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Abstract. Recently developed single-cell DNA sequencing technologies enable whole-genome, amplifi-
cation-free sequencing of thousands of cells at the cost of ultra-low coverage of the sequenced data
(< 0.05x per cell), which mostly limits their usage to the identification of copy number alterations
(CNAs) in multi-megabase segments. Aside from CNA-based subclone detection, single-nucleotide vari-
ant (SNV)-based subclone detection may contribute to a more comprehensive view on intra-tumor
heterogeneity. Due to the low coverage of the data, the identification of SNVs is only possible when
superimposing the sequenced genomes of hundreds of genetically similar cells. Here we present Single
Cell Data Tumor Clusterer (SECEDO, lat. ‘to separate’), a new method to cluster tumor cells based
solely on SNVs, inferred on ultra-low coverage single-cell DNA sequencing data. The core aspects of
the method are an efficient Bayesian filtering of relevant loci and the exploitation of read overlaps
and phasing information. We applied SECEDO to a synthetic dataset simulating 7,250 cells and eight
tumor subclones from a single patient, and were able to accurately reconstruct the clonal composition,
detecting 92.11% of the somatic SNVs, with the smallest clusters representing only 6.9% of the total
population. When applied to four real single-cell sequencing datasets from a breast cancer patient,
SECEDO was able to recover the major clonal composition in each dataset at the original sequencing
depth of 0.03x per cell, an 8-fold improvement relative to the state of the art. Variant calling on the
resulting clusters recovered more than twice as many SNVs with double the allelic ratio compared to
calling on all cells together, demonstrating the utility of SECEDO.
SECEDO is implemented in C++ and is publicly available at https://github.com/ratschlab/secedo.
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1 Introduction

Somatic single-nucleotide variants (SNVs) are commonly associated with cancer progression and growth
[39]. The recent development of single-cell DNA sequencing technologies [12] offer the ability to study
somatic SNVs at a single-cell level, providing much more detailed information about tumor composition
and phylogeny than traditional bulk sequencing [18,33]. However, several technical obstacles decrease the
interpretability of the data obtained using these technologies. In particular, most of the current single-
cell DNA sequencing technologies require a whole-genome amplification step, which introduces artifacts
such as DNA-amplification errors, allelic drop-out, imbalanced amplification, etc. [12]. Several approaches
[4,10,16,19,27,38,44] have been proposed to detect SNVs based on such data.

Approaches that do not require whole-genome amplification have been developed to overcome issues
related to amplification [20,33]. A prominent example of such technologies is 10X Genomics’ Chromium
Single Cell CNV Solution1. This technology allows the sequencing of hundreds to thousands of cells in
parallel, albeit with only extremely low sequencing coverage (<0.05x per cell). Hence, its use has been limited
to the inference of copy number variations (CNVs) and alterations (CNAs) [1,11,41,42]. The attempts to also
use these data for the identification of tumor subclones based solely on SNVs have so far failed to provide
a solution that would be able to recover the clonal composition at the original sequencing depth [32]; in
particular, the algorithm of [32] requires a minimum coverage of ≥ 0.2x per cell, roughly four times more
than what is currently achievable using the 10X Genomics technology [1,41].

In this work, we propose SECEDO, a novel algorithm for clustering cells based on SNVs using single-
cell sequencing data with ultra-low coverage. Using an extensive set of simulated data, as well as four real
data sets, we show that SECEDO is able to correctly identify tumor subclones in data sets with per-cell
coverage as low as 0.03x, improving the current state of the art by a factor of eight and thus rendering the
algorithm applicable to currently available 10X Genomics single-cell data. We also provide an efficient C++
implementation of SECEDO, which is able to quickly cluster sequencing data from thousands of cells while
running on commodity machines.

2 Methods

Overview

Due to the extremely low coverage of the data (< 0.05x per cell), deciding whether two cells have identical or
distinct genotypes is a difficult problem. Most loci are covered, if at all, by only one read (Supplementary
Figure S1). This makes it difficult, if not impossible, to interpret an observed mismatch when comparing
data from two cells. The mismatch could be caused by an actual somatic SNV, by a sequencing error, or
by a heterozygous locus that was sequenced in different phase in the two cells. The situation is further
complicated by the fact that both heterozygous loci and sequencing errors occur with higher frequency than
somatic SNVs in cancer: the frequency of heterozygous loci in a typical human genome is about 10−3 [5,30]
and sequencing errors (using the Illumina technology) happen with a rate of about 10−3 [9,17,29,35], while
the prevalence of somatic SNVs in cancer is typically reported to be between 10−9 and 10−3 [2,23]. Hence,
it is crucial to jointly leverage the information from all cells at the same time.

The pivotal blocks in the SECEDO pipeline are (1) the Bayesian filtering strategy for efficient identifica-
tion of relevant loci and (2) the derivation of a global cell-to-cell similarity matrix utilizing both the structure
of reads and the haplotype phasing, which proves to be more informative than considering only one locus at
a time.

SECEDO first performs a filtering step, in which it examines the pooled sequenced data for each locus
and uses a Bayesian strategy to eliminate loci that are unlikely to carry a somatic SNV (Figure 1). The
filtering step drastically increases the signal-to-noise ratio by reducing the number of loci by 3 to 4 orders
of magnitude (depending on the coverage), while only eliminating approximately half of the loci that carry
a somatic SNV. Moreover, the eliminated mutated loci typically have low coverage or high error rate and
would not be very useful for clustering. In the second step, SECEDO builds a cell-to-cell similarity matrix
based only on read-pairs containing the filtered loci, using a probabilistic model that takes into account

1 https://www.10xgenomics.com/products/single-cell-cnv/
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Fig. 1. The SECEDO pipeline. After sequencing, reads are piled up per locus and a Bayesian filter eliminates loci
that are unlikely to carry a somatic SNV. For each pair of reads, SECEDO compares the filtered loci and updates the
likelihoods of having the same genotype and of having different genotypes for the corresponding cells. The similarity
matrix, computed as described in Methods, is then used to cluster the cells into 2 to 4 groups (the number of groups
depends on the data and is determined automatically by SECEDO) using spectral clustering. The algorithm is then
recursively applied to each cluster until a termination criterion is reached.

the probability of sequencing errors, the frequency of SNVs, the filtering performance, and, crucially, the
structure of the reads, i.e. the fact that the whole read was sampled from the same haplotype. In the third
step of the pipeline, we use spectral clustering to divide the cells into two or more groups. At this point,
we reduced the problem to an instance of the well-studied community detection problem [36], so spectral
clustering is a natural choice. Optionally, the results of spectral clustering can be further refined in a fourth
step using the Expectation-maximization algorithm [7]. The whole pipeline is then repeated for each of the
resulting subclusters. The process is stopped if (1) there is no evidence for the presence of at least two
clusters in the similarity matrix, or (2) the clusters are deemed too small. Downstream analysis, for instance,
variant calling, can then be performed by pooling sequencing data from all cells in one cluster based on the
results of SECEDO to create a pseudo-bulk sample.

Filtering uninformative loci

Consideration of all genomic loci is not desirable when performing the clustering and variant calling, since
most positions are not informative for clonal deconvolution. The most informative loci with respect to the
clustering of the cells are the loci carrying somatic SNVs since they provide (1) information on assignment
of cells to clusters and (2) information on haplotype phasing (due to loss/gain of heterozygosity). To a lesser
extent, this is also true for germline heterozygous loci since they provide information on haplotype phasing.
In other words, loci at which all the cells have the same homozygous genotype do not provide any information
relevant to the task of dividing the cells into genetically homogeneous groups, so they can be excluded from
downstream analysis.

Due to the low sequencing coverage, it is generally not possible to reliably assign genotypes to individual
cells. However, we identify loci of interest by using the pooled data across all the cells to approximate posterior
probabilities that the cells have the same genotype. Consider for example a specific locus at which all cells
have genotype AA. Assuming sequencing errors happen independently with probability θ and are unbiased
(i.e. all types of substitutions are equally probable), the fraction of As in the pooled data is in expectation
(1− θ) and the fraction of all other bases is θ/3. A locus with a significantly different proportion of observed
bases indicates that there may be two (or more) different genotypes contributing to the observed data.
In particular, we compute the posterior probability that all cells at the locus share the same homoyzgous
genotype using an approximate Bayesian procedure. If this posterior is lower than a chosen threshold K, the
locus is marked as ‘informative’.
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Formally, let C1, C2, C3, C4 be the bases sorted from the most to the least frequent in the pooled data
at the given position, c1, c2, c3, c4 the corresponding counts (c1 ≥ c2 ≥ c3 ≥ c4), c the total coverage
(c = c1 + c2 + c3 + c4). Next, let M be an indicator random variable that is 1 if all cells in the sample have
the same homozygous genotype and 0 otherwise. Applying Bayes rule, we can compute P (M | c1, c2, c3, c4)
as:

P (M | c1, c2, c3, c4) =
P (c1, c2, c3, c4 | M)P (M)

P (c1, c2, c3, c4)
(1)

We compute or approximate the individual terms as follows:

– P (M) can be estimated from literature: the prevalence of somatic SNVs in cancer lies between 10−9

and 10−3 [2,23]; the frequency of heterozygous sites in a typical human genome lies between ca 0.04
and 0.11% [5,30]. In order to be conservative, we choose the largest probability (≈ 10−3) in both cases,
resulting in P (M) ≈ 1− 2 · 10−3 = 0.998.

– P (c1, c2, c3, c4 | M), is equal to

P (c1, c2, c3, c4 | M) =
∑
g∈G

P (c1, c2, c3, c4 | genotype of all cells is g)P (g), (2)

where G = {AA, CC, GG, TT} is the set of all possible homozygous genotypes.
The probability of observing data (c1, c2, c3, c4) given that the genotype of all cells is g (g = CiCi) has
a multinomial distribution with c trials and event probabilities equal to

(
1− θ, θ

3 ,
θ
3 ,

θ
3

)
:

P (c1, c2, c3, c4 | genotype of all cells is g) =
c!

c1!c2!c3!c4!
(1− θ)ci

(
θ

3

)c−ci

Assuming the error rate θ is small, the result of the equation above is negligible for any ci that is not close
to c. As a consequence, if the prior P (g) is approximately the same for all genotypes, we can approximate
the sum in Equation 2 with the largest term:

P (c1, c2, c3, c4 | M) ≈ max
g∈G

P (c1, c2, c3, c4 | genotype of all cells is g)P (g). (3)

– Computing P (c1, c2, c3, c4) is intractable, as it would involve summing over all possible combinations of
the cells’ genotypes. We instead approximate the evidence by

P (c1, c2, c3, c4) ≈
c!

c1!c2!c3!c4!

[
phom(1− θ)c1

(
θ

3

)c2+c3+c4

+ phet

(
1

2
− θ

3

)c1+c2 (θ

3

)c3+c4

+ phompmut

(
3

4
− θ

3

)c1 (1

4

)c2 (θ

3

)c3+c4

+ phetpmut
c!

c1!c2!c3!c4!

(
1

2
− θ

3

)c1 (1

4

)c2+c3 (θ

3

)c4
]

where phom, phet, pmut represent the probability of a locus being homozygous, heterozygous and mutated,
respectively. The first summation term estimates P (c1, c2, c3, c4) for a homozygous locus, the second term
assumes a heterozygous locus, the third term corresponds to a homozygous locus that suffered a somatic
mutation, and the last term to a heterozygous locus with a somatic mutation. See Supplemental
Material S1 for a more detailed derivation.

We then include the locus into the subset of informative positions if P (M | c1, c2, c3, c4) ≤ K for a
suitable constant K (see Supplemental Material S2 and Supplementary Table S1).

Filtering heterozygous loci is similar. Here, let P (M ′ | c1, c2, c3, c4) be the probability that all cells
have the same heterozygous genotype. The individual terms in Equation 1 are identical except that the
event probabilities for the multinomial distribution are

(
1
2 − θ

3 ,
1
2 − θ

3 ,
θ
3 ,

θ
3

)
. However, since heterozygous loci

are three orders of magnitude fewer than homozygous loci [5,30] in addition to potentially being useful in
haplotype phasing, in practice it is sufficient to use a simple heuristic: we denote the locus as informative
if c1 > 1.5 · c2, where c1 and c2 are the most frequent and the second most frequent bases at that locus,
respectively (the expectation is that at a heterozygous locus c1 and c2 are close to each other). In addition,
we reject all loci for which c1 + c2 + c3 < 5.
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Fig. 2. Illustration of an overlap between two reads. The orange shaded positions are the positions chosen as infor-
mative. In this example, length of the overlap is 3, the number of positions where the bases are the same, xs, is 2
and the number of positions where they are different, xd, is 1. For our purposes, an overlap is fully described by the
tuple (xs, xd).

The final set of informative loci then includes those positions that were marked as informative by both
filtering steps (i.e. filtering of both homozygous and heterozygous loci). In practice, sequencing artefacts may
lead to loci with unusually high coverage. For this reason, we also eliminate any loci with coverage more
than two standard deviations away from the expected coverage. In addition, we also eliminate loci where
c− c1 < 5.

Cell-to-cell similarities

We define the similarity s(i, j) of cells i and j as the log-odds of the probability that cells i and j have the
same genotype and the probability that they have different genotypes, given the corresponding sets of reads.
Each of the two probabilities is then approximated as a product of probabilities of individual overlaps of two
reads, one read from cell i and one read from cell j (Figure 2). Formally:

s(i, j) = log

(
P [C(i) = C(j) | ri, rj , h, ϵ]
P [C(i) ̸= C(j) | ri, rj , h, ϵ]

)
= log

(
P [ri, rj | C(i) = C(j), h, ϵ]

P [ri, rj | C(i) ̸= C(j), h, ϵ]

)
(4)

≈
∑
k,l

log

(
P
[
xs(r

k
i , r

l
j), xd(r

k
i , r

l
j) | C(i) = C(j), h, ϵ

]
P
[
xs(rki , r

l
j), xd(rki , r

l
j) | C(i) ̸= C(j), h, ϵ

]) , (5)

where ri is the set of reads from cell i, rki is the k-th read from cell i, xs(p, q) and xd(p, q) the number of
matches and mismatches, respectively, between reads p and q, C(i) is the (true) cluster assignment of cell i, ϵ
is the proportion of SNVs in the set of informative positions and h the proportion of homozygous loci in the
set of informative positions (see below). We assume that observing cells with the same genotype and with
different genotypes has the same prior probability. (Notice that decomposing the probabilities in Equation
4 over pairs of reads is indeed only an approximation. In particular, the decomposition in Equation 5 would
only be precise if no two reads coming from one cell were overlapping; in the opposite case, the probabilities
of read pairs containing one of these overlapping reads are non-independent. However, since the per-cell
coverage is so low (Supplementary Figure S1), the number of such non-independent pairs is negligible.)

Notice that by decomposing the probabilities over the overlaps of reads we gain information not only
on the number of matches and mismatches between the two reads (i.e. information on potential differences
between the two cells), but also information on haplotype phasing. Moreover, it also allows us to put more
weight on longer (and hence supposedly more informative) overlaps. For example, a long overlap with only
matches is an indication that the two cells might have the same genotype. A long overlap with only mis-
matches, on the other hand, is not a strong indication towards the cells being from different clusters – another
likely scenario is that the two reads were sampled from different haplotypes and we just observe a row of
heterozygous loci in different phase. As a result, overlaps with a combination of matches and mismatches
are the ones most strongly suggesting the ‘different genotypes’ case (Supplementary Figure S2). We also
show, using simulated data, that considering the number of matches and mismatches in the whole overlap of
two reads provides strictly more information than considering each locus independently (Supplementary
Figure S3).

Below we give details on the computation of Equation 5.

Assumptions We make the following simplifying assumptions:
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1. There are only two kinds of cells; the prevalence of differences between their genomes is µ.
2. All cells are diploid.
3. The somatic SNVs are with equal probability of type AA+AB (a homozygous site in cluster 1, heterozy-

gous in cluster 2) and AB+AA (a heterozygous site in cluster 1, homozygous in cluster 2); in particular,
we do not take into account homozygous SNVs (AA+BB) or mutations that involve more than two
different alleles (e.g. AB+AC) [6].

4. The mutated and germline heterozygous loci are distributed randomly and independently in the genome;
in particular, they do not tend to cluster together.

5. Sequencing errors happen independently at each sequenced base with probability θ and are unbiased (i.e.
all types of substitutions are equally likely).

6. We run the clustering on the set of informative positions; in the set there are loci of three types:

– loci that carry a somatic SNV,
– loci that have the same homozygous genotype in all cells, and were not discarded during the previous

step only because of sequencing errors, and
– loci that have the same heterozygous genotype in all cells, and were not discarded during the previous

step e.g. because of preferential amplification.

We denote the frequency of the homozygous loci in the data set by h and the frequency of the mutated
loci by ϵ; the frequency of the germline heterozygous loci is then (1− h− ϵ).

Parameters The algorithm has three parameters: h, the fraction of the homozygous loci in the set of selected
positions, ϵ, the fraction of the mutated loci in the set, and θ, the error rate. In our analyses, we used h = 0.5,
ϵ = 0.01, and θ = 0.05 (the θ parameter has higher value than the usually reported sequencing error rate,
because the set of informative positions is enriched in positions carrying sequencing errors).

Computing the probabilities of overlaps We define:

– Ps,s, the probability that sequencing of two bases of the same kind results again in two bases of the same
kind:

Ps,s = (1− θ)2 +
θ2

3
(6)

(both bases are sequenced without error, or both are misread to the same base),
– Ps,d, the probability that sequencing of two bases of the same kind results in bases that differ from each

other:

Ps,d = 1− Ps,s, (7)

– Pd,s, the probability that two different bases are read as the same:

Pd,s = 2 · (1− θ) · θ
3
+

2θ2

9
(8)

(one of the two bases is misread to the other one, or both are misread to the same base),
– Pd,d the probability that two different bases are sequenced as different:

Pd,d = 1− Pd,s. (9)

The probability of observing xs matches and xd mismatches in an overlap of length xs + xd, assuming
cells i and j have the same genotype, is now:

P [xs, xd | C(i) = C(j), h, ϵ] =

(
xs + xd

xs

) xs∑
k=0

xd∑
l=0

(
xs

k

)(
xd

l

)

·

heterozygous positions︷ ︸︸ ︷(
1− h− ϵ

2

)k+l
(
1

2

(
P k
s,s · P l

s,d + P k
d,s · P l

d,d

))δ(k+l)

·

homozygous positions︷ ︸︸ ︷(
h+

ϵ

2

)(xs+xd−k−l)

· P (xs−k)
s,s · P (xd−l)

s,d , (10)
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where δ(x) is a function defined as 0, if x = 0, and 1, otherwise. In the formula we sum over all possible
combinations of (k + l) heterozygous loci and (xs + xd − k − l) homozygous loci; k of the heterozygous loci
result in a match, the remaining l in a mismatch.

The probability of observing xs matches and xd mismatches assuming cells i and j are in different clusters
is:

P [xs, xd | C(i) ̸= C(j), h, ϵ] =

(
xs + xd

xs

)
·

xs∑
k=0

xs−k∑
p=0

xd∑
l=0

xd−l∑
q=0

xs!

k!p!(xs − k − p)!
· xd!

l!q!(xd − l − q)!

·

heterozygous positions︷ ︸︸ ︷
(1− h− ϵ)

k+l

(
1

2

(
P k
s,s · P l

s,d + P k
d,s · P l

d,d

))δ(k+l)

·

homozygous positions︷ ︸︸ ︷
h(p+q) · P p

s,sP
q
s,d

·

mutated positions︷ ︸︸ ︷( ϵ
2

)(xs+xd−k−l−p−q)

· (Ps,s + Pd,s)
(xs−k−p) · (Pd,d + Ps,d)

(xd−l−q)
(11)

Here k denotes the number of heterozygous positions giving rise to a match, l the number of heterozygous
positions giving rise to a mismatch, p the number of positions with the same homozygous genotype in both
types of cells that give rise to a match and q the number of these positions that result in a mismatch.

Clustering

We first normalize the computed similarity matrix by making sure all elements are positive: S∗ = −S +
mini,j s(i, j). The cells are then clustered using a slight variation on spectral clustering [34] as follows. We

compute the symmetric normalized Laplacian L = I −D− 1
2S∗D− 1

2 and determine its first k (we used k = 6
in all experiments in this paper) eigenvectors, corresponding to the k smallest eigenvalues. We then cluster
into 1,2,3 or 4 clusters using k-means [3,26], computing the inertia values i1, i2, i3, i4 for each of the four
options and the inertia gaps gk = ik − ik−1, k = 2, 3, 4, and define g1 := 0. The final number of clusters is
maxk=2,3,4 {k | gk > 0.75gk−1}.

One important aspect of clustering is the stopping criterion, i.e. the decision whether a specific group of
cells should be divided into subclusters or not. We suggest a (to the best of our knowledge new) heuristic
approach to automatically decide if the computed normalized similarity matrix S∗ indicates that there are
two (or more) different clusters of cells. We fit a Gaussian mixture model with 1, 2, 3 or 4 components
to the smallest k eigenvectors of S∗ and compare their likelihood using the Akaike information criterion
(AIC) or the Bayesian information criterion (BIC). If the model with only one component is preferred by
AIC/BIC over the models with 2, 3 or 4 components we do not split the data further. We further do not
accept the split if the resulting subclone has too few cells (we used 500 in our experiments). We also require
that the mean within-cluster coverage is at least 9, the lowest coverage sufficient for a reliable variant call
(see Supplemental Material S3).

3 Results

SECEDO recovers tumor subclones with average precision of 97% on simulated data

In order to test the performance of our method, we simulated a dataset consisting of 7,250 cells divided into
9 groups of various sizes: one group of healthy cells and 8 groups of tumor cells. The genome of the healthy
cells was created using Varsim [31] based on the GRCh38 human reference genome. Common variants from
dbSNP [37] (3,000,000 single-nucleotide polymorphisms, 100,000 small insertions, 100,000 small deletions,
50,000 multi-nucleotide polymorphisms, 50,000 complex variants) were added to the genome. The genome
of the tumor cells was built by adding 2,500 to 20,000 of both coding and non-coding SNVs (subclonal
SNV fraction of 3%-27%, [8]), randomly chosen from the COSMIC v94 (Catalogue Of Somatic Mutations
In Cancer) database [40], to the parent genome, in addition to 250 small insertions, 250 small deletions, 200
multi-nucleotide variants and 200 complex variants (Figure 3). Paired-end reads, with each mate of length
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Fig. 3. Theoretical phylogenetic tree of the synthetic dataset, comprising 7,250 cells and 9 unequally sized subclones.
Edge labels indicate the number of additional SNVs in each subclone relative to the parent. Node labels indicate the
number of cells in each subclone. The mean per-cell coverage is 0.05x.

Fig. 4. Clustering a synthetic dataset with 9 unequally sized subclones totaling 7,250 cells. Each node represents
one recursive SECEDO clustering step. The percentage at the bottom of each node indicates the clustering precision
(correctly clustered cells relative to total cells in cluster). The scatter plots above parent nodes depict the 2nd and 3rd
eigenvectors of the similarity matrix Laplacian. For leaf nodes SECEDO correctly determined that further clustering
is not desirable.

100 bp, were simulated using ART [15] at an average coverage of 0.05x per cell and with the error profile of
Illumina HiSeq 2000 machines. The reads were then aligned using Bowtie 2 [21] and filtered using Samtools
[24] to select for reads mapped only in proper pair, non-duplicate and only primary alignments.

For efficiency reasons, we build the pileup files used by the Bayesian filtering using our own implementation
rather than existing tools that are not optimized for use on thousands of cells simultaneously (e.g. Samtools,
which currently does not offer a multi-threaded pileup creation). The pileup creation, distributed on 23
commodity machines (one for each chromosome) using 20 threads each, takes about 70 minutes (down from
72 hours when using Samtools’ pileup creation on the same machines). We ran SECEDO on the resulting
pileup files on an Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz using 20 threads and 32GB of RAM. The
filtering, clustering and VCF generation took 21 minutes. For the top level clustering, the filtering step kept
about 1 in 16,000 loci. Somewhat counter-intuitively, the number of filtered loci approximately doubled at
each level as we traveled down the clustering tree. This is due to the fact that the discriminative power of the
Bayesian filtering degrades as the mean pooled coverage decreases (from 248 at the root to 20 at the leaves),
such that a larger proportion of loci that are not relevant are let through. SECEDO was able to recover all
9 subclones with an average precision of 97.45% (see Figure 4). Note that SECEDO is not attempting to
reconstruct the evolutionary history of the tumor, but merely trying to efficiently find a grouping of cells
that reflect the current subclonal structure and enable downstream tasks like variant calling. Therefore, the
clustering tree reconstructed by SECEDO does not reflect the actual developmental process that gave rise
to the given population of cancer cells; indeed, the SECEDO clustering tree (see Figure 4) differs from the
true phylogenetic tree of the population (see Figure 3).

In order to show the potential of the resulting clusters for somatic variant calling, we identified the most
likely genotype of each cluster using a simple MAQ-based approach [25] (Supplemental Material S3) and
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Fig. 5. Analysis of the minimal requirements under which SECEDO can be applied to a given dataset. Left:Minimum
required coverage for successful clustering of sub-clones differing in the given number of SNVs, in three scenarios.
The yellow and red lines show the required average per-cell coverage for clustering 1,000 cells, with a (1/4, 3/4) split,
and an equal (1/2, 1/2) split, respectively. The bottom line shows the required per-cell coverage for clustering 2,000
with an equal split. The shaded area marks the coverage currently achievable in practice. The top labels indicate the
cancer type with mean mutation rate closest to the given SNV density (cancer mutation rates according to [23]).
DLBCL = Diffuse large B-cell lymphoma. Right: Scatter plots of the 2nd and 3rd eigenvectors of the similarity
matrix Laplacian for increasing coverage values (1,000 cells, 500 in each group; 5,000 SNVs). The higher the coverage,
the clearer the separation between the two clusters.

generated VCF files for each cluster against the GRCh38 human reference genome. Similarly to other variant
callers that remove germline variants [6], we then removed the ground-truth variants that were present in
the healthy cells and compared the remaining SNVs against the ground truth SNVs provided by Varsim for
each cluster. SECEDO was able to detect 92.11% of the somatic SNVs (vs. 77.79% when calling variants on
the unclustered cells) with a 52.41% average precision (see Supplementary Table S2).

SECEDO is able to correctly group cells starting at 0.05x coverage and 500 cells per cluster

One practical question of crucial importance is how to determine if, given a dataset, SECEDO will be able
to correctly cluster the cells for meaningful downstream processing. To answer this question, we conducted
a series of experiments to determine the conditions under which SECEDO can successfully be applied to a
given dataset. There are three cluster attributes that affect SECEDO’s ability to separate cell clusters: (a)
the number of cells, (b) the average per-cell coverage, and (c) the number of SNVs in which the clones differ.
In order to test the interplay of these three cluster attributes, we devised a series of synthetic datasets, each
consisting of 1,000 cells belonging to two groups. The sizes of the two groups were either equal (i.e. 500
cells in each group) or in ratio 1:3 (i.e. one cluster consisted of 250 cells and the other one of 750 cells).
Then, for a given number of SNVs and given sizes of clusters, we gradually lowered the per-cell coverage
until the algorithm was unable to cluster the cells correctly. The genome creation, reads simulation, and
alignment were done as described in the previous section. For most parameter configurations, the currently
achievable per-cell coverage of 0.05x is sufficient for SECEDO to correctly cluster the cells (see Figure 5,
left). Since SECEDO is able to discriminate between balanced clusters of 500 cells that differ in as little as
5,000 SNVs (equivalent to an SNV prevalence of ca 1.67 ·10−6), the method can be applied to a wide variety
of cancers, starting from those with very high mutation rates, such as melanoma (mean prevalence of somatic
SNVs ca 10−5) down to pancreatic and breast cancer (mean prevalence of somatic SNVs ca 10−6) [2,23].
Note that there is a relationship between tumor mutational burden and SECEDO’s ability to distinguish
subclones. SECEDO is able to identify complex subclonal structures (such as in Figure 3) in cancers with
high mutational burden (e.g. melanoma), whereas in cancers with lower mutational burden (e.g. pancreatic
and breast cancer) only major clones could be identified, as shown in the next section.

An important thing to note is that SECEDO’s discriminative power goes beyond 5,000 SNVs when
increasing the pooled coverage (e.g. by increasing the number of sequenced cells): Figure 4 shows that
SECEDO was able to accurately isolate cells in Tumor 8, even though they only differ in 2,500 SNVs from
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Fig. 6. Clustering of the four tumor sections in the 10x Genomics ductal carcinoma dataset. The first row in each
node denotes the cluster name; for consistency, we used the same cluster numbering as [42]3. The second row denotes
the number of cells recovered by SECEDO vs the total number of cells as identified by [42]. The last row denotes
the precision of the clustering, i.e. the percentage of cells in the SECEDO cluster that match the originally reported
cluster. The lower precision values are due to the fact that cells categorized by [42] as ”None” based on the CNV
signature are assigned a category by SECEDO based on the genomic signature.

their parent. While Figure 5 indicates that at a coverage of 0.05x a minimum of 5,000 SNVs are required
to distinguish the subclones, this result was obtained for a pooled coverage of ≈ 41, which is nearly half
the pooled coverage for Tumors 5 and 8 (≈ 76). As expected, the discriminative power of SECEDO also
increases with the per-cell coverage (see Figure 5, right), since the per-cell coverage acts as a multiplying
factor for the pooled coverage.

SECEDO recovers dominant subclones in a breast cancer dataset

In order to test the performance of SECEDO on real data, we downloaded a publicly available 10X Genomics
single-cell DNA sequencing dataset2 sequenced using an Illumina NovaSeq 6000 System. The dataset contains
five tumor sections (labeled A to E) of a triple negative ductal carcinoma, each section containing roughly
2,000 cells [1]. The mean per-cell coverage in the data set is 0.03x, with individual coverages ranging from
0.006x to 0.086x. Using CNV profiling [42], three dominant clones were identified in each of the sections,
except for section A, which only has one dominant clone and was thus not included in our analysis.

We applied SECEDO to the four datasets corresponding to sections B,C,D, and E. The filtering step
reduced the number of loci in each tumor section to roughly 1,000,000 bp (ca 0.03% of the original size);
the average pooled coverage across the ≈ 2,000 cells in each dataset ranged from 45 to 55. SECEDO was
able to correctly recover the three dominant clones in each of the four tumor sections. The clustering results
match with high accuracy (96.68% recall, 66.59% precision) those in [42] (Figure 6). The scatter plots of
the 2nd and 3rd eigenvector of the similarity matrix confirm that each tumor section consists of three highly
separable clusters.

We then called SNVs on each subclone of Slice B independently, and on the entire slice. In order to
call SNVs, we created a Panel of Normals from the cells categorized as normal by [42] based on the CNV
profile (Clone19 in the left-most tree of Figure 6). We ran MuTect 1.1.4 [6] with the default settings, using
dbSNP [37] and Cosmic v94 [40] as priors. The number of distinct SNVs in the two tumor subclones is more
than double the number of variants that were called when pooling all cells together (Figure 7, left). The
histogram of the allelic factor for the sublconal and global SNVS shows a significant shift to the right for
the subclonal SNVs, an indication that the clustering correctly identified and separated genetically similar
cells, enabling the detection of twice as many SNVs at twice the allelic ratio (Figure 7, right).

4 Discussion

We introduced SECEDO, a method that is able to correctly identify subclones in single-cell sequencing
datasets with coverage as low as 0.03x per cell (providing an 8-fold improvement on the state of the art [32]),

2 https://www.10xgenomics.com/resources/datasets/
3 Available at https://github.com/raphael-group/chisel-data/
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Fig. 7. Left: SNVs detected on Slice B of the breast cancer dataset by running Mutect with the default settings.
The middle columns show the number of SNVs reported when running Mutect on each of the two cancer subclones
separately, as detected by SECEDO. The last column shows the number of SNVs reported by Mutect when merging
the two cancer subclones, while the significantly lower value in the first column represents the number of SNVs
reported by Mutect when run against all cells in the tumor slice (including the healthy cells). Right: Histogram of
the allelic ratio for the SNVs detected by applying MuTect to the two tumor subclones and to all cells in slice B of
the breast cancer dataset. The shift to the right in the allelic ratio indicates that the clustering increased the tumor
purity.

as demonstrated in four breast cancer datasets (Figure 6). It is thus readily applicable to the single-cell
DNA sequencing data generated with the 10X Genomics technology. SECEDO is driven by two main key
ideas, which are the efficient filtering of uninformative positions as well as taking into account information
from overlapping reads. SECEDO performs the clustering with no additional information and, unlike the
state-of-the-art method [32], does not require a normal sample for identification of potential mutations. We
provide an efficient, well-tested, ready-to-use C++ implementation of SECEDO, which uses established data
formats for both input and output, and can thus be easily incorporated into existing bioinformatics pipelines.

We demonstrated SECEDO’s applicability to currently available single-cell sequencing data and find that
SECEDO correctly clustered cells on a series of synthetic and four breast cancer datasets. CNA frequencies
and patterns vary significantly across cancer types [14,43], similarly to SNV frequency. Since SECEDO does
not use copy-number information to cluster cells, it can infer sub-clones even in cancer types where CNAs
do not vary or where the frequency of CNAs is generally low (e.g. pancreatic neuroendocrine tumors [8]).
It is also notable that not all CNAs affect the SNV profile of a cell. Thus, CNA-based clustering may lead
to suboptimal grouping of cells, e.g. from a variant calling perspective. SECEDO is able to group cells with
similar SNV profiles irrespective of their CNA profiles. This can lead to improvements in the precision and
accuracy of the variant calling. Using the clusters identified by SECEDO, we were able to recover 92.11% of
the SNVs present in the synthetic data set using a simple variant caller. On Slice B of the breast cancer data
set, the number and the confidence of the called SNVs more than doubled after clustering using SECEDO,
compared to calling variants on the entire slice.

While SECEDO enables accurate cell-clustering and variant calling, there are a number of areas for future
improvement. First, SECEDO currently only uses single-nucleotide substitutions to cluster cells, which are
known to be the most common type of mutations in adult and childhood cancers [13,22,28]. We expect that
the clustering accuracy could be further improved if e.g. short insertions and deletions were additionally used.
Second, the smallest subclones that SECEDO was able to detect had ≈200 cells. However, as technology
inevitably improves and the sequencing coverage increases, SECEDO’s resolution and variant calling quality
will also proportionally increase.

We hope that SECEDO will facilitate new types of analyses and form the basis for future methodological
development in the field of cancer research and treatment outcome prognosis.
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12 Rozhoňová, H., Danciu, D., et al.

Acknowledgements

We would like to thank Ximena Bonilla for her constructive feedback on the manuscript. This work was
supported by ETH core funding to G.R. (funding D.D., S.S., A.K., KV.L.).

References

1. 10X Genomics: Application note: Assessing tumor heterogeneity with single cell CNV. https://pages.10xgenomics.
com/rs/446-PBO-704/images/10x AN026 SCCNV Assessing Tumor%20Heterogeneity digital.pdf (2018)

2. Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Aparicio, S.A.J.R., Behjati, S., Biankin, A.V., Bignell, G.R., Bolli,
N., Borg, A., Børresen-Dale, A.L., et al.: Signatures of mutational processes in human cancer. Nature 500(7463),
415–421 (2013). https://doi.org/10.1038/nature12477

3. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. Technical Report 2006-13, Stanford
InfoLab (2006), http://ilpubs.stanford.edu:8090/778/

4. Bohrson, C.L., Barton, A.R., Lodato, M.A., Rodin, R.E., Luquette, L.J., Viswanadham, V.V., Gulhan, D.C.,
Cortés-Ciriano, I., Sherman, M.A., Kwon, M., et al.: Linked-read analysis identifies mutations in single-cell
DNA-sequencing data. Nature Genetics 51(4), 749–754 (2019). https://doi.org/10.1038/s41588-019-0366-2

5. Bryc, K., Patterson, N., Reich, D.: A novel approach to estimating heterozygosity from low-coverage genome
sequence. Genetics 195(2), 553–561 (2013). https://doi.org/10.1534/genetics.113.154500, https://www.genetics.
org/content/195/2/553

6. Cibulskis, K., Lawrence, M.S., Carter, S.L., Sivachenko, A., Jaffe, D., Sougnez, C., Gabriel, S., Meyerson, M.,
Lander, E.S., Getz, G.: Sensitive detection of somatic point mutations in impure and heterogeneous cancer
samples. Nature Biotechnology 31(3), 213–219 (2013). https://doi.org/10.1038/nbt.2514

7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society. Series B (Methodological) 39(1), 1–38 (1977), http://www.jstor.org/
stable/2984875

8. Dentro, S.C., Leshchiner, I., Haase, K., Tarabichi, M., Wintersinger, J., Deshwar, A.G., Yu, K.,
Rubanova, Y., Macintyre, G., Demeulemeester, J., . . . , Van Loo, P.: Characterizing genetic intra-
tumor heterogeneity across 2,658 human cancer genomes. Cell 184(8), 2239–2254.e39 (2021).
https://doi.org/https://doi.org/10.1016/j.cell.2021.03.009, https://www.sciencedirect.com/science/article/
pii/S0092867421002944

9. Dohm, J.C., Lottaz, C., Borodina, T., Himmelbauer, H.: Substantial biases in ultra-short read data sets from high-
throughput dna sequencing. Nucleic Acids Research 36(16), e105 (2008). https://doi.org/10.1093/nar/gkn425

10. Dong, X., Zhang, L., Milholland, B., Lee, M., Maslov, A.Y., Wang, T., Vijg, J.: Accurate identification
of single-nucleotide variants in whole-genome-amplified single cells. Nature Methods 14(5), 491–493 (2017).
https://doi.org/10.1038/nmeth.4227

11. Durante, M.A., Rodriguez, D.A., Kurtenbach, S., Kuznetsov, J.N., Sanchez, M.I., Decatur, C.L., Snyder, H.,
Feun, L.G., Livingstone, A.S., Harbour, J.W.: Single-cell analysis reveals new evolutionary complexity in uveal
melanoma. Nature Communications 11(1), 496 (2020)

12. Gawad, C., Koh, W., Quake, S.R.: Single-cell genome sequencing: current state of the science. Nature Reviews
Genetics 17(3), 175–188 (2016). https://doi.org/10.1038/nrg.2015.16
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