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Abstract: 47 

Vaccines are among the most cost-effective public health interventions for preventing infection-induced 48 

morbidity and mortality, yet much remains to be learned regarding the mechanisms by which vaccines 49 

protect. Systems immunology combines traditional immunology with modern 'omic profiling techniques 50 

and computational modeling to promote rapid and transformative advances in vaccinology and vaccine 51 

discovery. The NIH/NIAID Human Immunology Project Consortium (HIPC) has leveraged systems 52 

immunology approaches to identify molecular signatures associated with the immunogenicity of many 53 

vaccines, including those targeting seasonal influenza, yellow fever, and hepatitis B. These data are made 54 

available to the broader scientific community through the ImmuneSpace data portal and analysis engine 55 

leveraging the NIH/NIAID ImmPort repository1,2. However, a barrier to progress in this area is that 56 

comparative analyses have been limited by the distributed nature of some data, potential batch effects 57 

across studies, and the absence of multiple relevant studies from non-HIPC groups in ImmPort. To 58 

support comparative analyses across different vaccines, we have created the Immune Signatures Data 59 

Resource, a compendium of standardized systems vaccinology datasets. This data resource is available 60 

through ImmuneSpace, along with code to reproduce the processing and batch normalization starting from 61 

the underlying study data in ImmPort and the Gene Expression Omnibus (GEO). The current release 62 

comprises 1405 participants from 53 cohorts profiling the response to 24 different vaccines and includes 63 

transcriptional profiles and antibody response measurements. This novel systems vaccinology data release 64 

represents a valuable resource for comparative and meta-analyses that will accelerate our understanding 65 

of mechanisms underlying vaccine responses. 66 

 Design Type(s) � Factorial design 
� Longitudinal design 
� Transcription profiling design 

Factor Type(s) � Sample type (PBMC, Blood) 
� Vaccine 
� Pathogen 
� Age groups 

Measurement Type(s) � Transcription profiling assay 
� Neutralizing antibody assay 
� ELISA 
� Influenza hemagglutination inhibition 

assay (HAI) 
Technology Type(s) � Microarray  

� RNA sequencing 
Sample Characteristic(s) � Homo sapiens 

 67 

 68 
 69 
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Background and Summary  71 
 72 
Vaccines, one of humanity’s greatest public health achievements, save millions of lives every year by 73 

preventing infectious diseases3,4. Despite their widespread use and efficacy, much remains to be learned 74 

regarding their molecular mechanisms of action. This is true both for vaccines against pandemic 75 

infections such as influenza5, and SARS-coronavirus-26, as well as for infections for which there are 76 

currently no authorized or approved vaccines such as HIV7-9. Elucidating the commonalities and 77 

differences in the immune responses induced by different vaccines and their association with protective 78 

antibody responses will provide deeper insight and a framework for the evidence-based design of better 79 

vaccines or vaccination strategies. Recent technologies have provided tools to probe the immune response 80 

to vaccination and integrate hierarchical levels of the biological system10. Alluded to as systems 81 

vaccinology11, this new application of systems biology tools provides new insights into molecular 82 

mechanisms of vaccine-induced immunogenicity and protection12-15.   83 

The National Institute of Allergy and Infectious Diseases (NIAID) established a multi-84 

institutional consortium, Human Immunology Project Consortium (HIPC)2,16 , to characterize the immune 85 

system in diverse populations in response to a stimulus, such as vaccination, using high-dimensional 86 

'omic platforms and modern computational tools2. Since the inception of the consortium in 2010, 87 

members of HIPC have published > 500 articles, including many that describe molecular signatures 88 

associated with vaccine-induced protection. These studies include molecular signatures that predict the 89 

immunogenicity of vaccination against yellow fever17-20, seasonal influenza in healthy young adults, 90 

elderly21-25, and children26, shingles27,28, dengue29,30, malaria31,32, and meta-analyses of common signatures 91 

across different vaccines33,34. These molecular signatures resulted from large-scale data analysis using 92 

high-throughput systems biology approaches coupled with detailed clinical phenotyping in well-93 

characterized human cohorts.  94 

Predicting immunogenicity from 'omic signatures remains challenging, prompting 95 

methodological innovation to advance the field towards delivering on the promises of precision 96 

vaccination35-37. The factors that contribute to robust vaccination responses are highly complex and span 97 

multiple biological scales. The vast collection of high-dimensional profiling datasets poses significant 98 

challenges for comparative analysis of these studies, including biological variability as well as data 99 

challenges such as volume, technical noise, and diverse sample processing pipelines. Data integration of 100 

cellular and molecular signatures to predict vaccine responses requires harmonization and normalization 101 

of data from multiple sources38. The generation of big data poses simultaneous challenges and 102 

opportunities with the potential of contributing to precision medicine. The biological interpretation of the 103 

resulting molecular features correlated with robust responses is another key factor. Understanding how 104 

effective vaccines stimulate protective immune responses, and how these mechanisms may differ between 105 
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vaccine types and targeted pathogens remains a substantial challenge for the field.  Moreover, the systems 106 

vaccinology field has been limited by a lack of a formal framework to standardize immune signatures 107 

gathered from diverse studies, creating a bottleneck for comparative analysis. To address these 108 

challenges, and in support of advances in systems vaccinology by the HIPC project and the broader 109 

scientific community, we present the creation of the Immune Signatures Data Resource, a compendium of 110 

systems vaccinology studies that enables standardized comparative analysis to identify molecular 111 

signatures that correlate with the outcomes of vaccinations.  112 

The current release of the Immune Signatures Data Resource consists of 4795 transcriptomic 113 

samples from 1405 participants curated from 30 ImmPort studies (16 from HIPC-related studies, 14 non-114 

HIPC studies) (Figure 2). The transcriptomic profiling dataset is derived from 53 cohorts of 820 young 115 

adults (18-49 years old) and 585 (≥50 years old) older adult samples. The data resource covers 24 116 

vaccines targeting 11 pathogens and 6 vaccine types (Figure 1B, 4A), thus creating a critical mass of data 117 

that will serve as a valuable resource for the broader scientific community. Additionally, data assembly 118 

and integration of these data set enables derivation of comparable signatures for each study for 119 

comparative analysis of the underlying data. 120 

 121 

Methods:  122 

Database background information and structure 123 

Compatibility with ImmPort and ImmuneSpace, the central databases of the Human Immunology 124 

Project Consortium: Given the exponential growth of the number of datasets of multiple modalities, an 125 

urgent need emerged for data sharing across the broader scientific community. The HIPC implements the 126 

NIH Data Sharing policy to promote the principles of Findability, Accessibility, Interoperability, and 127 

Reusability (FAIR) via ImmPort, created under the National Institute of Allergy and Infectious Diseases 128 

Division of Allergy, Immunology, and Transplantation (NIAID-DAIT). ImmPort (ImmPort.org) is an 129 

open repository of participant-level large-scale human immunology data designed to aid scientists with 130 

data standards and guidelines for efficient secondary analyses1,39. ImmPort facilitates data sharing of 131 

immunology studies creating a centralized knowledge base and resources, and serves as a central data 132 

repository for HIPC. ImmuneSpace2,34 extends ImmPort, providing access to additional data (e.g., 133 

standardized gene expression matrices) and web-based R tools for data accession, analysis, and reporting. 134 

Studies in the Immune Signatures Data Resource are archived through the Shared Data Portal on ImmPort 135 

and ImmuneSpace repositories and may be updated over time. To provide a consistent data source for 136 

reproducible results, we also archived a static copy of the data as a "virtual study” in ImmuneSpace 137 

(Figure 1A & 2).   138 
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Identification of vaccine study cohorts with transcriptomic profiles: Through a literature search 139 

conducted from 2017 to 2020, we identified target publications with systems-level profiling of human 140 

vaccination responses. We found 16 HIPC-funded vaccinology studies in ImmPort with transcriptomics 141 

datasets generated with matching immune response outcomes. Notably, we have supplemented the HIPC 142 

data previously available in ImmPort by curating and submitting 14 additional human vaccination studies 143 

to ImmPort. For studies that were not in ImmPort/ImmuneSpace, we located the underlying data by 144 

surveying public transcriptome databases (e.g., Gene Expression Omnibus (GEO)) or reaching out to 145 

study authors to request data access, allowing us to submit to ImmPort on their behalf. These datasets 146 

were then made available via ImmuneSpace to be processed for standardization, preprocessing checks, 147 

and normalization. The standard analytical pipeline enables reproducibility and comparability of future 148 

studies to be correlated with publicly available immune response measurement. This process created the 149 

virtual study for the HIPC named the Immune Signatures Data Resource (Figure 1A, Figure 2).  150 

Gene Expression Data processing pipeline 151 

Data were read directly from ImmuneSpace using ImmuneSpaceR functions and subsequently 152 

preprocessed, quality controlled, and integrated using the following pipeline: 153 

Quality Control of Microarray experiments: The ArrayQualityMetrics R package40 was used for quality 154 

control and assurance of all microarray experiments (Figure 3A). Outlier detection was based on the 155 

following statistics:  i) Mean absolute difference of M-values (log-ratios) of each pair of arrays, ii) the 156 

Kolmogorov-Smirnov statistic Ka between each array’s signal intensity distribution and the distribution of 157 

the pooled data and, iii) the Hoeffding’s statistic Da on the joint distribution of A (average) and M values 158 

for each array. Using pre-specified criteria within an established public microarray data reuse pipeline40, 159 

we flagged for removal arrays that failed all three quality control statistics. 160 

Preprocessing: Raw probe intensity data for Affymetrix studies were background-corrected and 161 

summarized using the RMA algorithm41 while the function read.ilmn (limma R package) was used to read 162 

and background correct Illumina raw probe intensities. To integrate RNA-seq and microarray data, raw 163 

counts for RNA-seq data were converted to log-transformed values incorporating observational level 164 

weights to account for technical variations using the voom42 transformation.  Expression data within each 165 

study were quantile normalized and log-transformed separately for each cohort/sample type.  166 

Annotation: We annotated the manufacturing IDs (probes from microarray/Illumina) to their 167 

corresponding gene alias. Gene aliases were mapped to the recent gene symbols from the HUGO Gene 168 

Nomenclature Committee43 [accessed Dec 23, 2020]. For the rare case where a gene alias mapped to more 169 

than one gene symbol, the mapping was resolved by the following: i) If a gene alias mapped to itself as a 170 

symbol, as well as other symbols, then it was mapped to itself; ii) if the gene alias mapped to multiple 171 
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symbols that did not include itself, then the gene alias was dropped from the study. As a result, the raw 172 

gene expression matrix was reduced to 10086 HUGO gene aliases with known unique mapping.  173 

Gene-based expression profiles: Expression data were summarized at the probe level (for microarray 174 

data) and gene-alias level (RNA-seq) to the canonical Gene-Symbol level. The probes / gene-aliases were 175 

summarized by selecting the probe or gene-alias with the highest average expression (mean of probes 176 

across all samples, take the highest mean) across all samples within the matrix (cohort and sample type).  177 

Cross-Study normalization: One of the main assumptions in expression analysis is that differences in 178 

gene expression across conditions occur in a relatively small number of processes. As such, the 179 

distribution across conditions should be similar, and departures of these assumptions are corrected, for 180 

example, using quantile normalization. This procedure usually creates a target distribution using all 181 

samples available, but we observed dissimilar distributions in our collection stemming from various 182 

platforms used. Such differences lead to extensive distributions and introduce artifacts in the data (Figure 183 

3B and 3C). The target distribution was obtained from samples using Affymetrix platforms, resulting in a 184 

well-defined distribution, and each sample in our collection was quantile normalized to this target 185 

distribution. Before cross-study normalization, there were 35,725 representative gene symbols present. 186 

There were 25,639 genes removed after normalization, as these genes were not present in all the studies. 187 

This yielded a final expression matrix of 4795 samples from 1405 participants representing 10,086 genes 188 

(Figure 2). 189 

Determining and adjusting for technical confounders: We studied the primary sources of variation in 190 

the data, including the study effect (which also encompasses the impact of different expression platforms 191 

(RNA-seq, Affymetrix arrays, Illumina arrays, etc.), sample types (Whole blood, PBMC), as well as 192 

demographics. We conducted Principal Component Analysis (PCA) to visualize such associations in a 193 

bidimensional space of principal components (PCs) and applied Principal Variance Component Analysis 194 

(PVCA)44 to quantify the amount of variability attributed to different experimental conditions. This 195 

approach models the multivariate distribution of the PCs computed for the PCA as a function of 196 

experimental factors and estimates the total variance explained by each factor via mixed-effect models.  197 

Since many studies included only one vaccine, temporal variations due to vaccine response were 198 

confounded with the study effect. The assessment of the primary technical sources of variation was 199 

carried out using only the pre-vaccination data, not affected by the targeted pathogen and vaccine type 200 

used in the different studies. Of note, all studies enrolled healthy volunteers, and the first biosample was 201 

obtained pre-vaccination. The targeted pathogen and vaccine type should not affect these baseline data. 202 

Platform, study, and sample types were identified as significant sources of variation in the gene 203 

expression matrix. The effect of those three variables was estimated by modeling gene expression at 204 

baseline (at which no vaccine or timepoint effect exists) with a linear model using the limma framework, 205 
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including feature set vendor (Platform/Affy), study (batch factors), and sample type, Y-chromosome 206 

genes presence, as covariates. Study and cell-type effects were estimated using a linear model with age, 207 

Y-chromosome genes presence (biological sex), study, sample type (Whole Blood/PBMC), study, and 208 

platform as additive effects. From here, the study, platform, and cell-type effects were eliminated from 209 

the entirety of the expression matrix. There were three studies (SDY1276, SDY1264, SDY180) that 210 

contained multiple cohorts and were treated as separate studies. 211 

Biological sex imputation: Imputation of biological sex, as defined by the presence of a Y-chromosome, 212 

was carried out based on the gene expression profiles of 13 Y-chromosome genes. Within each study, a 213 

multidimensional scaling was first applied to the Y-chromosome gene expression profiles. K-means 214 

clustering was then used to cluster samples into two groups. Participants in the cluster with higher mean 215 

expression values were considered male (i.e., the Y-chromosome was present) while those in the cluster 216 

with lower expression were considered female (i.e., the Y-chromosome was absent). The consistency of 217 

the Y-chromosome presence assignment across time points was verified (Figure 3D). In the (few) cases 218 

where imputation was not in agreement across all time points, the reported sex was used and if no sex was 219 

reported, imputation followed a majority rule principle.  220 

Age Imputation: Age imputation for studies without reported ages (SDY1260, SDY1264, SDY1293, 221 

SDY1294, SDY1364, SDY1370, SDY1373, SDY984) employed the RAPToR R v1.1.5 package45. The 222 

RAPToR algorithm takes in a reference set of gene expression time series with reported ages and 223 

generates a near-continuous, high-temporal resolution from the interpolated reference dataset. 224 

Transcriptomic profiles of participants without reported ages were compared to the reference dataset via a 225 

correlation profile, providing age estimates for the sample. Finally, random subsets of genes from the 226 

subject’s transcriptomic profile were bootstrapped to ascertain a confidence interval for the imputed age. 227 

We generated the reference dataset using the transcriptomic profiles of 21 studies in our resource for 228 

which age was reported. The studies were split into younger (age < 50) and older (age ≥ 50) cohorts, thus 229 

two different models were generated, and only baseline transcriptomic profiles were used in the reference 230 

dataset. As RAPToR also enables phenotypic data to be incorporated into the interpolation model, each 231 

possible combination of phenotypic features was tested. For each combination, RAPToR predicted the 232 

age for participants in the 21 studies with known age, and the goodness of fit was evaluated by the 233 

coefficient of determination (R2). The best model for the younger and older cohorts was then used to 234 

impute ages for the 7 studies without reported age (Figure 3E, 3F) 235 

Immune response datasets processing pipeline: 236 

To identify the molecular signatures that correlate with vaccine immunogenicity, we included immune 237 

response readouts in the creation of this data resource. For studies that were missing vaccine response 238 

endpoints in their public data deposition, we contacted study authors and requested available antibody 239 
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response measures to vaccine antigens. Once shared, these data were submitted to ImmPort and linked to 240 

the relevant studies. These readouts include neutralizing antibody titers (Nab), hemagglutination 241 

inhibition assay (HAI) results for influenza studies, and Immunoglobulin IgG ELISA assay results. In 242 

participants for whom the humoral immune response was measured with multiple assays, the preference 243 

was given to HAI for influenza or Nab for non-influenza studies, then IgG ELISA datasets. The antibody 244 

measures were normalized within each study by estimating the fold-change differences between the post-245 

vaccination time-point (generally between day 28 or day 30) compared to the baseline measurement. For 246 

influenza studies where the vaccine included multiple strains, the fold changes between the post-247 

vaccination versus baseline were calculated for each strain, and the maximum fold change (MFC) over 248 

the strains was selected34. Due to the variability in baseline antibody (Ab) levels and immune memory 249 

such as influenza vaccines, we also estimated the maximum residual after baseline adjustment (maxRBA) 250 

method by calculating the maximum residual across all vaccine strains to adjust for variable baseline Ab 251 

levels using the R package titer21. A total of 30 studies with 1405 participants and 4795 samples have 252 

both transcriptomics and immune response readout data available (Figure 2). This dataset enables 253 

researchers to carry out comparative analyses using immunogenicity data as well as prediction of the 254 

quality of response across multiple vaccines. 255 

 256 

Data Records:  257 

The Immune Signatures Data Resource is available online for download by the research community from 258 

this website: The data is hosted on ImmuneSpace and can be accessed via the R package ImmuneSpaceR 259 

(https://rglab.github.io/ImmuneSpaceR/ ). The resource is available for use by the scientific community 260 

and can be downloaded from a research data repository IS2 https://www.ImmuneSpace.org/is2.url. A 261 

summary of datasets, with their corresponding study ID and accession numbers, is provided in Table 4. 262 

 263 

Technical Validation 264 

Quality Control and Assurance 265 

For global quality control across all public microarray data, we used a well-established pipeline available 266 

through the ArrayQualitymetrics R package40. Using pre-specified criteria established in the existing 267 

public microarray data reuse pipeline46, arrays that failed 3 out of 3 calculated quality control statistics 268 

were flagged for removal (see Methods). Consistent with standard practice to perform such quality 269 

control analysis prior to downstream analysis and dataset submission to the Gene Expression Omnibus, 270 

none of the samples were outliers by all three statistics (Fig 3A). As expected for data from published 271 

peer-reviewed studies, all the identified studies passed the quality assurance method using the 272 

Arrayqualitymetrics method. 273 
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Y-chromosomal presence and age imputation 274 

A few studies were missing information for sex and for age. To achieve data completeness, we included 275 

the biological sex imputation based on the imputed presence of the Y-chromosome using gene expression, 276 

as well as imputation of age when the variable was missing or defined by a broad range of values. Age 277 

imputation employed the RAPToR tool using 21 studies with reported age to define the best predictive 278 

model for the younger (age < 50 years) and older (age ≥ 50 years) cohorts separately. The highest 279 

correlation coefficients from the young cohort were generated by taking into account the model (X ~ 280 

age_reported + matrix) with a correlation coefficient of R2=0.367 (Figure 3E), while the old cohort 281 

yielded a prediction R2 of 0.536 for their highest coefficient value (Figure 3F). 282 

Definition of Vaccination Studies Transcriptomic Cohort 283 

Data preprocessing in ImmuneSpace yielded a total of 30 studies and 59 cohorts, with 1482 participants 284 

and 5413 samples. After the data was preprocessed and quality control measures were performed, we 285 

further assessed the identified cohorts as defined in the flow diagram (Figure 2). This curation included: i) 286 

removing participants that were not relevant to the objective (n=34); ii) removing samples due to 287 

inconsistencies with time design determination (n= 178); iii) removing participants with no baseline 288 

expression data (n=42). Some studies, such as SDY1368 and SDY67, were dropped from the normalized 289 

data sets as they did not include subjects within our target age range (18-50 years). In summary, we report 290 

that the final Immune Signatures Data Resource contains 53 cohorts from 30 studies with 1405 291 

participants and 4795 samples.  292 

Assessment and adjustment of the batch effects 293 

We evaluated the main sources of variation on the gene expression matrix to identify and adjust technical 294 

confounders (RNA-seq, Affymetrix arrays, Illumina arrays, etc.), study, and specimen types (e.g., whole 295 

blood vs. PBMCs) using the baseline samples. Since all studies enrolled healthy volunteers, and the first 296 

sample was taken pre-vaccination, pathogen and vaccine type would not affect the baseline data. Figure 297 

3B clearly demonstrates robust clustering of samples by study, which are also grouped by platform type.  298 

The study effect and type of platform used accounted for the vast majority (95%) of variation, followed 299 

by specimen types (3.6%). It is thus essential that the data are corrected for these major effects prior to 300 

any analytical usage [see Materials and Methods for further details]. The study, platform type, and 301 

specimen type-specific effects were estimated using a linear model that also included age and Y-302 

chromosome presence as additive effects using only baseline expression. Once the study, platform, and 303 

specimen-type effects were estimated, they were eliminated from the entirety of the expression matrix. 304 

Figure 3B shows that those effects can successfully be adjusted from the data, thus leading to a matrix of 305 

expression that is free of most technical biases induced by the laboratory and cell-type effects.  306 

Immune Signatures Transcriptomics and Immune Response Datasets 307 
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We report the total number of assay samples collected from the transcriptomic and immune response 308 

datasets tallied by targeted pathogen and vaccine type, across multiple systems vaccinology datasets 309 

(Figure 4A). We captured about ~3000 HAI antibody titer results from influenza studies that were 310 

measured by the standard HAI assay pre- and at multiple time points post-vaccination, depending on the 311 

study. Mean titers were calculated for the reported strains of the virus and were based on the highest 312 

dilution reported at day 28-30 post-vaccination. In addition, neutralizing antibody (NAB) titers and IgG 313 

ELISA results specific to each pathogen were determined by each study and are summarized (Figure 4A). 314 

The overall transcriptomics dataset comprises multiple time points from 7 days pre-vaccination up to day 315 

180 days post-vaccination (Figure 4B). While most of the datasets focus on the young adult population 316 

(ages 18-50 years old), the data resource also includes studies that profile older adults following hepatitis 317 

B, influenza, and varicella vaccination (Figure 4C) that may be useful for analysis. The Euler diagram 318 

describes the dataset overlap of participants with transcriptomics datasets and corresponding to one or 319 

more immune response datasets (Figure 4D). 320 

Heterogeneity of the immune response to vaccination across targeted pathogens and vaccine types was 321 

reflected in variation in the longitudinal trajectories of HAI and NAB titer measurements (Figure 5A and 322 

5B). HAI and NAB titers generally increased by 14-28 days after vaccination but attenuated at different 323 

times for each vaccine (Figure 5A and 5B). Change in NAB titers after vaccination were significantly 324 

different across the 5 unique combinations of targeted pathogen and vaccine types where these 325 

measurements were reported (ANOVA p <10-10), with significant differences across all 5 groups except 326 

between meningococcus and yellow fever vaccines (Figure 5C). Some influenza vaccination studies 327 

reported both HAI and NAB measures of immunogenicity, and there was a significant positive correlation 328 

between the vaccination-induced changes in these titers across participants (Spearman’s rho = 0.45, p 329 

<10-10) (Figure 5D).  330 

 331 

Usage Notes  332 

The expression data and accompanying meta-data have been made available with different formats and 333 

options to ease usage. Data are available as standard expression sets (eSet) objects, the R/Bioconductor 334 

structure unifying expression values, metadata, and gene annotation. Both normalized data and batch-335 

adjusted data are available (Table 4). Users interested in a single study or those planning to work 336 

exclusively within participants' changes may opt for the normalized data without batch adjustment. For 337 

comparison of time points across studies or developing algorithms that use expression data, batch 338 

corrected matrices should be employed. Imputed age values for participants with no reported age were 339 

included to facilitate the use of age as a covariate in future analysis. Such analysis can be carried out with 340 

the complete data set and can be followed up by a sensitivity analysis using the small cohort with age-341 
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reported data. For the use of expression sets with the corresponding immune response per participant, 342 

these are available in eSets noted with a response. The selected immune response outcome per study is 343 

also summarized in Table 3.  344 

 345 

Code Availability 346 

The source codes for the Immune Signatures Data Resource and all data are available in ImmuneSpace 347 

(https://www.immunespace.org/is2.url). Pre-processing code and supplementary data can be found in the 348 

ImmuneSignatures2 R package hosted on Github (https://github.com/RGLab/ImmuneSignatures2).  349 
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FIGURE LEGENDS: 512 

Figure 1: HIPC Immune Signatures Data Resource pipeline and study demographics. 513 

A. Systems vaccinology datasets from existing HIPC studies, as well as published systems 514 

vaccinology papers and databases, were submitted to the ImmPort database. ImmuneSpace 515 

captures these datasets to create a combined compendium dataset. Quality control assessments of 516 

these data include array quality checks for microarray studies, batch correction, imputations for 517 

missing age and sex/y-chromosome presence information, and normalization per study. The 518 

combined virtual study included transcriptional profiles and antibody response measurements 519 

from 1405 participants across 53 cohorts, profiling the response to 24 different vaccines. 520 

B. Demographic data included biological sex, race, vaccine, and number of participants. 521 

 522 

 523 

Figure 2: Flow chart diagram of the Immune Signatures Data Resource. 524 

 525 

Figure 3: Quality control assessments of transcriptomics data. 526 

A. Sample quality assessments of gene expression datasets using Array Quality metrics. Array quality 527 

metrics package was employed to assess quality of microarray datasets by checking the following 528 

criteria: a.) absolute mean difference between arrays to check the probe and median intensity across 529 

all arrays, b.) Kolmogorov-Smirnov statistics to check the signal intensity distribution of arrays, 530 

comparing each probe versus distribution of test statistics for all other probes, c.) Hoeffding's D-531 

statistics for arrays. Arrays were excluded if they fail all three criteria above. 532 

B-C: Principal component analysis (Top) and Principal Variation component Analysis (PVCA) of 533 

baseline expression data per study before (B) and after batch correction (C). 534 

D. Biological sex imputation based on expression of Y-chromosome genes. We used 13 Y-535 

chromosome-associated genes to cluster samples into 2 groups assuming biological male or female.  536 

E-F. Age imputation based on transcriptomic profiles for studies without reported ages (SDY1260, 537 

SDY1264, SDY1293, SDY1294, SDY1364, SDY1370, SDY1373, SDY984) via the RAPToR R 538 

package45. Virtual studies were split into young (age < 50, E) and older (age >= 50, F) for two 539 

separate predictive models.   540 
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Figure 4: Immune Signatures Transcriptomics Overview for young and old datasets.  541 

A. Number of samples available for each data type, including transcriptomics (TX), 542 

hemagglutination inhibition assay (HAI), neutralizing antibody assay (NAB), and ELISA assays 543 

(ELISA).  544 

B. Bar plot depicting the number of samples at each time point. The colors within each bar indicate 545 

the breakdown for each unique combination of pathogen and vaccine type. Day -7 and day 0 546 

correspond to times pre-vaccination.  547 

C. Box plot depicting the participant's age distribution for each unique combination of pathogen and 548 

vaccine type D. Each area-proportional Euler diagram represents the total number of participants 549 

with corresponding data types.  550 

 551 

Figure 5: Immune Response Dataset Overview 552 

A. The longitudinal trajectory (summarized as a loess curve) of hemagglutinin inhibition assay 553 

(HAI) measurements (in log2 scale) by influenza vaccine type and year.  554 

B. The longitudinal trajectory of neutralizing antibody (NAB) titers (in log2 scale) for influenza, 555 

meningococcus, pneumococcus, and yellow fever vaccines. 556 

C. Neutralizing antibody titers were plotted for each unique combination of targeted pathogen and 557 

vaccine type to compare each participants' post-vaccination (day 28-30) values versus baseline 558 

(day 0). The violin plot shows the variation in magnitude for each unique combination of targeted 559 

pathogen and vaccine type. 560 

D. The correlation plot of influenza studies compares the maximum fold change (MFC) across 561 

strains for hemagglutinin inhibition assay (HAI) titers versus neutralizing antibody (NAB) titers. 562 

Size is proportional to the number of samples analyzed.  563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 
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TABLES: 1 

Table 1: Overview of Immune Signatures Data Resource Study Participants Metadata 2 

Study 
Accession 

Pathogen 
(Vaccine 

Type) 

Number of 
Participants 

Number of 
Samples 

Vaccine Adjuva
nt 

Race Ethnicity Cohort Matrix Pubmed 
ID 

SDY1373 Ebola 
(Recombinant 
Viral Vector) 

13 46 UKE 
Phase I 
rVSV 

ZEBOV 

VSV Not 
Specified 

Not 
Specified 

dose 
20x10^6 
ofu,dose 

3x10^6 pfu 

SDY1373_
WholeBloo
d_highDose
_Geo,SDY
1373_Whol
eBlood_lo
wDose_Ge

o 

 

SDY1328 Hepatitis B 
(Inactivated) 

164 325 Twinrix None White Not 
Hispanic or 

Latino 

healthy 
adults 

SDY1328_
WholeBloo
d_Healthy
Aldults_Ge

o 

26742691 

SDY1291 HIV 
(Recombinant 
Viral Vector) 

10 50 Ad5/HIV AdV White, 
Black, or 
African 

American 

Not 
Hispanic or 

Latino 

healthy 
HIV-1-

uninfected 
adults 

SDY1291_
PBMC_He
althyHIVU
ninfected_

Geo 

23151505 

SDY1119 Influenza 
(Inactivated) 

72 177 TIV 
(2011) 

None Not 
Specified 

Not 
Specified 

young T2D, 
young 

healthy,old 
healthy old 

T2D 

SDY1119_
PBMC_you
ngT2D_Ge
o,SDY1119
_PBMC_yo
ungHealthy
_Geo,SDY
1119_PBM
C_oldHealt
hy_Geo,SD

26682988 
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Y1119_PB
MC_oldT2

D_Geo 

SDY1276 Influenza 
(Inactivated) 

218 828 TIV 
(2008) 

None Not 
Specified 

Not 
Specified 

Validation 
Cohort; 
Females 

2008-2009 
trivalent 
influenza 
vaccine 

,Discovery 
Cohort; 
Males  

2008?2009 
trivalent 
influenza 
vaccine 

SDY1276_
WholeBloo
d_Validatio
n_Geo,SD
Y1276_Wh
oleBlood_
Discovery_

Geo 

21357945 

SDY180 Influenza 
(Inactivated) 

12 102 TIV 
(2009) 

None Asian ,Whit 
e,Black or 

African 
American 

Not 
Hispanic or 

Latino 

Study 
group 2 

2009-2010 
Fluzone,Stu
dy group 1 
2009-2010 

Fluzone 

SDY180_
WholeBloo
d_Grp2Fluz

one_G 
eo,SDY180
_WholeBlo
od_Grp1Fl
uzone_Geo 

23601689 

SDY212 Influenza 
(Inactivated) 

90 90 TIV 
(2008) 

None Oth er,Wh 
ite,As 

ian,Americ
an I,ndian 
or Alaska 

Native 

Not 
Hispanic or 

L 
atino,Hispa

nic or 
Latino 

Cohort_1,C
ohort_2 

SDY212_
WholeBloo
d_Young_
Geo,SDY2
12_PBMC_
Young_geo
,SDY212_
WholeBloo
d_Older_G

23591775 
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eo,SDY212
_PBMC_Ol

der_Geo 

SDY224 Influenza 
(Inactivated) 

5 55 TIV 
(2010) 

None White,Blac
k or 

African 
American,
American 
Indian or 
Alaska 
Native 

Not 
Hispanic or 
Latino,Hisp

anic or 
Latino 

TIV 2010 SDY224_P
BMC_TIV
2010_Imm

Port 

23900141 

SDY269 Influenza 
(Inactivated) 

28 80 TIV 
(2008) 

None White,Asia
n,Black or 

African 
American 

Not 
Hispanic or 
Latino,Hisp

anic or 
Latino 

TIV Group 
2008 

SDY269_P
BMC_TIV

_Geo 

21743478 

SDY270 Influenza 
(Inactivated) 

28 83 TIV 
(2009) 

None White,Blac
k or 

African 
American,

Asian 

Not 
Hispanic or 
Latino,Hisp

anic or 
Latino 

TIV Group 
2009 

SDY270_P
BMC_TIV
Group_Geo 

21743478 

SDY400 Influenza 
(Inactivated) 

30 120 TIV 
(2012) 

None White,Asia
n,Black or 

African 
American,

Other 

Not 
Hispanic or 
Latino,Hisp

anic or 
Latino 

Young 
adults 21-
30 years 
old,Older 
adults >= 
65 years 

old 

SDY400_P
BMC_You
ng_Geo,SD
Y400_PBM
C_Older_G

eo 

32060136 

SDY404 Influenza 
(Inactivated) 

39 156 TIV 
(2011) 

None White,Unk
nown,Other
,Asian,Blac

k or 
African 

Not 
Hispanic or 
Latino,Hisp

anic or 
Latino 

Young 
adults 21-
30 years 
old,Older 
adults >= 

SDY404_P
BMC_You
ng_Geo,SD
Y404_PBM
C_Older_G

25596819 
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American 65 years 
old 

eo 

SDY520 Influenza 
(Inactivated) 

24 94 TIV 
(2013) 

None White,Asia
n,Black or 

African 
American 

Not 
Hispanic or 
Latino,Hisp

anic or 
Latino 

Young 
adults 21-
30 years 
old,Older 
adults >= 
65 years 

old 

SDY520_
WholeBloo
d_Young_g
eo,SDY520
_WholeBlo
od_Older_

Geo 

32060136 

SDY56 Influenza 
(Inactivated) 

63 288 TIV 
(2010) 

None White,Asia
n,Black or 

African 
American 

Not 
Hispanic or 
Latino,Hisp

anic or 
Latino 

Healthy 
adults 25-
40 years 

old 
receiving 
TIV flu 

vaccine,He
althy adults 
>65 years 

old 
receiving 
TIV flu 
vaccine 

SDY56_PB
MC_Young
,SDY56_P
BMC_Olde

r 

26682988 

SDY61 Influenza 
(Inactivated) 

9 27 TIV 
(2007) 

None White Not 
Hispanic or 
Latino,Hisp

anic or 
Latino 

TIV Group 
2007 

SDY61_PB
MC_TIVGr

p 

21743478 

SDY63 Influenza 
(Inactivated) 

19 72 TIV 
(2010) 

None White,Asia
n,Other,Bla

ck or 
African 

American 

Not 
Hispanic or 

Latino 

Young 
adults 21-
30 years 
old,Older 
adults >= 
65 years 

old 

SDY63_PB
MC_Young
_Geo,SDY
63_PBMC_
Older_Geo 

25596819 
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SDY640 Influenza 
(Inactivated) 

20 79 TIV 
(2014) 

None White,Asia
n,Unknown 

Not 
Hispanic or 
Latino,Hisp

anic or 
Latino 

Young 
adults 21-
30 years 
old,Older 
adults >= 
65 years 

old 

SDY640_
WholeBloo
d_Young_
Geo,SDY6
40_WholeB
lood_Older

_Geo 

32060136 

SDY80 Influenza 
(Inactivated) 

61 286 TIV 
(2009) + 
pH1N1 

None White,Asia
n,Other,Bla

ck or 
African 

American 

Other,Hispa
nic or 
Latino 

Cohort2 SDY80_PB
MC_Cohort

2_geo 

24725414 

SDY269 Influenza (Live 
attenuated) 

28 83 LAIV 
(2008) 

LAIV White,Blac
k or 

African 
American,

Asian 

Not 
Hispanic or 
Latino,Hisp

anic or 
Latino 

LAIV 
group 2008 

SDY269_P
BMC_LAI

V_Geo 

21743478 

SDY1293 Malaria 
(Recombinant 

protein) 

44 165 RTS,S/A
S01 or 

RTS,S/A
S02 

AS01/A
S02 

Not 
Specified 

Not 
Specified 

adjuvanted 
RTS,S 
malaria 
vaccine 
cohort 

SDY1293_
PBMC_Va
ccinated_ge

o 

 

SDY1260 Meningococcus 
(Conjugate) 

17 51 MCV4 None Not 
Specified 

Not 
Specified 

MCV4 SDY1260_
PBMC_MC

V4_Geo 

24336226 

SDY1325 Meningococcus 
(Conjugate) 

5 10 MenAC
WY-
CRM 

None Not 
Specified 

Not 
Specified 

Intramuscul
ar 

MenACW
Y-CRM 

SDY1325_
WholeBloo
d_Intramus
cularCRM_

Geo 

28137280 

SDY1260 Meningococcus 
(Polysaccharide

) 

13 39 MPSV4 None Not 
Specified 

Not 
Specified 

MPSV4 SDY1260_
PBMC_MP
SV4_Geo 

24336226 
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SDY1325 Meningococcus 
(Polysaccharide

) 

5 10 MenAC
WY-PS 

None Not 
Specified 

Not 
Specified 

Intramuscul
ar 

MenACW
Y-PS 

SDY1325_
WholeBloo
d_Intramus
cularPS_Ge

o 

28137280 

SDY180 Pneumococcus 
(Polysaccharide

) 

12 101 Pneumov
ax23 

None White,Blac
k or 

African 
American,

Asian 

Not 
Hispanic or 
Latino,Hisp

anic or 
Latino 

Study 
group 2 

Pneunomax
23,Study 
group 1 

Pneunomax
23 

SDY180_
WholeBloo
d_Grp2Pne
unomax23_
Geo,SDY1
80_WholeB
lood_Grp1
Pneunomax

23_Geo 

23601689 

SDY1370 Smallpox (Live 
attenuated) 

4 24 DryVax Vaccini
a 

Unknown Not 
Specified 

DryVax SDY1370_
PBMC_dry

vax_geo 

21921208 

SDY1370 Smallpox (Live 
attenuated) 

4 24 LC16m8 Vaccini
a 

Unknown Not 
Specified 

LC16m8 SDY1370_
PBMC_lc1
6m8_geo 

21921208 

SDY1364 Tuberculosis 
(Recombinant 
Viral Vector) 

12 36 MVA85
A 

Vaccini
a 

Not 
Specified 

Not 
Specified 

MVA85A 
intramuscul

ar 

SDY1364_
PBMC_Intr
aMuscular_

Geo 

23844129 

SDY984 Varicella 
Zoster (Live 
attenuated) 

72 288 Zostavax VZV White,Blac
k or 

African 
American,
Unknown,

Asian 

Not 
Hispanic or 
Latino,Hisp

anic or 
Latino 

young,elder
ly 

SDY984_P
BMC_You
ng_Geo,SD
Y984_PBM
C_Elderly_

Geo 

28502771 

SDY1264 Yellow Fever 
(Live 

attenuated) 

25 87 YF17D YF17D Not 
Specified 

Not 
Specified 

Trial2,Trial
1 

SDY1264_
PBMC_Tri
al2_Geo,S

19029902 
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DY1264_P
BMC_Trial

1_Geo 

SDY1289 Yellow Fever 
(Live 

attenuated) 

25 117 YF17D YF17D Not 
Specified 

Not 
Specified 

in vivo 
vaccination 

study 
Montreal 

adult 
cohort,in 

vivo 
vaccination 

study 
Lausanne 

adult cohort 

SDY1289_
WholeBloo
d_Montreal
Cohort_Ge
o,SDY1289
_WholeBlo
od_Lausan
neCohort_

Geo 

19047440 

SDY1294 Yellow Fever 
(Live 

attenuated) 

21 109 YF17D YF17D Asian Not 
Hispanic or 

Latino 

Chinese 
cohort 

SDY1294_
PBMC_Chi
neseCohort

_Geo 

28687661 

SDY1529 Yellow Fever 
(Live 

attenuated) 

36 180 YF17D YF17D Black or 
African 

American 

Not 
Hispanic or 

Latino 

healthy 
adults 

SDY1529_
WholeBloo
d_Healthy
Adults_Pre
Vax_Geo,S
DY1529_

WholeBloo
d_Healthy
Adults_Pos
tVax_Geo 

19047440 
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 7 

Table 2: Overview of Transcriptomics Datasets Included in the Resource 8 

Study 
Accession 

Pathogen 
(Vaccine type) 

Sample type featureSetNa
me 

featureSetNa
me2 

featureSetVen
dor 

Time post last 
vaccination 

GEO 
Accession 

SDY1373 Ebola 
(Recombinant 
Viral Vector) 

Whole blood SDY1373_cust
omAnno 

RNA-seq NA 0,1,3,7 GSE97590 

SDY1328 Hepatitis B 
(Inactivated) 

Whole blood Affy_HumanR
STAcustom 

RNA-seq Affymetrix 0,7 GSE65834 

SDY1291 HIV 
(Recombinant 
Viral Vector) 

PBMC Affy_HumanE
xonST_1_0_v2 

Affy_HumanE
xonST_1_0_v2 

Affymetrix 0,0.25,1,3,7 GSE22768 

SDY1119 Influenza 
(Inactivated) 

PBMC HGU133_plus_
PM 

HGU133_plus_
PM 

Affymetrix 0,3,7 GSE74817 

SDY1276 Influenza 
(Inactivated) 

Whole blood HumanHT-
12_v3_2018 

HumanHT-
12_2018 

Illumina 0,1,3,14 GSE48024/GS
E48018 

SDY180 Influenza 
(Inactivated) 

Whole blood HumanHT-
12_v3_2018 

HumanHT-
12_2018 

Illumina -
7,0,0.5,1,3,7,10

,14,21,28 

GSE48762 

SDY212 Influenza 
(Inactivated) 

Whole blood HumanHT-
12_v3_2018 

HumanHT-
12_2018 

Illumina 0 GSE41080 

SDY224 Influenza 
(Inactivated) 

PBMC SDY224_Custo
mAnno 

RNA-seq NA 0,1,2,3,4,5,6,7,
8,9,10 

GSE45735 

SDY269 Influenza 
(Inactivated) 

PBMC HGU133_plus_
PM 

HGU133_plus_
PM 

Affymetrix 0,3,7 GSE29615/GS
E29617/GSE29

614 
SDY270 Influenza 

(Inactivated) 
PBMC HGU133_plus_

PM 
HGU133_plus_

PM 
Affymetrix 0,3,7 GSE29617/GS

E29614 
SDY400 Influenza 

(Inactivated) 
PBMC HumanHT-

12_v4_2018 
HumanHT-

12_2018 
Illumina 0,2,4,7,28 GSE59743/GS

E95584 
SDY404 Influenza 

(Inactivated) 
PBMC HumanHT-

12_v4_2018 
HumanHT-

12_2018 
Illumina 0,2,4,7,28 GSE59654 

SDY520 Influenza 
(Inactivated) 

Whole blood HumanHT-
12_v4_2018 

HumanHT-
12_2018 

Illumina 0,2,7,28 GSE101709 
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SDY56 Influenza 
(Inactivated) 

PBMC HGU133_plus_
PM 

HGU133_plus_
PM 

Affymetrix 0,1,3,7,14 GSE74817 

SDY61 Influenza 
(Inactivated) 

PBMC hgu133plus2 hgu133plus2 Affymetrix 0,3,7 GSE29617/GS
E29614 

SDY63 Influenza 
(Inactivated) 

PBMC HumanHT-
12_v4_2018 

HumanHT-
12_2018 

Illumina 0,4,7,28 GSE59635 

SDY640 Influenza 
(Inactivated) 

Whole blood HumanHT-
12_v4_2018 

HumanHT-
12_2018 

Illumina 0,2,7,28 GSE101710 

SDY80 Influenza 
(Inactivated) 

PBMC HuGene-1_0-
st-v1 

HuGene-1_0-
st-v1 

Affymetrix -7,0,1,7,70 GSE47353 

SDY269 Influenza (Live 
attenuated) 

PBMC HGU133_plus_
PM 

HGU133_plus_
PM 

Affymetrix 0,3,7 GSE29615/GS
E29617/GSE29

614 
SDY1293 Malaria 

(Recombinant 
protein) 

PBMC hgu133plus2 hgu133plus2 Affymetrix 0,1,3,14 GSE18323 

SDY1260 Meningococcus 
(Conjugate) 

PBMC HGU133_plus_
PM 

HGU133_plus_
PM 

Affymetrix 0,3,7 GSE52245 

SDY1325 Meningococcus 
(Conjugate) 

Whole blood HumanHT-
12_v4_2018 

HumanHT-
12_2018 

Illumina 0,7 GSE92884 

SDY1260 Meningococcus 
(Polysaccharid

e) 

PBMC HGU133_plus_
PM 

HGU133_plus_
PM 

Affymetrix 0,3,7 GSE52245 

SDY1325 Meningococcus 
(Polysaccharid

e) 

Whole blood HumanHT-
12_v4_2018 

HumanHT-
12_2018 

Illumina 0,7 GSE92884 

SDY180 Pneumococcus 
(Polysaccharid

e) 

Whole blood HumanHT-
12_v3_2018 

HumanHT-
12_2018 

Illumina -
7,0,0.5,1,3,7,10

,14,21,28 

GSE48762 

SDY1370 Smallpox (Live 
attenuated) 

PBMC HEEBOHuman
SetV1_2019 

HEEBOHuman
SetV1_2019 

Stanford 
Functional 
Genomics 
Facility 

0,3,7,10,13,21 GSE22121 

SDY1370 Smallpox (Live 
attenuated) 

PBMC HEEBOHuman
SetV1_2019 

HEEBOHuman
SetV1_2019 

Stanford 
Functional 
Genomics 

0,3,7,10,13,21 GSE22121 
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Facility 

SDY1364 Tuberculosis 
(Recombinant 
Viral Vector) 

PBMC HumanHT-
12_v4_2018 

HumanHT-
12_2018 

Illumina 0,2,7 GSE40719 

SDY984 Varicella 
Zoster (Live 
attenuated) 

PBMC HGU133_plus_
PM 

HGU133_plus_
PM 

Affymetrix 0,1,3,7 GSE79396 

SDY1264 Yellow Fever 
(Live 

attenuated) 

PBMC hgu133plus2 hgu133plus2 Affymetrix 0,1,3,7,21 GSE13485 

SDY1289 Yellow Fever 
(Live 

attenuated) 

Whole blood IlluminaHuman
Ref8_v2 

IlluminaHuman
Ref8_v2 

Illumina 0,3,7,10,14,28,
60 

GSE13699 

SDY1294 Yellow Fever 
(Live 

attenuated) 

PBMC AffyPrimeVie
w_2016 

AffyPrimeVie
w_2016 

Affymetrix 0,0.166666666
666667,1,2,3,5,

7,14,28 

GSE82152 

SDY1529 Yellow Fever 
(Live 

attenuated) 

Whole blood HumanHT-
12_v4_2018 

HumanHT-
12_2018 

Illumina 0,3,7,14,84 GSE125921/G
SE136163 
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Table 3: Studies with corresponding Immune Response Data 11 

 
Study Accession 

Pathogen Vaccine type Number of 
Participants 

Number of Samples Selected Immune 
Response Assay 

SDY1328 Hepatitis B (Inactivated) 160 320 ELISA 
SDY1119 Influenza (Inactivated) 72 177 HAI 
SDY1276 Influenza (Inactivated) 214 816 HAI, NAb 
SDY180 Influenza (Inactivated) 12 102 HAI, NAb 
SDY212 Influenza (Inactivated) 88 88 HAI 
SDY224 Influenza (Inactivated) 5 55 HAI 
SDY269 Influenza (Inactivated) 28 80 HAI 
SDY270 Influenza (Inactivated) 28 83 HAI 
SDY400 Influenza (Inactivated) 30 120 HAI 
SDY404 Influenza (Inactivated) 39 156 HAI 
SDY520 Influenza (Inactivated) 24 94 HAI 
SDY56 Influenza (Inactivated) 30 148 HAI 
SDY61 Influenza (Inactivated) 9 27 HAI 
SDY63 Influenza (Inactivated) 19 72 HAI 
SDY640 Influenza (Inactivated) 20 79 HAI 
SDY67 Influenza (Inactivated) 159 477 HAI 
SDY80 Influenza (Inactivated) 60 281 NAb 
SDY269 Influenza (Live attenuated) 28 83 HAI 
SDY1260 Meningococcus (Conjugate) 17 51 ELISA 
SDY1325 Meningococcus (Conjugate) 4 8 NAb 
SDY1260 Meningococcus (Polysaccharide) 13 39 ELISA 
SDY1325 Meningococcus (Polysaccharide) 5 10 NAb 
SDY180 Pneumococcus (Polysaccharide) 6 54 NAb 
SDY1370 Smallpox (Live attenuated) 4 24 ELISA 
SDY1370 Smallpox (Live attenuated) 4 24 ELISA 
SDY1364 Tuberculosis (Recombinant Viral Vector) 12 36 ELISA 
SDY984 Varicella Zoster (Live attenuated) 35 140 ELISA 
SDY1264 Yellow Fever (Live attenuated) 25 87 NAb 
SDY1289 Yellow Fever (Live attenuated) 14 84 NAb 
SDY1294 Yellow Fever (Live attenuated) 21 109 NAb 
SDY1529 Yellow Fever (Live attenuated) 36 180 NAb 
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Table 4: List of data files for the Immune Signatures Data Resource 13 

File name Description 

all_noNorm_eset.rds Gene expression matrix of all participants, log2-normalized expression 

all_noNorm_withResponse_eset.rds 
Gene expression matrix of all participants with matched immune response 

data, log2-normalized expression 

all_norm_eset.rds 
Gene expression matrix of all participants that are cross-study normalized 

and batch corrected 

all_norm_withResponse_eset.rds 
Gene expression matrix of all participants with matched simmune 

response dataset, cross-study normalized and batch corrected 

young_noNorm_eset.rds Gene expression matrix of participants aged 18-50, log2-normalized 

young_noNorm_withResponse_eset.rds 
Gene expression matrix of participants aged 18-50 with matched immune 

response data, log2-normalized 

young_norm_eset.rds 
Gene expression matrix of participants aged 18-50, cross-study 

normalized and batch corrected 

young_norm_withResponse_eset.rds 
Gene expression matrix of participants aged 18-50 with matched immune 

response data, cross-study normalized and batch corrected 

old_noNorm_eset.rds Gene expression matrix of participants aged 60-90, log2-normalized 

old_noNorm_withResponse_eset.rds 
Gene expression matrix of participants aged 60-90 with matched immune 

response data, log2-normalized expression 

old_norm_batchCorrectedFromYoung_eset.rds 

Gene expression matrix of participants aged 60-90, cross-study 
normalized and batch corrected using age correction coefficients from 

young 

old_norm_batchCorrectedFromYoung_withResponse_eset.rds 

Gene expression matrix of participants aged 60-90 with matched immune 
response data, cross-study normalized and batch corrected using age 

correction coefficients from young 

extendedOld_noNorm_eset.rds 
Gene expression matrix of participants aged 50-90, log2-normalized 

expression 

extendedOld_noNorm_withResponse_eset.rds 
Gene expression matrix of participants aged 50-90 with matched immune 

response data, log2-normalized counts 

.
C

C
-B

Y
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted N
ovem

ber 8, 2021. 
; 

https://doi.org/10.1101/2021.11.05.465336
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2021.11.05.465336
http://creativecommons.org/licenses/by/4.0/


extendedOld_norm_batchCorrectedFromYoung_eset.rds 
Gene expression matrix of participants aged 50-90, log2-normalized 

expression 

extendedOld_norm_batchCorrectedFromYoung_withResponse_eset.rds 

Gene expression matrix of participants aged 50-90 with immune response 
data, cross-study normalized, and batch corrected using correction 

coefficients from young 
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