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Abstract6

Studies of insect herbivory on fossilized leaves tend to focus on a few, relatively simple metrics7

that are agnostic to the distribution of insect damage types among host plants. More complex metrics8

that link particular damage types to particular host plants have the potential to address additional9

ecological questions, but such metrics can be biased by sampling incompleteness due to the difficulty10

of distinguishing the true absence of a particular interaction from the failure to detect it—a challenge11

that has been raised in the ecological literature. We evaluate a range of methods for characterizing the12

relationships between damage types and host plants by performing resampling and subsampling exercises13

on a variety of datasets. We found that the components of beta diversity provide a more valid, reliable,14

and interpretable method for comparing component communities than do bipartite network metrics. We15

found the rarefaction of interactions to be a valid, reliable, and interpretable method for comparing16

compound communities. Both of these methods avoid the potential pitfalls of multiple comparisons.17

Lastly, we found that the host specificity of individual damage types is challenging to assess. Whereas18

some previously used methods are sufficiently biased by sampling incompleteness to be inappropriate19

for fossil herbivory data, alternatives exist that are perfectly suitable for fossil datasets with sufficient20

sample coverage.21

1 Introduction22

Insect herbivory on fossilized leaves (henceforth, “fossil herbivory”) has been noted incidentally for over one23

hundred years (Potonié, 1893). However, the systematic collection of herbivory data only came with the24

advent of the Damage Type system (Wilf and Labandeira, 1999), for which each type of insect damage—25

e.g., circular holes below 1 mm in diameter, circular holes between 1–5 mm in diameter–is assigned a unique26

number and is classified into a broader “functional feeding group” (Labandeira et al., 2007).27

Traditionally, quantitative analyses of fossil herbivory have focused on two topics: the richness of damage28

type diversity at a fossil assemblage or for a particular host plant (Wilf and Labandeira, 1999), and the29

intensity of insect damage as measured by the percentage of leaf area removed by herbivores (Beck and30

Labandeira, 1998). Another layer of biological and analytical complexity can be added by linking particular31

host plants to particular damage types. On the one hand, quantitative methods in paleontology and ecology32

have progressed tremendously during the past two decades, making it possible to conduct complex analyses33

of fossil herbivory data with a single line of code. On the other hand, such analyses require more complete34

datasets than are typically available in studies of fossil herbivory. Complex analyses also rely upon far more35

assumptions than do traditional analyses, and as analytical complexity increases, the underlying assumptions36

and their effects can become more difficult to identify and address.37

1.1 Research topics that link host plants to damage types38

Three interrelated research topics link host plants to damage types: host specificity, component communities,39

and compound communities. Host specificity differentiates among generalist and specialist feeding strategies.40

A component community is the entire suite of heterotrophs that relies, directly or indirectly, on a plant41

taxon: its herbivores and their predators, parasitoids, and parasites (Root, 1973). A suite of coexisting42

component communities, i.e., those of the different plant species within the same forest, is called a “compound43
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community” (Reice, 1974; Whittaker and Levin, 1977; Basset, 1992; Novotny et al., 2002). All of these topics44

present challenges when translated to the fossil record.45

The host specificity of each fossil insect damage type is typically measured on a scale of 1 to 3 (Labandeira46

et al., 2007). Generalized damage types, occurring on a range of distantly related plant hosts, have a score47

of 1. Intermediate damage types have a score of 2. Specialized damage types, restricted to very closely48

related plant hosts, have a score of 3. These scores are assigned to damage types that occur on three or more49

specimens in a fossil assemblage. Damage types that occur on only one or two specimens are assigned the50

default score of 1, for generalized damage (Wilf and Labandeira, 1999). The assignment of these scores at51

various fossil assemblages is difficult to replicate because the boundaries between the scores are not defined52

quantitatively—the “1, 2, 3” labeling system could have used letters instead, e.g., “A, B, C”—but the many53

datasets that have become available since 1999 can be used for sensitivity analyses to evaluate the validity54

and reliability of this system.55

For component communities, identification of the secondary consumers associated with the herbivores56

on a host plant is nearly impossible with fossils. The same is often true of the herbivores, because plants57

and insects are rarely preserved in meaningful quantities in the same deposits (Greenwood, 1991; Martínez-58

Delclòs and Martinell, 1993; Smith and Moe-Hoffman, 2007). Nonetheless, component communities in the59

fossil record have been widely discussed using damage types as proxies for herbivore taxa (Correia et al.,60

2020; Ding et al., 2014, 2015; D’Rozario et al., 2011; Feng et al., 2017; Kustatscher et al., 2018; Labandeira,61

1998, 2002; Labandeira and Currano, 2013; Labandeira et al., 2013, 2016, 2018; Liu et al., 2020; Schachat62

et al., 2014, 2015; Slater et al., 2012, 2015; Xu et al., 2018). However, here too, there is reason for caution:63

even the fossil floras that have been most thoroughly sampled for insect herbivory contain various damage64

types that occur on only one specimen (Wilf et al., 2005, 2006; Prevec et al., 2009; Wappler, 2010; Knor65

et al., 2012; Wappler et al., 2012; Donovan et al., 2014; Adroit et al., 2018; Labandeira et al., 2018; Xu66

et al., 2018; Deng et al., 2020; ?), indicating that many damage types remain unobserved due to incomplete67

sampling—and, as noted above, whether a sparsely sampled damage type is assumed under this method to68

be a rare generalist or a rare specialist depends on whether it was observed on two or three plant specimens.69

Because we cannot find every damage type from a fossil assemblage, and because we cannot link damage70

types to the insect taxa in a one-to-one manner, the term “component community” as developed in the71

context of modern ecology may be somewhat inapplicable. These issues then scale up to consideration of72

compound communities.73

Despite these issues, the general concepts drawn from modern ecology that underlie discussions of74

component communities in the fossil record are nevertheless valid. Ancient plants surely had specialist and75

generalist herbivores that formed component communities along with their secondary consumers on each76

plant host species. Thus, these concepts are worthy of consideration although we must be wary of the77

fidelity with which those communities might be documented in the fossil record. In particular, bipartite78

network analysis has recently been applied to fossil herbivory datasets to address questions about host79

specificity and component communities (Swain et al., 2021b; Currano et al., 2021). Bipartite networks are80

networks that connect taxa at two trophic levels, such as plants and their herbivores or herbivores and81

their parasitoids. Alternatively, beta diversity (Baselga, 2010; Baselga and Orme, 2012; Baselga, 2017) and82

rarefaction of interactions (Dyer et al., 2010) can be used to examine herbivore specialization and83

component communities from the leaf damage record. Calculating the beta diversity of damage types on84

different host plants is a straightforward way to compare component communities. Rarefying interactions is85

a straightforward way to quantify the diversity of associations within a compound community. Here, these86

alternatives are evaluated through sensitivity analyses to determine how much sampling is required for87

accurate and precise results, with the aim of ascertaining whether and how quantitative methods can be88

used to evaluate host specificity, component communities, and compound communities in studies of fossil89

herbivory. Bipartite network analysis requires special consideration because of the assumptions it requires90

of the fossil record and because of the risks associated with the large number of metrics that are generated.91
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1.2 Theoretical issues with bipartite network analysis92

1.2.1 Treating damage types as analogues of herbivore taxa93

Methods that link particular host plants to particular damage types often treat damage types as analogues94

for herbivorous insect taxa. For example, the two recent studies that performed bipartite network analysis95

on fossil herbivory data (Swain et al., 2021b; Currano et al., 2021) used a software package (bipartite;96

Dormann et al., 2008) intended for modern ecological networks that requires direct substitution of damage97

types for herbivore taxa—constituting an explicit, specific assumption that has not been substantiated and98

likely never can be. Only one study has used neontological data to evaluate the correlation between damage99

types and herbivores (Carvalho et al., 2014). In two tropical forests, the diversities of damage types and100

insect herbivores were found to be correlated, reaffirming the value of the traditional paleontological metric101

of damage type diversity. However, no claim was made as to whether the apparent specialization of a damage102

type reliably indicates whether the damage type was produced by a specialist herbivore.103

Simple arithmetic supports the idea that specialized herbivores are responsible for many occurrences of104

“generalized” damage types: with hundreds of thousands of herbivorous insect species and only a few hundred105

damage types, no clean correspondence between insect species and damage types is possible. For example,106

Damage Type 012, the most common type at both forests studied by Carvalho et al. (2014), was found on all107

twelve host plant species examined and was caused by 50 insect species (46 of them specialists) in one locality108

and 37 insect species (23 of them specialists) in the other. All that complexity is collapsed into a single109

generalist when fossil damage types are treated as substitutes for actual herbivores. Any methods, such as110

bipartite network analysis, that require treating damage types as substitutes for herbivore taxa appear not111

to be appropriate for fossil herbivory data.112

1.2.2 Sampling incompleteness113

All sampling of the fossil record is incomplete, but methods that link particular host plants to particular114

damage types are far more biased by incomplete sampling than are the methods that address the diversity115

and intensity of insect herbivory. For a tally of the number of insect damage types on two host plant taxa,116

as an example, the more completely sampled host could be iteratively subsampled down to the amount of117

surface area or sample coverage available for the less completely sampled host plant (Figure 1a). Although118

the subsampling procedure might cause a failure to detect a significant difference that would become apparent119

with additional sampling, any significant differences observed among the subsampled damage type diversities120

are likely, although not guaranteed, to reflect true differences. Thus, estimating damage type diversity by121

subsampling two incompletely sampled host plants is a common and uncontroversial endeavor. We do not122

know which specific damage types evaded detection, but we do not need to know this in order to estimate123

the damage type diversities of these two host plants when subsampled to the same surface area or sample124

coverage.125

When it comes to estimating host specificity or comparing component communities, however, the126

unknowable identities of unobserved damage types are of paramount importance. According to the criteria127

that have traditionally been used to assign host-specificity scores (Wilf and Labandeira, 1999), a damage128

type need occur on only three specimens in order to receive a host-specificity score. The data are taken at129

face value, and the appearance of a damage type on three leaves is deemed adequate to designate a damage130

type as specialized, regardless of the possibility that a fourth or fifth observation might occur on a different131

host and thus change the host-specificity score. The procedures used to compare component communities132

are incapable of distinguishing a true absence of a damage type on a host plant from the failure to detect a133

damage type that was present on the host. Differentiating true absences from failures to detect is known to134

pose tremendous difficulties in both neontological (Blasco-Moreno et al., 2019) and paleontological (Smith135

et al., 2021) studies.136

Attempts to compare host specificity and component communities across different assemblages complicate137

matters even further. As an example drawn from Permian assemblages of Texas for which damage type data138

are available for each specimen, the amount of broadleaf area examined from Colwell Creek Pond (Schachat139

et al., 2014) is approximately four times that of Williamson Drive (Xu et al., 2018) and more than fifteen times140

that of Mitchell Creek Flats (Schachat et al., 2015) or South Ash Pasture (Maccracken and Labandeira, 2020).141

There is just no good way to compare host specificity and component communities across these assemblages,142
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Figure 1: A comparison of the sampling completeness that can be expected for studies of fossil herbivory (a)
with the sampling completeness needed for methods that link host plants to damage types to be unbiased by
sampling completeness (b). (a) Rarefaction of damage types on the two dominant host plants at the Colwell
Creek Pond assemblage. The solid lines and corresponding 84% confidence intervals represent interpolated
damage type diversity, and the dashed lines with question marks represent extrapolated diversity. (b) An
illustration of the sampling completeness that is needed for bipartite network analysis not to be biased by
sampling: the rarefaction curve for each host plant should have sample coverage sensu Chao and Jost (2012)
above 0.99. All rarefaction curves shown in this panel have coverage between 0.995 and 0.997.

because subsampling Williamson Drive and Colwell Creek Pond down to the amount of surface area examined143

at Mitchell Creek Flats and South Ash Pasture will fundamentally change the relationships among host plants144

and their damage types. At Colwell Creek Pond, DT014 has been observed on two Auritifolia waggoneri145

Chaney, Mamay, DiMichele & Kerp specimens and on 20 Taeniopteris spp. Brongniart specimens. DT247146

has been observed on 15 A. waggoneri specimens and 2 Taeniopteris spp. specimens. If the data from147

Colwell Creek Pond are subsampled to one-fifteenth of the original amount of surface area, the specificity148

coding of the damage types that are still observed at this lower level of sampling will fundamentally change:149

various damage types will appear more specialized than they are, and in many dimensions, the component150

communities of the two dominant host plants will appear more distinct than they are.151

For rarefied damage type diversity and for the intensity of herbivory, the results generated at lower152

levels of sampling completeness are simply a less-precise, under-powered version of the results generated at153

higher levels of sampling completeness (Schachat et al., 2018). For component communities, however, the154

results generated with less sampling are fundamentally changed. In the words of Blüthgen et al. (2008),155

“Rarely observed species are inevitably regarded as ‘specialists,’ irrespective of their actual associations,156

leading to biased estimates of specialization.” Indeed, misleading results at incomplete sample sizes are157

exactly what biologists found when they subsampled some of the canonical datasets that have been used to158

construct bipartite networks (Morris et al., 2014, Figure 3) as part of the cottage industry that has emerged159

to evaluate how incomplete sampling biases bipartite network metrics (Goldwasser and Roughgarden, 1997;160

Vázquez and Aizen, 2003; Blüthgen et al., 2006, 2008; Dormann et al., 2009; Dorado et al., 2011; Gibson161

et al., 2011; Costa et al., 2016; Fründ et al., 2016; Jordano, 2016; Kuppler et al., 2017; Maia et al., 2018;162

Henriksen et al., 2019).163

A related pitfall of bipartite network analysis that looms large in the neontological literature may well164

be insurmountable for studies of fossil herbivory: sampling evenness. Prior to the construction of bipartite165

networks, the sampling of fossil leaves for insect damage types should be not only complete at the level of166

the assemblage but should be similarly complete across all host plants within the assemblage—i.e., sampling167

of all host plants under consideration should be even (Gibson et al., 2011; Doré et al., 2021). In studies of168

modern communities, sampling evenness can be achieved in various ways, e.g., equal amounts of time being169
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dedicated to hand-collecting of insects and equal numbers of beating samples collected for each of ten tree170

species (Basset et al., 1996) and equal amounts of surface area sampled for each plant species (Novotny et al.,171

2012). However, uniformly exhaustive sampling is a near impossibility for studies of fossil herbivory (Figure172

2). Most species in a given community are rare (Diserud and Engen, 2000), and many if not most studies of173

fossil herbivory have examined fewer than 1,000 leaves due to a combination of small numbers of specimens174

preserved in the fossil record and limited time that investigators are able to invest in each study. Therefore,175

in studies of fossil herbivory, most plant hosts are represented by a maximum of a few hundred leaves.176

Combining the concepts of sampling completeness and evenness, Morris et al. (2014) recommended177

constructing bipartite networks for datasets in which all rarefaction curves—in this case, damage type178

diversity curves for all host plants—asymptote (Figure 1b). Various neontological food web studies have179

followed this recommendation (e.g., Smith-Ramírez et al., 2005; Burkle and Irwin, 2009; Mokam et al.,180

2014; Kemp and Ellis, 2017; Peguero et al., 2017; Bennett et al., 2018; Maia et al., 2018). However, this is181

not nearly as easily achieved with paleontological data as with neontological data. (Whereas one might182

question whether it is possible for a rarefaction curve to truly asymptote, the concept of “sample coverage”183

sensu Chao and Jost (2012) provides a measure of the slope of a rarefaction curve: when the curve has184

reached an asymptote, its slope equals 0 and coverage equals 1. For our purposes, sample coverage above185

0.99 can be considered complete. If a dataset with ten or more host plants that have coverage above 0.99186

eventually becomes available, it can be used to evaluate whether slightly lower amounts of coverage187

continue to yield reliable results. The Appendix lists examples of host plants that have been censused for188

fossil herbivory for which sample coverage of damage types is above 0.99.)189

1.2.3 HARKing190

A “reproducibility crisis” in science (O’Boyle et al., 2017; Hutson, 2018; Nelson et al., 2021; Fraser et al.,191

2018; O’Dea et al., 2021; Parker et al., 2019; Bissonette, 2021) has reinforced the need for caution192

surrounding practices such as multiple comparisons and hypothesizing after the results are known193

(HARKing). In historical sciences such as paleontology, HARKing is more difficult to avoid.194

Understanding the properties of a large data compilation is needed to understand which analyses are195

feasible, but a preliminary understanding of these properties can easily lead researchers toward the196

questions for which a positive result is most likely.197

Paleobiology cannot entirely rid itself of HARKing, but good analytical practices can identify methods198

that yield valid and reliable results at realistic sample sizes and that do not lend themselves to unnecessary199

multiple comparisons. In this context, bipartite networks present additional challenges not related to200

sampling. When the popular R package bipartite is used with its default settings to study201

plant–herbivore interactions, the networklevel function calculates 47 bipartite network metrics and the202

grouplevel function calculates 30 metrics: 15 for each host plant taxon and 15 for each herbivore taxon203

(Dormann et al., 2008)—77 metrics despite few studies addressing 77 distinct questions. Such a multitude204

of metrics raises the risk of spurious correlations whereby a small minority of metrics support preconceived205

notions by chance.206

For bipartite network studies, calculating a single bipartite network metric per study has been207

recommended to avoid “metric hacking”, i.e., the “nonmutually exclusive use of multiple network metrics208

that are correlated by variables held in common [e.g., number of host plant taxa, or sampling completeness]209

and the inflation of type I error rates as a result of indiscriminate selection of network metrics, comparisons210

or hypotheses after analyses have been conducted” (Webber et al., 2020). However, Webber et al. (2020)211

also note that appropriate metric is often unclear for any given ecological question. This warning echoes212

concerns raised over a decade earlier: “Network analyses of mutualistic or antagonistic interactions between213

species are very popular, but their biological interpretations are often unclear and incautious” (Blüthgen,214

2010). The unclear meanings of bipartite network metrics raise the specter of the “file drawer” problem, in215

which results that are inconclusive, negative, or do not fit with the authors’ agenda are not reported216

(Fraser et al., 2018). The complexity of bipartite networks makes their analysis subject to these risks in a217

way that traditional metrics of herbivore damage diversity and intensity are not.218
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(a) Basset et al., neontological (b) Lewis et al., neontological

(c) Currano et al., paleontological (d) Xu et al., paleontological

Figure 2: The sampling evenness for host plants in neontological (a–b) and paleontological (c–d) datasets
that can be used to link host plants to herbivores or damage types. (a) Basset et al. (1996); this maximally
even sampling is representative of various other neontological studies of plant–insect networks (Novotny
et al., 2002, 2004, 2012; Lundgren and Olesen, 2005; Olesen et al., 2008; Pinheiro et al., 2008; Gibson et al.,
2011; Grass et al., 2013; Trøjelsgaard et al., 2015; Oleques et al., 2019; Zemenick et al., 2021). (b) Lewis
et al. (2002). (c) Currano et al. (2008). (d) Xu et al. (2018).
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2 Methods219

Bipartite networks and several alternative methods were evaluated using existing data with a focus on the220

Willershausen assemblage (Adroit et al., 2018) as the angiosperm-dominated assemblage with a complete,221

publicly available dataset that has the highest number of leaves examined. Of the assemblages previously222

examined in the context of bipartite networks (Currano et al., 2021), Willershausen is emphasized as a223

conservative test because it is among the few assemblages most likely to have sufficient sampling completeness224

to quantify host specificity, component communities, and compound communities.225

All analyses were performed with R version 4.1.1 (R Development Core Team, 2021). Color schemes were226

generated with the packages colorbrewer (Neuwirth and Brewer, 2014) and scico (Pedersen and Crameri,227

2020).228

2.1 Evaluating bipartite network analysis229

2.1.1 Sensitivity of bipartite network metrics to sampling completeness230

The 28 network-level metrics previously named in fossil herbivory studies (Swain et al., 2021b; Currano et al.,231

2021; Swain et al., 2021a) that are calculated with the networklevel function in the bipartite package232

(Dormann et al., 2008) were calculated for the Willershausen assemblage, using subsampling and resampling233

procedures to evaluate their validity and reliability. Leaves that were not identified to the level of genus were234

removed from the dataset. Each subsampling and resampling routine was iterated 1,000 times.235

In the first set of routines (“complete”), the cleaned Willershausen dataset was analyzed in its entirety,236

resampled to the number of leaves in the cleaned dataset (7,333), and subsampled to 3500, 1000, 500, and237

300 leaves. Following previous methods (Swain et al., 2021b), all host plant taxa represented by fewer than238

five specimens were removed after the data were resampled or subsampled but before any analyses were239

performed.240

In order to mirror neontological datasets (Basset et al., 1996; Lewis et al., 2002) that were recently241

compared to fossil herbivory data (Swain et al., 2021b), a second set of routines (“top-ten”) involved only242

the ten host plant taxa at Willershausen with the highest numbers of leaves, ranging from the 948 leaves of243

Zelkova ungeri Kovats down to the 164 leaves of Betula maximowicziana Regel. This top-ten dataset of 3602244

leaves was resampled to the original number of leaves and subsampled to 1800, 1000, 500, and 300 leaves.245

For the sake of comparison, we calculated damage type diversity with coverage-based rarefaction (Chao246

and Jost, 2012) for each resampled and subsampled dataset, using the iNEXT function in the R package iNEXT247

(Hsieh et al., 2016). We rarefied damage type diversity to the three sample coverage thresholds discussed by248

Schachat et al. (2021): 0.7, 0.8, and 0.9.249

2.1.2 Bipartite network metrics and the potential for HARKing250

To evaluate the possibility of “multiple network metrics that are correlated by variables held in common”—the251

collinearity among metrics noted as a major pitfall of bipartite network analysis (Webber et al., 2020)—the252

same 28 network-level metrics discussed above were calculated for a series of fossil assemblages deposited253

shortly before, during, and after the Paleocene/Eocene Thermal Maximum and the Early Eocene Climatic254

Optimum in the Bighorn Basin and Wind River Basin. Network metrics were calculated after subsampling255

the data from each assemblage to 300 leaves, following the procedure of Currano et al. (2021). If a subsample256

is larger than 50% of the original dataset, the number of possible unique samples decreases, causing the257

confidence limits to narrow even though they ought to widen continuously for larger sample sizes. Therefore,258

subsampling to 300 leaves and generating accurate confidence intervals requires a sample size of at least 600259

leaves. The ten relevant assemblages with 600 or more leaves are Skeleton Coast and Lur’d Leaves from the260

Bighorn Basin (Wilf et al., 2006); Dead Platypus, Daiye Spa, Hubble Bubble, the South Fork of Elk Creek,261

PN, and Fifteenmile Creek from the Bighorn Basin (Currano et al., 2008, 2010); and the Wind River Interior262

and Wind River Edge assemblages from the Wind River Basin (Currano et al., 2019).263
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2.2 Evaluating alternatives to bipartite network analysis264

2.2.1 Beta diversity265

We evaluated the validity and reliability of measures of abundance gradients (analogous to nestedness:266

when the damage types observed on one host plant are a subset of the damage types observed on another267

host plant) and balanced variation in abundance (henceforth, “balanced variation”; analogous to turnover:268

when non-overlapping suites of damage types are observed on different host plants). These are the two269

components of beta diversity that explicitly account for differences in abundance (Baselga, 2017). Our first270

analysis of beta diversity focuses on the two host plants represented by the highest numbers of leaves at271

Willershausen: Z. ungeri and Fagus sylvatica L. We used each subsampled and resampled dataset generated272

from the complete Willershausen dataset. Our second analysis of beta diversity focuses on A. waggoneri and273

Taeniopteris spp., the two most abundant host plants at Colwell Creek Pond (Schachat et al., 2014). These274

two host plants were analyzed at five levels of sampling. They were jointly resampled to the original amount275

of surface area they comprise in the Colwell Creek Pond dataset (23,527.89 cm2) and were subsampled to a276

total of 11,750, 8,000, 4,000, and 2,000 cm2. Our third analysis of beta diversity focuses on Macroneuropteris277

scheuchzeri (Hoffmann) Cleal, Shute & Zodrow and foliage assigned to Sigillariophyllum Grand’Eury, the278

two most abundant host plants at Williamson Drive (Xu et al., 2018). These were jointly resampled to the279

original number of leaves they comprise in the Williamson Drive dataset (1524) and were subsampled to a280

total of 750, 600, 450, and 300 leaves. Although surface area measurements were taken for Williamson Drive281

(Xu et al., 2018), we subsampled these data by number of leaves because the surface area measurements for282

individual specimens are not available. Each subsampling routine was iterated 1,000 times.283

Abundance gradients and balanced variation were calculated for each subsampled and resampled dataset284

using the beta.pair.abund function in the R package betapart (Baselga and Orme, 2012). We used the285

Coverage function in the R package entropart with the “Chao” estimator (Marcon and Hérault, 2015) to286

calculate sample coverage for each of the two plant hosts in each subsampling and resampling routine.287

2.2.2 Host specificity288

The sensitivity of host specificity scores to sampling completeness was evaluated with the complete and top-289

ten resampling and subsampling routines for the Willershausen dataset. For each set of sampling routines,290

we recorded the number of host plant taxa on which we observed a randomly selected damage type within291

the 99th, 74th, and 49th percentiles of prevalence (Table 1).292

Complete Top-ten
99th
percentile

74th
percentile

49th
percentile

99th
percentile

74th
percentile

49th
percentile

Number of
leaves

721 16 6 381 22 4

Damage
types

DT003 DT033,
DT145

DT010,
DT021,
DT052,
DT081,
DT142,
DT190,
DT198

DT003 DT004,
DT020

DT008,
DT052,
DT061,
DT168

Randomly
selected
damage
type

DT003 DT033 DT081 DT003 DT004 DT168

Table 1: The percentiles of leaves on which damage types were observed at the Willershausen assemblage.

We performed a separate sampling procedure to address the impact of absolute and relative surface area293

on estimates of host specificity. For this procedure we used the data from Colwell Creek Pond (Schachat294
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et al., 2014), because this assemblage contains a large amount of surface area examined and because surface295

area measurements are available for each individual specimen along with damage type data. We sampled296

specimens belonging to A. waggoneri, Taeniopteris spp., Evolsonia texana Mamay, and Supaia thinnfeldioides297

White, with replacement, to a series of 51 equally spaced surface-area thresholds from 500 cm2 to 25,500 cm2.298

The smallest of these is approximately 2% of the total surface area, and the largest of these is approximately299

100% of the total surface area. We resampled the data to each threshold 10,000 times, for a total of 510,000300

iterations. For each iteration, we noted whether DT032 and DT120—which are distributed across all four301

of these host plant taxa—were restricted to only one host plant, thus falsely appearing to be specialized. If302

so, we noted the number of specimens on which the damage type had been observed.303

2.2.3 Rarefaction of interactions304

The method of Dyer et al. (2010), which measures the diversity of interactions at an assemblage, can be305

implemented with any algorithm that performs rarefaction. We discuss considerations for coverage-based306

rarefaction of interactions in the Appendix.307

We performed coverage-based rarefaction of interactions on data from Williamson Drive (Xu et al., 2018)308

and Colwell Creek Pond Schachat et al. (2014). We conducted coverage-based rarefaction on the original309

dataset and upon iteratively resampling each dataset to the original amount of surface area, and upon310

subsampling each dataset to 50% and 25% of the original surface area. (Surface area data were collected311

for each specimen at Williamson Drive but were not published with the damage type data. Therefore, the312

surface area assigned to each specimen was the mean value for the taxon to which it belongs.) We rarefied313

each vector of interaction counts to a sample coverage of 0.771, which is the maximum amount of coverage314

reached by all subsampled datasets.315

To understand how rarefaction of interactions might perform on an angiosperm-dominated dataset with316

complete sampling, we simulated a vector of counts of interactions using the base-R function rlnorm with317

the settings meanlog=0 and sdlog=1.5. This procedure generated 3,000 values, which we had to round to318

whole integers because these values represent simulated counts. Upon removing the values that round down319

to 0, we had 2,046 simulated unique interactions which had were observed a total of 9,597 times. These320

numbers are approximately double those seen in the Willershausen dataset, so we attributed these simulated321

interactions to 15,000 leaves because this is approximately double the number in the Willershausen dataset.322

We examined the validity and reliability of rarefaction of interactions in this simulated dataset by323

subsampling. We subsampled the interactions to one half of the original count (4,798), attributing these to324

one half of the original number of leaves (7,500). We then subsampled the interactions to one quarter of325

the original count (2,399), attributing these to one half of the original number of leaves (3,750). We326

rarefied each vector of subsampled interaction counts to a sample coverage of 0.726, which is the maximum327

amount of coverage reached by all subsampled datasets.328

All rarefaction of interactions was carried out with the estimateD function in the R package iNEXT. All329

resampling and subsampling procedures were iterated 1,000 times.330

3 Results and Discussion331

3.1 Sensitivity of bipartite network metrics to sampling332

completeness333

None of the 28 network-level metrics mentioned in previous studies of fossil herbivory (Swain et al.,334

2021b,a; Currano et al., 2021) perform as unbiased estimators for the complete Willershausen dataset335

(Figure 3). (An unbiased estimator is an estimator whose average value does not change in response to336

sampling completeness.) Two simple criteria for robustness to sampling completeness are that the 95%337

confidence intervals for all subsampling routines contain the mean estimate for the resampling routine, and338

the 95% confidence interval for the resampling routine contains the mean estimates for all subsampling339

routines. Coverage-based rarefaction of damage type diversity fulfills these two criteria (Figure 4), but not340

a single network metric examined here does.341

When the Willershausen data are restricted to only the ten host plants with the highest number of342

leaves in the dataset (Figure 5), 4/28 network metrics fulfill these criteria and thus perform comparably well343
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Figure 3: Mean values and 95% confidence intervals for bipartite network metrics, generated by resampling
and subsampling the cleaned Willershausen dataset in its entirety. Legend: PH = plant host, DT = damage
type.
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to coverage-based rarefaction: togetherness for damage types, niche overlap for damage types, C score for344

damage types, and nestedness.345

Only one network metric, C score for damage types, is among the best-performing in both the complete346

and top-ten analyses of the Willershausen dataset. If the C score for damage types were found to be robust347

for the majority of available fossil herbivory datasets, which are far less complete than Willershausen, a348

key question would still need to be answered: What does the C score tell us? Many metrics are generated349

with little understanding of what they mean in practice, simply because their calculation requires only350

a few lines of code. The C score has been described in the fossil herbivory literature as “the checkerboard351

(mutual presence/absence) nature of the interactions” (Swain et al., 2021b) and as “the randomness of species352

distribution across an ecosystem” (Currano et al., 2021), but no outstanding paleontological questions that353

can be addressed with such a metric have been identified.354
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3,602 leaves

Subsampled to
1,800 leaves

Raw data

Subsampled to
500 leaves

Subsampled to
300 leaves

Subsampled to
1,000 leaves

Figure 4: An example of a nearly unbiased estimator. Mean values and 95% confidence intervals for coverage-
based rarefaction, generated by resampling and subsampling the Willershausen dataset. Moreover, coverage-
based rarefaction performs as a consistent estimator, in that estimates converge on the true value as sample
size increases. No results are presented for 300 subsampled leaves from the complete dataset at sample
coverage of 0.9 because some iterations of this sampling routine yielded an observed sample coverage below
0.9.

3.1.1 Apparent robustness at lower sample sizes355

For many metrics in both the complete and top-ten datasets, the mean estimate and the limits of the356

confidence intervals change little for the subsampling routines at 1,000, 500, and 300 leaves. However, when357

the resampling routine and the subsampling routines with over 1,000 leaves are taken into account, it is clear358

that these metrics are biased by sampling incompleteness. The misleading, apparent lack of bias in certain359

network metrics seen at lower levels of sampling makes intuitive sense. When a relatively large proportion of360

realized interactions are unobserved because only 1,000 leaves have been sampled, the additional proportion361

of realized interactions that go unobserved at 500 or 300 leaves will make little difference for various metrics.362

These findings and this reasoning highlight the danger of evaluating the bias of network metrics by performing363

sensitivity analyses on smaller datasets. Therefore, any metrics that appear robust to subsampling routines364

performed on datasets smaller than that of Willershausen should be treated with extreme caution. For these365

same reasons, methods that quantify the extent to which bipartite network metrics are biased by sampling366

incompleteness (Swain et al., 2021a) may well be unreliable, especially when applied to incomplete datasets.367

3.1.2 Implications for other assemblages368

At any amount of sampling that is realistic for studies of fossil herbivory, the results of bipartite network369

analysis are biased by sampling completeness. The finding that certain metrics are “relatively robust” (Swain370

et al., 2021a) is an inevitability by chance alone given presentation of dozens of metrics (Swain et al., 2021b;371
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Figure 5: Mean values and 95% confidence intervals for bipartite network metrics, generated by resampling
and subsampling data for the ten host plants at Willershausen represented by the highest numbers of leaves.
Legend: PH = plant host, DT = damage type.
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Currano et al., 2021). Even when we limit our analysis to the ten most abundant host plants at Willershausen,372

the mean estimates at 300 and 500 leaves for the best-performing metrics (Swain et al., 2021a) either lie373

beyond (NODF, H 2’, connectance, and niche overlap PH) or just barely fall within (niche overlap DT)374

the 95% confidence interval generated with the resampled dataset. Estimates of these metrics at different375

sampling intensities are even more discordant for the complete Willershausen dataset.376

Neontological evaluations of bipartite networks have indicated that sampling is complete enough for377

bipartite network metrics to be valid and reliable only when two criteria are met. First, the rarefaction378

curves should asymptote for all taxa at the lower trophic level (Arceo-Gómez et al., 2018), e.g., rarefaction379

curves of damage type diversity for each host plant under consideration in a study of fossil herbivory, should380

reach sample coverage above 0.99. At Willershausen, coverage for the top ten host plants ranges from 0.90 to381

0.99. However, at Castle Rock (Wilf et al., 2006), another of the few assemblages with over 2,000 angiosperm382

leaves examined for which damage type data are available for each specimen, coverage of the top ten host383

plants is much lower, with some taxa preserving no damage at all and the highest coverage only reaching384

0.72. At the Bílina–DSH assemblage (Knor et al., 2012), also with over 2,000 angiosperm leaves examined,385

coverage of the top ten host plants ranges from 0.59 to 0.90. Therefore, low sample coverage of damage386

types for individual host plants is clearly not due to lack of investigator effort; this is a characteristic of387

some of the best-sampled assemblages. Rather, low sample coverage of damage types for individual host388

plants is a near-inevitability given the vastly uneven frequencies of both host plants and damage types in389

fossil assemblages. Even the less common host plants must be represented by enough specimens for their390

individual damage diversity rarefaction curves to asymptote. This requirement is unrealistic for essentially391

the entirety of the fossil record as it is currently sampled.392

3.2 Alternatives to bipartite networks393

3.2.1 Beta diversity394

Our calculations of balanced turnover and abundance gradients for the two dominant host plants at395

Willershausen show that these metrics are valid and reliable under the resampling routine and under the396

routine in which the dataset was subsampled to 3,500 leaves (Figure 6). At lower levels of sampling, the397

abundance gradient metric remains valid but is noticeably less reliable. The balanced variation metric398

becomes less valid and reliable at lower levels of sampling. Unsurprisingly, estimates of balanced turnover399

and abundance gradients are most valid and reliable when coverage is high.400

Among the datasets generated by iteratively resampling the Willershausen data and by subsampling the401

data to 3,500 leaves, coverage estimates do not overlap but estimates of balanced turnover and abundance402

gradients overlap almost perfectly. However, estimates become much less reliable when the Willershausen403

dataset is subsampled to only 1,000 leaves, and the levels of coverage for Z. ungeri and F. sylvatica fall to404

0.91 and 0.86, respectively.405

The Colwell Creek Pond data yield much more valid and reliable results. This is perhaps unsurprising,406

because coverage of the second-most abundant host plant is higher at Colwell Creek Pond than at407

Willershausen. Whereas it is very rare for two host plants within a single assemblage to have such high408

sample coverage—0.990 for A. waggoneri, and 0.989 for Taeniopteris spp.—our findings suggest that valid409

and reliable estimates of balanced turnover and abundance gradients are achievable for those rare410

assemblages with two host plants that are nearly completely sampled.411

The Williamson Drive data yield results that are even more valid and reliable than those for Colwell Creek412

Pond. This is a bit surprising: although the most dominant host plant at Williamson Drive,Macroneuropteris413

scheuchzeri, has sample coverage of 0.991, the second-most dominant host plant, Sigillariophyllum foliage,414

has sample coverage of only 0.948—far less than that of Taeniopteris spp. at Colwell Creek Pond. For415

Williamson Drive, balanced variation and abundance gradients essentially perform as unbiased and consistent416

estimators, to nearly the same extent as does coverage-based rarefaction (Figure 4). Further analyses are417

needed to determine exactly why these two metrics perform somewhat better for the Paleozoic data than418

for Willershausen—richness of damage types may be a key determinant—and particularly why these metrics419

perform better for Williamson Drive than for Colwell Creek Pond.420

Nevertheless, it is clear that these two components of beta diversity are a preferable alternative to bipartite421

network metrics. They are more valid and reliable than nearly any bipartite network metric that has been422
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Figure 6: Mean values and 95% confidence intervals for beta diversity metrics, generated by resampling
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examined for fossil herbivory (Currano et al., 2021; Swain et al., 2021b). Their meanings are clear, as is423

the difference between them. They provide no opportunity for metric hacking. They can be calculated for424

pairwise comparisons among host plants, or can be used to generate a single value for an entire assemblage425

(Baselga and Orme, 2012; Baselga, 2017), and can thus be used whether an assemblage contains two or426

twenty host plants with nearly complete sampling.427

3.2.2 Host specificity428

The results of our resampling and subsampling procedures demonstrate that the traditional method for429

assigning host specificity scores is strongly biased by sampling completeness: at lower levels of sampling,430

the host breadth of a damage type inevitably decreases (Figure 7). For example, in the Colwell Creek Pond431

resampling routines, we treated each iteration in which the generalist DT032 or DT120 damage type was432

restricted to only one host plant taxon as a false positive finding of specialization. DT032 appeared on433

only one host plant taxon in 2.72% of iterations; DT120, 3.78%. When a finding of specialization requires434

a damage type to appear on three or more specimens, following the convention established by Wilf and435

Labandeira (1999), the false positive rate falls to 0.93% for DT032 but remains at 3.34% for DT120.436
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Figure 7: Mean values and 95% confidence intervals for the number of plant taxa on which various damage
types appear, calculated with the Willershausen dataset.

The inadequacy of the three-specimen threshold for designation of a damage type as “specialized” is shown437

by the frequencies of false positive results (Figure 8). These frequencies follow lognormal distributions. For438

DT032, which was observed on fewer leaves than DT120, σ > 1 such that the greatest proportion of false439

positive results occur when this damage type is observed on only one specimen. However, for DT120, σ < 1440

such that 4.7% of false positive results occur when this damage type is observed on only one specimen,441

8.7% occur when this damage type is observed on four specimens, and 4.9% occur when this damage type442

is observed on nine specimens. Thus, the three-specimen threshold protects against only a small fraction of443

false positives.444

3.2.3 Rarefaction of interactions445

Coverage-based rarefaction of interactions performs as an unbiased and consistent estimator: as sampling446

completeness decreases, the mean estimate changes negligibly while confidence intervals widen (Figure 9).447

Resampled estimates and confidence intervals are often invalid for rarefaction of interactions, because the448

number of singletons in a resampled dataset tends not to exceed the number of singletons in the original449

dataset. The number of singletons is one of the main determinants of estimated sample coverage, and450

thus, resampled datasets tend to have higher estimated coverage than the original datasets. This means451

that coverage-based rarefaction will generate lower estimates for resampled data than for subsampled data.452

This is abundantly clear for rarefaction of interactions in the simulated dataset and is also quite notable453
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Figure 8: False positive results of “specialized” damage generated by iteratively resampling data from Colwell
Creek Pond. We treated each iteration in which DT032 or DT120 was observed on only one host plant taxon
as a false positive. The heatmaps show the percentage of iterations for each amount of subsampled surface
area in which a false positive result was recovered, arranged by the number of specimens on which the damage
type was observed. The histograms show the summed percentages, by number of specimens.
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Figure 9: Mean values and 95% confidence intervals for coverage-based rarefaction of interactions. The
datasets presented here are Williamson Drive and Colwell Creek Pond, both from the Permian of Texas
(rarefied to a sample coverage of 0.771), and a simulated dataset that mimics the patterns seen among
angiosperms at Willershausen (rarefied to a sample coverage of 0.726).

for Williamson Drive. The estimation of confidence limits from iteratively sampled data should therefore454

be performed with subsampled, rather than resampled, data whenever the mean estimate generated with455

resampled data is clearly invalid. The methodology of coverage-based rarefaction of interactions is illustrated456

in Figure 10.457
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Figure 10: Comparison of the raw and rarefied interaction data from Colwell Creek Pond and Williamson
Drive. Each column of each graph represents a damage type. The heatmaps show the prevalence of each
interaction, and the asterisks denote interactions that remain after rarefying data from each assemblage to
a sample coverage of 0.771.

3.3 An example of bipartite network metrics and the potential for458

metric hacking459

While it has been argued that bipartite network metrics allow a more finely resolved, “in-depth”460

understanding of the relationships between host plants and damage types (Swain et al., 2021a), others461

argue that the multiple comparisons presented in many network studies often contain spurious results462

(Webber et al., 2020). To evaluate which of these two views of multiple comparisons in network studies is463
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applicable to fossil herbivory datasets, we calculated bipartite network metrics for one of the most iconic464

and intensely studied series of assemblages in this discipline: Paleocene and Eocene floras of the western465

interior of North America (Wilf and Labandeira, 1999; Currano et al., 2008, 2010). The finding of increased466

insect herbivory at the Paleocene/Eocene Thermal Maximum (PETM) is supported by quantitative467

measures of herbivorized leaf area (Currano et al., 2016) and by damage type diversity, whether rarefied by468

number of leaves (Currano et al., 2010)—an older practice shown to be biased by differences in leaf surface469

area among host plant taxa (Schachat et al., 2018)—or rarefied by sample coverage (Schachat et al., 2021).470

Changes in herbivory at the Early Eocene Climatic Optimum (EECO) have not been examined as471

thoroughly (Currano et al., 2019), but the logic about climate, nutrient availability, and herbivory used to472

describe the PETM (Currano et al., 2008, 2010) ought to apply to the EECO as well.473

When the 28 bipartite network metrics considered here are calculated for the Paleocene–Eocene474

assemblages of the Bighorn Basin and Wind River basin (Figure 11), none of these metrics yield extreme475

values for the PETM Hubble Bubble assemblage (Currano et al., 2008) or the EECO Wind River Interior476

assemblage (Currano et al., 2019). If these metrics are taken at face value, rather than being dismissed due477

to their susceptibility to sampling bias, the metrics suggest that extreme climate change does not have a478

perceptible impact on plant–insect interactions. For a variety of metrics (interaction strength asymmetry,479

the C score for host plants, connectance, togetherness, partner diversity for damage types, generality for480

damage types), it not the assemblage deposited during the PETM, but the assemblage deposited just481

afterward, that yields the most extreme values. This assemblage, South Fork of Elk Creek, was482

immediately noted for having only two host plants preserved in meaningful quantities (Currano et al., 2008;483

Currano, 2009): a peculiarity that has not been ascribed with ecological significance (Currano et al., 2008;484

Currano, 2009; Currano et al., 2010). However, this long-known peculiarity appears to be driving temporal485

patterns in approximately one quarter of bipartite network metrics. (For all other assemblages shown in486

Figure 11, the mean number of host plant taxa in each subsampling iteration ranges from 4.7 to 11.9.)487

Different combinations of these metrics support different narratives. Of the 28 bipartite network metrics,488

approximately one third suggest that the PETM and EECO had similar impacts on the relationship between489

host plants and damage types, approximately one third suggest that the PETM and EECO had similar490

impacts, and approximately one third yield inconclusive results (Figure 11, Table 2). The PETM itself yields491

a variety of possible conclusions. Over two thirds of these metrics suggest that the relationship between host492

plants and damage types did not drastically change from the very late Paleocene to the PETM, and less than493

one quarter are inconclusive (Figure 11, Table 2). The only two metrics that suggest a drastic change in494

the relationship between host plants and damage types at the PETM—functional complementarity for host495

plants, and for damage types—are the two metrics that show the greatest amount of spread overall (Figures496

3, 5, 11). Moving from the PETM into the Eocene, more than one quarter of these metrics suggest that497

the relationship between host plants and damage types did not change from the PETM to its immediate498

aftermath, over one third suggest that this relationship did indeed change, and over a quarter are inconclusive499

(Figure 11, Table 2).500

The only metric that returns a more extreme value for the PETM than for the two assemblages that501

immediately predate and postdate it—i.e., the mean value for the PETM lies beyond the 95% confidence502

intervals for any of these four other assemblages—is “number of species, DT.” We have presented this metric503

here as if it were a bipartite network metric, because it was previously reported as such (Swain et al., 2021b;504

Currano et al., 2021) and because it is calculated with the networklevel function in the bipartite package505

in R (Dormann et al., 2008). However, this is not truly a bipartite network property in that it does not506

respond to the distribution of damage types among the host plants.507

Bipartite network properties fail to identify the PETM as an anomaly. This finding necessitates a508

reckoning as to whether bipartite network analysis provides additional nuance and context to traditional509

metrics such as the herbivory index and rarefied damage type diversity, or, alternatively, whether these510

metrics are too biased at realistic sample sizes to provide results that warrant interpretation. If the canonical511

notion of uniquely intense and diverse insect herbivory at the PETM is erroneous, that notion should of course512

be challenged. But, for the many reasons detailed above, the various narratives that emerge from bipartite513

network analysis that contradict the accepted influence of the PETM on insect herbivory are quite likely514

artifacts of sampling incompleteness and unevenness.515
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Figure 11: Mean values and 95% confidence intervals for bipartite network metrics, generated by subsampling
each dataset to 300 leaves. Legend: PH = plant host, DT = damage type.
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Intervals being
compared

Metrics that suggest
little or no difference

Metrics that suggest a
drastic difference

Metrics with
inconclusive results

PETM (Hubble
Bubble, Currano
et al., 2008) and
EECO (Wind
River Interior,
Currano et al.,
2019)

robustness DT, mean
number of shared
partners DT, interaction
strength asymmetry,
partner diversity DT,
generality DT, robustness
PH, extinction slope PH,
V ratio DT, weighted
NODF, NODF

mean number of shared
partners PH, extinction
slope DT, number of
species DT, functional
complementarity DT,
connectance, togetherness
PH, interaction evenness,
niche overlap PH

partner diversity PH,
vulnerability PH,
functional
complementarity PH,
togetherness DT, H2,
niche overlap DT, C score
DT, V ratio PH, C score
PH, nestedness

Latest Paleocene
(Daiye Spa,
Currano et al.,
2008) and PETM
(Hubble Bubble,
Currano et al.,
2008)

partner diversity PH,
mean number of shared
partners DT,
vulnerability PH,
togetherness DT, H2,
niche overlap DT, C score
DT, V ratio PH, C score
PH, connectance,
togetherness PH, partner
diversity DT, generality
DT, nestedness,
interaction evenness,
robustness PH, extinction
slope PH, V ratio DT,
weighted NODF, NODF

functional
complementarity DT,
functional
complementarity PH

robustness DT, mean
number of shared
partners PH, extinction
slope DT, number of
species DT, interaction
strength asymmetry,
niche overlap PH

PETM (Hubble
Bubble, Currano
et al., 2008) and
earliest Eocene
(South Fork of Elk
Creek, Currano
et al., 2008)

robustness DT, partner
diversity PH,
vulnerability PH, mean
number of shared
partners PH, extinction
slope DT, functional
complementarity PH,
robustness PH, weighted
NODF

number of species DT,
niche overlap DT,
interaction strength
asymmetry, C score PH,
connectance, togetherness
PH, partner diversity DT,
generality DT, interaction
evenness, extinction slope
PH, V ratio DT, NODF

mean number of shared
partners DT, functional
complementarity DT,
togetherness DT, H2, C
score DT, V ratio PH,
nestedness, niche overlap
PH

Table 2: The variety of narratives about the PETM supported by different combinations of bipartite network
metrics.

4 Conclusions516

The challenge of linking host plants to damage types through bipartite network analysis is twofold. First,517

sampling incompleteness does not simply cause increased uncertainty, as is the case for consistent and518

unbiased estimators such as the herbivory index or coverage-based rarefaction of damage type diversity;519

instead, sampling incompleteness typically leads to inaccurate, misleading results. And second, the wide520

variety of bipartite network metrics creates many opportunities for HARKing. Those opportunities are521

exacerbated by the unclear meanings of these metrics.522

No amount of sampling completeness can remove the potential for HARKing presented by bipartite523

network analysis, but our results show that alternative methods that are insusceptible to HARKing can be524

used to evaluate host specificity, to compare component communities, and to measure the diversity of525

interactions at an assemblage. Rarefied interaction richness and the components of beta diversity are much526

more likely than bipartite network metrics to perform as unbiased and consistent estimators, and do not527

require complete sampling of damage types across all host plants at an assemblage. Much essential528
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information is still lacking: the exact sample coverage required for valid measurement of abundance529

gradients, balanced variation, and the diversity of interactions; as well as the surface area data required for530

evaluation of host specificity, which are unavailable for most published assemblages. However, the first step531

is understanding which analyses are meaningful and which measurements are needed for those analyses to532

be valid.533

At present, there are a number of large gaps in our knowledge of fossil herbivory. First is the nearly534

complete lack of Pennsylvanian or Jurassic assemblages examined for herbivory and the lack of early-to-mid535

Cretaceous assemblages. Second is the general lack of assemblages examined from tropical latitudes. Third536

is the widespread lack of surface area measurements, which are necessary for evaluating the intensity of537

herbivory (Schachat et al., 2018). Fourth is the widespread lack of counts of the number of times that each538

damage type appears on each leaf. These data can be used to evaluate various hypotheses about the causes539

of increased herbivory (Schachat et al., 2021). In light of the limited amount of time that paleontologists540

are able to spend collecting fossil herbivory data, we believe that addressing these four gaps is the most541

important use of investigator effort.542
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5 Appendix811

5.1 Calculating p-values for host specificity812

The absolute amount of surface area examined should be taken into account when determining host specificity813

because if the total amount of surface area is very small, the apparent restriction of a damage type to a814

particular clade of host plants will very possibly be an artifact of insufficient sampling. The relative amount815

of surface area should be taken into account because this determines the probability that a damage type816

would falsely appear to be restricted to a particular clade of host plants.817

Consider a hypothetical assemblage in which 100,000 cm2 of surface area have been examined. If DT001818

is restricted to a clade of host plants represented by a mere 500 cm2 of surface area, and if DT001 is found819

on all 15 specimens belonging to the clade at this assemblage, then DT001 indeed appears to be specialized.820

This finding is supported by the large amount of surface area examined, by the moderately high number of821

specimens on which DT001 has been found, and by the small amount of relative surface area belonging to822

the plant clade in question, which confers a low probability that all detected incidents of DT001 would be823

restricted to this clade due to chance alone.824

However, at Colwell Creek Pond, the host plant Auritifolia waggoneri accounts for over 60% of the825

broadleaf surface area examined. Therefore, especially if the total amount of surface area examined is low,826

a generalized damage type may appear to be restricted to A. waggoneri due to chance alone—particularly827

if the damage type is observed on only a few specimens. To test the frequency with which this sort of false828
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positive finding of specialized herbivory may occur, we resampled the data from Colwell Creek Pond for829

the four host plant taxa from this assemblage that unambiguously meet the criteria for inclusion outlined830

by Swain et al. (2021b): A. waggoneri (63% of total broadleaf surface area), Taeniopteris spp. (28%),831

Evolsonia texana (9%), and Supaia thinnfeldioides (1%). Our analysis focuses on two damage types, DT032832

and DT120. Both of these damage types occur on all four of these host plants, with distributions that833

approximate the amount of surface area examined for each host plant: the majority of incidences of each834

damage type are on A. waggoneri (63–89%), followed by Taeniopteris spp. (10–25%), E. texana (1–10%),835

and, lastly, S. thinnfeldioides (1–3%).836

When a damage type is observed only on one clade of host plants at an assemblage, the surface area of837

those host plants can be used to test the null hypothesis that the damage type is restricted to a certain plant838

clade simply by chance. The proportion of all surface area examined at the assemblage that belongs to the839

clade in question—whether it is a genus or species, implying specialized host specificity, or a higher clade840

implying intermediate specificity—can be raised to the number of specimens on which the damage type was841

observed. This process generates a p-value that can be used to test the null hypothesis of generalized host842

specificity. Consider an example in which a damage type appears to have an intermediate host specificity843

because it occurs only on plants belonging to the same order. If this order accounts for 40% of all surface area844

examined at the assemblage, and if the damage type has been observed on five specimens, the p-value for845

its host specificity is 0.45 = 0.01024. This value is below 0.05, and thus, the damage type has been observed846

on enough specimens to reject the null hypothesis of generalized host specificity. However, a correction for847

multiple comparisons, such as the Bonferroni correction or the Benjamini–Hochberg correction, should be848

used if this procedure is carried out for more than one damage type.849

These findings presented in our Results section suggest that the more conservative Bonferroni correction850

should be used instead of the Benjamini–Hochberg correction when host specificity p-values are calculated851

for multiple damage types. Surface area data from additional assemblages, with as much area as Colwell852

Creek Pond or more, are needed in order to determine whether the Benjamini–Hochberg correction will853

suffice.854

Another fundamental, unresolved issue pertaining to the assignment of host-specificity scores is the855

definition of “specialized” and “intermediate” host specialization. If a damage type occurs on multiple genera856

within the same family, is it a specialized damage type, because it is restricted to one family, or is it an857

intermediate damage type, because it occurs on multiple genera? To our knowledge, this question has never858

been answered, leaving each team of authors to draw the boundaries between specialized, intermediate, and859

generalized host specificity wherever they please. To our knowledge, the locations of these boundaries are not860

typically articulated in publications, leading to a lack of reproducibility. Because the majority of herbivorous861

insects feed on plants belonging to a single family (Forister et al., 2015), we recommend that a damage type862

which occurs on a single family be considered “specialized” and that a damage type which occurs on multiple863

families within a single order be considered “intermediate.”864

We do not advocate assigning host-specificity scores to damage types. For reasons outlined in the865

Introduction, specialist herbivores can be largely or entirely responsible for a “generalized” damage type.866

For reasons outlined in the Results and Discussion, a “generalized” damage type can appear to be867

“specialized” due to sampling incompleteness. However, should any research teams continue to assign868

host-specificity scores, our method for generating p-values protects against false positive findings of869

specialized herbivory and our recommended boundaries between specialized, intermediate, and generalized870

host specificity provide an objective, reproducible, working definition.871

5.2 Considerations for coverage-based rarefaction of interactions872

The input used for bipartite network analysis and for rarefaction of interactions is essentially the same873

(Table 3). Bipartite network analysis uses a matrix in which each row represents a host plant, each column874

represents an herbivore (or, for fossil herbivory, a damage type), and each cell represents the number of875

times that a given interaction was observed. In the example shown in Table 3, DT001 was observed on one876

specimen belonging to plant sp. 1 and DT002 was observed on five specimens belonging to plant sp. 1. For877

rarefaction of interactions, the matrix is vectorized, or transformed into a single row. The information about878

particular host plants and damage types is removed, only the numbers of observations remain, the ordering879

of these observations does not matter, and it does not matter whether unobserved interactions with a value880
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of 0 are retained in the vector.881

DT001 DT002 DT003 DT004
Plant sp. 1 1 5 0 2
Plant sp. 2 2 0 0 6
Plant sp. 3 0 0 1 0
Plant sp. 4 0 1 0 1
Plant sp. 5 0 3 0 1

Table 3: A toy example of the input used for bipartite network analysis. For rarefaction of interactions (Dyer
et al., 2010), the input would be a vectorized version of this matrix, which could take any of the following
forms: [ 1 5 0 2 2 0 0 6 0 0 1 0 0 1 0 1 0 3 0 1 ], or [ 1 5 2 2 6 1 1 1 3 1 ], or [ 6 5 3 2 2 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 ], or [ 6 5 3 2 2 1 1 1 1 1 ].

This vector is then used for a subsampling procedure, and can be subsampled to a threshold of sample882

coverage as Schachat et al. (2021) have advocated. Whereas bipartite network analysis produces misleading883

results with incomplete sampling by treating rare, undetected interactions as true absences, rarefaction of884

interactions subsamples the observed interactions such that the rare, undetected interactions are removed885

from the dataset and thus cannot bias the results. Once the dataset for an assemblage reaches the coverage886

threshold to which all assemblages are subsampled, additional sampling completeness—revisiting an887

assemblage that already reaches a sample coverage of 0.9, and collecting additional data until sample888

coverage reaches 0.95—will not change the results on average, in contrast to bipartite network analysis.889

This is because the progression of an unbiased sampling routine will lead to additional observations of890

common interactions while allowing the observation of new, rare interactions.891

In a typical rarefaction analysis in the context of fossil herbivory, the input is a vector that contains the892

number of specimens upon which each damage type has been observed. For example, if DT001 and DT002893

have each been observed on three specimens and DT003 has been observed on one specimen, the input vector894

would take the form of [ 3 3 1 ]. To rarefy the interactions rather than the damage type incidences in this895

toy example, if DT001 was observed on three specimens belonging to the same plant host and DT002 was896

observed on two different plant hosts, the input vector would take the form of [ 3 2 1 1 ]: the second 3 in the897

original vector, corresponding to DT002, has been split into a 2, representing two incidences of this damage898

type on one plant host, and a 1, representing an incidence of this same damage type on a different plant899

host.900

There is a computational issue with increasing the number of values in an input vector that equal 1: this901

reduces sample coverage (Good, 1953). Because scaling rarefaction curves by the number of leaves examined902

is an inadequate substitute for scaling by the amount of surface area examined (Schachat et al., 2018),903

coverage-based rarefaction is the only appropriate method for comparing assemblages that lack measurements904

of surface area. But the sampling completeness that is needed to rarefy damage type diversity (Schachat905

et al., 2021) will far fall short of the sampling completeness needed to rarefy the diversity of interactions.906

For example, when we iteratively subsampled the Willershausen dataset to 1,000 leaves, sample coverage907

was as low as 0.599—a level at which comparisons will be grossly under-powered, as discussed by (Schachat908

et al., 2021). Therefore, we evaluated rarefaction of interactions with a simulated dataset.909

5.3 Host plants with sample coverage above 0.99910

The following is a non-exhaustive list of host plants censused for fossil herbivory, for which sample coverage is911

above 0.99. Zelkova ungeri from Willershausen (Adroit et al., 2018); Macginitiea gracilis (Lesquereux) Wolfe912

& Wehr from PN (Currano et al., 2010); Heidiphyllum elongatum (Morris) Retallack from Aasvoëlberg 311913

(Labandeira et al., 2018); Sphenobaiera schenckii (Feistmantel) Florin from Birds River 111 (Labandeira914

et al., 2018); Platanus raynoldsii Newberry from Mexican Hat (Wilf et al., 2006; Donovan et al., 2014);915

Macroneuropteris scheuchzeri from Williamson Drive (Xu et al., 2018); A. waggoneri from Colwell Creek916

Pond (Schachat et al., 2014); Quercus sp. L. from Longmen (Su et al., 2015).917

When coverage equals 1, this is typically misleading, as it most likely signifies that either no damage has918

been found on the host plant taxon in question (the Coverage function in the entropart package calculates919
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coverage of 1 when there is no damage) or that the sample size is much too small, which can spuriously920

lead to no singleton damage types. For example, Fabaceae sp. WW042 at the PN assemblage (Currano921

et al., 2010) is represented by 16 leaves. Three damage types are observed: DT002 is on two leaves, DT012922

is on six leaves, and DT032 is on two leaves. Coverage equals 1. However, if the number of leaves with923

DT002 is experimentally reduced from two to one, coverage falls from 1 to 0.9111. The only host plant924

we are aware of for which coverage of 1 is not a spurious artifact is Quercus sp. from Longmen (Su et al.,925

2015). Twelve damage types were found on the 1,027 leaves examined. All damage types were found on at926

least five leaves. If the number of leaf specimens with DT045 is experimentally reduced from five to four,927

coverage remains at 1. This suggests a rule of thumb for determining whether a high coverage estimate is928

an artifact: if coverage remains above 0.99 after one leaf specimen with the rarest non-singleton damage929

type is experimentally removed from the dataset, the coverage estimate is indeed robust. Notably, when930

we subsampled the Willershausen dataset to at least 1,000 leaves and iterated this procedure 10,000 times,931

coverage never exceeded 0.9972. It therefore appears that all coverage estimates that equal 1 would become932

slightly lower—if not far lower—with additional sampling. Thus, a coverage estimate of 0.995 is a stronger933

indicator of complete sampling than is a coverage estimate of 1.934
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