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Abstract

In-silico saturation mutagenesis (ISM) is a popular approach in computational genomics for
calculating feature attributions on biological sequences that proceeds by systematically per-
turbing each position in a sequence and recording the difference in model output. However,
this method can be slow because systematically perturbing each position requires performing a
number of forward passes proportional to the length of the sequence being examined. In this
work, we propose a modification of ISM that leverages the principles of compressed sensing to
require only a constant number of forward passes, regardless of sequence length, when applied to
models that contain operations with a limited receptive field, such as convolutions. Our method,
named Yuzu, can reduce the time that ISM spends in convolution operations by several orders of
magnitude and, consequently, Yuzu can speed up ISM on several commonly used architectures
in genomics by over an order of magnitude. Notably, we found that Yuzu provides speedups
that increase with the complexity of the convolution operation and the length of the sequence
being analyzed, suggesting that Yuzu provides large benefits in realistic settings. We have made
this tool available at https://github.com/kundajelab/yuzu.

1 Introduction

A challenge with using modern machine learning methods in practice is that, frequently, their
learned logic for transforming input features into output predictions is opaque and difficult
for humans to understand. Accordingly, principled approaches for explaining trained machine
learning models have been proposed that, for a given example, assign a numerical value to each
feature according to some notion of importance in the resulting prediction. Unsurprisingly,
a large number of these feature attribution methods have been proposed, but we have seen
three main classes of feature attribution methods: gradient-based [1, 2, 3, 4], path-based [5, 6],
and counterfactual- or perturbation-based [7, 8, 9]. These approaches have trade-offs, both in
terms of theoretical guarantees and in terms of speed in practice. For example, gradient-based
methods generally require one backward pass to explain each output from the model, whereas
perturbation-based methods generally require one forward pass to explain each input. However,
all three classes have the common goal of assigning to each feature in an example a value that
corresponds to the relevance of that feature to the output from the model. When applied in
a genomics setting, feature attribution methods are a straightforward approach for identifying
the nucleotides, amino acids, and motifs of such, that form the core of biochemical mechanisms
or interactions [10, 11, 12, 13].

A simple perturbation-based method, in-silico saturation mutagenesis (ISM), proceeds on
biological sequences by constructing mutant sequences that each contain one mutation relative
to the reference sequence that attributions are being calculated for. These mutants, along
with the reference sequence, are then all run through a model. Unlike the gradient-based
methods, this model does not need to be continuous or differentiable. The attribution values
are then calculated as the difference in output between the mutant sequences and the original
sequences. When the input features are categories, such as nucleotide or amino acid identity, the
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method has the straightforward interpretation of performing a saturated mutagenesis experiment
computationally (hence, the name) [14]. A strength of this method is that the number of forward
passes does not depend on the number of output tasks.

In parallel with developments in feature attribution methods, progress has also been made in
the field of compressed (or compressive) sensing [15, 16, 17]. This field concerns the replacement
of a large number of sparse measurements with a smaller number of dense probes where each
probe measures a linear combination of the original, sparse, measurements. For example, rather
than performing millions of diagnostic tests, each on one person, one would pool together results
such that each pool is made up of multiple individuals and each individual contributes to multiple
pools. Through principled pool design, one can achieve perfect recovery of the results that each
individual test would have given by only measuring the pools and deconvolving the results given
the known pool design, effectively increasing the number of individuals that can be tested with
the same resources. Compressed sensing has been used to speed up several algorithms and data
collection tools that involve sparse values [18, 19, 20]

An interesting property emerges when ISM is applied to neural networks that contain con-
volution operations: the difference in the convolution output between the reference sequence
and each of the mutants is sparse. This sparsity arises because the convolution operation has
a limited receptive field and changes to a single input feature cannot influence the output past
that field. Consequently, naive ISM wastes a significant amount of computational time recalcu-
lating layer outputs for each mutant sequence that, by definition, must be identical to the layer
outputs for the reference sequence. A previous approach, fastISM [9], leveraged this property
to justify only recalculating layer outputs that are within the receptive field of the mutation.
However, fastISM involves running the same number of convolution operations, albiet restricted
to subsets of the sequence the size of the receptive field. Because the number of forward passes
remains unchanged, in practice, fastISM requires a large batch size to achieve speedups and,
due to implementation details, is usually quite a bit slower than naive ISM when the batch size
is small. This is particularly problematic in the interactive exploration setting, where only a
small number of sequences are being considered at a time while hypotheses are being developed
or models are being debugged.

Here, we describe a method, named Yuzu, that speeds up ISM using two ideas: (1) Yuzu
operates on the difference in layer outputs (deltas) between the mutated sequences and the
reference sequence and (2) Yuzu uses the principles of compressed sensing to compress these
sparse deltas into a compact set of probes that convolutions can efficiently operate on. Because
the number of probes depends only on the receptive field of each layer, Yuzu requires a constant
number of forward passes regardless of the length of the input sequence, whereas naive ISM
requires a number of forward passes linear with the length of the sequence. Together, these
properties enable Yuzu to achieve speedups on several model architectures on the scale of an
order of magnitude on both a CPU and GPU. Notably, Yuzu significantly outperforms fastISM
in the interactive setting for all models, where the number of sequences to be analyzed is small,
and either outperforms or is similar in performance to fastISM in the large-batch setting.

2 Methods

2.1 Compressed sensing

Compressed sensing is an approach for recovering a sparse vector x ∈ Rn using a dense vector y ∈
Rm, where m << n and y is comprised of linear combinations of x created using known “sensing
matrix” A ∈ Rm,n [21]. Importantly, the columns of A should have minimal correlation with
each other and so are generally composed of random values from either Gaussian or Bernoulli
distributions. A theoretical strength of compressed sensing is one can provably achieve exact
reconstruction of x from y and A by solving the optimization problem

min ||x||1 subject to Ax = y (1)
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As a note, these results only hold when x is k-sparse (i.e., has at most k non-zero entries)
and when m ≥ αk log n, where α is some problem-specific constant [21, 15]. These results also
extend to when x and y are both tensors, as will be the case with Yuzu. In the setting where
y = Ax+ ε, where ε is noise, x can still be reconstructed within provable bounds. However, our
setting does not involve noise.

2.2 In-silico saturated mutagenesis

In-silico saturated mutagenesis is a computational approach used widely in computational bi-
ology for calculating the effect that each nucleotide or amino acid has on the predicted output
for a given sequence (called the “reference sequence” for the rest of this work). This process in-
volves, first, running the reference sequence through the model and storing the predicted output.
Next, sequences are run through the model that each contain a single mutation, i.e., where one
position is changed from one character to another. In the context of nucleotide sequences, each
mutant contains a single substitution, for a total of 3L sequences with L being the length of the
reference sequence. The attribution score for ISM is then calculated based on aggregating the
differences between the outputs when using the original sequence and the outputs when using
the mutant sequences. There are several slightly different approaches for using these values to
calculate an attribution score for each mutation in the sequence [22, 23, 24], but the simplest
is to take the Euclidean distance across all output tasks between the reference and mutant se-
quence. Finally, these scores are distributed to the features of the original example such that
each substitution contains the score that would arise if the feature was mutated, i.e., that the
value returned by ISM for a C at a position that is normally an A would be the score calculated
from a mutant sequence that contained that A to C mutation.

2.3 Compressed in-silico saturated mutagenesis

When ISM is performed on a model that contains convolutions, the differences in layer outputs
between the reference sequence and a mutant sequence (the deltas) are limited by the kernel
widths and number of the convolution operations in the model, i.e., the receptive field. Specifi-

cally, the receptive field for some layer i in a convolution-only model is equal to 1 +
i∑

l=1

(kl − 1)

where l is a single convolution layer and kl is the kernel width of that operation. This calculation
is more complicated when dilated layers or pooling operations are encountered. Because naive
ISM does not account for a limited receptive field, it spends a significant amount of time recom-
puting values outside the receptive field that must, by definition, be identical to the reference
sequence. Calculating ISM attribution scores should only require recalculating the intermediate
representations within the receptive field at each layer in the model. An implementation of
this idea, fastISM, can achieve significant speed gains (reportedly up to an order of magnitude
on common genomics architectures) compared to naive ISM. However, fastISM has a signifi-
cant initial cost from the bookkeeping associated with a receptive field of increasing size and
sequentially applying the convolution operation to a set of 3L short sequences.

Our approach, Yuzu, overcomes these costs using a compressed sensing-based approach. A
challenge in using compressed sensing theory with neural networks is that most of it only applies
to linear models. Although compressed sensing approaches have been developed for non-linear
models and do not necessarily require that the output be sparse [25, 26], the guarantees on
perfect reconstruction with reasonable computation only apply to linear models [21]. Yuzu side-
steps this challenge through sequential application of compressed sensing to each convolution
operation individually, because each individual convolution is linear. Specifically, for each layer
φ with inputs from the mutated sequences xm and inputs from the reference sequence xr, we
want to use the layer output from the compact set of probes, φ(y), to reconstruct the difference
in layer outputs φ(xm)− φ(xr). More formally, we are trying to optimize:

min ||φ(xm)− φ(xr)||1 subject to φ(A(xm − xr)) = φ(y) (2)
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Figure 1: A schematic of the Yuzu process. (A) At the beginning of the process, a tensor
of deltas is constructed as the element-wise subtraction of each of the mutated sequences with
the reference sequence. (B) When a convolution operation is encountered, probes are constructed
as the dot product between the delta tensor and the sensing matrix, the convolution is run on
the probes, and the output is decoded back into the signal that would have been observed if the
delta tensor originally was run through the convolution. (C) When an element-wise or position-
wise operation is encountered, the reference sequence is added to the delta tensor, the operation
is performed, and the new reference sequence is subtracted to reconstruct the delta tensor. An
important note is that, although the delta tensors in the cartoon appear to have many zeros in
them for conceptual simplicity, in practice the delta tensor does not include any columns that are
entirely zeroes, and the original delta tensor is constructed directly, rather than as the result of an
element-wise subtraction.
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where y, xm, and xr are tensors, rather than vectors. Notably, even though neither φ(xm) or
φ(xr) are sparse, φ(xm) − φ(xr) is exactly k-sparse where k is the receptive field of the layer
multiplied by the number of potential mutations per position (3 for nucleotides, 19 for amino
acids). Because this difference is a linear shift, the optimization problem still holds. Further,
because each convolution is a linear operation, we can apply it to both sides such that we build
the probes using the layer inputs but decode into the layer outputs. Conveniently, because we
are decoding the difference rather than the outputs separately, we can use the decoded values
directly in the next convolution layer to build probes, i.e., the φ(xm)−φ(xr) that is decoded in
one layer is the xm − xr in the next layer, assuming two adjacent convolution operations. As
a final note, this optimization is done using a one-stage orthogonal matching pursuit algorithm
seeded with the location of the non-zero elements, i.e., linear regression on the non-zero elements.

A key detail is that Yuzu, in contrast to fastISM, operates primarily on the deltas. Yuzu
begins by producing a delta tensor that encodes each mutation in a sparse format (Figure 1A).
This delta tensor is then passed through the model one layer at a time. Depending on the
operation encountered, there are five options that Yuzu can take:

1. A convolution layer: the delta tensor is compressed into a set of probes using the sensing
matrix associated with the layer (see Section 2.4 for details), the convolution operation is
applied to the probes, and the deltas are decoded by solving Equation 2. (Figure 1B).

2. A pooling layer: the delta tensor is added to the reference values and a window is extracted
such that the number of extracted positions is equal to number of post-pooled positions
that could be affected by the deltas. The pooling operation is then applied and the post-
pooled reference values are subtracted out to recover the deltas.

3. An element-wise or position-wise layer: for these layers, Yuzu will add the reference values
to the deltas, apply the operation, and then subtract out the post-layer reference values
to recover the deltas (Figure 1C).

4. A dense layer preceeded by a convolution layer: Although dense layers do not have a
limited receptive field, when the inputs are sparse the number of operations can be limited
to only calculate dot products when the vectors are non-zero.

5. A dense layer preceeded by a dense layer: Once the receptive field covers the entire input,
Yuzu stops operating on the deltas and just runs the representations through the remainder
of the model as normal. Once this happens, Yuzu has the same timings as the naive ISM
procedure for the remaining layers but will have a smaller overall time because of the layers
that the other steps can be applied to.

At the end of this procedure there are two possible outcomes. The first outcome is that the
procedure returns a delta tensor because the receptive field of the model does not extend across
the entire input window. Feature attribution values can then be quickly calculated directly from
the delta tensor. The second outcome is that the procedure returns the original outputs of the
model, rather than the differences from reference. This typically happens after steps 4 or 5 are
encountered but can also happen when convolutions with large kernel widths, or max-pooling
layers, are used. In this situation, the ISM score is calculated in the same manner that naive
ISM is calculated.

Regardless of the outcome, this process replaces the bookkeeping neccessary for fastISM
with fast matrix multiplies associated with the construction and decoding of probes. Further,
because the constructed probes are the same length as the original layer inputs (but a smaller
batch size), the layers can be applied mostly as-is to the probes. In practice, this can be much
faster than sequentially applying a layer to a large number of small sequences, even when the
total number of operations is the same.

2.4 Precomputation

Many aspects of the Yuzu procedure rely on values that are only dependent on the model
parameters and sequence length but not the content of the sequence. These aspects include, for
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Figure 2: Compressed sensing speeds up convolution operations. (A) The relative speedup
of Yuzu when applied to convolutions with an increasing numbers of filters compared to naive ISM
applied to convolutions of the same size. (B) The same as (A) except varying the kernel width
instead of the number of filters. (C) The total time spent building probes, running the convolution
operation on the probes, and decoding the outputs, in the compressed sensing approach. (D) The
speedups observed when comparing the time spent running the convolution operation on the probes
versus on the entire set of mutated sequences.

each layer in the model, the receptive field, the sensing matrices, the regression coefficients for the
optimization step, the locations of the deltas in the sequence, and other statistics. For efficiency,
these aspects are precomputed once before running the Yuzu procedure and can subsequently be
used for any sequence. Specifically, the sensing matrices and regression coefficients are generated
and cached before running the Yuzu procedure, and the receptive field and locations of the deltas
within the normal data tensor are empirically calculated by running a single random sequence,
and its associated mutant sequences, through the model. Although some of these values could
be calculated directly from the model alone, the bookkeepping becomes tedious, particularly
when dilatations and pooling layers are involved. Finally, the problem-specific multiplier on the
number of probes needed, α, is determined by scanning over a pre-defined (or user-specified)
range of potential values and choosing the first one that causes Yuzu to match naive ISM’s
output on a single random sequence with higher than 1− 1−6 Pearson correlation.

Although the empirical calculation of statistics is conceptually straightforward, three minor
modifications must be made to the model in the precomputation step to ensure that the exact
receptive field is found and that the internal values do not overflow. First, all pooling layers are
converted to sum pooling layers to account for when pooling operations are applied to portions
of the sequence that only partially overlap with the receptive field. Second, any activation that
has the potential to return zero, such as ReLUs, are ignored to ensure that the correct locations
of deltas are found. Third, the weights in the first convolution are changed to be an ascending
range across the kernel width and across all filters, and the weights in all subsequent convolutions
are changed to be entirely ones. Essentially, the first convolution will identify input mutations
and the subsequent layers will then propogate this difference across the layer’s receptive field.
Importantly, these changes are not made when calculating the actual ISM scores.

3 Results

3.1 Compressed sensing speeds up the convolution operation

We began our benchmarking by considering the speedups that our compressed sensing procedure
provides to a single convolution operation. These initial evaluations were performed in the
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idealized setting without including the time needed to communicate values between the CPU
and the GPU and discarding the time needed to calculate the feature attribution score: the
values represent how fast one would expect Yuzu to speed up a convolution operation within a
larger model. We timed Yuzu and the naive ISM approach using convolution operations with
an increasing number of filters and kernel sizes applied to sequences of increasing length. In
these evaluations, Yuzu and the naive ISM approach were used to calculate attribution scores
for 100 randomized reference sequences and the reported time is the minimum total time across
20 runs.

We observed that the speed improvements from Yuzu initially increased with the number of
filters until 64 filters, then began to decrease around 128 filters, and then plateaued at 256 filters
(Figure 2A). Despite the decrease, we still observed large speedups for all tested filter sizes, with
Yuzu being up to 116x faster with 8 filters, in the worst case, to being up to 247x faster with
64 filters, in the best case. These results indicate that Yuzu can drastically decrease the time
spent in convolution operations in realistic settings. Interestingly, despite the number of filters,
the speedup provided by Yuzu increases with the length of the sequence. This observation is
consistent with theory: because the receptive field of the model is constant regardless of filter
size or sequence length, the number of probes needed to be constructed remains the same.
Hence, the convolution operation only needs to be applied to a constant number of probes that
are increasing in length, rather than both longer and more numerous sequences, (i.e., reducing
complexity from O(n2) to O(n)) when calculating ISM scores.

Conversely, we observed that increasing the kernel width of the convolution caused decreases
in speedups, but that the speedups still did increase as a function of sequence length (Figure 2B).
Specifically, a convolution operation with a width of 1 exhibited a 1487x speed increase whereas
a convolution operation with a width of 21 only exhibited a 95x speed improvement compared
to naive ISM. This finding is also consistent with theory: as the kernel width increases, so too
does the receptive field and hence the number of probes that need to be constructed and run
through the convolution.

Our next step was to break down the Yuzu timings into the three aspects of the compressed
sensing implementation: probe construction, running the convolution, and decoding the output.
For a prototypical convolution with 64 filters and a kernel width of 7, we observed that perform-
ing the convolution still took a majority of the overall time (Figure 2C). However, the quickness
of the probe construction and decoding step speak to the strength of using compressed sensing.
Specifically, by spending a small amount of time constructing more informative data, one can
greatly decrease the amount of time taken within the convolution while still reconstructing the
outputs exactly.

Finally, we compared the time taken by the naive ISM approach, which ran a convolution
across all sequences, with the time taken by only the convolution step in Yuzu (Figure 2D).
We observed a much cleaner trend with respect to the number of filters, specifically that the
more complex the convolution was, the smaller the speedup was. Interesting, this trend was
somewhat of a reversal of the original findings. These findings suggest that smaller models find
less benefit from the time spent in the probe construction and decoding phases, i.e., that the
probe construction and decoding steps take up a greater portion of the overall time and eclipse
the benefit from the faster convolution.

3.2 Yuzu speeds up ISM on common genomics models

After characterizing the speedups that compressed sensing achieves on individual convolution
operations, we next benchmarked Yuzu using several common neural network models used in ge-
nomics. Although Yuzu only uses compressed sensing on layers with a limited receptive field, the
procedure can still reduce the time spent in most layers because computation is only performed
for positions within the receptive field. Specifically, activations, position-wise normalizations
such as batch normalization, max-pooling layers, and even the some dense layers can all be
sped up in Yuzu (see Section 2.3 for details). Hence, we expected that Yuzu would continue to
exhibit good performance even on models with many layers that are not convolutions. In order
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Figure 3: Yuzu speedups on common models. (A) The time spent by Yuzu, naive ISM, and
fastISM when calculating attributions for six different models with increasing batch sizes. The
dotted line shows the fastest time for each method across all considered batch sizes. The red box
indicates models where the receptive field did not cover the entire input window and so Yuzu was
able to calculate attributions directly from the delta tensor. The blue box indicates a model where
Yuzu was able to use step 4 in it’s procedure without needing to subsequently use step 5. (B) The
MSE between the ISM scores produced by Yuzu and those produced by naive ISM as α is increased.
(C) The same as (B) except the Pearson correlation instead of the MSE.

to achieve a realistic use setting, these evaluations include the time that it takes to produce the
mutated sequences and transfer them to the GPU, to perform the inference step (the only part
that was timed in the previous set of evaluations), the time it takes to calculate the ISM scores
given the outputs from the models, and to transfer the results back to the CPU. Importantly,
this evaluation does not include the time necessary to transfer the model to the GPU. Although
this time is generally small, we anticipate that both the interactive exploration setting and the
large-scale setting would require only a single transfer to the GPU at the beginning before many
successive calls of the procedure. The precomputation cost is also not included for the same
reason.

Our evaluation involved six pre-defined models: a single convolution, a toy network with
three convolutions sandwiching two ReLU activations, DeepSEA, Basset, FactorizedBasset, and
a small BPNet model1. Rather than changing the complexity of the model or length of the
sequence, we evaluated the relative time that Yuzu, naive ISM, and fastISM took when using
various batch sizes to calculate feature attributions for 4,096 sequences of length 1kbp and report
the minimum time across five runs.

Overall, we observed similar trends across all six models. First, Yuzu exhibited large improve-
ments in speed compared to naive ISM even at batch sizes of 1, whereas fastISM required large
batch sizes to outcompete naive ISM. However, although Yuzu and naive ISM both plateaued in
speed after certain batch sizes, fastISM exhibited nearly log-linear gains as batch size increased
until the batches were too big to fit in GPU memory. For many of these models, particularly
the toy models, Yuzu was still faster than fastISM at the largest tested batch size, however, for

1The model architectures follow those proposed in the papers but the weights are initialized randomly, except for
BPNet which has only four dilated layers and no residual connections. These changes should not affect the timings
of Yuzu, but the random nature of the weights likely requires more probes than weights exhibiting any amount of
correlation, as per the restricted isometry property in compressed sensing.
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Basset and BPNet, fastISM exhibited similar speeds at the largest batch sizes. Importantly,
the limited receptive field of the OneLayer and ToyNet models meant that Yuzu could calculate
ISM scores directly from the final delta tensor without needing to fully reconstruct the output,
partially explaining its good performance compared to the other approaches because it did not
need to fully reconstruct the output of the model to calculate ISM scores.

Next, we evaluated the effect that changing the number of probes used in the compressed
sensing step had on the accuracy of the calculated ISM scores. For each of the six models
used before, we varied the number of probes created for each layer through a parameter, α,
which is a multiplier on the size of the receptive field. At each α setting, we calculated the
mean-squared-error (MSE) (Figure 3B) and the Pearson correlation (Figure 3C) between the
Yuzu feature attributions and the naive ISM feature attributions. As expected, we observed
low correlation and high MSE when α < 1. However, with only modest values of α > 1, Yuzu
achieved near-perfect correlation values across all models. Interestingly, DeepSEA appears to
achieve reasonable Pearson correlation values even when α < 1, but we note that the high MSE
suggests that the values themselves are improperly scaled. Overall, we took from this that one
needs 1.05 ≤ α ≤ 1.10. Fortunately, α is theoretically independent of the content of the reference
sequence and so can be found through a scan of a random sequence in Yuzu’s precompute step.

4 Discussion

At a high level, compressed sensing involves replacing a large number of redundant measure-
ments with a smaller number of independent measurements that can be used to reconstruct the
redundant measurements. Here, we have demonstrated that compressed sensing can be applied
to in-silico saturation mutagenesis by replacing a large number of mutant sequences, whose out-
puts from convolution layers are largely redundant with the reference sequence, with a smaller
number of sequences whose outputs from convolution layers are not redundant with the refer-
ence. Empirically, we found that our tool, Yuzu, can speed up individual convolution operations
by over three orders of magnitude when compared to naive ISM. When compared with another
method with the same goal, fastISM, Yuzu was significantly faster on modest batch sizes but
became comparable in speed when massive batch sizes could fit in memory. Together, these
results show that Yuzu is most valuable in the interactive exploration setting where one is con-
sidering only one or a small number of sequences at a time; however, Yuzu remains competative
when applied at scale.

A strength of Yuzu is that it replaces the bookkeeeping necessary for an approach like fastISM
with simple matrix multplication to construct probes and decode the outputs. Although a similar
number of total operations are performed by fastISM and Yuzu, using compressed sensing allows
Yuzu’s implementation to be significantly more compact. As an illustration, the code that is
executed when a convolution operation is encountered is only six lines, with three lines spent
reshaping tensors. Indeed, one of the largest portions of the code-base is the code executed when
a max-pooling layer is encountered, which is very similar to how they are handled in fastISM.
Having compact code improves reproducibility and reduces the chances for subtle bugs to exist.

Another strength of Yuzu is that improvements in compressed sensing theory can be directly
applied to improve its speed even further. For instance, in some contexts one can design a
sensing matrix in an informative way instead of using random values [27, 28, 29, 30], potentially
requiring far fewer probes to be constructed to achieve perfect reconstruction. Because a large
portion of time is spent applying convolution operations to the constructed probes, decreasing
the number of probes is a straightforward way to speed up Yuzu further.

Although this work only considers the insertion of a single mutation into each sequence, Yuzu
could be extended to the setting where multiple mutations are being inserted at a time. Because
the cost of such computation scales with O(nm+1) where m is the number of mutations inserted
per sequence, a similar reduction to O(nm) using compressed sensing would be invaluable and
could make such analyses more common.

Finally, although the work here primarily involves applications of convolutions to nucleotide
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sequences, the ideas and the Yuzu tool can be applied more broadly. For example, Yuzu can
be applied to amino acid inputs just as easily as nucleotides ones. In that setting, the resulting
scores would be analogous to a computational version of deep mutational scanning. Because
proteins are short, these types of comprehensive computational analyses can be extremely valu-
able. Further, the ideas here are not restricted to convolutional operations but can be applied
readily to any operation that has a limited receptive field and involves linear operations, such
as transformers with sparse attention maps.
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[10] Ferran Muiños, Francisco Mart́ınez-Jiménez, Oriol Pich, Abel Gonzalez-Perez, and Nuria
Lopez-Bigas. In silico saturation mutagenesis of cancer genes. Nature, 596(7872):428–432,
July 2021.
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