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 2 

Abstract 20 

Recent technological advancements have enabled spatially resolved transcriptomic profiling but 21 

at multi-cellular pixel resolution, thereby hindering the identification of cell-type-specific spatial 22 

patterns and gene expression variation. To address this challenge, we developed STdeconvolve 23 

as a reference-free approach to deconvolve underlying cell-types comprising such multi-cellular 24 

pixel resolution spatial transcriptomics (ST) datasets. Using simulated as well as real ST datasets 25 

from diverse spatial transcriptomics technologies comprising a variety of spatial resolutions such 26 

as Spatial Transcriptomics, 10X Visium, DBiT-seq, and Slide-seq, we show that STdeconvolve 27 

can effectively recover cell-type transcriptional profiles and their proportional representation 28 

within pixels without reliance on external single-cell transcriptomics references. STdeconvolve 29 

provides comparable performance to existing reference-based methods when suitable single-cell 30 

references are available, as well as potentially superior performance when suitable single-cell 31 

references are not available. STdeconvolve is available as an open-source R software package 32 

with the source code available at https://github.com/JEFworks-Lab/STdeconvolve.  33 

  34 
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 3 

Introduction 35 

Delineating the spatial organization of transcriptionally distinct cell-types within tissues 36 

is critical for understanding the cellular basis of tissue function1. Recent technologies have 37 

enabled spatial transcriptomic (ST) profiling within tissues at multi-cellular pixel-resolution2. As 38 

such, these ST measurements represent cell mixtures that may comprise multiple cell-types. This 39 

lack of single-cell resolution hinders the characterization of cell-type specific spatial 40 

organization and gene expression variation.  41 

To address this challenge, several reference-based, supervised and semi-supervised 42 

deconvolution approaches have recently been developed to predict the proportion of cell-types 43 

within ST pixels. Of these, SPOTlight3 uses cell-type marker genes derived from a single-cell 44 

RNA-sequencing (scRNA-seq) reference to seed a non-negative matrix factorization. RCTD4 45 

uses the cell-type specific mean expression of marker genes derived from a scRNA-seq reference 46 

to build a probabilistic model of the contribution of each cell-type to the observed gene counts in 47 

each pixel. SpatialDWLS5 uses cell-type signature genes derived from a scRNA-seq reference to 48 

first enrich for cell-types likely to be in each pixel, then applies a dampened weighted least 49 

squares approach to infer the cell-type composition. DSTG6 uses synthetic pseudo-mixtures of 50 

scRNA-seq references to train a semi-supervised graph-based convolutional network. As such, 51 

these approaches rely on the availability of a suitable single-cell reference, which may present 52 

limitations if such a reference does not exist due to budgetary, technical7, or biological 53 

limitations8. While the rise of scRNA-seq references through atlasing efforts such as the BRAIN 54 

Initiative Cell Census Network (BICCN)9, the Human BioMolecular Atlas Program 55 

(HuBMAP)10, and Human Cell Atlas11 may help alleviate such limitations particularly for 56 

healthy tissues, processing independent tissue samples or different sections of the same tissue 57 
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may still result in systematically different gene expression quantifications due to batch effects as 58 

well as inter- and intra-sample heterogeneity. Additionally, difficulties dissociating and capturing 59 

certain cell-types via single-cell sequencing may result in missing or inconsistent cell-types 60 

between scRNA-seq references and ST datasets12,13. Further, scRNA-seq references and ST 61 

datasets may be affected by different perturbations manifesting as distinct transcriptional 62 

differences affecting reference-based deconvolution accuracy and subsequent biological 63 

interpretations. As such, a reference-free deconvolution approach provides an alternative strategy 64 

for deconvolving cell-types when an appropriate reference is not available.  65 

Here, we developed STdeconvolve (available at https://github.com/JEFworks-66 

Lab/STdeconvolve and as Supplementary Software) as a reference-free, unsupervised approach 67 

for deconvolving multi-cellular pixel resolution ST data (Figure 1). STdeconvolve builds on 68 

latent Dirichlet allocation (LDA), a generative statistical model commonly used in natural 69 

language processing for discovering latent topics in collections of documents. In the context of 70 

natural language processing, given a count matrix of words in documents, LDA infers the 71 

distribution of words for each topic and the distribution of topics in each document. In the 72 

context of ST data, given a count matrix of gene expression in multi-cellular ST pixels, 73 

STdeconvolve applies LDA to infer the putative transcriptional profile for each cell-type and the 74 

proportional representation of each cell-type in each multi-cellular ST pixel (Methods). While 75 

LDA has previously been applied in the context of deconvolving cell-types in bulk RNA-seq 76 

data14, STdeconvolve leverages several unique features of ST data that make this application of 77 

LDA particularly amenable (Supplementary Note 1). Briefly, these include i) the limited number 78 

of cells and cell-types represented in each ST pixel, ii) the limited impact of batch effects on the 79 

measured gene expression across pixels, iii) the large number of pixels compared to cell-types, 80 
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and iv) the likely heterogeneity of cell-type proportional distribution across pixels in tissues. To 81 

improve the application of LDA, where latent cell-types are characterized by co-expressed and 82 

ideally non-overlapping groups of genes, STdeconvolve feature selects for such genes likely to 83 

be informative of latent cell-types. Specifically, STdeconvolve selects for significantly 84 

overdispersed genes, or genes with higher-than-expected expression variance across pixels15 85 

(Methods). In addition, as the application of LDA requires the number of transcriptionally 86 

distinct cell-types, K, to be set a priori, STdeconvolve provides several data-driven metrics to 87 

guide the estimation of an appropriate K (Methods, Supplementary Note 2).  88 

 89 

Results 90 

STdeconvolve accurately recovers cell-type proportions and transcriptional profiles in 91 

simulated ST data 92 

As a proof of concept, we first evaluated the performance of STdeconvolve in recovering 93 

the proportional representations of cell-types and their transcriptional profiles using simulated 94 

ST data. We simulated ST data by aggregating the gene expression of cells from single-cell 95 

resolution multiplex error-robust fluorescence in situ hybridization (MERFISH) data of the 96 

mouse medial pre-optic area (MPOA)16 within spatially contiguous pixels. Previously, 97 

MERFISH was previously applied to map the spatial distribution of 135 select genes within 98 

MPOA brain tissue. These select 135 genes were chosen to distinguish between major non-99 

neuronal cell-types as well as neuronal subtypes. Imaging-based cell segmentation was 100 

performed and the counts of genes per cell were quantified to achieve single-cell resolution 101 

spatially resolved transcriptomic profiling. Subsequent transcriptional clustering analysis on the 102 

single-cell resolution gene expression measurements identified 9 major cell-types, including 103 
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excitatory and inhibitory neurons. Further clustering found that these excitatory and inhibitory 104 

neurons could be subdivided into 69 finer neuronal sub-types.  105 

To simulate multi-cellular pixel-resolution ST data, we aggregated the single-cell 106 

resolution MERFISH data into 100 µm2 pixels (Figure 2A, Supplementary Figure S1A-B, 107 

Methods). Given the already limited 135 gene panel chosen to distinguish between cell-types, 108 

additional feature selection for this dataset was not necessary (Supplementary Note 3). Applying 109 

STdeconvolve, we identified K=9 cell-types and deconvolved their proportional representation 110 

and transcriptional profiles in each simulated pixel (Figure 2B, Supplementary Figure S1C, S2A, 111 

Supplementary Methods). To infer the identities of the deconvolved cell-types for benchmarking 112 

purposes, we matched their deconvolved transcriptional profiles with the transcriptional profiles 113 

of ground truth cell-types by testing for enrichment of ground truth cell-type specific marker 114 

genes (Methods, Supplementary Figure S2B). We observed strong correlations between the 115 

transcriptional profiles of each deconvolved cell-type and matched ground truth cell-type across 116 

genes (Figure 2C). Likewise, we observed strong correlations between the proportions of each 117 

deconvolved cell-type and matched ground truth cell-type across simulated pixels (Figure 2D). 118 

We further quantified this performance using the root-mean-square-error (RMSE) of the 119 

deconvolved cell-type proportions compared to ground truth across simulated pixels (Methods, 120 

Figure 2E).  In this manner, STdeconvolve can accurately recover the proportional representation 121 

and transcriptional profiles of major cell-types.   122 

 123 

STdeconvolve achieves competitive performance to reference-based, supervised 124 

deconvolution approaches  125 
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We next sought to compare the performance of STdeconvolve to existing reference-126 

based, supervised and semi-supervised deconvolution approaches SPOTlight, RCTD, 127 

spatialDWLS, and DTSG using our simulated 100 µm2 resolution ST data of the MPOA. As 128 

described previously, these approaches require a single-cell transcriptomics reference for 129 

deconvolution. As an ideal single-cell transcriptomics reference, we used the original single-cell 130 

MERFISH data that was used to construct the simulated ST data (Supplementary Figure S3A, 131 

Supplementary Methods). We again quantified the performance of each approach using the 132 

RMSE of the deconvolved cell-type proportions compared to ground truth across simulated 133 

pixels. DSTG was unable to deconvolve distinct cell-types in the data and was omitted from 134 

further comparison (Supplementary Figure S3A). In general, we find the performance of 135 

STdeconvolve to be comparable to these reference-based deconvolution approaches when such 136 

an ideal single-cell transcriptomics reference is used (Figure 2E-F).  137 

One potential limitation of such existing reference-based deconvolution approaches is 138 

their reliance on a suitable single-cell transcriptomics reference. We thus sought to evaluate the 139 

performance of these reference-based deconvolution approaches when a suitable single-cell 140 

reference is not available. To this end, we removed excitatory and inhibitory neuronal cell-types 141 

to simulate a less suitable single-cell transcriptomics reference (Supplementary Methods). We 142 

then deconvolved the simulated ST data of the MPOA using each reference-based deconvolution 143 

approach with this new reference and computed the RMSE across pixels. Because STdeconvolve 144 

does not use a reference, its performance does not change. However, the performance for all 145 

reference-based deconvolution approaches resulted in a significantly higher RMSE (Diebold-146 

Mariano p-value < 2.2 × 10-16) than STdeconvolve (Figure 2G). Likewise, pixels previously 147 

comprised of neurons were now erroneously predicted by reference-based deconvolution 148 
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approaches to be comprised primarily of immature oligodendrocytes (Supplementary Figure 149 

S3B). In addition, we evaluated the performance of each reference-based deconvolution 150 

approach after removing rarer ependymal cells from the single-cell transcriptomics reference. 151 

Again, given this less suitable single-cell transcriptomics reference, pixels previously comprised 152 

of ependymal cells were now erroneously predicted by reference-based deconvolution 153 

approaches to be comprised primarily of astrocytes (Supplementary Figure S3C). Thus, the 154 

performance of reference-based deconvolution approaches is sensitive to differences in cell-type 155 

composition between the ST data and the single-cell transcriptomics reference used.  156 

Likewise, such an ideal single-cell transcriptomics reference that optimally matches the 157 

cell-type composition and measurement sensitivities of the ST data to be deconvolved may not 158 

be available. Therefore, this ideal MERFISH MPOA single-cell transcriptomics reference likely 159 

provides an upper bound on performance for reference-based deconvolution approaches. To 160 

provide a more realistic evaluation of performance for reference-based deconvolution 161 

approaches, we sought to deconvolve our simulated ST data of the MPOA using a scRNA-seq 162 

reference from a mouse brain atlasing effort17. Again, as a reference-free deconvolution 163 

approach, the performance of STdeconvolve does not change. However, again, the performance 164 

for all reference-dependent methods resulted in a significantly higher RMSE (Diebold-Mariano 165 

p-value < 2.2 × 10-16) than STdeconvolve (Figure 2H, Supplementary Methods). Thus, 166 

STdeconvolve achieves comparable performance to reference-based, supervised deconvolution 167 

approaches when an ideal single-cell transcriptomics reference is used, and potentially better 168 

performance when an ideal single-cell transcriptomics reference is not used. 169 

 170 

STdeconvolve recovers perturbation specific gene expression profiles 171 
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Though reference-based deconvolution approaches may accurately recover cell-type 172 

proportions in ST data, they currently do not deconvolve cell-type specific gene expression 173 

profiles. Nonetheless, perturbations may induce cell-type-specific transcriptional changes in ST 174 

data that would not be identifiable by current reference-based deconvolution approaches unless 175 

perturbation-matched single-cell transcriptomics references are used. While the availability of 176 

scRNA-seq references grows due to single-cell atlasing initiatives, these datasets primarily 177 

represent collections of healthy tissues9-11,18,19. As such, there is a particular scarcity of suitable 178 

scRNA-seq references available for reference-based deconvolution of ST data in the context of 179 

disease and other perturbations.  180 

In contrast to current reference-based deconvolution approaches, STdeconvolve can 181 

estimate cell-type transcriptional profiles in a manner that is not constrained by the expression 182 

profiles of specific cell-types defined in single-cell transcriptomics references. We therefore 183 

sought to explore the potential of STdeconvolve in detecting these perturbation-driven cell-type-184 

specific gene expression changes using simulated ST data from mixtures of single cells assayed 185 

by scRNA-seq (Figure 3A, Supplementary Methods). Briefly, we took advantage of scRNA-seq 186 

data previously collected from mammary tissues of aged and young mice20. Previous 187 

transcriptional clustering analysis revealed a subpopulation of macrophages with age-associated 188 

gene expression changes. Specifically, aged macrophages upregulated Cd274 and Clec4d, and 189 

downregulated Coro1a compared to young macrophages. Therefore, we simulated ST data of 190 

aged tissue using mixtures of aged macrophages and other luminal cells and ST data of young 191 

tissue using mixtures of young macrophages and other luminal cells (Figure 3B). We then sought 192 

to evaluate the ability of STdeconvolve to recover these age-associated gene expression changes 193 

in macrophages (Supplementary Methods). Applying STdeconvolve using K=2 cell-types to the 194 
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simulated ST data of both aged and young tissue, we found that the deconvolved transcriptional 195 

profiles were highly correlated with the matched ground truth gene expression profiles from 196 

scRNA-seq in all cases (Supplementary Figure S4A-B). Further, when we compared the 197 

deconvolved transcriptional profiles of aged versus young macrophages, we were able to identify 198 

upregulated genes included Cd274 and Clec4d, and downregulated genes included Coro1a, 199 

consistent with the original study (Figure 3C). Thus, STdeconvolve can potentially recover 200 

perturbation-driven cell-type-specific gene expression changes in ST data. 201 

 202 

Deconvolution provides distinct insights compared to clustering analysis 203 

Generally, we note that deconvolution of multi-cellular pixel resolution ST data can 204 

provide distinct insights from clustering analysis. To demonstrate this, we again simulated ST 205 

data using mixtures of single cells assayed by scRNA-seq (Supplementary Methods). 206 

Specifically, we simulated ST pixels comprised of mixtures of either luminal cells and pericytes 207 

or pericytes and macrophages (Figure 3D). Applying clustering analysis to these ST pixels, we 208 

identified 2 clusters corresponding to either mixtures of luminal cells and pericytes or mixtures 209 

of pericytes and macrophages (Figure 3E). In contrast, applying STdeconvolve with K=3, we 210 

were able to recover the proportional representations of luminal cells, pericytes, and 211 

macrophages as well as their original cell-type specific transcriptional profiles (Figure 3F). 212 

Such differences between deconvolution and clustering analysis extends to resolution 213 

enhancing clustering approaches such as BayesSpace21. Briefly, BayesSpace utilizes a spatial 214 

prior that encourages spatially neighboring pixels to cluster into the same transcriptional cluster. 215 

Enhanced resolution clustering is obtained after subdividing each pixel and modeling the 216 

expression profiles of the subpixels as additional latent parameters estimated in the Bayesian 217 
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model. Applying BayesSpace with 3 clusters to our simulated ST data, we obtained 3 spatially 218 

discrete clusters corresponding to different mixtures of luminal cells and pericytes and mixtures 219 

of pericytes and macrophages (Figure 3G, Supplementary Methods). Compared to 220 

STdeconvolve, both regular transcriptional clustering and resolution enhanced clustering with 221 

BayesSpace exhibited significantly higher RMSE (Diebold-Mariano p-value < 2.2 × 10-16) 222 

(Figure 3H). 223 

To further demonstrate the difference between deconvolution and clustering analysis for 224 

ST data, we again simulated ST data using a single-cell resolution MERFISH dataset of a 225 

coronal section of the mouse brain22. We analyzed the single-cell resolution transcriptional 226 

profiles to identify 20 transcriptionally distinct cell-types and again simulated multi-cellular 227 

pixel-resolution ST data by aggregating the single cells into 100 µm2 pixels (Figure 3I, 228 

Supplementary Figure S5A-B, Supplementary Methods). The organization of cell-types within 229 

the mouse brain is highly complex with many regions including the thalamus at the central 230 

region of this coronal section being composed of mixtures of multiple transcriptionally distinct 231 

cell-types. We thus sought to evaluate whether STdeconvolve could better recover the 232 

proportional representation of cell-types compared to resolution enhanced clustering with 233 

BayesSpace. Applying both STdeconvolve and BayesSpace, we generally recover the cell-type 234 

pixel proportions and visually recapitulate the spatial organization of cell-types within various 235 

brain structures (Figure 3J-K, Supplementary Methods). However, focusing in on the central 236 

region of the coronal section encompassing the thalamus, we indeed saw a visual difference 237 

between the spatial organization of cell-types recovered by deconvolution via STdeconvolve 238 

compared to resolution enhanced clustering via BayesSpace (Figure 3J-K inset). Quantifying 239 

performance, BayesSpace exhibited significantly higher RMSE compared to STdeconvolve 240 
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(Diebold-Mariano p-value < 2.2 × 10-16) as a whole (Supplementary Fig S5C, though more 241 

discernably in the thalamus region (Figure 3L). Taken together, deconvolution approaches such 242 

as STdeconvolve can provide distinct results from clustering and resolution enhanced clustering 243 

approaches when applied to multi-cellular pixel resolution data.  244 

 245 

STdeconvolve characterizes the spatial organization of transcriptionally distinct cell-types 246 

in real ST data 247 

Having demonstrated the capacity of STdeconvolve to recover cell-type proportions and 248 

transcriptional profiles in simulated ST data, we next sought to evaluate the performance of 249 

STdeconvolve by analyzing real 100 µm2 resolution ST data of the mouse main olfactory bulb 250 

(MOB)23. The MOB consists of multiple bilaterally symmetric and transcriptionally distinct cell 251 

layers due to topographically organized sensory inputs24. While previous clustering analysis of 252 

ST data of the MOB revealed coarse spatial organization of coarse cell layers, finer structures 253 

such as the rostral migratory stream (RMS) could not be readily observed (Supplementary Figure 254 

S6A-B). We applied STdeconvolve to identify K=12 cell-types (Figure 4A, Supplementary 255 

Figure S6C, Supplementary Methods) that either overlapped with or further split coarse cell 256 

layers previously identified from clustering analysis (Supplementary Figure S6D). In particular, 257 

deconvolved cell-type X7 overlapped with the granule cell layer previously identified from 258 

clustering analysis and was spatially placed where the RMS is expected25 (Figure 4B). 259 

Upregulated genes in its deconvolved transcriptional profile, including Nrep, Sox11, and Dcx, are 260 

known to be associated with neuronal differentiation and upregulated in neuronal precursor cells 261 

within the RMS26 (Figure 4C, Supplementary Figure S6E). Higher resolution ISH staining of 262 

these genes further demarcates a region within the granule cell layer where the RMS is 263 
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expected19 (Figure 4D). This suggests that deconvolved cell-type X7 may correspond to the 264 

neuronal precursor cell-type within the RMS unidentified from clustering analysis.  265 

To further evaluate the biological reproducibility of deconvolved cell-types, we applied 266 

STdeconvolve independently to 3 additional biological replicates of ST data of the MOB 267 

(Supplementary Methods). In each biological replicate, STdeconvolve consistently identified 268 

approximately 12 cell-types (Supplementary Figure S7A). Transcriptional profiles between 269 

deconvolved cell-types were also highly correlated across biological replicates (Supplementary 270 

Figure S7B-D). This suggests that STdeconvolve can reliably deconvolve consistent cell-types, 271 

even across biological replicates. 272 

As noted previously using simulated ST data, the performance of reference-based 273 

deconvolution approaches is sensitive to differences in cell-type composition between the single-274 

cell transcriptomics reference and the ST data to be deconvolved. To demonstrate this with real 275 

ST data, we first compared STdeconvolve and reference-based deconvolution approaches using 276 

an appropriate MOB scRNA-seq reference27 (Supplementary Methods). We found strong 277 

correlations between cell-type proportions estimated by STdeconvolve and other reference-based 278 

deconvolution approaches with a high degree of correspondence among all evaluated methods 279 

(Supplementary Figure S8A-B). Notably, the proportion and transcriptional profile of 280 

deconvolved cell-type X8 identified by STdeconvolve to be enriched in the olfactory nerve layer 281 

correlated strongly with the proportion of olfactory ensheathing cells (OECs) identified by the 282 

reference-based deconvolution approaches.  283 

Next, to simulate a less suitable scRNA-seq reference, we removed OECs from the MOB 284 

scRNA-seq reference and again evaluated the performance of reference-based deconvolution 285 

approaches given this new scRNA-seq reference without OECs (Supplementary Methods). 286 
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Again, as a reference-free deconvolution approach, the results of STdeconvolve do not change. 287 

However, for some reference-based deconvolution approaches, given this new reference without 288 

OECs, pixels in the olfactory nerve layer previously comprised of OECs were now predicted to 289 

be comprised of N2 cells (Supplementary Figure S9A). Although we do not know the ground 290 

truth cell-type composition of this olfactory nerve layer, we have reasons to believe that this 291 

placement of N2 cells is erroneous. First, when a scRNA-seq reference with OECs was used, 292 

reference-based deconvolution approaches generally estimated N2 cells to be relatively rare. 293 

However, when a scRNA-seq reference without OECs was used, reference-based deconvolution 294 

approaches substantially increased their estimated abundance of N2 cells (Supplementary Figure 295 

S9B). Second, while the transcriptional profiles of OECs and N2 cells are highly correlated 296 

(Supplementary Figure S9C), the two cell-types exhibit significant transcriptionally differences. 297 

For example, top differentially upregulated genes in OECs are highly expressed in the olfactory 298 

nerve layer (Supplementary Figure S8C) whereas top differentially upregulated genes in N2 cells 299 

are not well detected in the olfactory nerve layer (Supplementary Figure S9D). This lack of 300 

detection of N2 cell marker genes within the olfactory nerve layer coupled with the rarity of N2 301 

cells in the original reference-based deconvolution with OECs suggests that the placement of N2 302 

cells in the olfactory nerve layer by reference-based deconvolution approaches when using a 303 

reference without OECs is erroneous.  304 

Further, a single-cell transcriptomics reference may not always exist for the same tissue 305 

from which ST data was generated, prompting the use of a reference from a related but 306 

inherently different tissue source. To evaluate the potential effect of using a single-cell 307 

transcriptomics reference from a different tissue source on reference-based deconvolution 308 

approaches, we sought to deconvolve the MOB ST data using the scRNA-seq reference from the 309 
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mouse brain described previously. Given this mouse brain reference, pixels in the olfactory nerve 310 

layer previously comprised of OECs were now predicted to be comprised of vascular 311 

leptomeningeal cells (VLMC) (Supplementary Figure S10A). Again, although we do not know 312 

the ground truth cell-type composition of this olfactory nerve layer, top differentially upregulated 313 

genes in VLMCs are not well detected in the MOB (Supplementary Figure S10B) and are 314 

therefore likely not truly present. Taken together, all this suggests that reference-based 315 

deconvolution approaches are sensitive to the cell-types represented in the single-cell 316 

transcriptomics reference that is used, which may lead to inaccurate results and spurious cell-317 

type assignments when a suitable reference is not available.  318 

 319 

STdeconvolve is applicable across diverse ST dataset resolutions and technologies 320 

We anticipate that continual technological improvements will enhance the resolution of 321 

ST data. Already, ST technologies such as Visium (10X Genomics), Slide-seq28, and DBiT-seq29 322 

have achieved resolution that can range from 50 µm2 to 10 µm2. Therefore, we sought to 323 

evaluate the performance of STdeconvolve on higher resolution ST data using both simulated as 324 

well as real ST data from higher resolution ST technologies including Visium, Slide-seq, and 325 

DBiT-seq. 326 

First, to simulate higher resolution ST data, we again aggregated single-cell resolution 327 

MERFISH data of the MPOA into 50, 20, and 10 µm2 resolution pixels. Applying 328 

STdeconvolve, we observed similarly strong correlations between the deconvolved cell-type 329 

transcriptional profiles and proportions with the ground truth (Supplementary Figure S11A-D). 330 

Although the number of cells in each multi-cellular pixel did decrease as the resolution of the 331 

pixel increased as expected, we note that even higher resolution pixels may still contain multiple 332 
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cells representing multiple cell-types (Supplementary Figure S11E-F). Thus, deconvolution may 333 

still be applicable to higher resolution ST data and STdeconvolve can still accurately deconvolve 334 

cell-types within these higher resolution multi-cellular pixels.  335 

Encouraged by STdeconvolve’s ability to recover cell-types in simulated high-resolution 336 

ST data, we then applied STdeconvolve to real high-resolution multi-cellular ST data from 337 

several different technologies. First, we applied STdeconvolve to 50 µm2 resolution ST data of a 338 

coronal section of the mouse brain from 10X Visium30. Briefly, for 10XVisium, mRNAs from 339 

tissue sections are captured onto an array of DNA barcoded spots, resulting in RNA-sequencing 340 

measurements with gridded 2D spatial positional information. We applied STdeconvolve to 341 

identify K=20 cell-types that exhibit spatially distinct patterns that demarcate known brain 342 

structures such as the isocortex and fiber tracts (Figure 4E, Supplementary Figure S12, 343 

Supplementary Methods).  344 

We next applied STdeconvolve to 25 µm2 resolution ST data of the lower body of the 345 

E11 mouse embryo from DBiT-seq. Briefly, for DBiT-seq, parallel microfluidic channels are 346 

used to deliver DNA barcodes to the surface of a tissue to enable direct barcoding of mRNAs in 347 

situ, resulting in RNA-sequencing measurements in a 2D mosaic of spatial pixels. Previously, the 348 

authors identified 13 transcriptionally and spatially distinct features in the E11 mouse embryo 349 

including the atrium, ventricle, liver, and blood vessels containing erythrocyte coagulation. 350 

Applying STdeconvolve with K=13, we identify deconvolved cell-types that corresponded with 351 

similar spatially distinct features in agreement with the original findings (Figure 4F, 352 

Supplementary Figure S13A, Supplementary Methods). Moreover, the top genes in the 353 

deconvolved cell-type specific transcriptional profiles contained the expected marker genes of 354 

the matching features, such as Myh6 for the atrium, Myh7 for the ventricle, Apoa2 for the liver, 355 
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and Hba.a2 for the blood vessels containing erythrocyte coagulation in agreement with the 356 

original findings (Supplementary Figure S13B). 357 

Finally, we applied STdeconvolve to 10 µm2 resolution ST data of the mouse cerebellum 358 

from Slide-seq. Briefly, for Slide-seq, mRNAs from tissue sections are captured onto densely 359 

packed barcoded beads, resulting in RNA-sequencing measurements with 2D spatial positional 360 

information. Previously, RCTD was also applied to this Slide-seq dataset with a matched Drop-361 

seq scRNA-seq reference of the mouse cerebellum31 to identify beads representing a distinct 362 

layers of Purkinje neurons and Bergmann glia. Applying STdeconvolve, we identified K=14 cell-363 

types (Figure 4G, Supplementary Methods) whose transcriptional profiles correlated strongly 364 

with cell-types from the scRNA-seq dataset of the mouse cerebellum (Supplementary Figure 365 

S14A). In particular, we found that the deconvolved transcriptional profiles of cell-type X4 and 366 

cell-type X2 correlated strongly with the transcriptional profiles of Purkinje neurons and 367 

Bergmann glia. Likewise, the deconvolved proportional representation of cell-type X4 and cell-368 

type X2 also agreed significantly (Fisher’s Exact p-value < 2.2 × 10-16) with the predicted 369 

proportions of Purkinje neuron and Bergmann glia from RCTD (Supplementary Figure S14B-C). 370 

Taken together, these results indicate that STdeconvolve can be applicable to a range of multi-371 

cellular resolution ST technologies. 372 

As the resolution of ST data improves, the number of spatially resolved pixels and cell-373 

types represented in the data will presumably also increase. We therefore sought to evaluate the 374 

scalability of STdeconvolve in anticipation of these increasingly larger datasets. To this end, we 375 

benchmarked the runtime and total memory usage by STdeconvolve when deconvolving varying 376 

numbers of cell-types using varying numbers of genes across varying numbers of pixels 377 

(Methods). We found that both the runtime and memory usage by STdeconvolve increased 378 
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linearly with the number of pixels and genes in the input dataset (Supplementary Figure S15A) 379 

and is comparable to existing reference-based deconvolution methods when applied to current 380 

ST datasets5. Likewise, runtime scales with the number of deconvolved cell-types K in the input 381 

dataset though memory usage remains stable (Supplementary Figure S15B). To enhance runtime 382 

efficiency, STdeconvolve has built in parallelization. In this manner, we anticipate that 383 

STdeconvolve will be amenable to larger ST data.  384 

 385 

STdeconvolve identifies immune infiltrates in breast cancer 386 

Finally, to demonstrate the potential of an unsupervised, reference-free deconvolution 387 

approach, we applied STdeconvolve to 100 µm2 resolution ST data of 4 breast cancer sections32. 388 

Here, a matched scRNA-seq reference was not available and using a scRNA-seq reference from 389 

another breast cancer sample may be inappropriate due to potential inter-tumoral heterogeneity33. 390 

Transcriptional clustering of the ST pixels previously identified 3 transcriptionally distinct 391 

clusters that corresponded to 3 histological regions of the tissue: ductal carcinoma in situ (DCIS), 392 

invasive ductal carcinoma (IDC), and non-malignant32 (Figure 5A, Supplementary Figure 16A-393 

B). However, the tumor microenvironment is a complex milieu of many additional cell-types34. 394 

We thus applied STdeconvolve to identify potential additional cell-types and interrogate their 395 

spatial organization, resulting in K=15 identified cell-types (Figure 5B, Supplementary Figure 396 

S16C, Online Methods). Of these, deconvolved cell-types X3 and X13 pixel proportions 397 

corresponded spatially with pixels annotated as the non-malignant and DCIS regions, 398 

respectively (Supplementary Figure S16D). Likewise, the deconvolved expression profiles for 399 

X3 and X13 included KRT1, a keratin gene specifically expressed in mammary myoepithelial 400 

cells35, and PRSS23, a serine protease associated with proliferation of breast cancer cells36, 401 
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respectively, consistent with the non-malignant and DCIS annotations (Supplementary Figure 402 

S17). Interestingly, the deconvolved expression profile for cell-type X15 included immune genes 403 

such as CD74 and CXCL10 (Figure 5C-E, Supplementary Figure S18). Gene set enrichment 404 

analysis also suggested that genes in the deconvolved expression profile for cell-type X15 was 405 

significantly enriched in immune processes such as T cell activation (Supplementary Table S1, 406 

Online Methods). This suggests that deconvolved cell-type X15 may correspond to immune 407 

infiltrates. Further, we find a significant the number of pixels with a high proportion of 408 

deconvolved cell-type X15 corresponding to IDC regions (Fisher’s exact p-value = 0.001257) 409 

based on previous clustering and pathology annotations. In contrast, we do not see a significant 410 

number of pixels with a high proportion of deconvolved cell-type X15 corresponding to DCIS 411 

regions (Fisher’s exact p-value = 0.5625). This is consistent with previous observations that 412 

when comparing pure DCIS and IDC, infiltration of immune cells was significantly higher in 413 

IDC to pure DCIS37,38. 414 

The spatial organization of immune cells within tumors has been previously implicated to 415 

be relevant in breast cancer prognosis39. In particular, whether immune cells are infiltrated or 416 

excluded from the tumor is associated with tumor microenvironments that stratify patient 417 

outcomes40. To evaluate whether STdeconvolve may be able to distinguish infiltrated versus 418 

excluded spatial organization of immune cells in tumors, we simulated ST data representing 419 

infiltrated and excluded spatial organizations using mixtures of single cells assayed by scRNA-420 

seq (Figure 5F, Online Methods). In both the simulated infiltrated and excluded cases, we find 421 

that STdeconvolve can effectively recover the cell-type transcriptional profiles (Figure 5G) and 422 

enable the quantification of immune infiltration to help distinguish between infiltrated versus 423 

excluded spatial organization of immune cells (Figure 5H). Therefore, we anticipate that 424 
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STdeconvolve may be able to assist in deconvolving cell-types in heterogeneous cancer tissues 425 

to recover potentially clinically interesting spatial organizational patterns.  426 

 427 

Discussion 428 

Multi-cellular pixel-resolution ST technologies have enabled high-throughput 429 

transcriptomic profiling of small mixtures of cells within tissues but accurate identification of the 430 

underlying cell-types within each pixel is critical for elucidating cell-type specific spatial 431 

organizational patterns and gene expression variation. Although several deconvolution methods 432 

have already been developed to address this challenge, they currently rely on suitable single-cell 433 

transcriptomics references. As we have shown, this reliance on single-cell transcriptomics 434 

references constrains the spatial mapping of cell-types to those in the reference, which may 435 

present limitations if there are missing cell-types, mismatched cell-types, perturbations, and 436 

batch effect differences between the single-cell transcriptomics reference and ST data to be 437 

deconvolved. Here, we have presented STdeconvolve, a reference-free computational approach 438 

to deconvolve cell-type proportions and their transcriptional profiles in multi-cellular pixel 439 

resolution ST data. We have demonstrated that STdeconvolve can accurately recover underlying 440 

cell-type proportions and their transcriptional profiles across a range of different ST technologies 441 

and resolutions. STdeconvolve further provides competitive performance to reference-based 442 

deconvolution approaches when an ideal single-cell transcriptomics reference is available and 443 

potentially better performance in more realistic circumstances where such an ideal reference is 444 

not available. Additionally, we showed the advantage of deconvolution over clustering-based 445 

analysis methods to interrogate heterogeneous mixtures of cell-types. Likewise, using simulated 446 

ST data of aged-perturbed tissues, we showed that STdeconvolve can recover perturbation-447 
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driven cell-type-specific gene expression changes. Finally, we applied STdeconvolve to identify 448 

putative immune infiltration in real and simulated breast cancer ST data.  449 

Though we have shown that STdeconvolve can effectively recover cell-type proportions 450 

and transcriptional profiles in simulated and real ST data, its use of LDA modeling relies on 451 

several underlying assumptions, which may present limitations when these assumptions are not 452 

satisfied. Notably, the performance of LDA in accurately deconvolving cell-types depends on the 453 

size of the dataset with respect to the number of pixels and the number of genes41. As such, 454 

deconvolution accuracy generally decreases for ST data containing fewer than 10 pixels 455 

(Supplementary Figure S19). While we have generally found the number of pixels in most ST 456 

datasets to be well beyond 10 pixels after quality control filtering, the application of ST to profile 457 

tissue slivers or other thin structures covering only a few pixels may present challenges to 458 

deconvolution by STdeconvolve. Further, LDA modeling attempts to identify tightly occurring, 459 

and ideally non-overlapping groups of genes in the pixels as cell-types. In this manner, if genes 460 

do not exhibit variability across pixels due to a homogeneous or uniform proportional 461 

representation of cell-types across pixels (Supplementary Figure S20), STdeconvolve may fail to 462 

deconvolve distinct cell-types. Likewise, if the gene expression in the ST data is too sparse with 463 

high rates of stochastic drop-outs42, then the LDA model may struggle to identify distinct groups 464 

of co-expressed genes and as such STdeconvolve may also struggle to deconvolve distinct cell-465 

types as well. Still, when such failures happen, STdeconvolve will indicate to users when distinct 466 

cell-types are not detected.  467 

Although we have demonstrated the applicability of STdeconvolve to high resolution 468 

multi-cellular pixel resolution ST data, as the resolution of ST data continues to increase, sub-469 

cellular pixel-resolution ST technologies will also become more accessible. Already, a number 470 
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sub-cellular pixel-resolution ST technologies have emerged43-47. As the capture efficiency at this 471 

resolution and likewise the biological questions of interest may differ substantially from multi-472 

cellular ST data, we anticipate that new methods specifically suited for sub-cellular resolution ST 473 

data will be needed. Thus, STdeconvolve may not be best suited to analysis of such sub-cellular 474 

resolution ST data. Still, as we have noted previously, even as the resolution of ST data 475 

increases, some pixels may still contain multiple cells representing multiple cell-types, 476 

suggesting that deconvolution may still be necessary. Likewise, the number of cells present in a 477 

pixel ultimately will depend on cell size, which can vary depending on the organism, tissue, 478 

and/or disease state being profiled. Ultimately, we believe that there will be a need to balance 479 

between resolution and throughput of ST technologies depending on the biological question of 480 

interest. The potentially larger tissue regions able to be covered by multi-cellular pixel resolution 481 

ST data may still be of interest and thus still require deconvolution. We anticipate that 482 

STdeconvolve will be applicable to data from a variety of current and future ST technologies as 483 

well as potentially inferred ST data48 to reveal cell-type specific spatial organizational patterns 484 

and transcriptional changes. In general, we foresee that reference-free deconvolution approaches 485 

such as STdeconvolve will contribute to the interrogation of the spatial relationships between 486 

transcriptionally distinct cell-types in heterogeneous tissues.  487 

  488 
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Methods  489 

 490 

STdeconvolve Overview 491 

STdeconvolve uses latent Dirichlet allocation (LDA)49, a generative probabilistic model, to 492 

deconvolve the latent cell-types contained within multi-cellular pixels of spatially resolved 493 

transcriptome (ST) measurements. In this context, each pixel is defined as a mixture of 𝐾 cell-494 

types represented as a multinomial distribution of cell-type probabilities (𝜃), and each cell-type 495 

is defined as a probability distribution over the genes (𝛽) present in the ST dataset.  496 

 497 

LDA Modeling 498 

The ST dataset is represented as a 𝐷	 × 	𝑁 matrix of discrete gene expression counts for each 499 

pixel 𝑑 and gene 𝑛. The total number of unique molecules, or total gene expression, in a given 500 

pixel 𝑑 is 𝑀!.  501 

 502 

As a generative probabilistic model, the LDA model generates a set of new pixels as follows: 503 

 504 

For each pixel 𝑑: 505 

a. draw a cell-type distribution 𝜃! 	~	𝐷𝑖𝑟(𝛼), where 𝜃! is a multinomial distribution of 506 

length 𝐾 drawn from a uniform Dirichlet distribution with scaling parameter 𝛼. 507 

b. for each observed molecule 𝑚 in 𝑀!:  508 

i. draw cell-type assignment 𝑧!,#	~	𝑚𝑢𝑙𝑡(𝜃!) 509 

ii. draw a gene 𝑤!,#	~	𝑚𝑢𝑙𝑡(𝛽$!,#) 510 

 511 
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The central goal is to identify the posterior distribution of the latent parameters given the input 512 

data, where for each pixel d: 513 

𝑝(𝜃! , 𝒛	|	𝒘, 𝛼, 𝛽) = 	
𝑝(𝜃! , 𝒛, 𝒘	|𝛼, 𝛽)
𝑝(𝒘	|𝛼, 𝛽)  514 

where 𝒛 is a vector of 𝑀! cell-types assigned to each unique molecule in pixel d, and 𝒘 is the 515 

vector of 𝑀! genes assigned to each unique molecule for pixel d. A variational expectation-516 

maximization approach is used to estimate the values of the latent parameters49,50. By default, 𝛽 517 

is initialized with 0 for all cell-types and genes, and 𝛼 as 50/K. 518 

 519 

The resulting estimated 𝜃 and 𝛽 matrices represent the deconvolved proportions of cell-types in 520 

each pixel and the gene expression profiles for each cell-type, scaled to a library size of 1. 𝛽 521 

represents a 𝐾	 × 	𝑁 gene-probability (i.e., expression) matrix for each cell-type 𝑘 and each gene 522 

𝑛 with each row summing to 1. The 𝛽 matrix can be multiplied by a scaling factor of one million 523 

to be more like conventional counts-per-million expression values for interpretability. 𝜃 524 

represents a 𝐷	 × 	𝐾 pixel-cell-type proportion matrix for each pixel d and each cell-type k. LDA 525 

modeling in STdeconvolve is implemented through the `topicmodels` R package50. 526 

 527 

Of note, LDA assumes for each cell-type that there is a group of genes highly co-expressed with 528 

high probability. Therefore, STdeconvolve uses feature selection for genes more likely to be 529 

highly co-expressed within cell-types, which can improve cell-type deconvolution.  530 

 531 

Selection of genes for LDA model 532 

Latent cell-types are best discovered by LDA modeling if cell-type specific marker genes 533 

are included in the input ST data while genes whose expression is shared across cell-types are 534 
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excluded. Therefore, to filter for genes that are more likely to be specifically expressed in 535 

particular cell-types to improve cell-type deconvolution by LDA, STdeconvolve first removes 536 

genes that are not detected in a sufficient number of pixels. By default, genes detected in less 537 

than 5% of pixels are removed. Likewise, STdeconvolve also removes genes that are expressed 538 

in all pixels. By default, genes detected in 100% of pixels are removed. STdeconvolve then 539 

selects for significantly overdispersed genes, or genes with higher-than-expected expression 540 

variance across pixels, as a means to detect transcriptionally distinct cell-types15. We assume that 541 

the proportion of cell-types will vary across pixels and thus differences in their cell-type-specific 542 

transcriptional profiles manifest as overdispersed genes across pixels in the dataset.  543 

If there are too many genes included in the input ST data, LDA may also struggle to 544 

identify non-overlapping clusters composed of distinct combinations of co-expressed genes. In 545 

these circumstances, users may modulate the number of informative genes included in the input 546 

matrix to ensure LDA convergence. By default, only the top 1000 most overdispersed genes are 547 

retained in the input ST data.  548 

Additional gene filtering or cell-type specific marker genes to include in the input ST 549 

data may also be augmented by the user. 550 

 551 

Selection of LDA model with optimal number of cell-types 552 

The number of cell-types 𝐾 in the LDA model must be chosen a-priori. To determine the 553 

optimal number of cell-types 𝐾 to choose for a given dataset, we fit a set of LDA models using 554 

different values for K over a user defined range of positive integers greater than 1. We then 555 

compute the perplexity of each fitted model: 556 

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐷) = exp	 E−
logJ𝑝(𝐷)K

∑ ∑ 𝑐!,%&
%'(

)
!'(

N 557 
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Where p(D) is the likelihood of the dataset and 𝑐!,% is the gene count, or expression level, of 558 

gene n in pixel d. We can interpret p(D) as the posterior likelihood of the dataset conditional on 559 

the cell-type assignments using the final estimated 𝜃 and 𝛽. The lower the perplexity, the better 560 

the model represents the real dataset. Thus, the trend between choice of K and the respective 561 

model perplexity can then serve as a guide. By default, the perplexity is computed by comparing 562 

p(D) to the entire input dataset used to estimate 𝜃 and 𝛽.  563 

In addition, STdeconvolve also reports the trend between K and the number of 564 

deconvolved cell-types with mean pixel proportions < 5% (as default). We chose this default 565 

threshold based on the difficulty of STdeconvolve and reference-based deconvolution 566 

approaches to deconvolve cell-types at low proportions, (i.e., “rare” cell-types) (Supplementary 567 

Note 2). We note that as K is increased for fitted LDA models, the number of such “rare” cell-568 

types generally increases. Such rare deconvolved cell-types are often distinguished by fewer 569 

distinct transcriptional patterns in the data and may represent non-relevant or spurious 570 

subdivisions of primary cell-types. We can use this metric to help set an upper bound on K.  571 

Generally, perplexity decreases and the number of “rare” deconvolved cell-types 572 

increases as K increases. Given these model perplexities and number of “rare” deconvolved cell-573 

types for each tested K, the optimal K can then be determined by choosing the maximum K with 574 

the lowest perplexity while minimizing number of “rare” deconvolved cell-types. To further 575 

guide the choice of K, an inflection point (“knee”) is derived from the maximum second 576 

derivative of the plotted K versus perplexity plot and K versus number of “rare” deconvolved 577 

cell-types.  578 

Still, for a given K, the fitted LDA model may fail to identify distinct cell-types e.g., the 579 

distribution of cell-type proportions in each pixel is uniform. In such a situation, the Dirichlet 580 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.06.15.448381doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448381
http://creativecommons.org/licenses/by/4.0/


 27 

distribution shape parameter 𝛼 of the LDA model will be >= 1 and STdeconvolve will indicate to 581 

the user that the fitted LDA model for a particular K has an 𝛼 above this threshold by greying out 582 

these Ks in the trend plot. 583 

 Ultimately, the choice of K is left up to the user and can be chosen taking into 584 

consideration prior knowledge of the biological system. 585 

 586 

Simulating ST data from single-cell resolution spatially resolved MERFISH data 587 

MERFISH data of the mouse medial preoptic area (MPOA) was obtained from the original 588 

publication16. Normalized gene expression values were converted back to counts by dividing by 589 

1000 and multiplying by each cell’s absolute volume. Datasets for an untreated female animal 590 

(FN7, datasets 171021_FN7_2_M22_M26 and 171023_FN7_1_M22_M26) containing counts 591 

for 135 genes assayed by MERFISH were used. Genes with non-count expression intensities 592 

assayed by sequential FISH were omitted. Counts of blank control measurements were also 593 

removed. Cells were previously annotated as being one of 9 major cell-types (astrocyte, 594 

endothelial, microglia, immature or mature oligodendrocyte, ependymal, pericyte, inhibitory 595 

neuron, excitatory neuron). Cells originally annotated as “ambiguous” were removed from the 596 

dataset to ensure the ground truth was composed of cells with distinguishable cell-types. Because 597 

certain cell-types may be enriched in specific regions of the MPOA, we combined 12 tissue 598 

sections across the anterior and posterior regions to ensure that all expected cell-types would be 599 

well represented in the final simulated ST dataset. After filtering, the final dataset contained 600 

59651 cells representing 9 total cell-types and counts for the 135 genes.  601 

 To simulate a multi-cellular pixel resolution ST dataset from such single-cell resolution 602 

spatially resolved MERFISH data, we generated a grid of squares, each square with an area of 603 
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100	µm2. Each square was considered a simulated pixel and the gene counts of cells whose x-y 604 

centroid was located within the coordinates of a square pixel were summed together. A grid of 605 

square pixels was generated for each of the 12 tissue sections separately and the simulated pixels 606 

for all 12 tissue sections were subsequently combined into a single ST dataset. For a given tissue 607 

section, the bottom edge of the grid was the lowest y-coordinate of the cell centroids and the left 608 

edge of the grid was the lowest x-coordinate. Square boundaries were then drawn from each of 609 

these edges in 100	µm2 increments until the position of the farthest increment from the origin 610 

was greater than the highest respective cell centroid coordinate. After generating the grid, square 611 

pixels whose edges formed one of the outside edges of the grid were discarded in order to 612 

remove simulated pixels, which by virtue of their placement, encompassed space outside of the 613 

actual tissue sample. The retained pixels covered 49142 out of the original 59651 cells in the 12 614 

tissue sections. This resulted in a simulated ST dataset with 3072 pixels by 135 genes. We used 615 

the original cell-type labels of each cell to compute the ground truth proportions in each 616 

simulated pixel. Likewise, to generate the ground truth transcriptional profiles of each cell-type, 617 

we averaged the gene counts for cells of the same cell-type from the original 59651 cells and 618 

normalized the resulting gene count matrix to sum to 1 for each cell-type. To simulate pixels of 619 

50, 20, and 10 µm2, an identical approach was taken using the same cells except those square 620 

boundaries were drawn from each edge in 50, 20, or 10 µm2 increments. 621 

 622 

Annotation and matching of deconvolved and ground truth cell-types 623 

Each deconvolved cell-type was first matched with the ground truth cell-type that had the highest 624 

Pearson’s correlation between their transcriptional profiles. This was done by computing the 625 
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Pearson’s correlation between every combination of deconvolved and ground truth cell-type 626 

transcriptional profiles. 627 

The assignment of deconvolved cell-types to ground truth cell-types was confirmed by 628 

testing for enrichment of differentially upregulated genes of the ground truth cell-types in the 629 

deconvolved cell-type transcriptional profiles. To determine the differentially upregulated genes 630 

of the ground truth cell-types, ground truth transcriptional profiles were converted to counts per 631 

thousand and low expressed genes, defined as those with average expression values less than 5, 632 

were removed. For each ground truth cell-type, the log2 fold-change of each remaining gene with 633 

respect to the average expression across the other ground-truth cell-types was computed. 634 

Differentially upregulated genes were those with log2 fold-change > 1. We performed rank-based 635 

gene set enrichment analysis of the ground truth upregulated gene sets in each deconvolved cell-636 

type transcriptional profile using the `liger` R package51. A match to a ground truth cell-type was 637 

confirmed and assigned if the ground truth gene set had the lowest gene set enrichment adjusted 638 

p-value that was at least < 0.05, followed by the highest positive edge score52, and then highest 639 

positive enrichment score to break ties. 640 

 641 

Deconvolution of additional simulated and real ST data 642 

Deconvolution of simulated and real ST data using STdeconvolve in addition to deconvolution 643 

of simulated and real ST data using supervised and semi-supervised reference-based 644 

deconvolution approaches with various single-cell transcriptomics references is further detailed 645 

in Supplementary Methods. 646 

 647 

Comparison of deconvolution approaches 648 
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How each supervised and semi-supervised deconvolution approach was run is further detailed in 649 

the Supplementary Methods. To compare the performance between deconvolution methods, the 650 

root mean squared error (RMSE) was computed for each pixel between the deconvolved and 651 

matched ground truth cell-type proportions for each pixel in the ST dataset:  652 

𝑅𝑀𝑆𝐸 = 	R
∑ (𝑦S* − 𝑦*)+,
*'(

𝐾  653 

where K is the number of cell-types, 𝑦S* is the predicted cell-type proportion for the cell-type k, 654 

and 𝑦* is the ground truth cell-type proportion for the cell-type k. To assess whether the 655 

distribution of pixel RMSEs was significantly lower for STdeconvolve compared to other 656 

methods, a one-sided Diebold-Mariano Test53 was used. 657 

 658 

Runtime and memory evaluation 659 

Using the Visium dataset described in Supplementary Methods `Deconvolution of 10X Visium 660 

data with STdeconvolve`, we generated an input ST dataset of 2702 pixels and feature selected 661 

for the top 1000 most significant overdispersed genes. Runtime of STdeconvolve was measured 662 

on randomly drawn subsets of input data. Five subsets are drawn with 2702 pixels and 50, 100, 663 

200, 400, and 1000 genes, respectively. Another five subsets are drawn with the 1000 top 664 

overdispersed genes and 50, 100, 200, 400, and 1000 pixels, respectively. All subsets are 665 

deconvolved with cell type number (K) between 4 and 20 as input parameters. Runtime was 666 

measured using the R package `microbenchmark`54 (v1.4-7). Memory usage of STdeconvolve 667 

was measured using a similar sub-setting procedure and the R package `profmem`55 (v0.6.0). 668 

Total memory allocation was measured, which provides an upper bound for peak memory usage. 669 
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Runtime and memory analyses were run on a machine with i7-6600U 2.60GHz CPU with 8GM 670 

of RAM. 671 

 672 

Availability of Code 673 

STdeconvolve is available as an open-source R software package56 with the source code 674 

available in the Supplemental Material and on GitHub at https://github.com/JEFworks-675 

Lab/STdeconvolve. Additional documentation and tutorials are available at 676 

https://jef.works/STdeconvolve/ 677 
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Figure Legends816 

 817 

Figure 1. Overview of STdeconvolve. A) STdeconvolve takes as input a spatial transcriptomics 818 

(ST) gene counts matrix of D pixels (rows) by N genes (columns). A matrix of spatial 819 

coordinates for each of the D pixel can also be used for visualization. B) STdeconvolve first 820 

feature selects genes for deconvolution, such as genes with counts in more than 5% and less than 821 

95% of the pixels, and overdispersed across the pixels. STdeconvolve then guides the selection 822 

of the optimal number of cell-types to be deconvolved, K. STdeconvolve finally applies LDA 823 

modeling. A graph representation of LDA modeling and the parameters to be learned is shown. 824 

Shaded circle indicates observed variables and clear circles indicate latent variables. C) 825 

STdeconvolve outputs two matrices: (1) 𝛽, the deconvolved transcriptional profile matrix of K 826 

cell-types over N’ feature selected genes, and (2) 𝜃, the proportions of K cell-types across the D 827 

pixels. The proportion of deconvolved cell-types can then be visualized across the pixels. 828 

829 
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 830 
 831 

Figure 2. Deconvolution of simulated ST data. A) Ground truth single-cell resolution 832 

MERFISH data of one section of the MPOA partitioned into 100 µm2 pixels (black dashed 833 

squares). Each dot is a single cell colored by its ground truth cell-type label. B) Proportions of 834 

deconvolved cell-types from STdeconvolve represented as pie charts for each simulated pixel. C) 835 

The ranking of each gene based on its expression level in the deconvolved cell-type 836 

transcriptional profiles compared to its gene rank in the matched ground truth cell-type 837 

transcriptional profiles. C) Heatmap of Pearson’s correlations between the deconvolved cell-type 838 

proportions and ground truth cell-types proportions across simulated pixels. D) Ground truth 839 

cell-types are ordered by their frequencies in the ground truth dataset. Matched deconvolved and 840 

ground truth cell-types are boxed. E) Root-mean-square-error (RMSE) of the deconvolved cell-841 
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type proportions compared to ground truth for STdeconvolve, F) for supervised deconvolution 842 

approaches using the ideal single cell transcriptomics MERFISH MPOA reference, G) for 843 

supervised deconvolution approaches using the single cell transcriptomics MERFISH MPOA 844 

reference with missing neurons, and H) for supervised deconvolution approaches using a brain 845 

single-cell RNA-seq reference. 846 
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 848 

Figure 3. Comparing clustering versus deconvolution analysis for ST data. A) Overview of 849 

simulation approach. Starting from a single-cell RNA-seq clustering result visualized as a 2D 850 

tSNE embedding with cells colored by cell-type (top), gene expression counts from cells are 851 

combined to simulate cell-type mixtures, with the proportions of cell-types are represented as pie 852 

charts for each arbitrary spatial pixel (bottom). B) Simulated ST datasets of aged and young 853 

tissues using mixtures of aged macrophages with aged luminal cells and young macrophages 854 

with young luminal cells respectively represented as pie charts for each simulated ST pixel. C) 855 

Bar chart of log2 fold-change for deconvolved aged macrophage versus deconvolved young 856 

macrophage gene expression. Select genes are highlighted in red. D) Simulated ST dataset with 3 857 
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cell-types represented as pie charts for each simulated ST pixel. E) Clustering analysis results of 858 

simulated ST dataset with 3 cell-types. Pie chart proportional representation (left) and tSNE 859 

representation (right). F) Deconvolution results for the simulated ST dataset with 3 cell-types by 860 

STdeconvolve. The ranking of each gene based on its expression level in the deconvolved-cell-861 

type transcriptional profiles compared to its gene rank in the matched ground truth cell-type 862 

transcriptional profiles (top). Heatmap of Pearson’s correlations between the deconvolved cell-863 

types proportions and ground truth cell-types proportions across simulated pixels (bottom). G) 864 

BayesSpace enhanced resolution clustering results for the simulated ST dataset with 3 cell-types 865 

represented as pie charts. H) Root-mean-square-error (RMSE) of the deconvolved cell-type 866 

proportions compared to ground truth for the simulated ST dataset with 3 cell-types. I) Ground 867 

truth cell-type proportions derived from single-cell resolution MERFISH data of the mouse brain 868 

partitioned into 100 µm2 pixels. J) Deconvolved cell-type proportions for the mouse brain by 869 

STdeconvolve. K) Enhanced resolution clustering for the mouse brain by BayesSpace. Inset 870 

highlights an interior region corresponding approximately to the thalamus. L) Root-mean-square-871 

error (RMSE) of the deconvolved cell-type proportions compared to single-cell clustering for the 872 

MERFISH mouse brain data for the inset interior region corresponding approximately to the 873 

thalamus.  874 
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 876 

Figure 4. Deconvolution of ST data of varying resolution from multiple technologies by 877 

STdeconvolve. A) Deconvolved cell-type proportions for ST data of the MOB, represented as 878 

pie charts for each ST pixel. Pixels are outlined with colors based on the pixel transcriptional 879 

cluster assignment corresponding to MOB coarse cell layers. B) Highlight of deconvolved cell-880 

type X7. Pixel proportion of deconvolved cell-type X7 are indicated as black slices in pie charts. 881 

Pixels are outlined with colors as in A). C) Gene counts in each pixel of the MOB ST dataset for 882 

deconvolved cell-type X7’s select top marker genes Sox11 and Nrep. D) Corresponding ISH 883 

images for Sox11 and Nrep from the Allen Brain Atlas19. E) Deconvolved cell-type proportions 884 

for Visium data of the mouse brain. F) Deconvolved cell-type proportions for DBiT-seq data of 885 
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the lower body of an E11 mouse embryo. G) Deconvolved cell-type proportions for Slide-seq 886 

data of the mouse cerebellum.  887 
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 888 
 889 

Figure 5. STdeconvolve characterizes the spatial organization of immune cells in real and 890 

simulated breast cancer ST data. A) An H&E-stained image of the breast cancer tissue with 891 

pathological annotations adapted from Yoosuf et al.32. B) Deconvolved cell-type pixel 892 

proportions for ST data of a breast cancer tissue section, represented as pie charts. Pixels are 893 

outlined with colors based on the pixel transcriptional cluster assignment corresponding to 3 894 

pathological annotations. C) Highlight of deconvolved cell-type X15. Pixel proportion of 895 

deconvolved cell-type X15 are indicated as black slices in pie charts. Pixels are outlined with 896 

colors as in B). Select genes corresponding cell-type X15’s select top marker genes are shown. 897 
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D) Barplot of the deconvolved transcriptional profile of cell-type X15 ordered by magnitude. 898 

Inset represents the log2 fold-change of the deconvolved transcriptional profile of cell-type X15 899 

with respect to the mean expression of the other 14 deconvolved cell-type transcriptional 900 

profiles. Select highly expressed and high fold-change genes are labeled. E) Gene set enrichment 901 

plot for significantly enriched GO term “T cell activation” for deconvolved cell-type X15. F) 902 

Simulated ST datasets of an immune-excluded tumor sample (top) and immune-infiltrated tumor 903 

sample (bottom) using mixtures of single cells represented as pie charts for each simulated ST 904 

pixel. G) Deconvolution results for the simulated ST data by STdeconvolve. The ranking of each 905 

gene based on its expression level in the deconvolved-cell-type transcriptional profiles compared 906 

to its gene rank in the matched ground truth cell-type transcriptional profiles for the simulated 907 

immune-excluded tumor sample (top) and immune-infiltrated tumor sample (bottom). H) 908 

Histogram of the deconvolved proportion of immune cells in the tumor region defined in (F) for 909 

the simulated immune-excluded tumor sample (top) and immune-infiltrated tumor sample 910 

(bottom). 911 
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