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ABSTRACT 

Membrane proteins play essential role in cellular mechanisms. Despite that and the major 

progress in experimental structure determination, they are still significantly underrepresented in 

Protein Data Bank.  Thus, computational approaches to protein structure determination, which 

are important in general, are especially valuable in the case of membrane proteins and protein-

protein assemblies. Due to a number of reasons, not the least of which is much greater availability 

of structural data, the main focus of structure prediction techniques has been on soluble proteins. 

Structure prediction of protein-protein complexes is a well-developed field of study. However, 

because of the differences in physicochemical environment in the membranes and the spatial 

constraints of the membranes, the generic protein-protein docking approaches are not optimal for 

the membrane proteins. Thus, specialized computational methods for docking of the membrane 

proteins must be developed. Development and benchmarking of such methods requires high-

quality datasets of membrane protein-protein complexes. In this study we present a new dataset 

of 456 non-redundant alpha helical binary complexes. The set is significantly larger and more 

representative than previously developed ones. In the future, this set will become the basis for 

the development of docking and scoring benchmarks, similar to the ones developed for soluble 

proteins in the DOCKGROUND resource http://dockground.compbio.ku.edu. 
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Introduction 

Membrane proteins account for a large part (up to 40%) of the human proteome. These proteins 

individually and in association with other membrane proteins, perform a wide range of functions, 

such as transporting nutrients, maintaining electrochemical gradients, cell-cell signaling, and 

structural support.1 Recent advances in cryogenic electron microscopy have made it possible to 

determine the structure of increasingly large number of membrane proteins.2 However, they are 

still significantly underrepresented among structures in the Protein Data Bank.2,3 Experimental 

determination of the 3D structures of protein-protein complexes, in general, is more difficult than 

that of the individual proteins, compounding the difficulty of determining protein structures in the 

membrane. Thus, computational methods for prediction of protein-protein complexes (protein 

docking) are essential for structural characterization of protein-protein interactions in the 

membranes. The membrane environment constrains the structure of protein-protein interactions 

by limiting protein insertion angles and depths.4,5 Thus, the dimensionality of the docking space 

in membranes is less than that for the soluble protein-protein complexes. However, the 

recognition factors in membrane proteins are smaller in scale than in the soluble protein-protein 

complexes (where coarse-grained representation determined by the global fold often suffices for 

a meaningful prediction) and thus require atomic-level prediction accuracy.6,7 

Because of the combination of structural and physicochemical characteristics of the 

membrane proteins that distinguish them from the soluble ones and the specifics of the membrane 

environment, docking methodologies developed for the soluble proteins are not optimal for the 

membrane proteins.8 Thus, specialized computational methods for docking of the membrane 

proteins have to be developed. In order to accomplish that, one needs high-quality datasets of 

membrane protein-protein complexes, necessary for the development and benchmarking of such 

methods. The sets have to be large enough to ensure statistical reliability of the results. Existing 

sets of membrane protein-protein complexes, contain a relatively small numbers of entries.4 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.04.467360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467360


 4 

Koukos et al. describe a complex set of 37 transmembrane targets.9 The Memdock benchmark 

consists of 65 target alpha helical transmembrane complexes.8 In this paper we present a new 

dataset of 456 non-redundant alpha helical binary complexes, as the foundation for the future 

development of the comprehensive resource for structural studies of membrane protein-protein 

complexes. 

 

Results and Discussion 

Generation of Dataset 

Initial PDB biounit structures used in this study were downloaded from the Orientation of Proteins 

in Membrane’s alpha helical transmembrane database.10 This database contains both the 

structure of the protein and the computationally determined membrane. At the time of retrieval 

(October 2019), the dataset contained 4,359 alpha helical and 530 beta-barrel protein structures. 

Beta-barrel membrane proteins are found almost exclusively in Gram-negative bacteria, 

mitochondria and chloroplasts.11 Because of that, the number of such structures is relatively small. 

Thus, we restricted our set to alpha-helical proteins only. After all monomeric proteins were filtered 

out, 3,359 entries remained. They were further split by the protein chain. To keep only the 

transmembrane part of the protein, the extramembrane parts of the structures were deleted. All 

binary complexes formed between any two chains were considered for a potential complex. Thus, 

one PDB structure could yield several binary complexes. To characterize the interface size, we 

used FreeSASA12 to calculate solvent accessible solvent area (SASA) buried upon protein binding 

(for that purpose, treating the membrane proteins like the soluble ones). Two chains were 

considered interacting if their buried SASA was > 250 Å2 per chain. This resulted in 7,964 pairwise 

combinations of the transmembrane segments.  

The redundancy was removed at the level of combined tertiary and quaternary structures. 

For that, we determined all-against-all TM-scores produced by MM-align13 (hereafter referred to 
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as MM-score), an offshoot of the structural alignment program align, specifically designed for 

aligning multi-chain structures. The dataset was clustered by Highly Connected Subgraphs 

method14 with various MM-score cutoffs ranging from 0.4 to 1.0, to find the optimal threshold value 

maximizing the number of highly connected clusters (where all members of the clusters have MM-

score above the threshold). The clustering thresholds were analyzed by the number of resulting 

clusters and the fraction of singletons (clusters with one element). Figure 1A shows the number 

of clusters produced at each level. While lower MM-score cutoffs have the benefit of a larger 

number of complexes in the set, their drawback is allowing greater structural redundancy. To 

minimize the drawbacks and maximize the benefits, one can assign the optimal MM-score cutoff 

at the point at which the number of clusters is significantly less than the next highest score (Figure 

1A). Another consideration for choosing the clustering threshold is the minimal number of 

singleton clusters. Figure 1B shows the fraction of such clusters produced with MM-score cutoffs 

0.4 - 0.9. Based on these considerations, comparing the distributions in Figures 1A and 1B, we 

chose the lowest fraction of the singleton clusters as the clustering threshold (MM-score 0.6). 

Application of this threshold yielded 456 clusters. The largest cluster contained 851 complexes, 

153 clusters were singletons and 48 clusters contained two complexes. Representative structures 

from the clusters for inclusion into final dataset were those with the best structure resolution. If 

two or more representative structures had the same resolution, the one with the least missing 

residues was selected. An exemple of a cluster and its representative is shown in Figure 2. 

 

Analysis of Dataset 

Membrane environment imposes restrictions on helix insertion angles and depth. We analyzed 

differences/similarities in the arrangements of helices belonging to the same or different chains. 

We calculated the angles between all pairs of interacting helices in the final dataset. The 

distribution of the angles was analyzed separately for the pairs of intra- and inter-chain helices. 

Angles were calculated between vectors connecting N- and C-termini of a transmembrane helix. 
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The vectors were drawn by performing a linear regression through all Ca atoms of the helix. To 

assign the vector unambiguously, we excluded short helices (those consisting of less than two 

turns or eight residues). The length of a helix was defined by a continuous stretch of alpha-helical 

residues as determined by DSSP.15,16 With such definition, angles < 90° indicated parallel helices, 

and those > 90° - the antiparallel ones. We used two alternative distance cutoffs to determine 

whether a pair of helices is interacting: any Ca atom of one helix to any Ca atom of the other helix 

(i) < 6 Å and (ii) < 12 Å (an empirical value based on maximizing docking success rates for soluble 

proteins17). Distributions of the helix-helix angles for both cutoffs (Figure 3) are practically 

indistinguishable. Thus, here we discuss the results obtained with the 6 Å cutoff only. 

Significant part of the dataset (96 non-redundant entries) contains kinked helices where one 

or two non-helical residues were present between longer stretches of the alpha-helical residues 

(≥ 8 residues). For such cases, angles were considered separately between vectors drawn 

through each part of the kinked helix (Figure 4). This resulted in 1,270 pairs of interacting kinked 

and 5,725 pairs of non-kinked helices. Distribution of interacting angles for such pairs are shown 

in Figure 3, along with the distributions of interaction angles between 5,783 of kinked and 16,009 

pairs of non-kinked interacting helices, belonging to the same polypeptide chain. 

The inter-chain helix-helix interactions occurred more frequently between parallel helices, 

whereas the intra-chain interactions were more commonly formed by the anti-parallel helices 

(sequentially adjacent helices are more likely to interact). Distributions for the kinked helices 

showed preference for 20-25° kink angles (in ~50° and ~140° peaks of the interacting kinked 

helices distributions). The kinked helices accounted for most interactions angles close to 90° 

indicating the membrane environment pressure for parallel arrangement of long helices. 

The membrane protein-protein set is incorporated in the DOCKGROUND resource for protein 

recognition studies http://dockground.compbio.ku.edu, in its Bound protein-protein part. The 
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membrane set page (Figure 5) allows download of the entire set, or the individual complexes, 

along with their visual analysis. 

 

Conclusion and Future Work 

Membrane proteins play an essential role in cellular mechanisms. Despite that and the major 

progress in experimental structure determination, they are still significantly underrepresented in 

Protein Data Bank. While computational approaches to protein structure determination are 

important in general, they are especially valuable in the case of membrane proteins and protein-

protein assemblies. Due to a number of reasons, not the least of which is much greater availability 

of structural data, the main focus of structure prediction techniques has been on soluble proteins. 

Structure prediction of protein-protein complexes is a well-developed field of study. However, 

because of the differences in physicochemical environment in the membranes and the spatial 

constraints of the membranes, the generic protein-protein docking approaches are not optimal for 

the membrane proteins. Thus, specialized computational methods for docking of the membrane 

proteins must be developed. Development and benchmarking of such methods requires high-

quality datasets of membrane protein-protein complexes. In this study we present a new dataset 

of 456 non-redundant alpha helical binary complexes, which is significantly larger and more 

representative than previously developed sets. 

In the future, this set will become the basis for the development of docking and scoring 

benchmarks, similar to the ones developed for soluble proteins in the DOCKGROUND resource. 

The sets will contain unbound/modeled structures of the monomers (docking benchmark sets) 

and docking decoys (scoring benchmark sets) containing correct (near native) and incorrect 

predictions (decoys) for the development of scoring procedures and training of machine learning 

approaches. 
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Availability 

The dataset is available online on the DOCKGROUND resource webpage: 

http://dockground.compbio.ku.edu. 
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Figures 

 

Figure 1. Analysis of structure clusters at different clustering cutoffs. The number of clusters 

produced at each clustering cutoff (A) grows monotonously, providing no clear indication of the 

optimal clustering cutoff. The frequency of single complex clusters has a distinct minimum, 

suggesting MM-score 0.6 as the optimal cutoff. 
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Figure 2. Example of the structure cluster. (A) The cluster consists of 15 binary interactions 

between transmembrane portions of the protein structures, each having two anti-parallel 

helices. (B) The cluster's representative structure contains transmembrane segments of chains 

A (red) and B (green) from 2wcd. Each of the 15 binary complexes are GO annotated as part of 

an ion channel. The extra- and intra-cellular sides of the membrane are in red and blue, 

respectively. The extramembrane parts of the representative complex (not included in the 

dataset) are blurred for clarity. 
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Figure 3. Distribution of angles between interacting intra- and inter-chain helices. 
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Figure 4. Example of a kinked helix. The transmembrane segments of chain A are in blue, and 

of chain B are in green (PDB structure 2xq4). Chain A contains a kinked helix with two direction 

vectors (gray and cyan) used separately in calculation of the interaction angles for that helix. 
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  A       B 

        

 

Figure 5. DOCKGROUND webpage for the membrane protein-protein set. (A) The list of 

complexes for download as a whole or as individual complexes. (B) Visualization of a particular 

complex. 
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