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Abstract  

Mitochondrial dysfunction plays a critical role in metabolic associated fatty liver disease 

(MAFLD). This study aims to characterize mitochondrial dysfunctions in a human MAFLD Huh7 

cell model triggered by free fatty acid (FFA) (palmitate and oleate) overload for 24 hours. We 

investigate its impact on cellular energy metabolism and identify potential targets for MAFLD 

treatment. FFA-treated cells displayed an accumulation of lipid droplets and slightly decreased 

viability but no significant changes in mitochondrial superoxide levels. Bioenergetic analysis 

showed a shift to more respiration and less glycolytic fermentation. Comprehensive 

transcriptomics and proteomics analyses identified changes in the expression of genes prominently 

involved in fatty acid handling and metabolism. The expressions of seven genes were consistently 

and significantly (p < 0.05) altered (4 upregulated and 3 downregulated genes) in both proteomics 

and transcriptomics. The FFA-treated Huh7 cell model is an appropriate in vitro model to study 

fatty acid metabolism and suitable to investigate the role of mitochondria, glycolysis, and multiple 

metabolic pathways in MAFLD. Our comprehensive analyses form a basis for drug discovery and 

screening using this model. 
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INTRODUCTION  

Metabolic (dysfunction) associated fatty liver disease (MAFLD) (Eslam et al, 2020), previously 

called non-alcoholic fatty liver disease (NAFLD), comprises a spectrum of chronic liver diseases 

characterized by excessive cytoplasmic retention of triglycerides (Anstee et al, 2019). The 

deposition of free fatty acids (FFA) in liver leads to simple steatosis of hepatocytes, but the 

underlying mechanisms are still unclear (Li et al, 2017). If left untreated, simple steatosis may 

progress to liver fibrosis and even hepatocellular carcinoma (Santhekadur et al, 2018). MAFLD 

affects the quality of life of patients, and places a heavy burden on the family, the healthcare 

system and the economy (Younossi, 2019). The pathogenesis of MAFLD is still largely unclear, 

and this is the major reason why there are currently still no FDA recommend drugs for MAFLD 

treatment (Eslam et al, 2020). Weight loss and bariatric surgery are the treatment options for 

MAFLD, but both have inevitable limitations (Younossi et al, 2018).  

Mitochondrial metabolic dysfunction has been associated with MAFLD, and it has been indicated 

that it may play a key role in the pathogenesis of MAFLD (Mansouri et al, 2018). Hepatic changes 

in fatty acid β-oxidation, mitochondrial oxidative phosphorylation (OXPHOS), and reactive 

oxygen species (ROS) production are considered to be central manifestations of mitochondrial 

dysfunctions triggering the progression of MAFLD (Gariani et al, 2017; Chen et al, 2020; Piccinin 

et al, 2019). The disease proceeds from simple fatty liver disease, via steatohepatitis to fibrosis, 

and can finally develop into hepatocellular carcinoma (HCC) (Cholankeril et al, 2016; Hardy et al, 

2016). Cell and animal models mimicking different stages of the disease allow studying 

phenotypic changes and pathogenetic mechanisms of MAFLD. So far, the mechanisms that link 

hepatic fatty acid accumulation to disturbances in the expression of nuclear and mitochondrial 

DNA encoded proteins and in turn, lead to mitochondrial dysfunction are sparsely elucidated. 

In order to characterize the mitochondrial dysfunction phenotypes and mechanisms in 

FFA-induced MAFLD, we used Huh7 cells treated with a high dose of FFA consisting of the 

long-chain saturated fatty acid palmitate (C16:0) and the monounsaturated fatty acid oleate (C18:1) 

as an in vitro model. Fatty acids (molar ratio of palmitic acid : oleic acid = 1:2) were conjugated to 

albumin, and albumin was used as a vehicle to provide FFAs for cellular uptake. A previous study 

demonstrated responses induced by this FFA treatment ranging from increased levels of 

inflammation markers, increased levels of cellular hydrogen peroxide, increased apoptosis 

tendency, and the production of fibrogenic cytokines (Chavez-Tapia et al, 2012). We here further 

characterize the FFA effects by performing real-time cell metabolic analysis, high-throughput 

imaging flow cytometry (HTIFC), as well as global proteomics and transcriptomics analyses. We 

discuss our novel findings in relation to the literature. We conclude that the FFA treated Huh7 cell 

model is an appropriate in vitro model to study the role of mitochondria, fatty acid metabolism, 

glycolysis, and multiple metabolic pathways in MAFLD. Our molecular and phenotypic 

characterization can form the basis for using it in drug screening. 

 

MATERIALS AND METHODS 
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Cell Culture and Treatment 

Human hepatocellular carcinoma cell line (Huh7) (Cheng et al, 1993) was cultured in Dulbecco's 

modified eagle medium (DMEM) with high glucose (Sigma) supplemented with 10% fetal bovine 

serum (FBS) (Biowest), 2 mM L-Glutamine (Sigma), 10,000 U/mL penicillin and 10 mg/mL 

streptomycin (Sigma) at 37 °C under 5% CO2, in a 95% humidified atmosphere. Cells were 

exposed for 24 h to 1200μM exogenous fatty acid mixture containing palmitic (P0500, Sigma) and 

oleic acid (O1008, Sigma). The mixture was freshly prepared before each experiment. In short, 

fatty acid stock solution was added to prewarmed complete medium (molar ratio of palmitic acid : 

oleic acid = 1:2, complexed with 300μM fatty acid-free bovine serum albumin (BSA) (A8806, 

Sigma) to induce MAFLD at the stage of steatohepatitis as previously described (Chavez-Tapia et 

al, 2012). 

 

Cell Viability and in Vitro Cytotoxicity Assay 

Cell viability was assessed using the CCK-8 kit (Sigma) for quantitation of viable cell number in 

proliferation and cytotoxicity assays. Briefly, 8 × 10
3
 cells/well were seeded in a 96-well 

microplate and pre-incubated for 24 h. The medium was then removed, and cells were treated with 

medium with or without FFA for another 24 h. Cells were washed twice with DMEM medium 

followed by the addition of 10 μL of CCK-8 in 100μL DMEM medium and incubation at 37 °C 

for 80 min. The absorbance at 450 nm was measured by Synergy H1 Hybrid Multi-Mode Reader 

(BioTek) and Gen5 software. 

 

Oil Red O and Coomassie Brilliant Blue Staining 

Cells were washed twice in PBS and fixed using 10% formalin for 1 h. Cells were then incubated 

in 60% isopropanol for 5 min. Isopropanol was discarded, and cells were incubated in Oil Red O 

Working Solution (Sigma) for 20 min. Oil Red O Working Solution was prepared by mixing 0.5% 

Oil Red O in isopropanol and water in the ratio of 3:2. After discarding the Oil Red O solution, the 

cells were washed 5 times with sterile ultrapure water. The absorbance at 510 nm was measured 

by Synergy H1 Hybrid Multi-Mode Reader (BioTek) and Gen5 software. Cells were 

counterstained with 0.25% Coomassie Brilliant Blue R-250 dye (AKH Reagent) for 5 min and 

washed 3 times with sterile ultrapure water to visualize the cytoskeleton. Images were taken by a 

light microscope camera (ZEISS), both with a 10x and a 40x objective, respectively (Fig. 1B). 

 

Seahorse analysis of cellular bioenergetics 

The real-time cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) 

were measured using the Seahorse XFe96 extracellular flux analyzer (Seahorse Bioscience). 

Experiments were performed according to the manufacturer’s instructions with minor 

modifications as specified below. OCR and ECAR were measured using Seahorse XF Cell Mito 

Stress Test Kit (Agilent Technologies). 1 × 10
4
 cells/well were plated onto 7 μg/mL Poly-D-Lysine 

coated (Ruhanen et al, 2017) Seahorse XF cell culture microplates and allowed to attach for 4 h. 
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The medium was then removed, and cells were treated with DMEM medium with FFA or control 

medium for 24 h. Based on pilot experiments, we used the following procedure: after baseline 

measurements, oligomycin (1.5 μM), FCCP (0.65μM), and rotenone plus antimycin A (Rot/AA) 

(0.5μM) were sequentially injected into each well at the indicated time points. Three consecutive 

measurements were performed for each step/injection. After OCR and ECAR measurement, cells 

were stained by 2.5 μM Hoechst 33342 for 55 min. Hoechst fluorescence was recorded by 

Cytation 1, cell counts per well were calculated with Seahorse XF Imaging and Cell Counting 

Software, and OCR and ECAR data were normalized by cell number. Data were further analyzed 

by Seahorse XFe Wave software and exported to Microsoft Excel. OCR is reported in 

pmols/min/1000 cells and ECAR in mpH/min/1000 cells. 

MitoATP Production Rate (pmol ATP/min/1000 cells), glycoATP Production Rate (pmol 

ATP/min/1000 cells), total ATP Production Rate (pmol ATP/min/1000 cells), % Glycolysis, % 

Oxidative Phosphorylation, XF ATP Rate Index were calculated from normalized real-time OCR 

(pmols/min/1000 cells) and ECAR (mpH/min/1000 cells) data from Seahorse XF Cell Mito Stress 

Test according to 11 equations in manufacturer’s ATP Rate Assay instructions. 

Glycolytic rate assay parameter, including basal glycolysis (glycoPER) (pmol/min/1000 cells), 

basal proton efflux rate (PER) (pmol/min/1000 cells), % PER from glycolysis (basal) (%), and 

basal mitoOCR/glycoPER data were calculated from real-time OCR, ECAR and predetermined 

CO2 contribution factor according to manufacturer’s Glycolytic Rate Assay user guide. 

 

MitoTracker Green Live Cell Staining 

Huh7 cells were incubated at 37 °C with prewarmed (37 °C) 200 nM MitoTracker Green 

(ThermoFisher) and 2.5μM Hoechst 33342 (ThermoFisher) in Hank’s balanced salt solution 

(HBSS) with calcium and magnesium (Gibco) simultaneously for 45 min. The staining solution 

was removed, and cells were added HBSS. Live cell images were recorded immediately by a 

fluorescent microscope (EVOS
®

 FL) with a 40x objective (Fig. 1D). 

 

Live Cell Staining and High-throughput Imaging Flow Cytometry (HTIFC) 

Firstly, live cells were washed twice with warm PBS, and stained with prewarmed 5 μM MitoSOX 

Red (ThermoFisher) for 10 min at 37 °C. Secondly, cells were then washed twice, and stained 

with prewarmed 0.5% BSA/PBS containing 100 μM MitoTracker Green (ThermoFisher) and 3.3 

μM Hoechst 33342 (ThermoFisher) and incubated for 45 min at 37 °C. Thirdly, cells were washed, 

lifted with trypsin/EDTA, centrifuged, resuspended with 0.5% BSA/PBS. Compensation controls 

were prepared for each fluorochrome to make a standard compensation matrix file. A minimum of 

10,000 Huh7 cells were acquired for analysis. 

Samples were acquired using an ImageStreamX Mark II multispectral imaging flow cytometer 

(Amnis) equipped with INSPIRE ImageStreamX System software. Data were analyzed using 

IDEAS image data exploration and analysis software version 6.3 (Amnis). 
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RNA Library Construction and mRNA-sequencing 

Total RNA from control (n=3) and model (n=3) Huh7 cells were isolated by TRIZOL reagent 

(Thermo Scientific), and the RNA concentration, purity and integrity were assessed by the 

Synergy H1 Hybrid Multi-Mode Reader (BioTek) and 2100 Bioanalyzer (Agilent Technologies). 

Total RNA samples were stored at −80 °C until further analysis. 

The construction and deep sequencing of RNA libraries were accomplished with the assistance of 

BGI Europe Co., Ltd. Briefly, by oligo(dT) selection, mRNA was enriched and purified from total 

RNA, followed by RNA fragmentation, reverse transcription, end repair, add A, and adaptor 

ligation. After PCR amplification, the double-stranded PCR products were subjected to heat 

separation, cyclization (circularized by the splint oligo sequence), DNA nano ball synthesis. The 

single-stranded circular DNAs were formatted as the final library for library quality assessment 

and subsequent PE100 (paired-end 100) sequencing. The mRNA-sequencing was performed on a 

well-established DNBSEQ/MGISEQ2000 Technology Platform (Rao et al, 2020; Yue et al, 2020; 

Patterson et al, 2019) (BGI, Copenhagen, Denmark). 

 

Transcriptome Pipeline for mRNA-seq and Gene-Level Differential Expression Analysis 

The upstream pipeline includes quality control, adapter trimming, quality filtering, genome 

alignment, reads deduplication, and estimating gene expression levels. 

After removing duplicate reads from bam files, counting reads were used as a measure of gene 

expression by featureCounts, raw data counts were normalized separately by transcripts per 

million (TPM) (reference of R script: 

https://github.com/t-arae/ngscmdr/blob/master/R/calc_rpkm.R), DESeq2 (version 1.30.1), and 

EdgeR (version 3.32.0) with trimmed mean of M value (TMM). Raw count data from RNA-seq 

were normalized by TPM (Wagner et al, 2012) method for gene expression heatmap visualization. 

TMM (Robinson & Oshlack, 2010) was calculated by EdgeR for further gene set enrichment 

analysis (GSEA). HISAT2 software (version 2.2.1) was used for mapping mRNA-sequencing 

reads. Deduplication (Dedup) was performed by the Picard tool (version 2.23.8). GENCODE V35 

was the selected annotation gene sets, and GRCh38 primary assembly version was the selected 

human genome. The number of annotated genes in the selected gene sets (GENCODE V35) was 

60,715 (including 19,983 coding genes, 16,899 non-coding genes, and 1,881 pseudogenes). Gene 

expression levels were quantified with the above reads/annotations by featureCounts without gene 

types filtering. During the differential expression analysis, the gene types and symbols were 

annotated and added in the raw counts data, then coding genes were selected for further analysis 

while TPM values of all genes were used for GSEA analysis. 

Raw count data normalization, protein-coding genes selection, and differential expression analysis 

were performed by DESeq2 R/Bioconductor package (Anders & Huber, 2010). Fold change, 

log2(fold change) and p-value were calculated, gene type and other annotations were reported by 

biomaRt. P < 0.05 were selected as the cutoff criteria to identify differentially expressed genes for 

the DESeq2 method. 
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Gene Ontology (GO) Analysis and GSEA Analysis 

Differentially expressed gene analysis was performed using DAVID bioinformatics resources 

(Huang et al, 2009a, 2009b) using all Homo sapiens genes as background. Categories within the 

Uniprot keywords, GO (BP, CC, and MF) KEGG were extracted and replotted. Count ≥ 2, EASE 

score ≤ 0.1 were used as thresholds for DAVID functional annotation analysis. 

The long list of GO BP terms was summarized and visualized by REVIGO (http://revigo.irb.hr/) 

(Supek et al, 2011). Redundant GO BP terms were removed, and the remaining terms were 

visualized in the semantic similarity-based interactive graph by REVIGO. The interactive graph 

was exported to an XGMML file and further processed by the Cytoscape 3.8.2 program (Su et al, 

2014; Shannon et al, 2003). 

Count data normalized by the TMM method were used for the GSEA expression data set. GSEA 

was performed using the GSEA 4.1.0 software (Mootha et al, 2003; Subramanian et al, 2005) 

(https://www.broadinstitute.org/gsea/) with permutation type = geneset, enrichment statistic = 

weighted, metric for ranking genes = signal to noise, #permutation = 1000. Several gene set 

collections in the Molecular Signatures Database (MSigDB) (Liberzon et al, 2011; Subramanian 

et al, 2005) were used for GSEA, including hallmark gene sets (Liberzon et al, 2015), curated 

gene sets, and ontology gene sets. 

 

Sample Preparation for Proteomics 

Protein samples were prepared for labelling by TMT sixplex isobaric mass tagging kit (Thermo 

Scientific) according to the manufacturer's protocol. In short, 80 μg of total protein was reduced 

and alkylated with tris(2-carboxyethyl)phosphine and iodoacetamide, followed by overnight 

acetone precipitation. After redissolving the pellet, proteins were digested overnight with trypsin 

(Promega). The resulting peptides were labelled with the TMT sixplex isobaric mass tag, and the 

six samples – three treated and three control samples– were pooled. Further treatment and 

fractionation were performed as previously described (Palmfeldt et al, 2009). The pool of labelled 

peptides was dissolved in 10 mM phosphoric acid, pH 3.0 and 25% acetonitrile before strong 

cation exchange (SCX) purification using a SCX cartridge (Phenomenex). After washing, drying, 

elution procedure, and drying by a SpeedVac vacuum concentrator overnight, vacuum dried 

labelled peptide pools were rehydrated and fractioned into ten fractions by isoelectric focusing 

with an immobiline drystrip pH 3-10, 18 cm (GE Healthcare). Peptides were extracted and 

dissolved in 5% acetonitrile, 0.5% trifluoroacetic acid, and further purified by C18 spin columns 

(Thermo Scientific) according to the manufacturer's protocol. After elution, samples were dried by 

a SpeedVac vacuum concentrator and stored at -20°C until nanoLC-MS/MS analyses. 

 

NanoLC-MS/MS and Proteomics Database Searches 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed, as previously 

described (Paternoster et al, 2019), on an EASY nanoLC-1000 coupled to Q Exactive™ HF-X 
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Quadrupole-Orbitrap™ Mass Spectrometer (Thermo Scientific). Pre-column (Acclaim PepMap 

100, 75µm x 2 cm, Nanoviper, Thermo Scientific) and analytical column (EASY-Spray column, 

PepMap RSLC C18, 2µm, 100 Å, 75 µM x 25 cm) were used to trap and separate peptides using a 

170 mins gradient (5-40 % acetonitrile, 0.1 % Formic acid). The MS was operated in positive 

mode, and higher-energy collisional dissociation (HCD) with collision energy (NCE) of 35 was 

applied for peptide fragmentation. Full scan (MS1) resolution was 60,000, and AGC target set at 

1x10
6
 with scan range between 392-1,500 m/z. Data-dependent analysis (DDA) was applied to 

fragment up to 12 of the most intense peaks in MS1. Resolution for fragment scans (MS2) was set 

at 45,000 with the first fixed mass at 110 m/z and AGC target at 1x10
5
. Dynamic exclusion was set 

at 15 seconds, and unassigned and +1 charge states were excluded from fragmentation. Each 

sample was LC-MS/MS analyzed twice. Peptides identified with more than nine peptide spectrum 

matches (PSM) in the first analysis were excluded from fragmentation in the second analysis. All 

20 (=2×10) LC-MS analyses of the study were merged and submitted for database search for 

protein identification and quantification in Proteome Discoverer 2.3 (Thermo Scientific) using the 

Sequest algorithm, with 20,422 reviewed Homo sapiens Uniprot sequences as reference proteome. 

Precursor and fragment mass tolerance were set at 10 ppm and 20 mmu, respectively. Oxidation of 

methionine was set as dynamic modification, and static modifications were carbamidomethylation 

of cysteines and TMT sixplex labels on lysine and peptide N-terminus. The co-isolation threshold 

was set at 45 %, and the identification false discovery rate was set to 0.01. 

 

Bioinformatics Analysis of Differential Gene Expression at protein level 

P < 0.05 and |log2Fold change| > 0.263034 were selected as the cutoff criteria to identify 

differential expression proteins (Levin, 2011). 

Donut charts were drawn, and differentially expressed proteins with statistical significance were 

highlighted in the volcano plots using GraphPad Prism 9 software. Hierarchical clustering was 

performed using Morpheus (https://software.broadinstitute.org/morpheus). Venn Diagrams were 

performed using InteractiVenn (Heberle et al, 2015). 

Uniprot Keywords, GO analysis, including biological process (BP), cellular component (CC) and 

molecular function (MF) groups, and Kyoto encyclopedia of genes and genomes (KEGG) 

pathways enrichment analysis of differentially expressed proteins were performed using DAVID 

bioinformatics resources (Huang et al, 2009a, 2009b) using all detected high-confidence proteins 

as background. Count ≥ 2, a modified Fisher Exact p (EASE score) ≤ 0.1 were used as thresholds 

for DAVID functional annotation analysis. 

MitoCarta3.0 datasets, which contains detailed information on the 1136 mitochondrial human 

genes, including sub-mitochondrial localization and pathways (Rath et al, 2021), were used to 

identify human mitochondrial proteins. 

The long lists of GO BP terms were summarized and visualized by REVIGO (http://revigo.irb.hr/) 

(Supek et al, 2011). Redundant GO BP terms were removed, and the remaining terms were 

visualized in the semantic similarity-based interactive graph by REVIGO. The interactive graph 
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was exported to an XGMML file and further processed by the stand-alone Cytoscape 3.8.2 

software (Su et al, 2014; Shannon et al, 2003). 

Pivot chart was used to show the frequency distribution of log2 (fold change) for transcriptomics 

and proteomics. TPM ≥ 1 was used as a threshold for fold change for the transcriptomics dataset 

only for genes quantitated commonly in transcriptomics and proteomics analyses. The pivot table 

was generated using Microsoft Excel, and pivot graph was generated using GraphPad Prism 9.  

Protein-protein interaction (PPI) clustered network of the 8 co-regulated genes and proteins was 

generated and exported by STRING 11.0 online tool (Szklarczyk et al, 2019; von Mering et al, 

2003) (https://string-db.org/). Network type = full STRING network, required score = low 

confidence (0.150), FDR stringency = medium (5%), organism: Homo sapiens, network clustering 

= kmeans clustering, number of clusters = 3 were used as thresholds and parameters for STRING 

analysis. 

 

Statistical analysis 

Normal distribution data were expressed as means ± SD around the mean, non-normal distribution 

data were expressed as percentiles. It was checked whether the data conformed to the normal 

distribution. For data conforming to the normal distribution, non-pairwise comparisons were 

performed using the Student’s t-test. A non-parametric test was used for the non-normally 

distributed data. Calculations were performed using SPSS 20.0. A p of < 0.05 was considered 

statistically significant. Hierarchical clustering analysis was performed using Morpheus 

(https://software.broadinstitute.org/morpheus). Correlation analysis was performed using 

GraphPad Prism 9. 

 

RESULTS 

Establishment of the Huh7 cell MAFLD model 

To investigate the cellular response to FFA treatment, we established a cell-based MAFLD model 

that has previously been described by Chavez-Tapia et al (Chavez-Tapia et al, 2012). For the 

model, the human liver cancer cell line Huh7 was treated for 24 hours with a 1:2 mixture of 

palmitic and oleic acid (total FA concentration 1200 μM) bound to BSA (Fig. 1A). Oil red O 

staining clearly showed an increased accumulation of lipid droplets within FFA-treated Huh7 cells 

(Fig.1B). Quantitation of the Oil red O staining showed a significant increase (199%) of lipid 

staining in FFA-treated cells (Fig. 1C). Taken together, this establishes that the FFA treatment 

regimen generates a cellular MAFLD model. 

To get an overview of the effects of FFA treatment on mitochondria, we first performed 

fluorescence microscopy imaging of mitochondria with MitoTracker Green. This indicated no 

gross changes in mitochondrial size and morphology in FFA-treated cells (Fig. 1 D). Then, to 

study mitochondrial dysfunction-related phenotypes, we performed high-throughput single-cell 

imaging using MitoTracker Green staining for mitochondria volume, MitoSOX Red staining for 

mitochondrial superoxide, and Hoechst 33342 staining for cell apoptosis. Our results showed that 
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FFA-treatment had no significant effect on the mitochondrial volume and caused no significant 

changes in superoxide levels, both as mean intensity and mean intensity normalized to 

MitoTracker Green staining (Fig. 1 G, H). Hoechst 33342 staining, an indicator of apoptosis 

(Crowley et al, 2016; Zhu et al, 2020; Reynolds et al, 1996), was also not significantly increased 

in MAFLD model cells (Fig. 1 G). However, CCK8 analysis indicated a slight (11%) but 

statistically significant decrease in viability of the FFA-treated cells (Figure 1 I). This suggests that 

there are no effects on overall mitochondrial parameters but that cell viability is impaired. 

 

Figure 1. Effects of FFA treatment on Huh7 cells. 

(A) Workflow for the establishment of the in vitro MAFLD Huh7 cell model. PA: palmitic 

acid, OA: oleic acid. (B) Light microscopy analysis (100x and 400x magnification) of 

lipid droplets in Huh7 cells with or without treatment with FFA for 24 h. Cells were 

stained by Oil Red O solution after fixing.  

(C) Quantification of Oil Red O staining in MAFLD model by a plate reader. Absorbance 

values were recorded at 510 nm and normalized to the untreated cells. n=3. 

(D) Fluorescent microscopy images (400x magnification) of MitoTracker Green staining 

of mitochondria in live Huh7 cells treated with or without FFA for 24 h.  

(E) Flow cytometry and microscopy analysis. Control and model cell were stained with 

MitoSOX Red and MitoTracker Green as described in materials and methods and analysed 

using Imaging flow cytometry. The left panel shows phase-contrast images of the 

representative cells, and the respective fluorescence channel pictures are shown in the 

MitoTracker Green, MitoSOX, and merge channels. 

(F) Histogram of average MitoTracker Green and MitoSOX Red fluorescent intensity 

quantitations in Huh7 cells with or without treatment with FFA for 24 h from two 

representative high-throughput imaging flow cytometry (HTIFC) experiments. 

(G) Quantification of average fluorescence intensity of MitoTracker Green per cell, 

MitoSOX per cell, and Hoechst 33342 per cell in Huh7 cells with or without treatment 

with FFA for 24 h. n=4. 

(H) Quantification of average MitoSOX fluorescence intensity related to MitoTracker 

Green in Huh7 cells with or without treatment with FFA for 24 h. n=4. 

All numeric results are expressed as the mean value of triplicate samples normalized to the 

untreated cells ± SD (error bars). *p < 0.05, **p < 0.01. 

(I) Viability of Huh7 cells measured by Cell Counting Kit - 8 assay after a 24-h exposure 

to FFA. n=3. 

 

Effects of FFA treatment on cellular bioenergetics in the Huh7 cell MAFLD model 

Firstly, we wondered whether the MAFLD model cells displayed changes in key parameters of 

mitochondrial and cellular energy metabolism. To this end, we measured the OCR and proton 
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excretion rate (PER) using the Seahorse XFe96 metabolic analyzer and the MitoStress Test 

protocol (see materials and methods). Our data showed that FFA-treated cells displayed increased 

oxygen consumption rates (Fig. 2A) and decreased proton excretion rates (Fig. 2A). Calculation of 

key parameters revealed that FFA treatment induced a significant increase (p = 0.047) in basal 

respiration (Fig. 2B) while there was no significant increase in maximal respiration (p = 0.391) 

(Fig. 2B). We observed no significant differences in non-mitochondrial oxygen consumption and 

proton leakage in the MAFLD model (data not shown). 

Most of the cellular ATP is produced by glycolysis in the cytosol and OXPHOS by the 

mitochondrial respiratory chain in the mitochondria. In the condition of fatty acid overload in 

Huh7 cells, we investigated whether FFA treatment affects glycolytic and mitochondrial ATP 

production. Based on our OCR and PER data, we calculated the ATP production rates from 

respiration and glycolysis, respectively (see materials and methods). This showed that, while total 

ATP production was unchanged, mitochondrial ATP production was increased (17.07%), and 

glycolytic ATP production concomitantly decreased (13.95%) in the FFA treated cells (Fig. 2C). 

This is also illustrated by the ATP rate index, i.e. the ratio of mitochondrial ATP production 

divided by glycolytic ATP production (Fig. 2D). 

 

Fig. 2. Key parameters of cellular energy metabolism in FFA-treated Huh7 cells and 

controls. Real time oxygen consumption rates (OCR) and proton excretion rates (PER) 

were measured in live Huh cells using a Seahorse XFe96 metabolic analyzer.  

(A) and (B) Representative OCR and PER curves, respectively, for Huh7 cells with or 

without FFA treatment. Using the Cell Mito Stress Test assay, Oligomycin, Carbonyl 

cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP), Rotenone, and Antimycin were 

injected at the indicated time point. Data were normalized by cell numbers determined by 

Hoechst staining.  

(C) Basal respiration. MAFLD Huh7 cells showed significantly higher basal mitochondrial 

respiration. (D) Maximal respiration. MAFLD Huh7 cells displayed no significant change 

in the maximum rate of mitochondrial respiration. 

(E) ATP production from mitochondrial respiration and glycolysis was calculated from the 

OCR and PER traces as described in materials and methods.  

(F) Rate index graph showing ATP production from respiration/ATP production from 

glycolysis for FFA-treated and controls. 

All numeric values are expressed as the mean value of triplicate samples ± SD (error bars) 

(Fig 2A-E). Values in Fig. 2F are expressed as the maximum value, minimum value, 75th 

percentile, 25th percentile, and median. *p < 0.05, **p < 0.01. 

 

Effects of FFA treatment on the Transcriptome of Huh7 Cells 

To identify differentially expressed protein-coding transcripts between control and FFA-treated 
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cells, we performed mRNA-Seq analysis (Fig. 3). The donut chart in Fig. 3A shows an overview 

of mRNA-Seq analysis. Using the DeSeq2 method and p < 0.05 as cutoff criteria, 256 transcripts 

were identified as differentially expressed in the FFA-treated group compared to controls (81 up- 

and 175 down-regulated). The heat map pattern of the 256 differentially expressed transcripts is 

shown in Fig. 3B. The Volcano plot (Fig. 3C) displays the distribution of all 16,001 quantitated 

protein-coding transcripts, and the significantly upregulated (red dots) and down-regulated (blue 

dots) transcripts are highlighted. Enrichment analysis of the differentially expressed transcripts 

using DAVID identified 122 enriched GO BP terms (EASE score < 0.1) in mRNA-seq. Figure 3D 

lists the top 20 BP terms with gene counts and log10 (p-values. For KEGG pathway analysis, 

several metabolism-related pathways, such as fatty acid metabolism, pyruvate metabolism, 

adipocytokine signaling pathway, and steroid biosynthesis showed significant p-values (p < 0.05) 

(Fig. 3E).  

 

Figure 3. Overview of analysis of the transcriptomes FFA-treated Huh7 cells and 

controls. 

(A) Donut chart of RNA-Seq. 16,001 protein-coding genes were quantitated by RNA-Seq 

in control and FFA Huh7 cells, and 256 of them showed statistically significant 

differential expression between groups (p < 0.05). 

(B) Hierarchical clustering and heatmap of the 256 differentially expressed transcripts.  

(C) Volcano plot of all quantitated protein-coding transcripts. Differentially expressed 

genes are highlighted; red dots represent upregulated and blue dots down-regulated 

transcripts. Transcripts encoding proteins that were also differentially regulated at the 

protein level (see below) are labelled. 

(D-E) Bar graphs and line charts show p-values and count of the top 20 significantly 

enriched GO terms and the significant KEGG pathways (p < 0.05; modified Fisher's exact 

test). 

 

Enriched Gene Sets in GSEA Analysis 

Tools such as DAVID perform analysis of gene expression changes by searching for the 

enrichment of annotation terms in lists of genes that change in relation to a predefined threshold. 

This may miss important effects on pathways (Subramanian et al, 2005). In contrast, GSEA (Gene 

Set Enrichment Analysis) (Reimand et al, 2019; Subramanian et al, 2005) is a sensitive 

threshold-free method that analyses enrichment patterns of curated gene sets that e.g. share 

common biological function or regulation (Reimand et al, 2019). 

We first used the MSigDB hallmark gene set collection that summarizes and represents specific, 

well-defined biological states or processes. A number of selected gene sets showed clearly 

enriched scores. Among these, the cholesterol homeostasis gene set was found in the top 5 

upregulated hall mark gene sets in control cells, i.e., down-regulated in the model (Fig. 4A; 
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nominal p = 0.0, enrichment score (ES) = -0.48). The glycolysis gene set was also one of the top 5 

upregulated hallmark gene sets in control cells (Fig. 4B; nominal p = 0.0, ES = -0.45). This is 

consistent with our Seahorse analyses, which showed a downregulated glycolysis in FFA-treated 

cells. The chemokine receptor binding gene set was one of the significantly enriched GO MF gene 

sets in MAFLD model cells (Fig. 4C); nominal p = 0.012, ES = 0.47), and may indicate 

pro-inflammation in MAFLD model cells. 

 

Network relationships of biological process terms for the regulated genes 

To get a picture of the relationships of the regulated genes in our RNA-Seq analyses, we used the 

REVIGO webserver to reduce redundant GO terms and visualization (Supek et al, 2011). By 

DAVID enrichment analysis, we had identified 122 enriched GO BP terms (EASE score < 0.1) in 

RNA-Seq. A reduced list of 51 of these terms (EASE score < 0.01) generated using REVIGO is 

presented as a graph in Fig. 4D. Analysis of the GO BP terms for the differentially regulated genes 

in RNA-Seq yielded a network with ‘Metabolic process’ linked to two larger groups of terms, one 

related to lipid handling and the other related to regulation and signaling (Fig. 4D). 

 

 

Figure 4. GSEA enrichment plots and redundancy-reduced GO BP terms in 

RNA-Seq analysis. 

(A-C) GSEA enrichment plots: Profile of the running ES score & positions for the 

cholesterol homeostasis (A), glycolysis (B), chemokine receptor binding (C) gene set 

members on the rank-ordered list. 

(D) Relationship network of redundancy-reduced enriched GO BP terms. Bubble color 

indicates the p. Highly similar GO BP terms are linked by edges in the graph. Settings: GO 

BP terms with EASE score (modified Fisher's exact p) < 0.01 and the associated p were 

used as input for REVIGO. The REVIGO analysis was performed with the following 

settings: similarity = small (0.5), species = Homo sapiens, semantic similarity measure = 

Jiang and Conrath. The resulting interactive graph was edited using Cytoscape (Shannon 

et al, 2003). Consistent groups related to ‘lipid handling’ or ‘responses & signaling’ are 

boxed.  

 

Effects of FFA treatment on the Huh7 cell proteome  

Next, we performed proteomics analysis to identify differentially expressed proteins comparing 

control and FFA-treated cells and validate the transcript expression changes revealed by our 

mRNA-Seq analyses (Fig. 5). For the mass spectrometry-based proteomics analysis, three 

biological replicates of each control and FFA treated cells were cultured in parallel to the cells 

analyzed by mRNA-Seq. The donut chart in Fig. 5A gives an overview of the proteomics analysis. 

105 proteins were found upregulated (yellow) and 67 downregulated (blue) using the cut-off 
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criteria: |log2FC| > 0.263034 and p < 0.05). 23 of the 172 differentially expressed proteins are 

mitochondrial proteins annotated in MitoCarta 3.0 (Rath et al, 2021). Fig. 5B shows hierarchical 

clustering and the heatmap of the differentially expressed proteins. The volcano plot in Fig. 5C 

depicts fold changes and p of all 4110 quantitated proteins. Upregulated proteins are highlighted in 

red and downregulated proteins in blue.  

Using bioinformatic analysis, we found significant enrichments (modified Fisher Exact p ≤ 0.1) in 

metabolism process-related GO BP terms and KEGG pathways in FFA-treated cells (Fig. 5D-E). 

BP included a number of terms related to the apoptotic process, transcription, phosphorylation, 

cell nucleus, and RNA processing, suggesting effects on cell stress regulation and gene 

transcription. In accordance with FFA treatment, KEGG pathway analysis revealed enrichment of 

fatty acid-related pathways (biosynthesis of unsaturated fatty acids and fatty acid metabolism) and 

choline metabolism. These results are consistent with our transcriptome analysis, which indicated 

changes in transcript levels for metabolism-related processes in this FFA-induced MAFLD cell 

model. 

By DAVID enrichment analysis, we identified 78 enriched GO BP terms (EASE score < 0.1) in 

our proteomics analysis. A reduced list of these terms (EASE score <0.1) generated using 

REVIGO is presented as a graph in Supplementary Figure S1. The analysis of the proteomics 

enriched BP terms produced a more complex picture (Supplementary Figure S1) than the one 

obtained for transcriptomics. There are groups related to regulation, differentiation and 

development, and cell death, respectively. ‘Organelle organization’, ‘cell surface receptor 

signaling pathway’, and ‘immune system process’ are each linked to all these three groups.  

 

Figure 5. Overview of bioinformatics analysis of FFA-treated Huh7 cells proteomics 

data. 

(A) Donut chart of proteomics analysis. A total of 4,110 high-confidence proteins were 

quantitated by nanoLC-MS/MS in control and FFA treated Huh7 cells. A p < 0.05 and 

|log2Fold change| > 0.263034 were selected as the cutoff criteria to identify differentially 

expressed proteins. 609 proteins showed statistically significant (p < 0.05) differential 

expression between groups. 

(B) Hierarchical clustering and heatmap of the 172 differentially expressed proteins. Red 

indicates up-regulation and blue down-regulation.  

(C) Volcano plot of the proteomics data. The dotted lines show the cutoff limits for p and 

fold-change used. Differentially expressed proteins are highlighted. Red dots represent 

upregulated proteins and blue dots down-regulated proteins. The dots for differentially 

regulated proteins for which the transcripts also were differentially regulated are labeled. 

(D-E) Bar and line charts showing p (bars) and count (lines) of top 20 significantly 

enriched GO BP terms and the significant KEGG pathways from DAVID analysis (p < 

0.05; modified Fisher's exact test). 
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Comparison of transcriptome and proteomics analyses 

Comparison of all the transcripts and the proteins showed little overlap (Fig. 6A). Most of the 

significant changes were only in either RNA-Seq or proteomics, and only 8 genes were 

significantly regulated in both. Only one of these (ACAA2) is a mitochondrial protein listed in 

MitoCarta3.0. Correlation analysis shows a significant but very weak correlation (p < 0.0001, 

Pearson r = 0.084) of the fold changes of transcriptome and proteomics (Fig. 6B). Plotting of the 

fold changes of the transcripts/proteins quantitated with both proteomics and RNA-Seq methods is 

shown in Fig. 6C. Four of the genes significantly regulated at transcript and protein level are 

consistently upregulated, and three are consistently down-regulated; one is up at protein level and 

down-regulated at the transcript level. The latter (PPIB) encodes an ER-localized proline 

isomerase that catalyzes the cis-trans isomerization of proline residues and may therefore assist 

protein folding.  

Remarkably, six of the co-regulated transcripts and proteins are encoding or represent proteins 

involved in lipid metabolism-related processes: two in fatty acid catabolism (ACAA2, PLIN2), two 

in lipid transport (LIMA1, P4HB), and two in the synthesis of unsaturated fatty acids (FADS2, 

SCD). The first two are upregulated and the latter four down-regulated. For a detailed discussion 

of the functions of these genes, see discussion. In PPI analysis of protein interactions, FADS2, 

SCD, PLIN2, and ACAA2 were grouped as a cluster, while PPIB, P4HB, CAPN2 were grouped as 

another cluster. LIMA1 was grouped as an independent cluster (Fig. 6D). 

To investigate whether there was a general regulation of mitochondrial proteins and their coding 

transcripts, we compared the fold change distributions of all mitochondrial proteins to the fold 

change distributions of all non-mitochondrial proteins and the fold changes of transcripts encoding 

mitochondrial proteins to the fold-changes of transcripts encoding non-mitochondrial proteins. 

The pivot chart shows a marked shift to lower log2(fold change) of mitochondrial proteins 

compared to non-mitochondrial proteins. The log2(fold change) distribution of transcripts 

encoding mitochondrial proteins showed the same trend compared to transcripts encoding 

non-mitochondrial proteins. (Fig. 6E). We further performed a statistical analysis (Mann Whitney 

U Test) on the log2 (fold change) data between the groups. The log2(fold change) of both 

mitochondrial transcripts compared to transcripts not encoding mitochondrial proteins (p < 0.05) 

and the log2(fold change) of mitochondrial proteins compared to non-mitochondrial proteins (p < 

0.01) were significantly lower. (Fig. 6F). These data indicate that both mitochondrial proteins and 

transcripts of the MAFLD model cells were expressed at decreased levels in the MAFLD model 

cells. 

 

Figure 6: Comparison of regulated transcripts and proteins.  

(A) Venn diagram showing the overlap between proteomics and transcriptomics and 

fractions of MitoCarta 3.0 proteins. 
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Fold change plot, red, blue, and grey color dots with labels shows the 8 gene 

transcripts/proteins fulfilling the criteria of significantly regulated in both proteomics (p < 

0.05 and fc +/- 20%) and transcriptomics (DESEQ p < 0.05). Black stippled lines indicate 

the threshold cutoffs for proteomics. TPM ≥ 1 was used as a threshold for mRNA-Seq. 

The statistically significant p-value and weakly positive r-value of Pearson's correlation 

for genes regulated both at the transcript and protein levels are shown. 

(C) Fold change graph and (D) protein-protein interaction (PPI) clustered network of the 8 

genes/proteins regulated both at protein and transcript level. Network nodes represent 

proteins, and the colors represent 3 different clusters. Edges represent protein-protein 

associations, and line color indicates different types of interaction evidence. *p < 0.05, **p 

< 0.01.  

(E) Pivot chart showing the frequency of log2(fold change) for mRNA-seq and proteomics. 

TPM ≥ 1 was used as a threshold for mRNA-Seq. 

(F) Box plot showing the log2(fold change) and quartile distributions of genes regulated 

both at the transcript and protein level. TPM ≥ 1 was used as a threshold for mRNA-Seq. 

Values are expressed as 10th percentile, 25th percentile, median, 75th percentile, and 90th 

percentile. *p < 0.05, **p < 0.01. 
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DISCUSSION 

In spite of numerous studies, the molecular pathological mechanisms and the order of events in 

FFA-induced MAFLD are still only insufficiently elucidated, which is why it remains difficult to 

devise and develop targeted therapies that can delay or counteract the pathogenesis. Deficient 

handling of the fatty acid surfeit by lipid storage and metabolization systems has in multiple 

studies been reported to result in mitochondrial dysfunction, altered ROS signaling and damage, 

thus provoking inflammatory responses and triggering fibrotic signaling(Xiao et al, 2017; 

Luangmonkong et al, 2018; Sunny et al, 2017). We hypothesized that the FFA-induced MAFLD 

cell model is an appropriate in vitro system to study mitochondrial dysfunction and the underlying 

gene expression changes thoroughly in order to characterize this system for future drug screening 

purposes. To this end, we explored the effects of high FFA load by performing a comprehensive 

analysis of lipid accumulation, mitochondrial phenotypes, cellular energy metabolism, and global 

gene expression at both transcript and protein levels. 

As expected from a previous study using this MAFLD model, treatment with 1200 μM of a 1:2 

mixture of the fatty acids palmitate and oleate induced substantial intracellular lipid deposition, 

which is a remarkable feature of hepatocyte steatosis, and it also appreciably decreased cell 

viability.  

 

In general, when the extracellular environment changes, cells change their metabolic pattern and 

thus adapt to the new environment. A high fat load may be balanced by increased mitochondrial 

fatty acid degradation, producing acetyl-CoA that fuels the tricarboxylic acid cycle. This in turn, 

increases the flow of reducing equivalents that drive the electron transport chain and oxidative 

phosphorylation. Using real-time metabolic analysis with the Seahorse analyzer, we explored the 

effects of 1200 μM FFA-treatment on cellular and mitochondrial energy metabolism. The MAFLD 

model cells displayed changes in key parameters of mitochondrial and glycolytic ATP production. 

Compared to control cells, mitochondrial ATP production was significantly increased, and 

glycolytic ATP production concomitantly decreased. Basal respiration was moderately but 

significantly increased, while maximal respiration did not show significant changes between 

control and MAFLD model cells. At the same time, glycolytic fermentation resulting in lactate 

production was decreased. The increase in respiratory and decrease in glycolytic ATP production 

led to an unchanged total cellular ATP production in MAFLD model cells. This suggests that the 

cells maintain an appropriate level of total ATP production. A previous study showed that 

treatment with a lower dose (750 µM) of a 2:1 mixture of oleic/palmitic acid mixture of rat liver 

cancer FaO cells for 3 h significantly increased the number of intracellular lipid droplets, but did 

not significantly alter basal respiration, maximal respiration, or ATP production (Vecchione et al, 

2017). The inconsistent results for basal respiration may be due to different concentrations of 

FFAs or, more likely, the different incubation times with the FFAs: 24 hours in our experiments 

and 3 hours in the other study. 

Oxidative stress has been strongly indicated to play an important role in MAFLD 
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(Svegliati-Baroni et al, 2019; Mansouri et al, 2018), and antioxidants have been suggested as one 

therapeutic option for MAFLD treatment. The leakage of electrons from the mitochondrial 

electron transport chain that react with oxygen to form superoxide is a major source of oxidative 

stress (Mercado-Uribe et al, 2020; Majumder et al, 2021). The increased flow of electrons through 

the respiratory chain may thus be expected to increase the production of mitochondrial superoxide. 

As we only observed a moderate increase in mitochondrial respiration, we also did not expect a 

strong increase in mitochondrial superoxide levels. Indeed, our high-throughput imaging flow 

cytometry measurements showed no significant changes in mitochondrial superoxide levels both 

as per cell or normalized to mitochondrial volume. This indicates that either the production of 

superoxide is not increased or that higher superoxide production is balanced by increased activity 

of superoxide dismutase 2 (SOD2). The latter would both scavenge damage to macromolecules 

and increase redox signaling, e.g. via the KEAP1-NRF2 system, a redox-sensitive signaling 

system mediating the response to oxidant stress (Suzuki et al, 2019). Previous studies have 

suggested that the levels of oxidative stress in the liver vary in different MAFLD stages. 

Interestingly, while many studies described increased ROS in MAFLD (Upadhyay et al, 2020; 

Mansouri et al, 2018), it has also been discussed that there may be decreased ROS levels at 

specific stages of MAFLD (Piccinin et al, 2019). Our study indicates that increased superoxide 

levels inside mitochondria are not an important factor in the early stages of MAFLD in 

hepatocytes. 

Given that the high fat load only caused a moderate shift in mitochondrial and glycolytic ATP 

production without changing the rate of total ATP production and the finding that mitochondrial 

superoxide levels remained unchanged, one may expect that the 24 hours of high fat exposure may 

have triggered changes in gene expression. Transcriptome analysis revealed a moderate number, 

256, of significant transcript level changes. This prominently included genes associated with lipid 

metabolism-related terms, but also signaling pathways like PPAR and AKT signaling. Network 

analysis of the regulated transcripts revealed lipid handling and responses and signaling as 

common denominators and connected via the central term ‘metabolic process’. This suggests that 

the major primary effects of high fat treatment impact the levels of genes involved in metabolism. 

Finally, GSEA fine analysis of the mRNA-Seq data showed significant enrichment of the 

chemokine receptor binding gene set, which is an evidence for initiation of the inflammation. 

Proteome analysis also showed a fair number of differentially regulated proteins, 172, in the 

MAFLD cell model. However, the connection to lipid metabolism was less clear. Interestingly, we 

found a general down-regulation of mitochondrial proteins in FFA treated cells suggesting less 

mitochondria content. This was supported by comparing the transcripts encoding mitochondrial 

proteins with those encoding non-mitochondrial proteins. However, here the difference was less 

pronounced. Using MitoTracker Green in the HTIFC experiment, we found that the mitochondrial 

volume of FFA treated cells did not change significantly. A possible explanation might be an 

accelerated turnover of mitochondrial proteins by mitochondrial proteases without affecting 

mitochondrial volume. The further analysis of the multi-omics data through the mitochondrial 
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gene set MitoPathways 3.0 in MitoCarta 3.0 showed the expression levels of genes and proteins 

within the mitophagy, mitochondrial fission, mitochondrial fusion, and tricarboxylic acid cycle 

data sets were not altered (data not shown). However, interestingly, 10.8% of the protein or 

transcript expression levels changed significantly in the mitochondrial respiratory chain set (data 

not shown). Taken together, this may indicate that a specific subset of the mitochondrial proteome 

is downregulated. In this regard, further research is needed. 

Clustering analysis of the differentially regulated proteins into networks revealed hubs of proteins 

related to regulation, differentiation and development, and cell death. The clusters are highly 

interconnected with each other. When comparing the significantly regulated transcripts with the 

significantly regulated proteins, there was only very little overlap. There is a weak correlation 

between all transcripts/proteins quantitated in both analyses. Transcript and protein levels correlate 

typically not very well as transcript and protein turnover, translation efficiency, and other 

parameters affect the levels of transcripts and proteins differently (Edfors et al, 2016; Moritz et al, 

2019; Bauernfeind & Babbitt, 2017).  

When focusing on the genes consistently regulated both at the transcript and protein level, it is 

remarkable that six of the seven genes have a link to lipid metabolism. ACAA2 is a thiolase that 

catalyzes the last step in the mitochondrial catabolism of medium-chain fatty acids, producing 

acetyl-CoA. In the reverse reaction, it catalyzes the first step in the ketone body and cholesterol 

synthesis pathways. We find ACAA2 gene expression upregulated; an increase in fatty acid 

oxidation capacity could feed the TCA cycle and the respiratory chain explaining the increased 

mitochondrial ATP production rate that we observed in the Seahorse metabolic measurements.  

Perilipin 2 (PLIN2), also upregulated, is the only constitutive and ubiquitously expressed lipid 

droplet protein of the perilipin family and it represents a marker for the number and volume of 

lipid droplets (Tsai et al, 2017). Plin2
-/-

 mice have an approximately 60% reduction in triglyceride 

content. PLIN2 deletion in the adrenal cortex has been shown to increase cholesterol content in 

lipid droplets (Tsai et al, 2017). Furthermore, PLIN2 downregulation stimulates triglyceride 

catabolism via autophagy while PLIN2 overexpression protects against autophagy. The enhanced 

autophagy in Plin2
-/-

 mice protects against severe ER stress-induced hepatosteatosis and 

hepatocyte apoptosis (Tsai et al, 2017). PLIN2 up-regulation, as we observed in the FFA treated 

cells, may be a response to increase the storage capacity for fatty acids in lipid droplets. The 

beneficial effect on fatty acid storage capacity may, however, come at a price that triggers 

detrimental responses. 

Notably, SCD and FADS2, both encoding fatty acid desaturases that introduce double bonds into 

fatty acids are downregulated. SCD introduces the first double bond into saturated fatty acids 

generating monounsaturated fatty acids, whereas FADS2 in turn catalyzes the further desaturation 

of monounsaturated fatty acid precursors (Koletzko et al, 2019). Mono- and polyunsaturated fatty 

acids (MUFAs and PUFA’s, respectively) contribute to cell growth, survival, differentiation, 

metabolic regulation, and signal transduction. Overexpression of SCD is implicated in metabolic 

diseases such as diabetes and non-alcoholic fatty liver disease (Kikuchi & Tsukamoto, 2020). SCD 
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facilitates metabolic reprogramming in cancer mediated, at least in part, by regulation of AKT, 

AMPK, and NF-kB via MUFAs. Interesting with respect to our Huh7 MALFD model, treatment 

of Huh7 cells with the mTOR inhibitors Torin 1 or rapamycin decreased expression of FADS2 

and consequently reduced new synthesis of the desaturated fatty acids palmitoleate, palmitate, and 

sapienate (Triki et al, 2020). 2/3 of our FFA treatment consists of oleic acid, a monounsaturated 

fatty acid. Down-regulation of SCD, which generates oleic acid from stearic acid, makes thus 

sense. The observation that FADS2 that catalyzes further desaturation also is down-regulated 

suggests that expression of the two genes is co-regulated. As both desaturases are down-regulated, 

this may indicate a response that limits the synthesis of unsaturated fatty acids. 

The upregulated LIMA1 gene encodes an actin binding protein involved in regulation and 

dynamics of the actin cytoskeleton. It has also a connection to lipid metabolism as it is implicated 

in recycling of NPLC1L1, a receptor protein responsible for cholesterol uptake from the intestinal 

lumen and liver canicular space and thus contributes to cholesterol homeostasis (Luo et al, 2020). 

It increases the number and size of actin stress fibers and inhibits membrane ruffling, a 

characteristic feature of migrating cells (Maul et al, 2003). 

The P4HB gene encodes a multifunctional protein that catalyzes the formation, breakage and 

rearrangement of disulfide bonds. At the cell surface, it seems to act as a reductase that cleaves 

disulfide bonds of proteins attached to the cell and may, in this way, cause structural modifications 

of exofacial proteins. Inside the cell, P4HB seems to form/rearrange disulfide bonds of nascent 

proteins. Notable in the context of MAFLD, P4HB also acts as a structural subunit of various 

enzymes, one of which is microsomal triacylglycerol transfer protein (MTTP). MTTP catalyzes 

the transport of triglyceride, cholesteryl ester, and phospholipid between phospholipid surfaces 

(Lazaris et al, 2021). 

Taken together, the six ‘tip of the iceberg’ regulated genes encoding lipid metabolism, transport, 

and handling related proteins suggests that lipid homeostasis is strongly disturbed in the MAFLD 

model resulting in compensatory but also potentially damaging changes when the disturbance of 

the lipid homeostasis is persistent as seen in MAFLD patients. 

Finally, CAPN2, which we find upregulated, has no obvious relationship to lipid metabolism. Like 

LIMA1, it encodes a protein involved in actin cytoskeleton dynamics. When localized in the 

cytosol, it catalyzes limited proteolysis of substrates involved in cytoskeletal remodeling and 

signal transduction. Upon Ca2
+
 binding, CAPN2 translocates to the plasma membrane and is 

involved in the degradation of the extracellular matrix. It has been found that its up-regulation 

upon HBV infection induces the expression of hepatic fibrosis markers (Feng et al, 2020). Its 

upregulation in our MAFLD model may indicate the beginning induction of fibrosis, which occurs 

in the transitions from the fatty liver via NASH to fibrosis. 

 

Conclusions 

In this study, we investigated the characteristics of cellular energy metabolism adaptations and 

gene expression reprogramming in a 1200 μM FFA-induced MAFLD model. We found that this 
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cell model is an appropriate in vitro model to study the role of mitochondria, fatty acid metabolism, 

glycolysis, and multiple metabolic pathways in MAFLD. This model can also be used for drug 

screening (including traditional Chinese medicine) and research for treatment mechanisms for 

fatty acid metabolism disorders, mitochondrial dysfunction, and abnormal glycolysis. 

Although in vitro models cannot replace animal models, in vitro models have economic and time 

advantages in screening multiple drugs at the same time. Furthermore, because one can test one 

cell type at a time, it excludes the influence of other cell types in the liver, and the effective 

mechanisms for MAFLD drugs can be analyzed specifically for that cell type. 
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Supplementary material 

 

Supplementary Figure S1. Enriched GO BP terms in proteomics differentially 

expressed genes displayed after elimination of redundant GO terms using REVIGO 

(Shannon et al, 2003). Settings: GO BP terms with EASE score (modified Fisher's exact 

Test; p < 0.1) and the associated p-value were used as input for REVIGO. The REVIGO 

analysis was performed with similarity = small (0.5), species = homo sapiens, semantic 

similarity measure = Jiang and Conrath. The resulting interactive graph was edited using 

Cytoscape. Term groups related to ‘regulation’ and ‘differentiation & development’ are 

boxed. The three terms ‘organelle organization’, ‘cell surface receptor signaling pathway’, 

and ‘immune system process’ are highlighted by different colors of the bubble border, and 

the lines of their immediate connections are displayed in the border color. 
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