 

were ready to be used in experiments.   
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FIG 2 Characterization of the 3D cervical epithelium model (A2EN). Transepithelial resistance 

values over the course of A2EN epithelial cell transwell 3D model set up (A). Histology (H&E) 

imaging (B) and electron microscopy (TEM) imaging (C) of the epithelial cells of the model 6 

days post set up. Confocal imaging of mucin gel formation (MUC-5B) on the model 6 days post 

set up (D). 
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FIG 3 Characterization of the 3D vaginal epithelium model (VK2). Transepithelial resistance 

values over the course of VK2 epithelial cell transwell 3D model set up (A). Histology (H&E) 

imaging (B) and electron microscopy (TEM) imaging (C) of the epithelial cells of the model 8 

days post set up. 
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FIG 4 Infection of the 3D cervical model (A2EN) by C. trachomatis. Analysis of chlamydial 

infectivity on the conventional 2D (coverslip) model by fluorescent imaging (A) compared to the 

3D (transwell) model (B) and resultant enumeration of infected cells (C). TEM image of infected 

cells on the 3D model (D). Cytokine profile of uninfected as compared to infected 3D cervical 

cells (E).      
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FIG 5 Infection of the 3D cervical cells (A2EN) by N. gonorrhoeae (Gc). Transmigration of Gc 

across the cervical epithelium model is similar to that obtained with a commonly used cell line 

(HEC-1-B) (A). TEM image of Gc attached to 3D cervical epithelial cells (B). 
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FIG 6 The 3D vaginal (VK2) epithelium model supports the growth of vaginal bacteria. pH (A) 

and D(-) lactate concentrations (B) of apical media after 48h of anaerobic bacterial growth on 3D 

VK2 cells. TEM, FISH and viability images of bacteria and host cells after 48h of growth (C). 
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