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Summary 
 
Human brain structure changes throughout our lives. Altered brain growth or rates of 
decline are implicated in a vast range of psychiatric, developmental, and 
neurodegenerative diseases. Here, we identified common genetic variants that affect 
rates of brain growth or atrophy, in the first genome-wide association meta-analysis of 
changes in brain morphology across the lifespan. Longitudinal MRI data from 15,640 
individuals were used to compute rates of change for 15 brain structures. The most 
robustly identified genes GPR139, DACH1 and APOE are associated with metabolic 
processes. We demonstrate global genetic overlap with depression, schizophrenia, 
cognitive functioning, insomnia, height, body mass index and smoking. Gene-set 
findings implicate both early brain development and neurodegenerative processes in the 
rates of brain changes.  Identifying variants involved in structural brain changes may 
help to determine biological pathways underlying optimal and dysfunctional brain 
development and ageing.  
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Main 
Under the influence of genes and a varying environment, human brain structure changes 
throughout the lifespan. Even in adulthood, when the brain seems relatively stable, 
individuals differ in the profile and rate of brain changes1. Longitudinal studies are crucial to 
identify genetic and environmental factors that influence the rate of these brain changes 
throughout development2 and ageing3. Inter-individual differences in brain development are 
associated with general cognitive function4,5, and risk for psychiatric disorders6,7 and 
neurological diseases8,9. Genetic factors involved in brain development and ageing overlap 
with those for cognition10 and risk for neuropsychiatric disorders11. A recent cross-sectional 
study showed a genetic component to advanced brain age in several brain disorders12. Yet, 
we still lack information on which genetic variants influence individual brain changes 
throughout life, since this requires longitudinal data. Discovering genetic factors for brain 
changes may reveal key biological pathways that drive normal development and ageing, and 
may contribute to identifying disease risk and resilience: a crucial goal given the urgent need 
for new treatments for aberrant brain development and ageing worldwide.  
As part of the Enhancing Imaging Genetics through Meta-Analysis (ENIGMA) consortium13 
the ENIGMA Plasticity Working Group recently quantified the overall genetic contribution 
to longitudinal brain changes by combining evidence from multiple twin cohorts across the 
world14. Most global and subcortical brain measures showed genetic influences on change 
over time, with a higher genetic contribution in the elderly (heritability 16 – 42%). Genetic 
factors that influence longitudinal changes were partially independent of those that influence 
baseline volumes of brain structures, suggesting that there might be genetic variants that 
specifically affect the rate of development or ageing. Even so, the genes involved in these 
processes are still not known. So far, only a single, small-scale genome-wide association 
study (GWAS) was performed for brain change15. Here, we set out to find genetic variants 
that may influence rates of brain changes over time, using genome-wide analysis in 
individuals scanned with magnetic resonance imaging (MRI) on more than one occasion. We 
also aimed to identify age-dependent effects of genomic variation on longitudinal brain 
changes in mostly healthy, but also neurological and psychiatric, populations. 
In our GWAS meta-analysis, we sought genetic loci associated with annual change rates in 8 
global and 7 subcortical morphological brain measures in a coordinated two-phased analysis 
using data from 40 longitudinal cohorts. Global and subcortical brain measures were 
extracted, and annual change rates were analysed using additive genetic association analyses 
to estimate effects of genetic variants on rates of change within each cohort. As brain change 
is not constant over age1 and gene expression also changes during development and ageing16, 
we determined whether the estimated genetic variants were age-dependent, i.e., differentially 
affected rates of brain changes at different stages of life using genome-wide meta-regression 
models with linear or quadratic age effects (Methods). We employed a rolling cumulative 
meta-analysis and -regression approach17. In phase 1, we analysed the cohorts from European 
descent (N=9,623). We sought replication by adding three additional cohorts that made their 
data available after the first analysis: one developmental and two in ageing populations (N 
=5,477; all European descent; total N=15,100 in phase 2). In all follow-up analyses, results 
from this second phase were used. Finally, we added cohorts from non-European ancestry 
(total N=15,640). 
 
Longitudinal trajectories 
Change in global brain measures showed different trajectories of change with age (Figure 1 
and Extended Data Movie 1), characterized by either monotonic increases (lateral ventricles), 
monotonic decreases (cortex volume, cerebellar grey matter volume, cortical thickness, 
surface area, total brain volume), or increases followed by stabilization and subsequently 
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decreases (cerebral and cerebellar white matter, thalamus, caudate, putamen, nucleus 
accumbens, pallidum, hippocampus and amygdala volumes). Each brain structure showed a 
characteristic trajectory of change. Rates of change within individuals generally showed low 
correlations in both childhood and older age in our data (Extended Data Fig. 2), with the 
exception of change rates of cortical thickness with cortex volume.  Therefore, we chose to 
investigate all brain structures separately, maximizing sensitivity of the GWAS for 
identification of region-specific associations of genetic variants. Using the correlation 
structure, we estimated the effective number of independent variables through matrix spectral 
decomposition on the rates of change yielding 14 independent traits for multiple testing 
corrections (Methods). 
 
Age-independent associations  
Two loci showed genome-wide significant effects on the rate of brain change in phase 1, one 
of which was also genome-wide significant in phase 2 (Figure 2; Supplementary Table 4). 
This lead SNP, rs72772740 on chromosome 16, is an intronic variant located in the GPR139 
gene and was associated with change in lateral ventricle volume (Figure 3). Functional 
annotation identified numerous significant expression quantitative trait loci (eQTL) 
associations (FDR < 0.05) in different datasets and highlighted genes by either eQTL 
mapping (GPRC5B, IQCK, KNOP1, C16orf62) or chromatin interaction mapping (ACSM1, 
ACSM5, UMOD, GP2). GPR139 is the G-protein-coupling receptor gene 139, which encodes 
a member of the rhodopsin family of G-protein coupled receptors. The gene is almost 
exclusively expressed in the central nervous system, with highest expression from 12 to 26 
weeks post-conception, and has been suggested as a therapeutic target for metabolic 
syndromes and motor diseases18. GPR139 may play a role in foetal brain development19 and 
mice lacking GPR139 exhibited schizophrenia-like symptomatology20. Additionally, 
functional cell-assays confirmed the inhibitory influence of GPR139 on dopamine receptor 2 
(D2R) signalling20. The second lead SNP, rs449998, an intronic variant on chromosome 21 
located in the Down Syndrome Cell Adhesion Molecule (DSCAM) gene, was associated with 
change in nucleus accumbens volume but was not significant in phase 2. Three SNPs 
(intergenic SNP rs10990953 on chr 2, associated with rate of change in lateral ventricles; 
intergenic and located in long intergenic non-protein coding RNA SNP rs1425034 on chr 2, 
associated with rate of change in pallidum; and rs1425034, intron of CDH8 on chr 16, 
associated with rate of change in total brain volume) were significant in the phase 2 analysis 
only (Supplementary Table 5; Extended Data Figs. 3,4 provide Manhattan plots, QQ plots, 
locus plots and circos plots). The CDH8 association with total brain volume change is 
particularly interesting, since it has been associated earlier with learning disability and 
autism, with macrocephaly as a risk factor21. CDH8 is a protein coding gene and encodes a 
type II classical cadherin from the cadherin superfamily, integral membrane proteins that 
mediate calcium-dependent cell-cell adhesion. Genome-wide significant SNPs in phase 1 or 
phase 2 did not show heterogeneity (I2 < 10.2; p(I2) > 0.31; Supplementary Tables 4,5, 
Extended Data Fig 5 for forest plots). 
 
Age-dependent associations  
The association of three additional loci with rate of change was variable across the lifespan in 
phase 1 (Figure 2; Supplementary Tables 6,8), two of which remained significant in the phase 
2 analysis. White matter cerebrum volume change was affected by rs573983368 (intronic 
variant) in the Dachshund Family Transcription Factor 1 (DACH1) gene, and rs6864758 
(intergenic and located in long intergenic non-protein coding RNA LINC02227) on 
chromosome 5 had an age-dependent effect on the change in surface area (Figure 3; 
Supplementary Tables 6-9). White matter cerebellum volume change was affected by the 
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intronic rs10674957 in the Thyrotropin Releasing Hormone Degrading Enzyme (TRHDE) 
gene, but this third locus was not significant in phase 2. The DACH1 locus shows significant 
chromatin interaction, which can play an important role in gene expression regulation.  
DACH1 encodes a chromatin-associated protein that associates with DNA-binding 
transcription factors to regulate gene expression and cell fate determination during 
development. DACH1 is highly expressed in the proliferating neural progenitor cells of the 
developing cortical ventricular and subventricular regions, and in the striatum22. We found 
the effect of DACH1 to have a quadratic age-dependence, with the variant being associated 
with faster growth in childhood and earlier but slower decline with ageing (Figure 3). Seven 
additional loci showed a significant dependency on age in phase 2 (Supplementary Tables 
7,9; Extended Data Figs. 3,4 provide Manhattan plots, QQ plots, locus plots and circos plots). 
One of these, rs429358, a missense variant of the Alzheimer’s disease (AD)-related23 

Apolipoprotein E gene (APOE) gene, was associated with change rate in hippocampus, 
showing faster decay of the hippocampus for carriers of the AD risk variant. APOE plays a 
role in maintenance of cellular cholesterol homeostasis by delivering cholesterol to neurons 
on apoE-containing lipoprotein particles. Cholesterol is important for synapse and dendrite 
formation, and cholesterol depletion has been shown to cause synaptic and dendritic 
degeneration24. Other findings include rs12019523, an intronic variant in the CAB39L gene 
associated with rate of change of the caudate; rs34342646, an intronic variant in the 
NECTIN2 gene associated with rate of change in surface area and rs73210410, an intronic 
variant in the SORCS2 gene associated with rate of change in the pallidum. To visualize the 
age-dependent effects, we plotted the meta-regression results for the significant loci 
(Methods, Extended Data Fig. 5). Genome-wide significant SNPs in phase 1 or phase 2 did 
not show significant residual heterogeneity (p > 0.23; except for the age-dependent effect of 
rs429358 on hippocampus change rate (p=0.02)). A summary of the genome-wide significant 
results and the top-10 loci for each phenotype and age model are presented in Supplementary 
Tables 4-9.  
 
Gene-based analyses  
Gene-based associations with all phenotypes were estimated using MAGMA (Methods). We 
found six genome-wide significant genes influencing structural rates of change in the phase 
1, four of which were also significant in phase 2 (Supplementary Table 10,11); among these, 
DACH1 and GPR139, which were implicated through SNP-based GWAS, also reached 
genome-wide significance in this gene-based GWAS. In addition, we found APOE to be 
associated with change rates for both hippocampus and amygdala. The phase 2 analysis 
showed two new findings: an association of the FAU gene with rate of change in cerebellum 
white matter, and again APOE, associated with rate of change in surface area. Of note, the 
APOE findings were based on GWAS and subsequent gene analysis, and we did not 
investigate the classical APOE status, since that is determined by a combination of two SNPs. 
However, we observed that the effect of APOE on change rate of hippocampus and amygdala 
was fully driven by rs429358, with the risk variant for AD causing faster increases in 
childhood for amygdala and faster decay for both amygdala and hippocampus later in life. To 
visualize the age-dependent effects, we plotted the meta-regression results for the top SNP in 
each of the significant genes (Extended Data Fig. 5). Supplementary Tables 10,11 display the 
top-10 genes for each phenotype and each age model. Supplementary Table 12 details 
putative biological functions of associated genes and genes harbouring genome-wide 
significant associated loci.  
 
Gene-set analyses 
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To test whether genetic findings for brain structure change converged onto functional gene 
sets and pathways, we conducted gene-set analyses using MAGMA (Methods). Competitive 
testing was used and 10 and 12 genome-wide significant gene sets were found for phase 1 
and phase 2, respectively (Supplementary Tables 13, 14 for top-10 gene sets and genes 
included). Two main themes emerge as biological functions of the gene sets converge onto 
involvement of genes in early brain development on the one hand and neurodegeneration on 
the other. 
  
One gene set was significant in both the phase 1 and phase 2 analyses: 
GO_neural_nucleus_development is associated with genes involved in neural nucleus 
development and related to rates of change in cerebellar white matter volume. Two other 
gene sets, significant in phase 1 (GO_substantia_nigra_development associated with 
cerebellum white matter rate of change) and phase 2 (GO_midbrain_development associated 
with quadratic age-dependent surface area rates of change) were closely related to neural 
nucleus development in gene ontology terms.   
 
The most significant gene set was GO_response_to_phorbol_13_acetate_12_myristate, (p-
value=1.42e-08) in phase 2, related to surface area change. Phorbol 13-acetate 12-myristate is 
a phorbol ester and an activator of protein kinase C (PKC)25. Two other gene sets, significant 
in phase 2 (GO_tau_protein_binding and GO_tau_protein_kinase_activity, both associated 
with caudate change), imply genes involved in interacting with tau protein. Tau is a 
microtubule-associated protein, implicated in Alzheimer's disease, Down Syndrome and 
amyotrophic lateral sclerosis (ALS).  
  
Overlap with cross-sectional findings  
SNP-based heritability estimates (h2) of the rates of change based on linkage disequilibrium 
score regression (LDSC; Methods) were small overall (Supplementary Table 15). For all 
phenotypes, the h2 z-score was below 4, so we tested for genetic overlap with cross-sectional 
brain data and other phenotypes by applying approaches other than LDSC: to investigate 
whether cross-sectional GWAS for brain structure and our GWAS on rates of change identify 
the same or different genetic variants, we investigated overlap between rate of change and 
earlier published data on cross-sectional brain structure of the same structure, where available 
(Methods). Extended Data Fig. 6 displays the number of overlapping genes tested against the 
expected number of overlapping genes that would occur by chance, in the first 1-1,000 
ranked genes. Supplementary Table S11 lists the top-10 gene findings for each of the 15 
change rate phenotypes and compares these with the gene ranks from cross-sectional data. In 
the top-10 ranked genes, APOE for hippocampus occurred in the top-10 for both cross-
sectional data26 and age-dependent effects on rate of change (p=0.006). No overlap was seen 
for the other measured phenotypes. Extending this search to the top 200 (~1% of genes), we 
found overlapping genes above chance level for cortical thickness of quadratic age-dependent 
genes and cross-sectional findings (p = 8.39e-05). In the top 1,000 ranked genes (~5% of 
genes), further overlapping genes did emerge (Extended Data Fig. 6). Overlapping genes at 
such a high aggregate level imply that largely different genetic backgrounds underlie changes 
in brain structure and brain structure per se.  
To test for global genomic overlap between our findings and GWAS of cross-sectional 
volumes we applied independent SNP-Effect Concordance Analyses (iSECA) (Methods) and 
tested for pleiotropy. We found no significant pleiotropy between longitudinal and cross-
sectional results, confirming a largely different genetic background for changes in brain 
structure and brain structure per se (Figure 4).  
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Overlap with other traits 
We applied iSECA for overlap between our age-independent summary statistics for structural 
brain changes and several neuropsychiatric, neurological, physical, ageing and disease-
related phenotypes and psychological traits. We found significant genomic overlap (p < 1.6e-
04) with genetic variants associated with depression27, schizophrenia28, cognitive 
functioning29, height30, insomnia31, body mass index (BMI)30 and ever smoking32. Despite 
significant pleiotropy between rates of change and these traits, we did not find evidence for 
concordance or discordance of effects (Figure 4, External Data Fig. 7). For comparison, we 
computed the genomic overlap between cross-sectional volumes and these phenotypes using 
the same method. In general, cross-sectional volumes showed overlap for the same traits and 
several others. Of note, there was also little overlap between the summary statistics for the 
longitudinal brain measures and summary statistics for the corresponding volumes, based on 
cross-sectional data. This implies that despite the fact that both cross-sectional brain volume 
and rates of changes are associated with traits such as schizophrenia or cognitive functioning, 
these associations are likely not driven by the same genomic locations. Additionally, there 
was little overlap in the genetic loci associated with the longitudinal brain measures and 
intracranial volume at baseline, indicating that overall head size did not drive our findings 
(Figure 4).   
 
Gene expression in the brain across the lifespan 
We determined mRNA expression for genome-wide significant genes and genes associated 
with genome-wide significant SNPs (Supplementary Tables S5,7) in 54 tissue types and in 
both the developing and adult human brain (Methods). For the prioritized genes, a gene 
expression heatmap was created, based on GTEx v8 RNAseq data33. This revealed 
considerable expression levels across several brain tissues for the following genes: APOE, 
CAB39L, FAU, NECTIN2 (alias PVRL2) and SORCS2, the latter showing higher relative 
expression in brain tissue compared to all other tissue types (Extended Data Fig. 8A). 
Expression heatmaps based on BrainSpan data34 revealed that DACH1 shows highest relative 
expression during early prenatal stages (8-9 post conception weeks), compared to postnatal 
stages. A second cluster of genes demonstrated stable high relative expression levels 
throughout development and across the lifespan (APOE, CAB39L, FAU, NECTIN2 (alias 
PVRL2)). One additional gene, CDH8, showed lower relative expression in the early prenatal 
stages and higher expression later in life (Extended Data Fig. 8B). 
 
Phenome-wide associations  
For the prioritized SNPs and genes (Supplementary Tables 5,7), exploratory pheWAS (i.e., 
“phenome‐wide”) analysis was performed to systematically analyse many phenotypes for 
association with the genotype and individual genes (Supplementary Table 16). PheWAS was 
performed using publicly available data from the GWASAtlas32 (https://atlas.ctglab.nl). Gene 
associations of DACH1, GPR139 and SORCS2 showed pleiotropic effects mainly in the 
metabolic domain, e.g., with estimated glomerular filtration rate and BMI (Supplementary 
Table 16, Extended Data Fig. 9). SORCS2 and CDH8 also showed significant associations 
with psychiatric and cognitive traits. Both APOE and NECTIN2 showed strongest 
associations with Alzheimer’s disease, cholesterol and lipids (Supplementary Table 16, 
Extended Data Fig. 9).  
 
Sensitivity analyses 
We repeated the SNP and gene analyses in various subgroups: 1) by adding four cohorts of 
non-European or mixed ancestry (N=540; total N=15,640); 2) by omitting cohorts that did 
not meet a minimum sample size criterion (N>75) or a minimum scanning interval (> 0.5 
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years) leaving N=14,601; 3) by excluding diagnostic groups in each cohort leaving 
N=13,034, and 4) by including a covariate adjusting for disease status (Supplementary Tables 
17,18). In SNP-based and gene-based analyses, effect sizes of SNPs were very similar in all 
subgroups, suggesting that our results are also applicable for individuals of non-European 
ancestry - with the caveat that the non-European subgroup was rather small - and not driven 
by the smaller cohorts. Findings were also similar in the healthy subgroup and when 
correcting for disease status, with one notable exception: the APOE finding for hippocampus 
and amygdala rate of change showing increasing influence of the top SNP with age, was no 
longer present when correcting for disease (see Supplementary Tables 1 for diagnoses). This 
suggests that these APOE findings for hippocampus and amygdala were in part driven by the 
presence of patients, which could be either explained through disease related genes that also 
influence rates of change, or brain changes as a consequence of the disease.  
Given that our main analyses included patients and iSECA analyses showed several 
associations with disease, we repeated iSECA analyses excluding diagnostic groups in each 
cohort. These analyses implicate the same traits, associated with largely the same rates of 
change of brain measures. (Extended Data Fig. 7). 
 
Discussion 
Here, we present the first GWAS investigating influences of common genetic variants on 
brain-structural changes in over 15,000 subjects covering the lifespan. The longitudinal 
design of our study combined with the large age range assessed provides a flexible 
framework to detect age-independent and age-dependent effects of genetic variants on rates 
of structural brain changes. We identified genetic variants for structural brain changes 
between 4 and 99 years of age. Some of these were independent of age, showing effects of 
stable strength and direction throughout life, suggesting that these genetic variants are equally 
crucial for early brain development as for brain ageing. In addition, we identified age-
dependent genetic variants, suggesting that some genetic variants are predominantly 
associated with brain development while others are mainly associated with brain ageing. 
 
Amongst our top findings is the APOE gene, a major risk factor for AD23, and specifically a 
missense variant in that gene, which influences amygdala and hippocampus rates of change 
with varying and differential effects across the lifespan, with probably most pronounced 
effects in those affected with brain disorders. However, while most of the additional genetic 
loci identified here have not previously been associated with any brain-plasticity-related 
phenotypes, several others were also linked to brain disorders, including psychiatric (e.g., 
GPR139 and CDH8) and neurodegenerative disorders (e.g., NECTIN2). Notably, DACH1 and 
NECTIN2 show increased expression during early development, while other genes’ brain 
expression patterns are most pronounced during adulthood (e.g., APOE and CDH8), 
suggesting that these genes may exert specific effects during different developmental periods. 
 
Gene-set analysis also implies a role for both developmental and neurodegenerative 
processes. We found a gene-set involved in neural nucleus development to influence rates of 
change in cerebellar white matter, and other closely related gene ontology terms: neural 
nucleus development in the substantia nigra and midbrain, associated with rates of change of 
cerebral white matter and surface area. These implicate the biological process of progression 
of a neural nucleus from its initial condition or formation to its mature state. This would also 
suggest that genes involved in early developmental mechanisms of subcortical nuclei are 
related with cortical changes later in life. In addition, we found several gene-sets interacting 
with tau-protein associated with rate of change in caudate volume, and a gene-set associated 
with rate of change in surface area, implicating phorbol 13-acetate 12-myristate, an activator 
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of protein kinase C (PKC)25. PKC is a family of enzymes whose members transduce a large 
variety of cellular signals and plays a key role in controlling the balance between cell survival 
and cell death. Its loss of function is generally associated with cancer, whereas its enhanced 
activity is associated with neurodegeneration. PKC both directly phosphorylates tau and 
indirectly causes the dephosphorylation of tau, and has been suggested to play a key role in 
the pathology of Alzheimer’s disease35. Together these results suggest involvement of genes 
in ageing and neurodegeneration.  
 
At the global, genome-wide level, we found significant genomic overlap with genetic 
variants associated with depression, schizophrenia, cognitive functioning, insomnia, height, 
body mass index (BMI) and ever-smoking. Several of these traits, such as schizophrenia, 
smoking, cognitive functioning, and body mass index, have been associated with longitudinal 
brain-structural changes5,36–38. The global overlap coincides with findings at the individual 
gene level: several of the identified genetic variants and genes were linked to metabolic 
processes (APOE, DACH1, GPR139, NECTIN2), cognitive functioning (CDH8), psychiatric 
traits (GPR139, SORCS2, CDH8) and Alzheimer’s disease (NECTIN2 and APOE) as 
apparent from the pheWAS results. Despite the pleiotropic effects, concordance of effects 
was generally null. This is not surprising, as rates of change measures for brain structures are 
not constant and often switch sign over the course of the lifespan1,39, while the GWAS for 
other traits assume stability of both the phenotype and the genetic influences on the 
phenotype over time. As such, concordance and discordance of effects are not to be expected. 
 
The advantage of longitudinal analyses is that each individual acts as their own control, 
allowing us to separate the genetic effects on cross-sectional volumes from those on the rates 
of change14. Indeed, we found little overlap between the two: top genes identified in the 
GWAS on cross-sectional brain structure26,40–42 generally did not overlap with the top genes 
for the corresponding rates of change. Longitudinal analyses have for long been shown to 
provide different information than cross-sectional approaches. On a phenotypic level, 
comparisons between cross-sectional and longitudinal ageing patterns of the hippocampus 
show different results43. On a genetic level, a study including a within-sample SNP times age 
interaction in the ADNI cohort, which is included in this study, showed larger power to detect 
genetic associations in a longitudinal design compared to a cross-sectional analysis44. Of 
note, that study also identified rs429358 in APOE associated with longitudinal hippocampal 
and amygdala volume change in older age. We now show this variant to exert a lifespan 
effect through our meta-regression approach, with the risk variant for AD causing faster 
increases in childhood for amygdala and faster decay for both amygdala and hippocampus 
later in life. 
 
Given the dynamics of brain structural changes during the lifespan, we investigated both age-
independent and age-dependent genetic effects. The age-independent effects can be 
interpreted as neurodevelopmental influences that also impact brain structure at older 
ages45,46, whereas the age-dependent effects can be interpreted as possible changing effects of 
genes or gene expression during life16. The genome-wide meta-regression approach 
employed here may enable future GWAS for other phenotypes that change over the human 
lifespan.  
 
We chose to analyse longitudinal changes for 15 separate brain structures, because we 
observed generally low correlations between these phenotypic changes. This approach 
allowed us to find brain structure specific associations. However, there are several 
longitudinal studies describing phenotypic correlations between structural changes 39,47,48, and 
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combining several phenotypes could be an alternative approach to identify genetic variants 
exerting a global effect. Of note, cohort and age are intertwined in meta-regression analysis 
and in that sense, we cannot be sure that differences between cohorts are exclusively 
attributed to age. Mega-analysis would circumvent this problem, but was not feasible in 
practice. Moreover, we imposed the same stringent criteria of genome-wide significance for 
the age-independent meta-analysis and age-dependent meta-regression, which renders chance 
findings equally unlikely in either type of analysis. In addition, residual heterogeneity for the 
top findings was generally small. That said, our sample size is still relatively modest for 
GWAS purposes, and replication in larger samples and inclusion of other ancestries is 
needed, once more longitudinal data becomes available.  
 
How exactly variation in these genes impacts brain changes in health and disease cannot be 
answered based on genome-wide association studies. To this end, our findings may direct 
future studies into brain development and ageing, and prevention and treatment of brain 
disorders. For example, biological pathways that guide neural nucleus development in the 
foetal subcortical brain may be particularly relevant to the cerebral white matter growth and 
cortical thinning that takes place during childhood and adolescence. Neurodegenerative 
disorders might be better understood when we identify genetic variants that influence brain 
atrophy over time, compared with identification of static genetic differences. In conclusion, 
our study shows that our genetic architecture is associated with the dynamics of human brain 
structure throughout life. 
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Figure 1: Phenotypic brain changes throughout the lifespan.  
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Visualization of growth and decline of brain structures throughout the lifespan. The 

subcortical structures are shown in exploded view (a). Annual rates of change Δ per 

cohort for each structure (b-p).  The estimated trajectories with confidence intervals (in 

green) are displayed in the top row. The size of the points represents the relative size of 

the cohorts.  Standard errors are displayed in grey. Means and standard deviations are 

based on raw data – no covariates were included. Cohorts that were added in phase2 

are displayed in grey. Only cohorts that satisfy N>75 and mean interval > 0.5 years are 

shown. The estimated trajectories of the volumes themselves are displayed in the 

bottom row, for all subjects (solid line) and for subjects not part of diagnostic groups 

(dashed line). 
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Figure 2: Genetic effects on rates of brain changes throughout the lifespan.  
 

 
 
 
Genome-wide significant SNPs and genes with effects on brain changes at their 

respective loci across the human genome. This plot was created using PhenoGram 

(http://visualization.ritchielab.org).  
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Figure 3: Summary of findings for two top-SNPs. 

Shown here is a summary of findings for a top-SNP of an age independent effect 
(rs72772746; intron to GPR139; associated with rate of change of lateral ventricle volume; 
left column) and a top-SNP of an age dependent effect (13:72353395; intron to DACH1; 
associated with rate of change in cerebral white matter volume; right column). Displayed are 
the locus plots (a) and (d), forest plot (b) and plot of meta-regression (e) and inferred lifespan 
trajectories for carriers (in red) and non-carriers of the effect allele (in black) (c) and (f). Note 
that 13:72353395 was not in the reference dataset containing LD structure; the displayed LD 
structure is based on 13:7234009, R2 = 0.87 with the top-SNP. 
 
 
Figure 4: Genetic overlap with other phenotypes. 
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P-values for pleiotropy between change rates of structural brain measures (rows, 

indicated by Δ for change rate) and neuropsychiatric, disease-related and psychological 

traits (columns left of colour legend). P-values for pleiotropy between change rates of 

structural brain measures and head size (intracranial volume) and the cross-sectional 

brain measure are displayed on the right (columns right of colour legend). Significant 

overlap (p < 1.6e-04) is marked with *.  
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Methods 
Ethical approval  
All participants gave written informed consent and all participating sites obtained approval 
from local research ethics committees/institutional review boards. Ethics approval for meta-
analyses within the ENIGMA consortium was granted by the QIMR Berghofer Medical 
Research Institute Human Research Ethics Committee in Australia (approval: P2204).  
 
Inclusion criteria 
Cohorts that had longitudinal magnetic resonance imaging (MRI) data of the brain and 
genotyped data extracted from blood or saliva available were invited to participate, 
irrespective of disease status and age. Patients were not excluded as aberrant brain 
trajectories are often observed and we hypothesize that genetic risk for disease may be 
associated with genetic influences on rates of change. We included cohorts that had a 
preferred sample size of at least 75 subjects and a follow up duration (for repeated MRI 
scans) of at least six months. After quality control of individual subject’s imaging and 
genotyping data, not all the cohorts could meet these criteria. In total, we included 15,640 
subjects aged 4 to 99 (49% female, 14% patients). Please see Extended Data Fig. 1 and 
Supplementary Table 1 for further description of the cohorts.  
 
Longitudinal imaging 
Eight global brain measures (total brain including cerebellum and excluding brainstem, 
surface area measured at the grey-white matter boundary, average cortical thickness, total 
lateral ventricle volume, and cortical and cerebellar grey and white matter volume) and seven 
subcortical structures (thalamus, caudate, putamen, pallidum, hippocampus, amygdala and 
nucleus accumbens) were extracted from the FreeSurfer processing pipeline49–51; see 
Supplementary Table 2 for details per cohort). We chose these measures based on the fact 
that they show generally high test-retest reliability for cross-sectional measures52–54, thereby 
selecting those measures that would have sufficient signal to noise in change measures. 
Image processing and quality control were performed at the level of the cohorts, following 
harmonized protocols (http://enigma.ini.usc.edu/protocols/imaging-protocols/) which 
included visual inspection of the segmentation. Annual rates of change were computed in 
each individual for each phenotype by subtracting baseline brain measures from follow up 
measures and dividing by the number of years of follow-up duration. We chose not to correct 
for overall head size in the main analysis: while it is common practice to correct for 
intracranial volume when investigating cross-sectional brain volumes55, the associations 
between intracranial volume and brain changes over time are small (Extended Data Fig. 2) 
and GWAS findings are very similar with and without correction (Supplementary Note). 
Distributions of baseline and follow-up measures - as well as annual rates of changes - were 
visually inspected and change rates were centrally compared for consistency.  
 
Longitudinal trajectories of brain structure rates of change were estimated by applying 
locally, cohort-size weighted, estimated scatterplot smoothing with a Gaussian kernel, local 
polynomials of degree 2 and a span of 1 (LOWESS56) implemented in R57. Integrating these 
trajectories and then fitting these to the baseline values of the phenotypes in the cohorts 
provides trajectories throughout the lifespan. Trajectories were estimated in the full dataset 
including patients and by excluding diagnostic groups in each cohort separately.  
 
Genome-wide association analysis 
At each participating site, genotypes were imputed using the 1000 Genomes project dataset58 
through the Michigan imputation server59 (https://imputationserver.sph.umich.edu/) or the 
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Sanger imputation server60 (Supplementary Table 3). Subsequently, each site ran the same 
multidimensional scaling (MDS) analysis protocol, computing MDS components from the 
combination of their cohort's data with the HapMap3 population61. This ensured that all sites 
corrected for ancestry in a consistent manner. See 
http://enigma.ini.usc.edu/protocols/genetics-protocols/ for the imputation and MDS analysis 
protocol. Within each cohort genome-wide association was conducted using an additive 
model, modelling change rate as a function of the genetic variant plus covariates age, sex, 
age*sex, age2, age2*sex and ancestry (the first four MDS components). While it is possible 
that rates of brain structural changes are different in males and females, we did not have the 
power to perform analyses separating the sexes. Dummy variables were added where 
appropriate, e.g., when multiple scanners were used. We re-ran these analyses adding a 
covariate for disease status if the cohorts contained patients and controls. Most sites used our 
harmonized GWAS protocol, which used raremetalworker62 for analysis (Supplementary 
Table 3). Regardless of the study design, a kinship matrix was incorporated in these analyses, 
accounting for relatedness in family studies, or possible unknown kinship in the other studies.  
Given the small sample sizes of the individual cohorts, a stringent cohort level quality control 
was enforced, to exclude variants with a minor allele frequency (MAF) < 0.05 or variants 
with imputation R2 / info score < 0.75. Across cohorts and phenotypes, GWAS summary 
plots (Manhattan plots and QQ plots) were visually inspected at the central site. If a given 
cohort / trait showed deviation from expectations, sites were asked to re-analyse their data, 
which usually involved removal of outliers in the phenotypic data. QQ plots per cohort, per 
phenotype can be found in Extended Data Figure 12. 

 
Meta-analysis and Meta-regression 
In the phase 1 cohorts of European ancestry (N=9,604) we aggregated the cohort-level data 
for each phenotype, using standard-error weighted meta-analysis or meta-regression. We 
employed a cumulative meta-analysis and meta-regression approach for replication, in phase 
2 (N=15,100). We tested three models. Under the assumption that effect sizes of single 
nucleotide polymorphisms (SNPs) were consistent across the lifespan (i.e., a standard meta-
analytic approach), where the subscript C denotes a cohort and ∑ an error term:   

1) Effect_SNPC ~ b0 + ∑C, under the null hypothesis that b0 = 0. 

Given that brain changes throughout life are dependent on age, the effects of a genetic variant 
on brain change is likely to depend on age too. Within cohorts, such an age by SNP effect 
analysis would not have been feasible since longitudinal cohorts that span the age-range 
between 4-99 years do not exist. Given the widespread mean age among the cohorts included 
(Extended Data Fig. 1 and Supplementary Table 1), it was possible to calculate the age-
dependent effects across the life span by comparing effects of loci between cohorts, through 
meta-regression. Meta-regression is a sophisticated tool for addressing heterogeneity between 
cohorts in meta-analyses when the source of heterogeneity is known (in this case, age)63. We 
estimated the following model under the assumption that the effects of SNPs may vary in size 
or direction across the lifespan: 

       2) Effect_SNPC ~ b0 + b1*ageC + ∑C under the null hypothesis that b1=0 (1 degree of 
freedom), and 

       3) Effect_SNPC ~ b0 + b1*ageC + b2*ageC
2 + ∑C under the null hypothesis that 

(b1=b2=0, 2 degrees of freedom).  
SNP data were aligned using METAL64 for all three analyses. The age-independent effect of 
SNPs (model 1) was computed in METAL. For the age-dependent analyses (model 2 for 
linear age effects and model 3 for quadratic age effects) the aligned data were imported into 
R52 and fixed effects meta-regression was performed using the R-package metafor65 (version 
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2.0-0). Results were filtered on SNPs that were present for at least 50% of the cohorts and in 
at least 50% of the subjects.  

 
Functional mapping 

Functional mapping was performed using the FUMA platform designed for prioritization, 
annotation and interpretation of GWAS results66. As the first step, independent significant 
SNPs in the individual GWAS meta-analysis summary statistics were identified based on 
their p-value (p < 5 x 10-8) and independence of each other (r2 < 0.6 in the 1000G phase 3 
reference) within a 1Mb window. Thereafter, lead SNPs were identified from independent 
significant SNPs, which are independent of each other (r2 < 0.1). We used FUMA to annotate 
lead SNPs in genomic risk loci based on the following functional consequences on genes: 
eQTL data (GTEx v6 and v767), blood eQTL browser68, BIOS QTL browser69, 
BRAINEAC70, MuTHER71, xQTLServer72, the CommonMind Consortium73 and 3D 
chromatin interactions from HI-C experiments of 21 tissues/cell types74. Next for eQTL 
mapping and chromatin interaction mapping, genes were mapped using positional mapping, 
which is based on a maximum distance between SNPs (default 10kb) and genes. Chromatin 
interaction mapping was performed with significant chromatin interactions (defined as FDR 
< 1 × 10-6). The two ends of significant chromatin interactions were defined as follows: 
region 1 – a region overlapping with one of the candidate SNPs, and region 2 – another end 
of the significant interaction, used to map to genes based on overlap with a promoter region 
(250bp upstream and 50bp downstream of the transcription start site). 

 
Visualization of SNP effects 
We visualized the effects of our top SNPs on the lifespan trajectory, assuming no effects of 
the other SNPs, for easier interpretation of the direction of effect. Similar to the estimation of 
the lifespan trajectory, we estimated a smoothed version f(x) of the phenotypic change rate 
using LOWESS (see above) and integrated the rate of change. We added the unknown 
volume C at the start of our age range by fitting the integrated curve to the baseline data. 
Suppose h(x) is the unknown rate of change for non-carriers. The additional change rate g(x) 
for carriers was estimated through the meta-analysis or meta-regression. The full dataset 
contained a fraction p of the carriers of the tested allele. Assuming p + q = 1, f(x) = p*(h(x) 
+ g(x)) + q*h(x) = h(x) + p*g(x). We created a rate of change curve for non-carriers as f(x)-
p*g(x) and a rate of change curve of carriers as f(x)+q*g(x). The offset C is potentially 
different in carriers and non-carriers, so we estimated this difference by taking the effect of 
the cross-sectional GWAS data (see below) in this SNP, or a proxy SNP in high linkage 
disequilibrium (LD).  

 
Gene-based and gene-set analyses 
Gene-based associations with 15 phenotypes were estimated using MAGMA75 (version 
1.09a) using the summary statistics from age-independent and age-dependent GWAS meta-
analyses of rate of change of global brain measures. Gene names and locations were based on 
NCBI 37.3 locations as provided by MAGMA. Association was tested using the SNP-wise 
mean model, in which the sum of -log(SNP p-value) for SNPs located within the transcribed 
region was used as the test statistic. LD correction was based on estimates from the 1000 
Genomes Project Phase 3 European ancestry samples58. To describe the direction of the age 
effect for significant genes in the age-dependent analyses, we subsequently identified the 
SNPs that were used in the gene-based p-value and plotted the age-dependent effect of the 
top SNP that contributed to the gene-based p-value. 
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The generated gene-based p-values were used to analyse sets of genes in order to test for 
association of genes belonging to specific biological pathways or processes. MAGMA 
applies a competitive test to analyse if the genes of a gene set are more strongly associated 
with the trait than other genes, while correcting for a series of confounding effects such as 
gene length and size of the gene set. For gene sets we used 9,975 sets with 10 –1,000 genes 
from the Gene Ontology sets76 curated from MsigDB 7.077. 

 
Multiple testing corrections 
We investigated annual rates of change for 15 brain phenotypes, but these are correlated to 
some extent (Extended Data Fig. 2). We therefore estimated the effective number of 
independent variables based on matrix spectral decomposition78 for the largest adolescent 
cohort (IMAGEN; N=1,068) and for the largest elderly cohort from the phase 1 sample 
(ADNI2; N=626). The most conservative estimate of the number of independent traits was 
13.93. Despite the fact that models 2 and 3 are nested and therefore not independent, we also 
corrected for performing three analyses per trait. The study-wide significant threshold for the 
genome was therefore set at p < 1.2e-09 (5e-08/13.93*3). For gene-based significance, we 
applied a genome-wide significance level of 0.05/17541= 2.85e-06, and a study wide 
significance of 2.85e-06/(13.93*3), i.e. p < 6.82e-08. For gene-set significance, we applied a 
genome-wide significance level of 0.05/9,975 = 5.01e-06 and a study-wide significance level 
of 5.01e-06/(13.93*3), i.e. p < 1.20e-07. 

 

SNP heritability  
SNP heritabilities, h2

SNP, were estimated by using linkage disequilibrium (LD) score 
regression79 (LDSR) for the European-ancestry brain change GWASs to ensure matching of 
population LD structure. For LDSR, we used precomputed LD scores based on the European-
ancestry samples of the 1000 Genomes Project58 restricted to HapMap3 SNPs61. The 
summary statistics with standard LDSC filtering were regressed onto these scores. SNP 
heritabilities were estimated based on the slope of the LD score regression, with heritabilities 
on the observed scale calculated. To ensure sufficient power for the genetic correlations, rg 
was calculated if the Z-score of the h2

SNP for the corresponding GWAS was 4 or higher79.  
 

Comparison with cross-sectional results  
For the genome-wide significant genes and genes associated with genome-wide significant 
SNPs, we compared our findings with cross-sectional GWAS summary statistics when 
available. To this end, datasets26,40–42 were requested and downloaded from 
http://enigma.ini.usc.edu/research/download-enigma-gwas-results/ and 
http://big.stats.ox.ac.uk/download_page. Gene-based association analyses for cross-sectional 
brain GWAS summary statistics were performed using MAGMA (as described above). 
Additionally, we compared the overlap in the first 1,000 ranked genes to the expected 
number of overlapping genes based on chance. False discovery rate correction80 was applied 
to determine over- or under-representation of genes from our longitudinal GWAS to the 
cross-sectional previously published GWAS26,40–42.  

 
Genetic overlap with cross-sectional results and other traits 
To investigate genetic overlap with other traits across the genome we applied an adapted 
version of iSECA81 (independent SNP effect concordance analysis) which examines 
pleiotropy and concordance of the direction of effects between two phenotypes by comparing 
expected and observed overlap in sets of SNPs from both phenotypes that are thresholded at 
different levels. From the results at each threshold, heatmap plots were generated containing 
binomial tests for pleiotropy and Fisher’s exact tests for concordance. An empirical p-value 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2021. ; https://doi.org/10.1101/2020.04.24.031138doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.031138
http://creativecommons.org/licenses/by-nd/4.0/


for overall pleiotropy and concordance was then generated through permutation testing. Our 
implementation of iSECA also included a p-value for overall discordance, as we expect some 
phenotypes to negatively influence brain-structural change rates. P-values were computed 
using a two-step approach: we first ran 1,000 permutations. If the p-value for pleiotropy was 
below 0.05/15 we reran the analyses with 10,000 permutations to obtain a more precise p-
value. Summary statistics of change rates were first filtered on SNPs for which > 95% of the 
subjects contributed data to remove the sample size dependency of p-values and subsequently 
clumped (p=1,kb=1000) to ensure independence of input SNPs.   
We investigated the genetic overlap between brain-structural changes and risk for 20 
neuropsychiatric, neurological and somatic disorders, and physical and psychological traits. 
Summary statistics were downloaded or requested for aggression82, alcohol dependence83, 
Alzheimer's disease84, attention-deficit/hyperactivity disorder85, autism86, bipolar disorder87, 
body mass index30, brain age gap12, cognitive functioning29, depression27, diabetes type 288, 
ever smoking32, focal epilepsy89, height30, inflammatory bowel disease90, insomnia31, 
multiple sclerosis91, Parkinson's disease92, rheumatoid arthritis93 and schizophrenia28. These 
phenotypes were chosen because of known associations with brain structure or function, and 
availability of summary statistics based on large GWA-studies. For comparison, we 
computed the genetic overlap between cross-sectional brain structure and these phenotypes, 
using the same method.  
Apart from these, we also 1) included intracranial volume94 to investigate the effect of overall 
head size and 2) tested the overlap between each structure’s longitudinal change measure 
against its cross-sectional brain structure. Pleiotropy, concordance or discordance was 
considered significant when the p-value was smaller than 0.05/15*22 (#change rates * 
#phenotypes tested) = 1.6e-04.  

 
Brain gene expression 
GENE2FUNC, a core process of FUMA66 (Functional Mapping and Annotation of Genome-
wide Association Studies), was employed to analyse gene expression patterns. For this, a set 
of 8 genes was used as input, including all genome-wide significant genes and genes 
harbouring genome-wide significant SNPs (compare Supplementary Tables 4-7). Gene 
expression heatmap was constructed employing GTEx v833; 54 tissue types) and BrainSpan 
RNA-seq data across 29 different ages or 11 different developmental stages32. The average of 
normalized expression per label (zero means across samples) was displayed on the 
corresponding heatmaps. Expression values are TPM (Transcripts Per Million) for GTEx v8 
and RPKM (Read per Kilobase Million) in the case of the BrainSpan data set.  

 
Phenome-wide association studies 
To identify phenotypes associated with the candidate SNPs and genes (defined as genome-
wide significant SNPs and the genome-wide significant genes and genes associated with 
genome-wide significant SNPs), a phenome-wide association study (pheWAS) was done for 
each SNP and/or gene. PheWAS was performed using public data provided by 
GWASAtlas32(https://atlas.ctglab.nl). To correct for multiple testing, the total number of 
GWASs (4,756) was considered (including GWASs in which the searched SNP or gene was 
not tested) and the number of tested SNPs and genes (n=14), resulting in a Bonferroni 
corrected p-value threshold of 1.05e-05/14, i.e., p < 7.51e-07. 

 
Sensitivity analyses 
The phase 2 analyses include available data from all cohorts with European ancestry 
(N=15,100). The four cohorts of non-European and mixed ancestry together consist of 540 
subjects, who are predominantly children and adolescents (Supplementary Table 3). The 
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number of subjects, heterogeneity in ancestry and the age-distribution do not allow for 
separate meta-analysis or meta-regression. We therefore added the cohorts of non-European 
ancestry to the original datasets and reran analyses (N=15,640). In a second analysis, we 
excluded the 9 cohorts that had N < 75 or mean scanning interval < 0.5 years (Supplementary 
Table 2), leaving N=14,601 subjects. The main analyses include data from all subjects 
combined, without correction for disease. This approach was chosen because many 
neurological and neuropsychiatric diseases are characterized by aberrant brain changes over 
time, and genes involved in the disease may also be involved in these brain changes. To 
check whether our results were confounded by disease, we repeated the main analyses 
excluding diagnostic groups of each cohort (N=13,0349) and by correcting for disease status. 
 
Data and code availability: This work is a meta-analysis. Upon publication, the meta-
analytic results will be made available from the ENIGMA consortium webpage  
 (http://enigma.ini.usc.edu/research/download-enigma-gwas-results). Cohort level data can be 
shared upon request, after permission of cohort principle investigators. Individual level data 
can be shared with interested investigators, subject to local and national ethics regulations 
and legal requirements that respect the informed consent forms and national laws of the 
country of origin of the persons scanned. Code for the meta-regression is available through 
Github https://github.com/RMBrouwer/GWAS_meta_regression.  
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schizophrenia - a multilevel investigation” (01EW1810 to MR) and the German Research 
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(Lundbeck, AstraZeneca, Eli Lilly, Janssen Cilag) and universities and mental health care 
organizations (Amsterdam: Academic Psychiatric Centre of the Academic Medical Center 
and the mental health institutions: GGZ Ingeest, Arkin, Dijk en Duin, GGZ Rivierduinen, 
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CAh, CD-C, CJ, CMcD, DAm, DG, DIB, DJH, DMC, DT-G, EA, EBQ, EBø, EGJ, ESh, FN, 
FSte, GJB, GR, GSu, H-JW, HF, HHHA, IA, IAB, J-LM, JG, JH, JHF, JJa, JMF, JMW, JR, 
JTr, KA, KD, KS, LHvdB, LTW, MAI, MEB, MGJCK, MJW, MLPM, MNS, MSK, 
NEMvH, NO, NS, OAA, PAG, PD, PMP, PRJ, PS, RA-A, RB, RKL, RR, SDe, SH, SM, 
TRM, TW, TWM, UD, VOG, WH, WW. Genetic data collection: AJF, ALWB, BM, BTB, 
BWJHP, CAr, CD-C, CMcD, DIB, DWM, EA, EBQ, EGJ, FN, FSte, FStr, GH, GSu, HF, 
HHHA, IAB, J-LM, JBJK, JG-P, JH, JJH, JMF, JR, JTr, JV-B, KAM, KS, LHvdB, MDF, 
MJW, MLPM, MLS, MMN, MNS, MR, MSK, NS, OAA, PD, PMP, PRS, PS, RAO, RR, 
SCic, SDe, SEF, SHW, SIB, SLH, SM, TRM, TWM, UD, VMS. Imaging data analysis: AG, 
AHZ, APJ, ATh, AZ, BJO, BM, CAl, CGD, CJ, CLdM, DAl, DG, DK, DMC, DT-G, EBl, 
EELB, ESh, ESp, FN, GB, GSu, GVR, H-JW, HJG, IA, IAB, JJi, JKBr, JMW, KS, KW, 
LKMH, LN, LTW, MA, MAH, MGJCK, MSK, NAC, NEMvH, NJ, NS, NT, RB, RCWM, 
RMB, RR, SCiu, SIT, SJH, SMCdZ, SRC, ST, TJ, TKa, TW, UD, VM, WH, WW. Genetic 
data analysis: AJF, ATe, ATh, BM, BTB, CGD, CLdM, DvE, DvdM, EBl, ESp, EV, FStr, 
GB, GDa, GDo, GSu, GVR, JB, JBJK, JG-P, JLS, JMF, JPOFTG, JTe, KR, KS, LD, LMOL, 
MAI, MJK, MLS, MR, NJ, NJA, PRJ, RMB, RMT, SDa, SEM, SHW, SIB, SLH, SMCdZ, 
SP, TJ, YM.     
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Additional information:  
Supplementary Data is available for this paper.  
Correspondence and requests for materials should be addressed to Rachel M Brouwer, 
r.m2.brouwer@vu.nl 
 
Supplementary Table 1. Cohort characteristics. 
Supplementary Table 2. Description of imaging per study cohort. 
Supplementary Table 3. Description of genetics per study cohort. 
Supplementary Table 4. Summary of genome-wide significant SNPs and top-10 loci for 
main effect of genetic variants on brain morphology change rates in phase 1 + results for 
same SNPs in phase 2. 
Supplementary Table 5. Summary of genome-wide significant SNPs and top-10 loci for 
main effect of genetic variants on brain morphology change rates in phase 2. 
Supplementary Table 6. Summary of genome-wide significant SNPs and top-10 loci for 
linear age effects of genetic variants on brain morphology change rates in phase 1 + results 
for same SNPs in phase 2. 
Supplementary Table 7. Summary of genome-wide significant SNPs and top-10 loci for 
linear age effects of genetic variants on brain morphology change rates in phase 2. 
Supplementary Table 8. Summary of genome-wide significant SNPs and top-10 loci for 
quadratic age effects of genetic variants on brain morphology change rates in phase 1 + 
results for same SNPs in phase 2. 
Supplementary Table 9. Summary of genome-wide significant SNPs and top-10 loci for 
quadratic age effects of genetic variants on brain morphology change rates in phase 2. 
Supplementary Table 10. Summary of genome-wide significant genes and top-10 genes for 
brain morphology change rates in phase 1 + results for same genes in phase 2. 
Supplementary Table 11. Summary of genome-wide significant genes, top-10 genes for 
brain morphology change rates in phase 2 sample, and look-up results for top 10 genes in 
cross-sectional data.  
Supplementary Table 12. Biological functions for top SNPs and genes. 
Supplementary Table 13. Summary of genome-wide significant effects and top-10 gene-sets 
for brain morphology change rates in phase 1 + results for same gene sets in phase 2. 
Supplementary Table 14. Summary of genome-wide significant effects and top-10 gene-sets 
for brain morphology change rates in phase 2. 
Supplementary Table 15. SNP-based heritabilities as estimated using LDSC. 
Supplementary Table 16. Phenome-wide association results for genome-wide significant 
loci and genes. 
Supplementary Table 17. Loci for age-(in)dependent effect on longitudinal brain changes in 
subgroups. 
Supplementary Table 18. Genes for age-(in)dependent effect on longitudinal brain changes 
in subgroups. 

Extended Data Movie. Rates of change for brain structure throughout the lifespan. 

Extended Data Figure 1: Demographics and analysis 
Overview of demographics (left). Per cohort, an age distribution is displayed, based on mean 
and standard deviation of the age at baseline. Cohorts of European ancestry are displayed in 
green, non-European cohorts are displayed in yellow. On the right, the total number of 
included subjects is displayed and a pie-chart of the distribution of diagnostic groups (pink) 
and subjects not belonging to diagnostic groups - often healthy subjects (aqua). Overview of 
analysis pipeline (right). 
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Extended Data Figure 2: Correlations between change rates  
Pearson correlations between rates of change and between baseline intracranial volume and 
rates of change in the largest adolescent cohort (top) and the largest cohort in older age 
(bottom) in phase 1. The size of the correlations is displayed by color and size of the circles.  
 
Extended Data Figure 3: Phenotype and GWAS overview  
Top: Change rates per cohort and estimated trajectories of the change rate with confidence 
intervals (in green) are displayed above. The size of the points represents the relative size of 
the cohorts. Cohorts that were added in phase2 are displayed in grey. Only cohorts that 
satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed 
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows 
contain Manhattan plots and QQ-plots for age-independent, age linear and age quadratic 
GWASses for rate of change. 3A: Amygdala; 3B: Caudate; 3C: Cerebellum grey matter; 3D: 
Cerebellum white matter; 3E: Cerebral white matter; 3F: Cortex volume; 3G: Cortical 
thickness; 3H: Hippocampus; 3I: Lateral ventricles; 3J: Nucleus accumbens; 3K: Pallidum; 
3L: Putamen; 3M: Surface area; 3N: Thalamus; 3O: Total brain. 
 
Extended Data Figure 4: Locusplots, eQTL and chromatin interaction mapping for 
genome-wide significant loci.  
S4: Locusplots, eQTL and chromatin interaction mapping for genome-wide significant loci. 
A) rs1425034; change rate pallidum; independent of age; B) rs73210410; change rate 
pallidum; linear age dependency; C) rs11726181; change rate cerebral white matter; 
quadratic age dependency; D) 5:157751672; change rate surface area; linear age 
dependency*; E) rs10990953; change rate ventricles; independent of age; F) rs17809993; 
change rate cortex volume quadratic age dependency; G) rs17809993; change rate cortical 
thickness; quadratic age dependency; H) rs12019523; change rate caudate; quadratic age 
dependency; I) 13:72353395; change rate cerebral white matter volume; quadratic age 
dependency; note that this SNP was not in the reference dataset containing LD structure; 
displayed LD structure is based on 13:7234009, R2 = 0.87 with the top-SNP  J) rs72772746; 
change rate lateral ventricles; independent of age; K) rs12325429; change rate total brain 
volume; independent of age; L) rs34342646; change rate surface area; quadratic age 
dependency; M) rs429358; change rate hippocampus; quadratic age dependency. Locus plots 
were created with locus zoom95. Circos plots were created with FUMA66. *not present in 
1000G reference file, no circos plot available.  
 
Extended Data Figure 5: Top SNP results for genome-wide significant SNPs and genes 
Age-(in)dependent effect of the significant SNPs/top-SNPs in significant genes. The top 
figure displays a forest-plot for age-independent effects, or the estimated effect of the tested 
allele on the change rate in each cohort against age otherwise. In the latter case, the red line 
displays the estimated age-effect with 95% confidence interval from the meta analysis/meta-
regression. The bottom figure shows a visualization of the effect of the tested allele on the 
phenotype itself. The red line represents the lifespan trajectory for the carriers of the effect 
allele, the black line represents the lifespan trajectory of the non-carriers. A) rs1425034; 
change rate pallidum; independent of age; B) rs73210410; change rate pallidum; linear age 
dependency; C) rs11726181; change rate cerebral white matter; quadratic age dependency; 
D) rs10990953; change rate ventricles; independent of age; E) FAU – top SNP rs769440 
change rate cerebellum white matter; linear age dependency; F) rs17809993; change rate 
cortex volume quadratic age dependency; G) rs17809993; change rate cortical thickness; 
quadratic age dependency; H) rs12019523; change rate caudate; quadratic age dependency; I) 
DACH1 and 13:72353395; change rate cerebral white matter volume; quadratic age 
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dependency; J) GPR139 and rs72772746; change rate lateral ventricles; independent of age; 
K) rs12325429; change rate total brain volume; independent of age; L) APOE – top SNP 
rs769449; change rate surface area; quadratic age dependency; M) rs34342646; change rate 
surface area, quadratic age dependency; N) APOE and rs429358; change rate hippocampus; 
quadratic age dependency O) APOE – top SNP rs429358; change rate amygdala; linear* age 
dependency.  
*APOE also showed a significant quadratic age dependency for change rate of amygdala, the 
most parsimonious model is shown.  
 
Extended Data Figure 6: Lookup longitudinal versus cross-sectional GWAS 
Expected versus actual overlap for the first top-1000 ranked genes. Results from age-
independent analysis(red), linear age -dependent analysis (green) and quadratic age-
dependent analysis (blue) are shown in one figure. Top-N ranks are marked for nominally 
(dots) or FDR-corrected (within the top-1000 genes for this phenotype; triangles) significance 
for over- or underrepresentation of genes associated with brain structural rates of change 
amongst the top-N ranked genes for cross-sectional brain measures. For lateral ventricles and 
cerebellum grey and white matter, summary statistics for the cross-sectional phenotype were 
only available for left and right lateral and inferior lateral ventricle, and left and right 
cerebellum grey and white matter, separately. Therefore, for those measures we show curves 
for overlap with the separate cross-sectional phenotypes. 
 
Extended Data Figure 7: Overlap with other phenotypes  
iSECA results for overlap between GWAS summary statistics of structural brain change with 
GWAS summary statistics of other phenotypes testing for pleiotropy (A), concordance and 
discordance of effects (B) and pleiotropy in the subgroup excluding subjects with a diagnosis 
(C). For comparison, we also present the same analysis for cross-sectional volumes, again 
showing pleiotropy results (D), concordance and discordance (E). Colors display the 
significance level on a 10-log scale. Associations that are significant based are marked with 
*. For a fair comparison, the cross-sectional analyses (D-E) used the same significance 
threshold as the change analyses (A-C); even though the latter contained more brain 
structures.  
 
Extended Data Figure 8: Gene expression for prioritized genes 
Heatmaps display normalized expression value (zero mean normalization of log2 transformed 
expression) for prioritized genes, for GTEx v8 RNAseq data (A) and BrainSpan data (B). 
Darker red means higher relative expression of that gene in each label, compared to a darker 
blue color in the same label. Note that PVRL2 is an alias for NECTIN2. 
 
 
Extended Data Figure 9: PheWas results for study-wide significant genes 
APOE (A), CAB39L (B), CDH8 (C), DACH1 (D), FAU (E), GPR139 (F), NECTIN2 (G) and 
SORCS2 (H).  PheWAS plots show the significance of a gene on a range of traits based on 
MAGMA gene-based tests (Bonferroni corrected P-value threshold: 7.51e-07), as obtained 
from GWASAtlas32 (https://atlas.ctglab.nl). Redundant traits were removed for visualization 
and trait names were shortened. Full list of significant gene-based associations is in 
Supplementary Table 16. 
 
Extended Data Figure 10: Associations between absolute and relative change rates. 
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Scatter plots showing the SNP effects for hippocampus change rate (absolute, x-axes) and 
hippocampus change rate divided by intracranial volume (relative; y-axes) for the three 
cohorts added in phase 2. SNPs were clumped at r2 < 0.1 for visualization purposes.  
 
Extended Data Figure 11: Power to detect top SNPs under multiplicative scanner 
effects.  
For each of the genome-wide significant SNPs in phase2, we simulated multiplicative 
scanner effects (independently drawn from N(1,s) per cohort; repeated 1000 times) and 
applied these to the original effect sizes and standard errors per cohort, after which we 
recalculated the meta-analysis or meta-regression. The x-axis shows the variation of the 
simulated effects, the y-axis shows the percentage of cases where the top-findings were still 
significant. Colors represent the different SNPs. The black squares are the average power 
over all SNPs tested.  
 
Extended Data Figure 12: QQ plots separately for each participating cohort 
QQ plots of summary statistics uploaded per phenotype and per participating cohort, showing 
expected (x-axis; under the null hypothesis of no genetic signal) versus observed (y-
axis) minus log10-transformed p-values.  
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