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Abstract 37 

Studying the molecular mechanisms of ovarian aging is crucial for understanding the age-related fertility 38 

issues in females. Recently, a single-cell transcriptomic roadmap of ovarian aging based on non-human 39 

primates revealed the molecular signatures of the oocytes at different developmental stages. Herein, we 40 

present the first epigenetic landscape of human ovarian aging, through an integrated analysis of the single-41 

cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) and single-cell RNA-seq. 42 

We depicted the transcriptional profiles and chromatin accessibility of the ovarian tissues isolated from old 43 

(n=4) and young (n=2) donors. The unsupervised clustering of data revealed seven distinct cell populations 44 

in the ovarian tissues and six subtypes of oocytes, which could be distinguished by age difference. Further 45 

analysis of the scATAC-seq data from the young and old oocytes revealed that the interaction between the 46 

Notch signaling pathway and AP-1 family transcription factors may crucially determine oocyte aging. 47 

Finally, a machine-learning algorithm was applied to calculate the optimal model based on the single-cell 48 

dataset for predicting oocyte aging, which exhibited excellent accuracy with a cross-validated area under 49 

the receiver operating characteristics score of 0.99. In summary, this study provides a comprehensive 50 

understanding of human ovarian aging at both the transcriptomic and epigenetic levels, based on an 51 

integrated analysis of large-scale single-cell datasets. We believe our results will shed light on the discovery 52 

of potential therapeutic targets or diagnostic markers for age-related ovarian disorders.  53 
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Itroduction 54 

The ovary is the chief female reproductive organ that not only stores and provides oocytes but also supplies 55 

essential sex hormones, fundamentally determining the reproductive lifespan and maintaining the endocrine 56 

homeostasis in females1. However, women are born with a finite number of follicles2. As the number of 57 

follicles decreases with age, female fertility declines and eventually leads to menopause as a physiological 58 

consequence of ovarian aging3. Also, the specific reason for the cessation of ovulation in females after 35 59 

years of age remains unknown4. Ovarian aging is also closely related to a wide spectrum of diseases, 60 

including ovarian cancer, breast cancer, cardiovascular disease, and type 2 diabetes mellitus5,6. This 61 

necessitates the elucidation of the mechanism of ovarian aging and identification of the possible target to 62 

delay the process. 63 

Ovary possesses a complex structure with a heterogeneous population of cells at progressive developmental 64 

stages7. The follicle is the main functional unit of the ovary8. Each follicle consists of a partially 65 

differentiated oocyte, enclosed within increasing layers of somatic granulosa cells and theca-interstitial 66 

cells that support the oocyte during maturation1. Other components of the ovary include the stromal cells, 67 

smooth muscle cells, endothelial cells, and various immune cells9,10. Therefore, unraveling the cellular 68 

landscape of the ovary is indispensable for a better understanding of cell-type-specific dynamics during 69 

ovarian aging. 70 

Advances in single-cell RNA sequencing (scRNA-seq) technology enable the cellular landscape to be 71 

mapped at the single-cell level and the cell trajectory to be inferred for examining the dynamic changes in 72 

the cell populations11. Previous studies performed the scRNA-seq on the ovaries of young and old 73 

cynomolgus monkeys7. Researchers have depicted the transcriptional profile of four oocyte subtypes and 74 

demonstrated that oxidative damage and subsequent responses are essential for the aging-related changes 75 

in early-stage oocytes and granulosa cells7. Another study focused on the growth and regression of the 76 

follicular populations in human adult ovaries10. Various cell types have been identified, and a significant 77 
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association was found between the complement system and follicular remodeling10. However, the 78 

epigenetic landscape of ovarian aging in humans is unclear. 79 

In addition to the transcriptional regulation, epigenetic reprogramming also takes place in the postnatal 80 

oocyte growth and ovarian aging. Previous studies reported that persistence of methylation at CpG islands 81 

affected the expression of genes related to the preimplantation development in oocytes12,13. Nevertheless, 82 

the chromatin landscape and its dynamics during the ovarian aging are still unexplored. Single cell assay 83 

for transposase-accessible chromatin using sequencing (scATAC-seq) is an exquisite tool for sketching the 84 

chromatin accessibility profile at single-cell resolution14. Combined with the scRNA-seq, the 85 

comprehensive analysis through scATAC-seq is promising for unveiling the epigenetic mechanism of 86 

ovarian aging. 87 

Results 88 

Single-cell sequencing of over 49,000 cells from the ovarian tissues of six patients 89 

To study the transcriptomic heterogeneity and compare the old and young ovarian tissues based on the cell 90 

types, the tissues were collected from six patients (Materials and Methods, Supplementary Figure 1) 91 

and the single-cell sequencing was performed using the 10x Genomics platform. After the quality control 92 

and batch integration, 49,651 cells were clustered into ten initial clusters (Figure 1A). The marker genes 93 

from the literature were used to annotate these clusters, including CDKN1C for the stromal cells, TAGLN 94 

and SOD3 for the oocytes, SPARC and TIMP1 for the smooth muscle cells, INHA for the granulosa cells, 95 

CDH5 and VWF for the endothelial cells, CD14 and CD74 for the macrophages, IL32 and CCL5 for the 96 

natural killer (NK) cells (Figure 1B). The clusters were then integrated and renamed based on the marker 97 

genes and clustered cells into seven cell types (Figure 1C). The top markers of each cell type were 98 

calculated and showed clear patterns for each cell type (Figure 1D). To further validate the annotations of 99 

the clusters, the functional enrichment analyses were performed for the significantly highly expressed genes 100 

for each cluster (p-value < 0.05, fold-change > 1.2) (Supplementary Figure 2). As expected, the enriched 101 
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Gene Ontology (GO) terms revealed critical functions of the corresponding cells. For example, the top 102 

enriched GO terms for the macrophages and NK cells were mainly immune-related pathways, such as 103 

“regulation of immune response,” “immune response-activating signal transduction” and “activation of 104 

immune response.” 105 

We further explored the changes in the composition of each cell type between the old and young ovarian 106 

samples (Figure 1E). It is worth mentioning that the number of macrophages and NK cells was significantly 107 

decreased in the old patient samples compared to the young patient samples, while the stromal cells 108 

increased in the old patient samples. Aging has been reported to impair many aspects of macrophage 109 

functions15-17 and has also been identified to have critical impacts on the macrophage-involved immune 110 

response. 111 

Six subtypes of oocytes show distinct gene expression signatures at the sequential development stage 112 

We conducted an unsupervised analysis of oocyte gene expression profiles to explore the dynamic changes 113 

in the oocyte transcriptomic profiles and identified six subtypes of oocytes (C0 to C5). Uniform Manifold 114 

Approximation and Projection (UMAP) revealed that the six subtypes were distributed along the UMAP1 115 

dimension (Figure 2A). To investigate the dynamic changes in gene expression during oocyte development, 116 

we calculated a subset of feature genes that exhibited high subtype-to-subtype variations (Figure 2B). 117 

Notably, we found that most of the C1–C2 oocytes were from young tissues, while the C3–C5 oocytes were 118 

from the old. We subsequently examined the gene expression across the six subtypes and identified the top 119 

10 highly expressed genes for each subtype (Figure 2D). To validate the functional difference of each 120 

subtype, we conducted the GO analysis for the significantly highly expressed genes for each cell type (p< 121 

0.05) (Figure 2D). Consistent with the previous reports and the above canonical gene expression patterns, 122 

the GO analysis revealed the biological processes that were enriched for each stage of follicular 123 

development. Notably, the “protein targeting to endoplasmic reticulum” and “ribosome biogenesis” were 124 

enriched for subtype C0 with high expression of ribosomal protein-related genes (representative genes 125 

RPS8, RPS9, and RPS14). We also identified that “oxidative phosphorylation” (representative genes 126 
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ATP5ME and COX5B) and “ATP synthesis coupled electron transport” (representative genes NDUFA4 and 127 

COX6C) were enriched for the subtype C4. The variety of enriched GO terms revealed the functional 128 

heterogeneity of these subtypes during folliculogenesis. As shown in Figure 2B, we identified a subset of 129 

feature genes that exhibited high subtype-to-subtype variations. We then examined the expression trends 130 

of these feature genes and identified the genes that gradually increased or decreased with oocyte 131 

development. It is worth mentioning that we found that two critical oocyte-related genes, TIMP1 and TIMP2, 132 

had significant expression trends in correlation with oocyte development (Figure 2E). Previous studies 133 

have reported that TIMP1 and TIMP2 are associated with oocyte maturity and quality and are necessary 134 

for normal follicular development 18,19. In our results, TIMP1 and TIMP2 displayed a gradually decreasing 135 

expression along with oocyte development. 136 

The scATAC-seq profiling of human ovaries identified different cell types and gene expression 137 

signatures 138 

To profile the genome-wide chromatin accessibility of the cells from the old and young ovarian tissues, a 139 

scATAC-seq approach was applied to investigate the differences between the old and young ovarian 140 

samples. We utilized “ArchR,” a state-of-the-art scATAC-seq analysis R package, for quality control, 141 

doublet removal, cell clustering, and annotation, peak calling, differential chromatin accessibility analysis, 142 

and footprinting analysis were performed20. Cell barcodes with more than 4,000 total unique fragments and 143 

a transcription start site enrichment score of more than 8 were selected for downstream analysis 144 

(Supplementary Figures3A and B). After quality control and removal of doublets, a total of 38,312 single 145 

cells were obtained from four old and two young patients’ samples (Supplementary Figures3C, 4, and 5). 146 

For the downstream cell clustering and visualization, the graph-based Louvain algorithm and UMAP were 147 

implemented in the ‘Seurat’ R package. Based on chromatin accessibility profiling, 38,312 cells were 148 

represented by a total of 16 clusters (Figure 3A). To accurately annotate the clusters, the aforementioned 149 

scRNA-seq annotation information was integrated into our scATAC-seq analysis. Finally, seven distinct 150 

cell clusters representing the cell types were discovered by scRNA-seq data, including endothelial cells, 151 
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granulosa cells, macrophages, NK cells, oocytes, smooth muscle cells, and stromal cells (Figure 3B). 152 

By using ArchR’s default peak caller MACS2 with recommended settings, a total of 258,273 peaks were 153 

identified in the old and young ovarian samples. After identification of the robust peak sets for each cell 154 

type, we further predicted the type of transcription factors (TFs) that may mediate the binding events 155 

creating accessible chromatin sites. The motif enrichment results revealed distinct sets of TFs for cell types, 156 

indicating the critical functions of these TFs in regulating the cells (Figure 3C). The footprinting analysis 157 

also revealed the specific upregulated binding of the TFs for each cell type (Figure 3D). For example, the 158 

RUNX1 TF has been reported to be associated with the NK cell clonal expansion and memory formation. 159 

In addition, STAT6 is a key TF in macrophage M2 polarization21,22. Our results were supported by the 160 

results of previous studies and reveal the novel functional TFs for each cell type during ovarian aging. 161 

The integrated scRNA-seq and scATAC-seq analyses demonstrate the functional roles of the AP-1 162 

TF family and Notch signaling pathway in ovarian aging 163 

To investigate the molecular mechanisms of oocyte aging, the chromatin accessibility of oocyte cells from 164 

old and young patients was further compared. The MACS2 with recommended settings was applied to 165 

identify the peaks for the old and young oocyte cells and predict the TFs that mediate the binding events 166 

creating accessible chromatin sites (Figure 4A). The motif enrichment results revealed distinct sets of TFs 167 

in the old and young oocytes, which implied the distinct functional roles of TFs in regulating oocyte aging 168 

(Figure 4B). Notably, we found that multiple critical AP-1 TF family members, such as FOS, JUNB, 169 

FOSL1, and FOSL2, were highly enriched in the old oocyte cells compared to the young oocytes. We 170 

further performed the functional enrichment analysis for the differentially enriched TFs between the old 171 

and young oocytes. It is worth mentioning that several critical aging pathways, including “AP-1 TF 172 

network,” “tumor necrosis factor signaling pathway” and “Aging” terms, were enriched for significantly 173 

upregulated TFs in the old oocyte cells (Figure 4C). The aging term was enriched with several critical 174 

upregulated genes, including FOS, CREB1, JUN, TP63, and PAX2. For the enriched pathways for 175 

upregulated TFs in young oocyte cells, the Notch signaling pathway was notably one of the most 176 
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significantly enriched terms (Figure 4D). AP-1 was reported to negatively regulate the Notch signaling 177 

pathway 23, which is consistent with our findings, indicating an interaction between these two pathways. In 178 

our results, the AP-1 TF family activity was significantly upregulated in the old oocyte cells, whereas the 179 

Notch signaling pathway was downregulated. The Notch signaling pathway has been widely reported to be 180 

associated with aging and plays important role in age-related diseases24,25. Our results support the negative 181 

regulation between AP-1 and the Notch signaling pathway and suggest the potential functional roles of the 182 

AP-1 TF family in aging. To further validate the upregulation of the AP-1 family in the old oocyte cells, 183 

we conducted the footprinting analysis for several critical AP-1 family members and integrated their 184 

expression in the scRNA-seq data. We found that FOSL2 and ATF3 showed profoundly upregulated 185 

patterns in the old oocyte cells in both the footprinting and scRNA-seq results (Figure 4E; Supplementary 186 

Figure 6). FOSL2 and ATF3 worked orchestrally in the AP-1 complex. In order to validate this crucial 187 

finding, we performed immunostaining assays on both young and old ovarian tissues. Interestingly, the 188 

positive signal of AP-1 complex (c-fos and c-jun) can only be found in old oocyte cells, but not in the young 189 

oocyte cells (Figure 4F). Therefore, together with the experimental validation results, our integrated 190 

analysis of the scRNA-seq and scATAC-seq indicated consistent patterns of upregulation of AP-1 signal in 191 

oocyte aging, thus indicating the potential role of AP-1 regulation in ovarian aging. 192 

Machine-learning-based prediction of ovarian aging 193 

It is widely established that bulk RNA-seq data have been used to investigate the biological processes of 194 

aging. Recently, expression profiles at the single-cell level have been applied to human skin aging and 195 

mouse aging in multiple tissues 26,27. We found that the gene expression of oocyte cells was significantly 196 

different between the young and old ovaries in our scRNA-seq dataset. Next, we applied our scRNA-seq 197 

data to predict ovarian aging. A statistical model was then built and optimized to describe the relationship 198 

between gene expression and ovarian aging. The mutual information scores were used to rank the genes. 199 

The cross-validated AUROC scores for models with different numbers of top-ranked genes are shown in 200 

Figure 5A. We included the 10 top-ranked genes in the predictive model, as including more genes did not 201 
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further improve the performance of the model. The performance of the optimized model (see Materials 202 

and Methods) was characterized using Receiver Operating Characteristic (ROC) analysis (Figure 5B). 203 

The model with the selected 10-gene signature exhibited excellent accuracy, with a cross-validated AUROC 204 

score of 0.99. The other metrics of the model were also commensurate with the AUROC score (Figure 5C). 205 

The gene signature included those of MT-ATP6, MT-CO3, MT-CYB, IGFBP7, VIM, RPL3, RPL27A, 206 

HIST1H4C, HLA-A, and CD63 (Figure. 5D). We also performed the Mann‒Whitney‒Wilcoxon test with 207 

Bonferroni correction and found that all of these genes were significantly differentially expressed between 208 

the two groups with p-values smaller than 10-4. These findings suggest excellent predictability of ovarian 209 

aging using the 10-gene signature expression of the oocyte cells. 210 

Profiling the cell-cell communication in young ovarian samples 211 

To further investigate the mechanisms of ovarian aging, we examined the cross talk of various cell types. 212 

As mentioned earlier, we found that the Notch signaling pathway was significantly regulated in young 213 

oocyte cells and it also played critical roles in cell communications. Therefore, we used CellPhoneDB28 to 214 

profile the communication among cell types in the scRNA-seq data of young patients. The interactions 215 

among smooth muscle cells, endothelial cells and granulosa cells are the strongest, while others are 216 

relatively weaker (Figure 6A, B).  Furthermore, we examined the interactions between oocyte and other 217 

cell types. Notably, several Notch family receptors were significantly enriched, which include Notch2, 218 

Notch3 and Notch 4 (Figure 6C).  These pairs of interactions could play important roles in ovarian aging 219 

for oocytes to interacting with other cell types. 220 

Discussion 221 

The ovary is characterized by highly heterogeneous populations at progressive developmental stages, and 222 

its cellular landscape is of indispensable importance to clarify the mechanism of ovarian aging. In this study, 223 

we integrated the scRNA-seq and scATAC-seq analyses to depict the transcriptional profiles and chromatin 224 

accessibility of old and young ovarian tissues. Unsupervised clustering of the scRNA-seq data revealed 225 

seven distinct cell populations. Annotation results were integrated with and confirmed by the scATAC-seq 226 
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data. Marker genes, enriched pathways, and featured motifs for each cluster were identified. Notably, six 227 

subtypes of oocytes were recognized, representing different stages of oocyte development. Finally, a 228 

machine-learning algorithm was applied to calculate the optimal model for predicting ovarian aging. 229 

The difficulty in procuring human ovary samples has long been an obstacle in revealing the cellular 230 

landscape of ovarian aging. Combining scRNA-seq and scATAC-seq data, we presented the first integrative 231 

study of ovarian aging at single-cell resolution. After multiple clustering and annotation, seven cell clusters 232 

were identified, including endothelial cells, granulosa cells, macrophages, NK cells, oocytes, smooth 233 

muscle cells, and stromal cells. This is consistent with the results of previous studies. Wang et al. performed 234 

the scRNA-seq analysis on the ovary samples collected from four young and four aged cynomolgus 235 

monkeys7. The same clustering results were found in their analysis, whereas the marker genes were slightly 236 

different7. Fan et al. applied scRNA-seq to human adult ovaries and depicted the molecular signature of 237 

growing and regressing cell populations10. Somatic cell types, including endothelial cells, granulosa cells, 238 

smooth muscle cells, and stromal cells, were also found in their study 10. In conclusion, the major cell types 239 

in human ovary samples were unveiled in this study. 240 

The reclustering and cell trajectory analysis showed six subtypes of oocytes with distinct gene expression 241 

signatures during the sequential development stage. The differentially expressed genes were examined 242 

across the six subtypes for expression trends and oocyte development. Interestingly, TIMP1 and TIMP2 243 

were negatively correlated with folliculogenesis. The TIMP gene family encodes proteins that inhibit matrix 244 

metalloproteinases (MMPs), thus preventing degradation of the extracellular matrix29. Previous studies 245 

have reported that TIMP1 and TIMP2 are involved in follicular development. Robinson et al. demonstrated 246 

that TIMP family members are localized in the oocyte cytoplasm and play an important role in the 247 

remodeling of the extracellular matrix during human gonadal development30. By investigating the gene 248 

expression levels of TIMP1 and TIMP2 in the granulosa and cumulus cells, Luddi et al. demonstrated that 249 

MMP and TIMP expression is involved in the regulation of oocyte maturation31. In this study, we showed 250 

that TIMP1 and TIMP2 were both significantly downregulated in the C4 and C5 oocytes (Figure 2C and 251 

2E), which were mostly from old patients. This result indicates that the expression levels of TIMP1 and 252 
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TIMP2 may determine the oocyte development stage as well as the aging process. Future studies should 253 

focus on deciphering the mechanistic roles of TIMP1 and TIMP2 in oocyte aging. 254 

Chromatin accessibility analysis and robust peak identification revealed that the AP-1 TF family members, 255 

such as FOS, JUNB, FOSL1, and FOSL2 were highly enriched in the old oocyte cells compared to the 256 

young oocyte cells, consistent with the functional enrichment analysis and foot-printing analysis. Previous 257 

studies have reported that the AP-1 TFs participate in the early stages of murine follicle growth 32. Moreover, 258 

the AP-1 TF family has been reported to be involved in the aging of various cells. Shi et al. observed 259 

decreased AP-1 transcriptional activity in senescent human keratinocytes33. Medicherla et al. demonstrated 260 

that oxidative stress may contribute to impaired AP-1 binding activity, leading to adrenal aging in rats34. 261 

ATF3, an AP-1 TF, was found to be critical for the remodeling chromatin accessibility, thus promoting 262 

senescence of the human umbilical vein endothelial cells35. Herein, we demonstrated the crucial role of AP-263 

1 genes in ovarian aging. Additionally, the Notch signaling pathway was found to be negatively regulated 264 

by the AP-1 complex 36. Chen et al. demonstrated that treatment with a Notch signaling pathway inhibitor 265 

led to a significant decrease in oocytes in the primordial follicles of newborn mice37, which implied that 266 

downregulation of the Notch signaling pathway is correlated with the dysfunction of the ovary. These 267 

studies indicated that the AP-1 TF family and its interaction with the Notch signaling pathway might 268 

regulate follicle formation and growth, thus contributing to ovarian aging. Further functional studies are 269 

needed to clarify their potential roles in the human ovary. 270 

Finally, we built and optimized a predictive model based on the signature genes that were differentially 271 

expressed between the young and old ovaries. These genes include MT-ATP6, MT-CO3, MT-CYB, IGFBP7, 272 

VIM, RPL3, RPL27A, HIST1H4C, HLA-A, and CD63. The model presented excellent accuracy in cross-273 

validation, suggesting its predictive and diagnostic significance for ovarian aging. Taken together, these 274 

observations provide novel insights into ovarian aging in humans. More detailed studies are essential to 275 

evaluate the function of the TIMP gene family and AP-1 TF family in oocyte development and maturation. 276 

Moreover, a predictive model based on machine learning promises to assist in the prediction of ovarian 277 
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aging. Signature genes identified in this study may serve as new biomarkers and therapeutic targets for the 278 

diagnosis and treatment of age-related ovarian disorders. 279 

Material and methods 280 

Sample information 281 

The experiments performed in this study were approved by the Ethics Committee of Affiliated Hospital of 282 

Nantong University. With informed consent, fresh ovarian tissues used for this study were from 6 donors 283 

who all underwent surgical treatment in Department of Obstetrics and Gynecology, Nantong University 284 

Affiliated Hospital between 2019-2020. All cases were excluded the use of hormones and malignant tumors. 285 

4 cases menopausal women represent the elderly group (mean age 55.5 years, 50-62 years), who underwent 286 

whole uterus and double attachment resection because of uterine leiomyoma (n=3) and benign ovarian mass 287 

(n = 1). And the other 2 cases with normal fertility aged 31 and 34 years old who both underwent ovarian 288 

cyst removal surgery, we trimmed the irregular residual ovarian tissue to neat, and took a very small piece 289 

of normal ovarian tissue at the edge of the residual tissue during the operation. All the normal ovarian tissue 290 

were confirmed without histopathological abnormality by at least two independent pathologists.  291 

Single nuclei preparation and ATAC-library construction 292 

Single nuclei ATAC-seq was performed following 10x Genomics 293 

NextGEM_SingleCell_ATAC_ReagentKits_v1.1 protocol. Homogenization was applied to tissues for 294 

breaking the tissues and obtaining the purified nuclei. Nuclei concentration was determined with 295 

hemocytometer under microscope and diluted in nuclei buffer (10x Genomics). The transposition 296 

experiments were then set up with thermocycler; The GEMs were then produced and cleaned up with the 297 

dynabeads, followed by performing the PCR reactions to add sample index. After quality control (QC) and 298 

quantification of the products, it was used for following library construction under the standard protocol 299 

(10x Genomics). The library was then sequenced using Illumina NovaSeq platform. 300 

Single cell preparation and library construction (for scRNA-seq)  301 
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Separated ovarian tissues were dissociated to single-cell resuspension for the single-cell transcriptome 302 

sequencing. The tissues were rinsed in cold DPBS for three times after dissection. Then the tissues were 303 

carefully transferred to digestion buffer (2mg/ml collagenase I, 1ml; 2mg/ml collagenase II, 1ml; 0.9U 304 

dispase, 0.5 ml; trypsin, 0.5 ml; DMEM, 1.5ml. Pre-heat to 37 degrees). The tissues were cut to appropriate 305 

smaller pieces in the digestion buffer and then gently shook in a 37-degree metal heater-shaker for 15 306 

minutes. After the treatment, they were taken 10 µl from the resuspension and observed with a 307 

hemocytometer under microscope. If the cells were not sufficiently digested, it would be treated with 308 

digestion buffer for another 5 minutes. The cell suspension was then filtered by a 70-µm mesh filter, 309 

followed by washing the filter with another 5ml DMEM. The cells were concentrated by centrifugation 310 

(500g, 5 minutes at 4 degrees), and then the supernatant was removed. The cells were resuspended with 50 311 

to 100 µl DMEM with 10% phosphate-buffered saline (PBS). The cells were then observed and counted 312 

with hemocytometer. The cell concentration was adjusted to 700 to 1200 cells per µl before loading to 10x 313 

Genomics Chromium machine. 314 

The GEMs were produced and collected to perform reverse transcription for barcoding, and the first strand 315 

cDNA was purified with magnetic beads. After QC and quantification of the cDNA, it was then used for 316 

library construction under standard protocol (10X Genomics). The library was sequenced using Illumina 317 

NovaSeq platform. 318 

Single cell RNA-seq analysis 319 

Seurat38 was used to read the Cellranger outputs (expression matrices) and used as the platform for 320 

downstream analysis. For quality control of each dataset, lowly-detected genes and cells with limited 321 

number of genes were discarded from the downstream analysis, in order to avoid the analysis driven by 322 

noise or low-quality cells. The gene filter was set to detection in at least 0.5% of all cells and the cell filter 323 

was set to a minimum number of 1000 of total expressed genes per cell. After the QC step, for each 324 

expression matrix, the expression value of each gene was normalized and transformed using default 325 

NormalizeData function in Seurat. Using the variation stabilizing transformation method (‘vst’ from Seurat), 326 
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the top 2000 variable genes were selected in each matrix and were used as input for the 327 

‘FindIntegrationAnchors’ function of Seurat. The expression matrices were then integrated with the 328 

‘IntegrateData’ function. The integrated data were dimension reduced with principal component analysis 329 

(PCA; top20 dimensions). In the PCA space, nearest neighbors were defined among cells with KNN method 330 

(‘FindNeighbors’, top 15 PCs were selected) and cells were then grouped with Louvain algorithm 331 

(‘FindClusters’ in Seurat, resolution equal to 0.5). UMAP dimension reduction was then performed using 332 

‘RunUMAP’ function for visualization purpose. CellPhoneDB was used to profile the communication 333 

among cell types in the scRNA-seq data of young and old  patients28. 334 

Detection of differentially expressed genes (DEGs).  335 

DEGs were first computed to test significantly highly expressed genes for each cluster. For each cluster, 336 

only the genes expressed in more than 25% of that group were considered. All other cells were used as the 337 

background. For statistical test, we used the ‘MAST’ method implemented in Seurat. DEGs were defined 338 

as genes whose log fold-change were over 0.4 compared to the background, and with a q-value (FDR) 339 

smaller than 0.05.  340 

In each cell type, differentially expressed genes of the cells from tissues with primary tumors and those 341 

with recurrent tumors were computed. The method is the same as above described except that log fold-342 

change threshold were set to 0.25. 343 

Single-cell ATAC-seq analysis 344 

Raw scATAC-seq data was first processed by the ‘cellranger-atac’ tool downloaded from 10x Genomics, 345 

which mapped the sequenced reads to the hg38 genome reference and generated the fragment files. R 346 

package ‘archR’ was then used for the downstream analysis with fragment files as input20. For quality 347 

control, cells with less than 4000 unique fragments or TSS enrichment scores less than 8 were removed. 348 

Doublets were also removed by using the default settings. Cells passing the filters were then clustered by 349 

using the ‘Seurat’ method implemented in the ‘archR’ package with high resolution values (1.5 or 2). 350 
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UMAP with 30 neighbors was used for dimension reduction and visualization. For cell cluster annotation, 351 

we first integrated the cell annotations generated by previous scRNA-seq data by using the 352 

‘addGeneIntegrationMatrix’ function of ‘archR’ and then further curated the cell cluster annotations by 353 

specific marker genes. For peak calling, we used the recommended ‘MACS2’ with default settings on 354 

aggregated coverage profiles of identified cell populations. For the rest downstream analysis of motif 355 

enrichment, footprinting analysis and trajectory plots, we used the functions provided by ‘archR’ packages 356 

with the recommended settings.    357 

Statistical Analysis and machine learning based prediction model 358 

Mutual information scores were used to evaluate feature importance. We also considered permutation 359 

importance score to select features, which were outperformed by mutual information in model accuracy 360 

benchmarking. Each evaluation score was averaged over 100 repeated runs. Statistical models including 361 

random forest classifier, gradient boost classifier, XGB classifier, Naïve Bayes were considered. We used 362 

a genetic algorithm (TPOT) to select the best model and optimize its hyperparameters. The area under the 363 

curve of the receiver operating characteristic curve (AUROC), was used to evaluate model performance. 364 

We also calculated other metrics for comparison purposes. All models were evaluated using 5-fold cross 365 

validation with stratified train-test splits that preserve the percentage of samples for the prediction target. 366 

All metrics were averaged over 30 repeated runs. 367 

Hematoxylin-eosin staining and Immunofluorescence 368 

Histologic analysis was performed on ovarian tissues using hematoxylin and eosin staining (H&E). After 369 

operation, ovarian tissues were fixed in 4% formaldehyde and processed for routine paraffin embedding 370 

after fixation. We took 5-mm-thick sections for hematoxylin and eosin staining. Tissue sections were 371 

deparaffinized and rehydrated in graded ethanol solutions. In order to repair the antigen, the sections were 372 

immersed in antigen retrieval solution (P0088, Beyotime Biotechnology) and heated in 97 ℃ water bath 373 

for 20 minutes. First of all, immunol staining blocking buffer (0.5% triton X-100, 5% Horse serum and 374 
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PBS) was used before staining, which can reduce non-specific staining. Immunostaining was performed 375 

using the primary antibody against c-Fos (1:300, Abcam, ab208942, Cambridge, USA) and c-Jun (1:300, 376 

Abcam, ab40766, Cambridge, USA) at 4℃ overnight. On completion of the incubation at 4℃, tissues were 377 

washed three times with PBS. Then localization of c-Fos was monitored using Alexa Fluor 594 (Goat Anti-378 

Mouse, 1:500, Abcam, ab150116, Cambridge, USA) and Alexa Fluor  488 (Goat Anti-Rabbit, 1:500, 379 

Abcam, ab150077, Cambridge, USA) for c-Jun. After 2 hours of co-cultivation at room temperature, tissues 380 

were washed 3-5 times with PBS for 10 minutes each time. Finally, antifade mounting medium with DAPI 381 

(P0131, Beyotime Biotechnology) was used to stain the nucleus. The tissues were observed under Zeiss 382 

microscope and the images were processed by ZEN software. 383 

Acknowledgement 384 

We appreciate the assistance received from Intanx Life (Shanghai) Co. Ltd. for data processing and 385 

consultation.  386 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 7, 2021. ; https://doi.org/10.1101/2021.11.07.467593doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467593


Figure and figure legends 387 

Figure 1. Single-cell clustering and annotation. 388 

A. UMAP visualization of initial clustering results. 389 

B. Marker genes reported by the literature (Materials and Methods) were used to define clusters. For gene 390 

expression, the raw read counts were normalized and transformed. 391 

C. UMAP visualization with cell-type annotation results. 392 

D. Top 10 marker genes for each cell type visualized in a heatmap. For gene expression, the raw read 393 

counts were normalized and transformed, and then scaled. 394 

E. Proportions of each cell type in each patient sample. 395 

Figure 2. A single-cell cluster of oocyte cells. 396 

A. UMAP of six subclusters of the oocyte. 397 

B. Subset of genes with high variation in subtype-to-subtype transition. 398 

C. Proportion of six subclusters of oocyte in the young and old patient samples. Subcluster C0 = identity 399 

0, C1 = identity 1 … C5 =identity 5, respectively. 400 

C. Heatmap of six oocyte subtypes and their corresponding GO enrichment results. 401 

D. Violin plots of TIMP1 and TIMP2. 402 

Figure 3. scATAC analysis of ovarian tissues. 403 

A. UMAP visualization of initial clustering results. 404 

B. UMAP visualization of annotated clustering results. 405 

C. Enriched transcription factor motifs for each cell type. 406 

D. Footprinting plot of representative transcription factors for each cell type. 407 

Figure 4. scATAC analysis of the old and young oocyte cells. 408 

A. Heatmap of enriched motifs of the old and young oocytes. 409 

B. Enriched transcription factors of the old and young oocytes. 410 

C-D. Functional enrichment of transcription factor motifs identified for the old and young oocyte cells, 411 
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respectively. 412 

E. Footprinting and violin plots of FOSL2 and ATF3. 413 

Figure 5. Old and young ovaries prediction based on a machine-learning algorithm. 414 

A. Cross-validated AUROC scores for different features included in the model. 415 

B. ROC curve for the predictive model using the 10-gene signature. 416 

C. Model evaluation metrics. Numbers outside (inside) the parentheses are the mean (standard deviation) 417 

of the 100 validation sets in 30 repeated runs of cross-validation. 418 

D. Expression of all genes in the signature between the old and young groups. 419 

Figure 6. Cell interactions in young ovarian scRNA-seq data.  420 

A. Heatmap of interaction counts cell-cell interaction in young ovarian samples. 421 

B. Cell-cell interaction network in young ovarian samples. Colors and widths of edges represents number 422 

of interaction pairs between cell types.  423 

C. Bubble heatmap of Notch family receptors between oocyte and other cell types. Dot size represents -424 

log10 p-value, while color represents log2 mean expression value of the receptor-ligand pair.  425 

Supplementary Figure 1: H&E staining for the collected tissue. 426 

Supplementary Figure 2: Functional enrichment analysis of marker genes for each cell type. 427 

Supplementary Figure 3. Quality control of scATAC-seq analysis.  428 

A. scATAC-seq signals of the unique fragment number per cell for old and young groups. 429 

B. scATAC-seq signals of old and young groups are highly enriched on TSS. 430 

C. Fragment size distribution for old and young groups. 431 

Supplementary Figure 4. Doublets removal by ArchR for four old patient samples. 432 

Supplementary Figure 5. Doublets removal by ArchR for two young patient samples. 433 

Supplementary Figure 6. Browser track showing the scATAC-seq signal of FOSL2 and ATF3 across old 434 

and young patient samples. 435 

  436 
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