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Abstract
All cellular functions are governed by complex molecular machines that assemble through
protein-protein interactions. Their atomic details are critical to the study of their molecular
mechanisms but fewer than 5% of hundreds of thousands of human interactions have been
structurally characterized. Here, we test the potential and limitations of recent progress in
deep-learning methods using AlphaFold2 to predict structures for 65,484 human interactions.
We show that higher confidence models are enriched in interactions supported by affinity or
structure based methods and can be orthogonally confirmed by spatial constraints defined by
cross-link data. We identify 3,137 high confidence models, of which 1,371 have no homology to
a known structure, from which we identify interface residues harbouring disease mutations,
suggesting potential mechanisms for pathogenic variants. We find groups of interface
phosphorylation sites that show patterns of co-regulation across conditions, suggestive of
coordinated tuning of multiple interactions as signalling responses. Finally, we provide examples
of how the predicted binary complexes can be used to build larger assemblies. Accurate
prediction of protein complexes promises to greatly expand our understanding of the atomic
details of human cell biology in health and disease.
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Introduction
Proteins are key cellular effectors determining most cellular processes. These rarely act in
isolation, but instead, the coordination of the diversity of processes arises from the interaction
among multiple proteins and other biomolecules. The characterization of protein-protein
interactions is crucial for understanding which groups of proteins form functional units and
underlies the study of the biology of the cell. Diverse experimental and computational
approaches have been developed to determine the protein-protein interaction network of the cell
(i.e. the interactome) with hundreds of thousands of human protein interactions determined to
date (Orchard et al, 2014; Luck et al, 2020; Drew et al, 2021). These interactions vary from
transient interactions that can regulate an enzyme to permanent interactions in large molecular
machines.

The structural characterisation of any interactome has lagged behind its experimental
determination due to technical limitations, with experimental and homology models currently
covering an estimated 15 thousand human interactions (Mosca et al, 2012; Burley et al, 2021).
The structural characterisation of protein complexes is a critical step in understanding the
mechanisms of protein function, studying the impact of natural and disease mutations (Mosca et
al, 2012; Wang et al, 2012; Kamburov et al, 2015; Porta-Pardo et al, 2015) and the regulation of
cellular processes via the post-translational tuning of binding affinities (Beltrao et al, 2012; Nishi
et al, 2011; Šoštarić et al, 2018; Betts et al, 2017).

While there has been great progress in experimental techniques for determining large
complexes, current experimental approaches are not easily scalable. Computational
approaches for predicting the structure of interactions on a large scale have relied primarily on
identifying structural similarity for pairs of proteins against experimentally determined protein
complexes (Zhang et al, 2012; Mosca et al, 2012; Wang et al, 2012; Mosca et al, 2014). Based
on these approaches, the Interactome 3D repository currently lists 7625 predicted models
based on homology, a number similar to the 8359 interactions listed in this resource as having
an experimentally determined model. In addition to modelling based on homology, co-evolution
based information has been used to predict interaction pairs and guide structural docking for
bacterial proteins (Cong et al, 2019). More recently, neural network-based approaches have
demonstrated the ability not only to accurately predict structures of individual proteins (Baek et
al, 2021; Jumper et al, 2021) but also the structure of protein complexes (Bryant et al, 2021;
Pozzati et al; Baek et al, 2021; Akdel et al, 2021; Evans et al, 2021). In benchmark sets where
protein pairs are known to form a direct complex, these approaches can correctly predict the
structure of up to 60% of the dimers (Bryant et al, 2021). These methods have been recently
used to predict structures of 1,506 S. cerevisiae interactions that were selected based on
co-evolution signals (Humphreys et al, 2021). However, the application of these neural network
models for the large-scale prediction of human complex structures has not been tested yet.

Here, we assess the possibilities and limitations of applying AlphaFold2 to modelling human
interactions on a large scale. We predicted the complex structures for two sets of human
interactions obtained using different experimental methods, comprising 65,484 unique human

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2021. ; https://doi.org/10.1101/2021.11.08.467664doi: bioRxiv preprint 

https://paperpile.com/c/KOtxnP/7w6Z+6Avx+kK2e
https://paperpile.com/c/KOtxnP/Q1FT+tGtA
https://paperpile.com/c/KOtxnP/Q1FT+q6MC+yMTl+cPM6
https://paperpile.com/c/KOtxnP/Q1FT+q6MC+yMTl+cPM6
https://paperpile.com/c/KOtxnP/3bJB+SxGI+ESB6+s318
https://paperpile.com/c/KOtxnP/3bJB+SxGI+ESB6+s318
https://paperpile.com/c/KOtxnP/ITJw+Q1FT+q6MC+G0uX
https://paperpile.com/c/KOtxnP/moLm
https://paperpile.com/c/KOtxnP/4A1R+tGcu
https://paperpile.com/c/KOtxnP/4A1R+tGcu
https://paperpile.com/c/KOtxnP/oZMr+XKGR+4A1R+mNGX+Dpap
https://paperpile.com/c/KOtxnP/oZMr+XKGR+4A1R+mNGX+Dpap
https://paperpile.com/c/KOtxnP/oZMr
https://paperpile.com/c/KOtxnP/iH1V
https://doi.org/10.1101/2021.11.08.467664
http://creativecommons.org/licenses/by-nd/4.0/


interactions. Metrics derived from the predicted structures can be used to rank the models
according to confidence, with 3,137 predicted structures ranked as highly confident. Interactions
supported by a combination of methods indicating a high affinity and direct interaction result in
higher confidence predictions, and higher confidence models are more likely to be supported by
constraints indicated by orthogonal cross-link data. We showcase the value of a structurally
resolved interactome by studying disease mutations and phosphorylation of interface residues.
Finally, we provide some indication that binary complexes can be used to build higher-order
assemblies.

Results

Structure prediction of high confidence human protein interactions
We selected experimentally determined human interactions from the Human Reference
Interactome (HuRI) and the Human Protein Complex Map (hu.MAP 2.0). HuRI comprises
interactions determined by yeast two-hybrid screening (Luck et al, 2020) from which we
modelled 55586 pairs. From hu.MAP we selected 10,207 high-quality (confidence score ≥0.5)
protein-protein interactions (PPIs), which were derived by integration of affinity purification,
co-fractionation and proximity ligation assays (Drew et al, 2021). While HuRI is more likely to be
enriched for direct protein interactions, including potentially transient partners, the hu.MAP set is
more likely to reflect stable protein interactions, including members of the same complex that
may not necessarily interact directly. The overlap between the two datasets is small (309 pairs),
and a comparison with two large scale compendiums of structural models ((Mosca et al, 2012),
Methods) indicates that 62,019 of the combined pairs do not have experimental models or can
be modelled easily by homology, suggesting a significant potential gain in structural knowledge.

We predicted the structure of 65,484 non-redundant pairs using the FoldDock pipeline (Bryant et
al, 2021), based on AlphaFold2 (Jumper et al, 2021). We have previously shown that larger
interface size and higher lDDT (plDDT) scores from AlphaFold2 in the interfaces of the predicted
complexes are associated with more reliable predictions (Bryant et al, 2021). As in the FoldDock
pipeline, we combined these two metrics into a single score, which can be used to predict the
DockQ score of a complex, dubbed pDockQ (Methods) that can rank models by confidence.
We tested the overlap performance and ranking by pDockQ score by comparing the predicted
models with experimental models. Across 1,465 comparisons, 742 (50%) of predicted
complexes were deemed to be well modelled (DockQ>0.23). For predictions with pDockQ>0.23,
we estimate that 70% (671 out of 955) are well modelled and for pDockQ>0.5, 80% (521 out of
651) are considered well modelled. However, it is worth noting that this estimated performance
applies to cases where we expect that two proteins interact via direct contact in a single
conformation.

We show in Fig. 1A the distribution of pDockQ for the predicted interactions and a set of
predicted structures for 2,000 random pairs of proteins. The pDockQ of known interacting
proteins tends to be higher than for the random set with the predictions for hu.MAP showing on
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average higher confidence than for the HuRI set. Additionally, when selecting hu.MAP
interactions also supported by yeast-two-hybrid (Y2H) or cross-link data (cross linking) results in
much higher confidence values (Fig. 1A). This suggests that high confidence models are
enriched for protein interactions supported by the two types of methods associated with high
affinity and direct interactions. Based on the benchmarking results, we selected 3,137 structures
(Fig. 1B) as high confidence models based on a cutoff of pDockQ>0.5, which would indicate
around 80% of correct models in comparison with the experimental models. Only 0.3% of the
random set of models would be considered a confident prediction at this cut-off. In Fig. 1C we
show examples of predicted structures aligned to experimental or homology models, showing
how the predictions and the confidence score relate to the observed alignments. For the
majority of these cases, even with lower confidence values, the interaction interface is generally
in good agreement, except for the PSMC2-PSMD11 interaction, which has the lowest
confidence score of the illustrated models.

A list of protein interactions with predicted structural models, confidence metrics and
annotations are provided in Table S1 and all models are available as described in the data
availability section.

Figure 1 - Application of Alphafold2 complex predictions to a large dataset of human
protein-protein interactions. A) Distribution of model confidence score (pDockQ) for predicted
structures from two large human protein interaction datasets (hu.MAP and HuRI), compared
with confidence metrics from 2000 random pairs of proteins. The hu.MAP dataset was further
subsetted to those that have support from yeast two-hybrid (Y2H), cross-link data
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(Cross-linking) or correspond to pairs with available experimental or homology modelling
information (Structure). B) Number interactions with models built from both datasets and those
that we consider being of high confidence (Predicted), corresponding to those with pDockQ>0.5.
C) Examples of predicted models (orange and green) overlapped with the corresponding
experimental models (grey) and the observed (DockQ) or predicted (pDockQ) quality of the
models.

Cross-linking support for predicted complex structures
Chemical cross-linking followed by mass spectrometry is an approach that can be used to
identify reactive residues (usually lysines) that are in proximity, limited by the size of the
cross-link agent used. The identification of such residues across a pair of proteins can help
define the likely protein interface. To determine if the predicted complex structures agree with
such orthogonal spatial constraints, we obtained a compilation of cross-links for pairs of
residues across 528 protein pairs with predicted models (Fig. 2A, Table S1, see Methods). Of
these, 51% of the pairs have one or more cross-links at a distance below the expected maximal
distance possible (Fig. 2A). Restricting the predicted models to higher confidence by the
pDockQ score increases the fraction complexes with cross-links within the maximal distance
possible, reaching 75% for pDockQ scores greater than 0.5 (Fig. 2A). This result is in line with
the benchmark results above, indicating that most models are likely to be correct at a pDockQ
cut-off above 0.5. Additionally, predicted structures with pDockQ>0.23 are also likely to have
many correct models as judged by the fraction supported by cross-linking.

In total, we have identified 479 cross-links providing supporting evidence for 171 predicted
complex structures with pDockQ>0.5. Out of these, 41 correspond to complex structures with no
experimental structure or homology models, from which we selected some to illustrate in Fig.
2B-E. Fig. 2B shows the AF2 model for the full length of the ERLIN1/ERLIN2 complex, which
mediates the endoplasmic reticulum-associated degradation (ERAD) of inositol
1,4,5-trisphosphate receptors (IP3Rs). Alphafold2 predicts a globular domain (1-190) followed
by an extended helical region with a kink around amino acid position 280. Unlike the model in
the interactome3D, the paralogous proteins are stacked side-by-side with the hydrophobic rich
face of the helices buried and the hydrophilic face (mainly Lys) exposed to solvent. A cross-link
between the C-terminal residues K275 (ERLIN1) and K287 at 18 Å, supports the predicted
model. In Fig. 2C we show the model for proteins IMMT and CHCHD3, components of the
mitochondrial inner membrane MICOS complex. Alphafold2 predicts a globular helical domain
at the C-terminal end of IMMT (550-750) to interact with the C-terminal end of CHCHD3
(150-225). This is supported by data of three cross-links between; K173 (CHCD3) and K565
(IMMT), and K203 (CHCD3) to both K714 and K726 of IMMT. Fig. 2D shows the complex of
tRNA-guanine-N(7)-)-methyltransferase (METTL) with its non-catalytic subunit (WDR4). The
structure of WDR4 has not yet been solved experimentally but contains WD40 repeats, which
are expected to form a β-propeller domain, as predicted here. The METTL domain is predicted
to interact with the side of the WDR40, away from the ligand-binding pore. This orientation is
supported by a cross-link between K122 (WDR4) and K143 (METTL) (18Å). Finally, in Fig. 2E
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we show the predicted complex structure for the Heterogeneous nuclear ribonucleoproteins C
(HNRNPC) and the RNA-binding protein, Raly. Two regions in both proteins are predicted with
high confidence (pLDDT>70), with the lower confidence regions not shown. The N-terminal
domain in HNRNPC (16-85) is predicted to interact with the N-terminal domain of RALY (1-100).
A long helix in HNRNPC (185-233) is predicted to interact with a helix in RALY (169-228). This
interhelix interface is supported by crosslinking data for three pairs of lysines at either end of the
helices (189→ 222; 229→179 and 232→ 183).

Figure 2 - Cross-link support for predicted complex structural models. A) The numbers
and ratio of predicted structures having cross-link information for pairs of residues that bridge
the two proteins in the predicted structure, broken down by the cross-links that satisfy their
expected maximal distance and by the predicted quality of the model (pDockQ). B-E) Examples
of predicted structures of high confidence, no prior structural information, and at least supported
by one cross-link (indicated with blue line).
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Disease-associated missense mutations at interfaces
Missense mutations associated with human diseases can alter protein function via diverse
mechanisms, including disrupting protein stability, allosterically modulating enzyme activity, and
altering protein-protein interactions. Structural models can lead to the identification of interface
residues allowing for the rationalisation of possible mechanisms of such interface disease
mutations. To determine the usefulness of the predicted structures for studying disease
mutations, we compiled a set of mutations located at interface residues experimentally tested
for the impact on the corresponding interaction (IMEx Consortium Curators et al, 2019). We then
performed in silico predictions of changes in binding affinity upon mutations using FoldX
(Delgado et al, 2019) and observed that mutations known to disrupt the interactions are
predicted to have a strong destabilisation of binding compared to mutations known not to have
an effect (Fig. 3A). Higher confidence (plDDT) of the mutated residues led to more substantial
discrimination between mutations known to disrupt or not complex formation (Fig. 3A).

Having established the value of the predicted structures for modelling interface mutations, we
mapped human disease (from ClinVar) and cancer mutations (from TCGA) to the interface
residues defined by the set of high confidence protein complex predictions (pDockQ>0.5). The
hu.MAP and HuRI confident predictions identified 280 interfaces carrying pathogenic mutations
and 602 interfaces corresponding to the top 25% recurrently mutated interfaces in cancer,
defined as the highest number of mutations per interface position (Fig. 3B, Methods). We
illustrate in Fig. 3C examples of protein network clusters with interface disease mutations
across a range of biological functions. For example, interface mutations in chromatin
remodelling, including members of SWI/SNF complex (SMARCD1, SMARCD2, SMARCD3) and
several transcription factors related to the development (e.g. TCF3 TCF4, LMO1 and LMO2). All
of the disease mutation information is provided in Table S1.

We selected examples of interfaces with disease mutations and no previous experimental data
or homology to available models (Fig. 3D-G). Fig. 3D shows the interface of WDR4-METTL1
that has supporting cross-link information described above. WDR4 has two annotated
pathogenic variants at this interface, linked with Galloway-Mowat Syndrome 6, with the
highlighted R170 participating in interactions with a negatively charged residue of METTL1. Fig.
3E shows an example of an interface with 32 recorded interface mutations in cancer for both
proteins, including the highlighted argines in LDOC1, which form electrostatic interactions with
the opposite chain. TWIST1 has several annotated pathogenic mutations, including L149R and
L159H, which are at residues buried in the interface (Fig. 3F). In particular, the leucine to
arginine mutation, associated with the Saethre-Chotzen syndrome, would strongly disrupt
packing. The R118G mutation would disrupt the interaction with residue F22 mainchain O in
TCF4. In RAD51D we found the mutation R266C (Breast-ovarian cancer, familial) that interacts
across the interface with XRCC2 (Fig. 3F), paralogous genes involved in the repair of DNA
double-strand breaks by homologous recombination. Interestingly, we also found mutations at
R239, to Trp/Gln/Gly, associated with Breast-ovarian cancer that interacts with Tyr119 in XRCC2
that itself is also annotated as having mutations linked to hereditary cancer-predisposing
syndrome.
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Figure 3 - Disease mutations at protein complex interface residues. A) Boxplot showing
the distribution of ΔΔG for mutations known to have an impact (orange) versus the ones with
neutral effect (green) B) unique protein-protein interaction pairs for high confidence models
(pDOCKQ>0.5) in total, with mutations in cancer, mapped to the interface (all and top 25%
ratios) and with pathogenic or likely pathogenic clinical variants mapped to the interface. C)
Modules related to relevant biological processes. The colour of the edge represents the
presence of cancer mutations in the interface (top25% ratio, colour red) and the shape of the
presence of pathogenic clinical variants (double line). D-G) Selected relevant structures with no
prior structural knowledge showing clinical variants or mutations in cancer mapped to the
interface (mutated residues in red).

Phospho-regulation of protein complex interfaces
Protein phosphorylation can regulate protein interactions by modulating the binding affinity via
the change in size and charge of the modified residue. Over 100,000 experimentally human
phosphorylation sites have been determined to date (Ochoa et al, 2020; Lawrence et al, 2016),
but only 5 to 10% of these have a known function (Hornbeck et al, 2015). Mapping
phosphorylation site positions to models of protein interfaces can generate mechanistic
hypotheses for the functional role of phosphorylation sites in controlling protein interactions. We
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used a recent characterisation of the human phosphoproteome to identify 4145 unique
phosphosites at interface residues of the set of confidently predicted structures. We noted that
the average functional importance, defined by the functional score described by Ochoa and
colleagues (Ochoa et al, 2020), was generally higher than random for phosphorylation sites at
interfaces (Fig. 4A). Among the interface phosphorylation sites, we found some enrichment for
targets of multiple kinases, including several MAPK pathway kinases part of the p38, JNK and
ERK signalling pathways (Fig. 4B). This observation suggests that some interfaces in different
protein pairs may be under coordinated regulation by specific kinases and conditions.

To identify potentially co-regulated interfaces, we collected measurements of changes in
phosphorylation levels across a large panel of over 200 conditions (Ochoa et al, 2016). We
retained 260 phosphosites that had a significant regulation in three conditions and then
computed all-by-all pairwise correlations in phosphosite fold changes across conditions. We
clustered these phosphosites by their profile of correlations (Fig. 4C), identifying 16 groups of
co-regulated interface phosphorylation sites (Fig. 4C). For each group of phosphosites, we
identified the conditions where these have the strongest up- or down-regulation and plotted a
subset of conditions in Fig 4D. We also performed a GO enrichment analysis for each group of
co-regulated phosphosites, including both proteins of the modified interfaces, to search for
common biological functions (Fig 4E). For example, we observed a cluster of interface
phosphosites in proteins related to intermediate filaments (cluster 7) that show strong regulation
patterns along the cell cycle, downregulated in S-phase and up-regulated in G1 and mitosis.
Phosphosites in cluster 1 (cell cycle G1-S phase transition) show the opposite trends with
up-regulation in late S-phase and down-regulation in G1 and mitosis. Some clusters show
regulation under specific kinase inhibition which may provide novel hypotheses for kinase
regulation of specific processes. For example, phosphosites in cluster 9 (regulation of
chromosome assembly) tend to be up-regulated after inhibition of ROCK and up-regulation after
inhibition of mTOR.

While not all phosphosites at interfaces are likely to regulate the binding affinity, this analysis
provides hypotheses for the potentially coordinated regulation of multiple proteins by tuning their
interactions after specific perturbations. We provide the complete list of interface phosphosites,
known kinase regulators and condition-specific regulation in Table S1.
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￼
Figure 4 - Co-regulation of phosphorylation sites at interface residues. A) Distribution of
phosphosite functional scores for phosphosites at interface residues and random phosphosites.
B) Enrichment of kinase substrates among phosphosites at interface residues. C) Hierarchical
clustering of the pairwise correlation values for changes in phosphosites levels across
conditions. Groups of phosphosites showing high correlation values were defined as clusters (1
to 16) as indicated in colours along the outside of the clustergram. D) Degree of regulation of
phosphosites from each cluster in a select panel of conditions, defined as a Z-test comparing
the fold change of the phosphosites in a cluster compared with the entire distribution of fold
changes in that condition. The result is summarized as the -log(P-value) and signed as positive
if the median value is above the background or negative otherwise. E) Gene-ontology
enrichment analysis for the proteins with phosphosites annotated to select clusters.
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Higher-order assemblies of protein complexes from binary
interactions
Proteins interact with multiple partners either simultaneously, as part of larger protein
complexes, or separated in time and space. This is also reflected in our structurally
characterised network, where proteins can be found in groups as illustrated in a global network
view of the interactions with confident models (Fig 5, central network). One key benefit of
structurally characterising an interaction network is the identification of shared interfaces for
multiple interactors. As an example, we highlight GDI1 (Rab GDP dissociation inhibitor alpha)
that interacts with multiple Rab proteins regulating their activity by inhibiting the dissociation of
GDP. The predicted complex structures for these interactions shows how these share the same
interface and therefore cannot co-occur. Other clusters in the network suggest that the proteins
form larger protein complex assemblies with many-to-many interactions. As the use of
AlphaFold2 for predicting larger complex assemblies can be limited by computational
requirements, we tested whether the structures for pairs of proteins could be iteratively
structurally aligned. We tested this procedure on a small set of complexes covered in this
network, with known structures and the number of subunits ranging from 5 (RFC complex, TFIIH
core complex) to 14 (20S proteasome). We then aligned an experimentally determined structure
with the predicted models (Fig. 5, grey - experimental model). These examples showcase the
potential and also limitations of this procedure.

The TFIIH core complex is composed of 5 subunits with 1-to-1 stoichiometry. All subunits can be
modelled with the final complex generally agreeing (Fig. 5) with a cryoEM structure for these
subunits (6NMI). The most significant difference to the cryoEM model is the relative positioning
of the ERCC3 subunit. The exact final model obtained can vary depending on the aligned pairs
with multiple possible final conformations. Fig. 5 illustrates the conformation that best matches
the cryoEM data. For example, for the TFIIH core complex, there is a predicted model where the
complex adopts a more open conformation and alternative predicted placements of the GTF2H1
subunit.

The RFC complex is also composed of 5 subunits with 1-to-1 stoichiometry. One iterative
alignment of pairwise interactions builds a model that includes all five subunits organised
similarly to the observed in the 6VVO cryoEM structure (Fig. 5). In this predicted model, the
subunits RFC2/5/4/3 match the experimentally observed model well, but there are apparent
deviations introduced by compounding errors in alignment by this iterative process. Individual
subunits in the cryoEM can be structurally aligned to each of the model subunits well, but then
the alignment of the rest of the model is progressively worse the further away from the aligned
subunit. The RFC1 subunit is individually not well predicted, showing a considerable difference
between the cryoEM and Alphafold2 models. Some of the modelled pairs highlighted additional
issues. For example, the RFC3 - RFC5 interaction pair is predicted with high confidence, while
in fact, these do not share a direct contact in the experimental structure. AlphaFold2 places
RFC3 at the RFC5-RFC4 interface, likely due to the structural similarity between RFC3 and
RFC4.
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Encouraged by the examples tested, we defined an automatic procedure to generate larger
models by iterative alignment of pairs (Methods). We start building all possible dimers in a
complex, then sort them by pDockQ, and start building from the first ranked dimers. Next, we
add the highest-ranked dimer, which shares one subunit with the complex if it does not overlap;
this is repeated for all dimers until the complex is complete or not more proteins can be added.
We tested this on the 20S proteasome, a particularly challenging example with stoichiometries
different from 1-to-1 and homologous subunits. This automatic procedure could build a model
containing all 14 subunits (half of the proteasome) that are mostly placed in agreement within
the experimental model (Fig. 5). However, the exact order of the chains is incorrect, i.e. at each
location an incorrect protein is placed, highlighting that AF2 can not distinguish which two
proteins interact from a set of homologous proteins.

In summary, we find that it is possible to iteratively align structures of pairs of interacting
proteins to build larger assemblies but identified issues that limit this procedure.

Figure 5 - Protein complexes for higher-order assemblies. The middle circle is a network
view of all protein-protein interactions predicted with high confidence (pDockQ>0.5). The edges
and nodes are coloured in red if there is a previous experimental or homology model for the
interaction, in blue if such information is not available. We selected four examples of
recapitulated complexes (yellow circles and black arrows) plotted in further detail. In these small
networks, only the edges are coloured based on structural evidence. In the case of RabGDP the
faded nodes and edges represent predictions with slightly lower confidence (pDockQ>0.3)
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Discussion
We have attempted here to generate predicted complex structures for pairs of human proteins
known to physically interact from two different datasets based on different experimental
approaches. We noted that the source of data used for the protein interactions is important and
impacts the fraction of models that can be confidently predicted. Our analysis suggests the
protein interactions supported by a combination of affinity-based and complementation based
methods results in higher confidence models. We believe these interactions tend to correspond
to high-affinity interactions that are very likely to share a direct physical permanent interaction.
We show that it is possible to use metrics from the models (e.g. pDockQ score) to rank higher
confidence models, providing an additional accuracy level to the large scale protein-protein
interaction studies. Further, future large-scale computational predictions of protein-protein
interactions may provide additional high-quality targets for detailed studies of stable complexes.
Experimental data from cross-link mass spectrometry experiments provide an ideal resource for
further validating these predictions via orthogonal means. In principle, such constraints from
cross-link could also be considered during predictions, and it may be possible in the future to
develop predictors that can take in such constraints as part of the starting information.

Based on comparisons with solved structures, we suggest that models with pDockQ>0.5 are
very likely to be correct. Additionally, models with lower scores (0.5>pDockQ>0.23) are still likely
to contain many correct solutions and may highlight correct interfaces even if not correct
orientations of the interacting proteins. In this study this would correspond to an additional 6000
complex structures. Such lower confidence models are likely to be useful for generating
hypotheses and large-scale analysis of global properties. Equally important is the caveat that
high confidence predictions will still contain errors, and in particular, we note that in protein
complexes containing homologous proteins, the current procedure cannot identify the exact
pairing of the protein. For such cases, additional methods need to be developed.

Structural models for protein interfaces are critical for understanding molecular mechanisms and
the impact of mutations and post-translational modifications. We illustrate this using disease
mutations and phosphorylation data. While much disease-associated variation is often found in
non-coding regions of the genome, the growth of exome sequencing of large cohorts of patients
will lead to discovering many more protein mutations linked to disease, which will require such
large structural characteristics. Both for mutations and phosphorylation sites, we think these
analyses should be seen as generating hypotheses for further testing, and we make this
information available in the supplementary material to facilitate such future work.

Finally, in principle, we show that it is possible to build structural models for larger assemblies
from the binary complexes predicted here. Aspects that may limit this include the structural
homology between subunits, unknown subunit stoichiometries and multiple possible predicted
conformations. Additional work will be needed to design methods and to score systems to build
such larger complex assemblies.
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Methods

Protein interaction data and annotations
Human protein pairs known to physically interact were obtained from the Hu.MAP dataset,
retaining pairwise interactions with >=0.5 confidence, and most interactions from the HuRI
dataset. These interactions were further enriched by obtaining annotations on cross-linking
peptides matched across pairs of interactions, disease related mutations and protein
phosphorylation sites in the selected proteins. Crosslink data was collected from (Yugandhar et
al, 2020; Schweppe et al, 2016; Klykov et al, 2020; Steigenberger et al, 2019; Klykov et al,
2018; Fasci et al, 2018; Eliseev et al, 2018; Gestaut et al, 2019; Klatt et al, 2020; Sabath et al,
2020; Mohamed et al, 2021), filtered for peptides assigned to only one sequence. Clinical
missense variants associated with disease were collected from ClinVar. We selected only those
having pathogenic or likely pathogenic effects which were mapped to Uniprot protein sequences
using VarMap. The final list of mutated positions was then compared to the interface positions.
We obtained a list of protein phosphorylation sites with predicted functional relevance (Ochoa et
al, 2020), phosphosite annotations (Hornbeck et al, 2015) and regulation of phosphorylation
sites across a large panel of conditions (Ochoa et al, 2016). These phosphosites were also
mapped to interface positions as defined by the predicted models. All protein interaction
networks were processed using R packages igraph (v1.2.5) and qgraph (v 1.9), further
aesthetics improvements were done using Cytoscape (Shannon et al, 2003).

Protein complex prediction
To predict protein complexes of pairwise interactions, we utilise the FoldDock pipeline (Bryant et
al, 2021) based on AlphaFold2 (Jumper et al, 2021). We use the option of fused+paired multiple
sequence alignments (MSAs) and run the model configuration m1-10-1 as this provides the
highest success rate accompanied by a 20-fold speed-up. Both the fused and paired MSAs are
constructed from running HHblits on every single chain against Uniclust30. The fused MSA is
generated by simply concatenating the output of each of the single-chain HHblits runs for two
interacting chains. The paired MSA is constructed by combining the top hit for each matching
OX identifier between two interacting chains, using the output from the single-chain HHblits
runs.

pDockQ confidence score

To score models, we use features from the predicted complexes to calculate the predicted
DockQ score, pDockQ. This score is defined with the following sigmoidal equation:
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𝑝𝐷𝑜𝑐𝑘𝑄 =  0.707

1+𝑒−0.03148(𝑥−388.06) + 0. 03138

where,

x = average interface plDDT・log(number of interface contacts).

The parameters were optimised to predict the DockQ score using the dataset from (Green et al,
2021). The number of interface contacts is defined as elsewhere in this paper (any residues with
an interface atom within 10Å to the other chain) , and the plDDT is the predicted lDDT score
from AlphaFold2 taken over the interface residues as defined by the interface contacts.

Building larger complexes from binary interactions
A simple procedure to build larger complexes from a set of paired models was developed. All
dimers in the set are by default ranked by their pDockQ values.

1. The building is started from a single dimer by default the dimer with the highest pDockQ
value. This is referred to as the “complex”.

2. All other dimers in the set are then tried to be added to the “complex. Starting with the
one with the second highest pDockQ a chain is added to the complex if:

a. Exactly one chain of the dimer is identical to one chain in the complex
b. The structure of these two chains is similar enough (default TM-score > 0.8)
c. The dimer is then rotated so that the two chains overlap-
d. The second chain in the dimer does not clash with more than 25% of its residues

(CA<5Å) to any chain in the complex.
3. If a chain is added, the procedure is started over again and repeated until no more

chains can be added.

Analysis of phosphosites in the protein-protein interfaces
Phosphosite residues in interfaces were identified from a previously published comprehensive
list of known human phosphosites (Ochoa et al, 2020). Kinases associated with phosphorylation
of interface residues were obtained from the PhosphositePlus database and over-representation
analysis of kinases was performed using a hyper-geometric test. Highly regulated interface
phosphosites were defined as those with more than two-fold change in phosphorylation in more
than two perturbation conditions across a collated phosphoproteomics dataset comprising a
range of physiological conditions and drug treatments (Ochoa et al, 2016). Pearson correlation
was calculated amongst these regulated phosphosites and clusters of co-regulated
phosphosites were identified using hierarchical clustering (‘ward’ method) of euclidean
distances of the correlation matrix. Phosphosite clusters were created by cutting the
dendrogram at the appropriate level using cutree (h=17) function in R. Phosphosite clusters that
were significantly regulated in each perturbation condition were identified by z-test from the
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comparison of fold changes in phosphosite measurements of all phosphosites in a cluster
against the overall distribution of phosphorylation fold changes across the condition. Gene
ontology over-representation of each cluster was performed separately using a hypergeometric
test in R. The gene ontology terms were obtained from the c5 category of Molecular Signature
Database (MSigDBv7.1) (Subramaniam et al, 2005). All over-representation analysis (ORA)
were performed using the enricher function of clusterProfiler package (version 3.12.0) (Wang et
al, 2012) in R.

Availability
All code used in this project can be found at https://gitlab.com/ElofssonLab/huintaf2/. Tools to
run AlphaFold2 can be found at https://gitlab.com/ElofssonLab/FoldDock/. All models generated
as well as some of the multiple sequence alignments can be found at
https://archive.bioinfo.se/huintaf2/.
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