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Abstract 

Resting-state functional MRI (rs-fMRI) is being used to develop diagnostic, prognostic, and 

therapeutic biomarkers for critically ill patients with severe brain injuries. In studies of healthy 

volunteers and non-critically ill patients, prospective cardiorespiratory data are routinely collected to 

remove non-neuronal fluctuations in the rs-fMRI signal during analysis. However, the feasibility and 

utility of collecting cardiorespiratory data in critically ill patients on a clinical MRI scanner are 

unknown. We concurrently acquired rs-fMRI (TR=1250ms), cardiac and respiratory data in 23 

critically ill patients with acute severe traumatic brain injury (TBI), and 12 healthy control subjects. 

We compared the functional connectivity results after denoising with cardiorespiratory data (i.e., 

RETROICOR) with the results obtained after standard bandpass filtering. Rs-fMRI data in 7 patients 

could not be analyzed due to imaging artifacts. In 6 of the remaining 16 patients (37.5%), 

cardiorespiratory data were either incomplete or corrupted. In both patients and control subjects, the 

functional connectivity corrected with RETROICOR did not significantly differ from that corrected 

with bandpass filtering of 0.008-0.125 Hz. Collectively, these findings suggest that there is a limited 

feasibility and utility to prospectively acquire high-quality cardiorespiratory data during rs-fMRI in 

critically ill patients with severe TBI for physiological correction.     
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1 INTRODUCTION 

Over the past decade, resting-state functional magnetic resonance imaging (rs-fMRI) studies have 

demonstrated the potential diagnostic and prognostic utility of brain network mapping in patients 

with a broad range of brain injuries, including traumatic brain injury (TBI) (Guo et al., 2019; 

Kondziella et al., 2017; Peran et al., 2020; Threlkeld et al., 2018), hypoxic-ischemic injury (HIE) 

from cardiac arrest (Koenig et al., 2014; Norton et al., 2012; Peran et al., 2020; Pugin et al., 2020; 

Sair et al., 2018), and hypoxic injury from coronavirus disease 2019 (COVID-19) (Fischer et al., 

2020). In addition, rs-fMRI is now used as a pharmacodynamic biomarker in early-stage clinical 

trials to assess brain responses to targeted therapies aimed at promoting recovery of consciousness 

(Edlow et al., 2020). Nevertheless, despite the growing evidence that rs-fMRI has potential as a 

diagnostic, prognostic, and therapeutic biomarker, the optimal data acquisition, pre-processing, and 

analysis methods for rs-fMRI have not been determined for critically ill patients with acute brain 

injuries. For example, a fundamental pre-processing question is how to account for non-neuronal, 

physiological fluctuations, such as cardiac pulsation and respiration. These cardiorespiratory signal 

fluctuations contribute noise to the data, obscuring the blood-oxygen-level dependent (BOLD) 

signals used to identify functional network connectivity. Accounting for these cardiorespiratory 

signal fluctuations during pre-processing is particularly relevant in critically ill patients, who may 

experience fluctuations in vital signs during the rs-fMRI scan, causing potentially unpredictable 

changes in the BOLD signal. As a result, the underlying neuronal dynamics measured by functional 

network connectivity may be masked.   

Prior studies in healthy human subjects have shown that, compared to standard bandpass filtering, 

prospective acquisition of cardiorespiratory data may improve the signal-to-noise properties of 

spontaneous BOLD fluctuations (Chen et al., 2020; Chu et al., 2018; Glover et al., 2000; Murphy et 

al., 2013), because these cardiorespiratory data facilitate signal correction based on subjects’ unique 
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cardiac and respiratory oscillations. In addition, cardiac pulsation and respiration signals have 

different frequencies and amplitude characteristics (Gray et al., 2009), and therefore may not be 

amenable to correction with a single bandpass filter. Notably, most studies that prospectively 

collected cardiorespiratory data enrolled healthy control subjects who had relatively stable 

hemodynamics, are able to tolerate long scan times, and were scanned in research settings with 

precise instrumentation (Chan et al., 2020; J. Lee et al., 2019). Conversely, setting up additional 

equipment and optimizing the cardiorespiratory signals prolong scan time, posing safety risks for 

critically ill patients.  Patients in the intensive care unit (ICU) must be scanned on a clinical scanner 

using standard physiological monitoring instrumentation integrated with the MRI system, where the 

cardiorespiratory data acquired may be suboptimal for rs-fMRI signal denoising. Moreover, the 

quality of cardiorespiratory data also depends on a patient’s injury burden, cardiopulmonary stability, 

hemodynamic fluctuations, and cooperation. Involuntary motion is common in critically ill patients 

with altered consciousness (Bodien et al., 2017; Edlow et al., 2017; Threlkeld et al., 2018), and the 

placement of physiological sensors can be complicated by concurrent injuries to the chest, abdomen, 

and extremities. Indeed, these safety, scientific and clinical challenges likely explain why few fMRI 

studies have been performed on critically ill patients (Bodien et al., 2017), and why there have been 

no studies, to our knowledge, acquiring cardiorespiratory data specifically for the pre-processing of 

rs-fMRI data in critically ill paitents. 

In this prospective, observational study, we investigated the feasibility of acquiring cardiorespiratory 

data during rs-fMRI in critically ill patients with acute severe TBI and the utility of using these data 

to correct for non-neuronal signals in the BOLD data. The study was performed on a 3 Tesla MRI 

scanner located in the Neurosciences ICU (NeuroICU) at an academic medical center.  We 

hypothesized that cardiorespiratory data acquisition is feasible in a clinical setting for critically ill 

patients and that it reduces physiological confounds more effectively than does bandpass filtering.  In 
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the feasibility analysis, we assessed the success rate of acquiring technically useful, uncorrupted 

cardiac and respiratory data. In the utility analysis, we compared the functional connectivity brain 

maps corrected with RETROICOR (Glover et al., 2000) to those corrected with standard bandpass 

filters.  Recognizing that there is no gold-standard for “ground-truth” physiological correction of 

functional brain connectivity, we tested the hypothesis that RETROICOR correction using 

cardiorespiratory signals yields higher levels of network connectivity than does standard bandpass 

filtering.  
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2 MATERIALS AND METHODS 

2.1 Participants 

We enrolled 12 healthy volunteers and 23 patients with acute severe TBI, defined by a post-

resuscitation Glasgow Coma Scale (GCS) score ≤ 8 prior to admission to an ICU. All the patients 

were enrolled consecutively from the NeuroICU, surgical ICU, or multi-disciplinary ICU at 

Massachusetts General Hospital (MGH), as part of an ongoing observational study 

(ClinicalTrials.gov NCT03504709). Healthy control subjects had no history of brain injuries, 

neurological disease, psychiatric disease, cardiovascular disease, or any history of diabetes, 

hypertension, or renal disease, and were recruited by e-mail and poster placement within the MGH 

hospital network.   

All components of this study were performed in compliance with the Declaration of Helsinki, and all 

procedures were approved by the hospital’s Human Research Committee. Written informed consent 

was obtained from healthy subjects and patients’ surrogate decision-makers.  

  

2.2 MRI Acquisition 

We performed the MRI on a 3 Tesla Skyra scanner (Siemens Medical, Erlangen, Germany) in the 

NeuroICU with a 32-channel head coil. Foam pads and inflatable positioning pads were used to 

minimize head motion. We acquired the following MRI datasets on each subject: 1) high-resolution 

sagittal images acquired with volumetric T1-weighted 3D-MEMPRAGE sequence (TR=2530ms, 

TE=1.69ms/3.55ms/5.41ms/7.27ms, flip angle=7º, FOV=256×256mm, matrix=256×256, slice 

thickness=1mm); 2) BOLD-fMRI images acquired with echo-planar imaging (EPI) sequence 

(TR=1250ms, TE=30ms, flip angle=65º, FOV=212×212mm, matrix=106×106, slice thickness=2mm, 
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slice gap=0mm, duration=10 minutes) while the subject was at rest.  Subjects were instructed to keep 

their eyes open during the rs-fMRI scans.  We aimed to acquire two rs-fMRI datasets for each subject 

– one at the beginning of the MRI scan, and one at the end of the scan – separated by approximately 

30 minutes of stimulus-based and task-based fMRI paradigms. 

We optimized the MRI sequence with a short TR of 1.25 seconds and a resting-state scan length of 

10 minutes. This made the maximum sampling frequency 0.4 Hz, allowing the removal of most of 

the fluctuations due to respiratory cycles. The narrow frequency spacing of about 0.002 Hz based on 

the scan duration offered proper sampling of signal changes down to 0.002 Hz and more precise 

removal of fluctuations when bandpass filtering strategy was applied.     

We recorded the time series of both optical plethysmography and respiration using the Siemens 

Physiological Monitoring Unit (Siemens Healthcare, Erlangen, Germany).  Optical plethysmography 

was measured instead of electrocardiogram for cardiac pulsation because the optical signals were less 

contaminated by the imaging gradient changes.  Breath-by-breath respiratory cycles were measured 

by pressure changes in the pneumatic bladder located between the skin surface and the respiratory 

belt around the upper abdomen.  All cardiorespiratory data recordings were synchronized using the 

timestamps in the data recordings and image headers.  

 

2.3 Data Analysis   

The imaging and cardiorespiratory data from the first rs-fMRI scan for each subject were used in the 

following analyses, except for one patient (P3) because the first rs-fMRI scan was terminated in the 

middle due to a technical issue with the head coil resulting in signal void in the anterior part of the 
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brain.  For this patient, the imaging and cardiorespiratory data from the second rs-fMRI scan were 

used. 

2.3.1 Processing of Cardiorespiratory Data 

We used Matlab R2020a (Mathworks, Inc., Natick, MA, USA) to analyze the cardiorespiratory data.  

The peaks on the optical plethysmography time series serve as a surrogate of R peaks in 

electrocardiogram, while the peaks and troughs on the respiratory time series indicated end 

inspiration and end-expiration respectively (Supplementary Figure 1). Peaks and troughs on the 

time series of optical plethysmography and respiration were determined using a custom Matlab 

function (Chan et al., 2020) and corrected on the graphical user interface. The cardiac phase used in 

RETROICOR (Glover et al., 2000) advances linearly from 0 to 2π during each R-R interval and is 

reset to 0 for the next cycle. The inspiratory phase spans from 0 to π and the expiratory phase spans 

from 0 to -π. 

 

2.3.2 Pre-processing of Resting-State BOLD-fMRI Data 

All BOLD-fMRI data were imported into the Analysis of Functional NeuroImage (AFNI) software 

(Cox, 1996) (National Institute of Mental Health, http://afni.nimh.nih.gov) for pre-processing. The 

first 12 volumes of each functional dataset, collected before equilibrium magnetization was reached, 

were discarded. Artifactual spikes were removed from the time series in each voxel using 

‘3dDespike’ in AFNI. In order to compare resting-state connectivity after RETROICOR versus 

standard bandpass filtering, the resting-state BOLD data were separately processed with two 

processing pipelines: RETROICOR (RETROICOR Pipeline) and standard bandpass filtering 

(BANDPASS Pipeline). We focused on RETROICOR, rather than other physiological correction 

methods that employ a component-based approach (e.g., CompCor), because some of these methods 
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require accurate specification of a “noise” region-of-interest in white matter or cerebrospinal fluid 

(Behzadi et al., 2007). In patients with distorted brain anatomy and BOLD signal changes in white 

matter due to traumatic microbleeds (S. Lee et al., 2018), defining a precise “noise” region-of-interest 

is especially challenging. A schematic diagram of our data analysis algorithm is shown in Figure 1.   

 

2.3.2.1 RETROICOR Pipeline 

Time series of cardiac and respiratory phases were imported into the program ‘3dretroicor’ in AFNI 

to remove cardiac and respiratory motions of the resting state BOLD-fMRI after despiking. Each 

functional dataset in the RETROICOR Pipeline was corrected for slice timing, motion-corrected, and 

co-registered to the first image of the functional dataset using three-dimensional volume registration. 

Voxels located within the ventricles and outside the brain were defined by the parcellated brain 

volume using FreeSurfer (Dale et al., 1999; Fischl et al., 1999) (MGH/MIT/HMS Athinoula A. 

Martinos Center for Biomedical Imaging, Boston, http://surfer.nmr.mgh.harvard.edu) and were 

excluded from subsequent analyses. In the co-registered functional dataset, motion outliers were 

defined as any timepoint with 5% of brain voxels having the averaged derivative change of 

translational and rotational motion parameters of more than 0.4.  The coregistered dataset was then 

normalized to its mean intensity value across the time series for the percent BOLD signal changes 

(∆BOLD). In the normalized functional dataset, the time series of each voxel was detrended with the 

fifth order of polynomials to remove the low drift frequency (<0.005 Hz). The low drift frequency 

and the components of motion were removed in one single process using orthogonal projection. 

Individual subject brain volumes with time series of ∆BOLD were used in the connectivity analysis. 
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2.3.2.2 BANDPASS Pipeline 

Slice timing correction, motion correction, co-registration, normalization, and removal of low drift 

frequency and motion components were applied to each functional dataset after despiking in the 

BANDPASS pipeline using the same approach as in the RETROICOR pipeline.  Bandpass filters of 

different frequency bandwidths were separately applied to the clean functional dataset. The starting 

frequency of the bandpass filters was 2x, where x ranged from -7 (i.e., 2-7=0.008 Hz) to -2 (i.e., 2-

2=0.25 Hz) at an increment of the exponential of +1. The ending frequency of the bandpass filters 

was 2y, where y ranged from -6 (i.e., 2-6=0.016 Hz) to -1 (i.e., 2-1=0.5 Hz) at an increment of the 

exponential of +1. A total of twenty-one frequency bandwidths were used as bandpass filters and 21 

filtered datasets were obtained.    

 

2.3.3 Individual Subject Resting-State Connectivity Analysis  

For each subject, we constructed a brain mask with 82 cortical and subcortical gray matter brain 

regions parcellated by the software FreeSurfer (Dale et al., 1999; Fischl et al., 1999) and 16 

brainstem nuclei from the Harvard Ascending Arousal Network (AAN) atlas (Edlow et al., 2012). No 

single voxel was included in more than one brain region. If a subject had a large brain lesion, such as 

a hemorrhagic contusion, visible on the T1-weighted structural images, the study investigator (STC) 

constructed a lesion mask by manually drawing the lesion on the high-resolution T1-weighted images 

as a region-of-interest using FreeSurfer (http://surfer.nmr.mgh.harvard.edu), as done previously 

(Diamond et al., 2020). The brain atlas with defined cortical and subcortical gray matter regions and 

AAN nuclei and the brain lesion masks were registered to brain volumes with time series of ΔBOLD 

via the first brain volume in the motion-corrected functional dataset.  Brain regions that overlapped 

with brain lesion masks were excluded from the connectivity analysis. 
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For the normalized dataset in the RETROICOR Pipeline, the averaged time series of ΔBOLD in each 

brain region were correlated with that of each other brain region using the program ‘3dNetCorr’ 

(Taylor & Saad, 2013). Pearson’s correlation coefficients were calculated from 3403 region pairs. In 

the BANDPASS Pipeline, the same correlation analysis was applied to each normalized dataset. For 

both pipelines, the Pearson’s correlation coefficient from each region pair was transformed to a 

Fisher’s z value, to indicate the connectivity strength for the group analysis.   

 

2.3.4 Group Analysis  

Age as a continuous variable was summarized as median and interquartile range, and group (TBI and 

control) difference was assessed using the Kruskal-Wallis test. Sex as a categorical variable was 

summarized as frequencies; group difference was assessed using the Chi-square test.  

The connectivity strength indicated by Fisher’s z values from patient and control groups were 

analyzed separately.  The potential difference in the brain connectivity for each region pair was first 

explored using paired t-test to compare the Fisher’s z values derived from the RETROICOR Pipeline 

and those from the commonly used bandpass filter of 0.008-0.125 Hz in the BANDPASS Pipeline.  

Such a comparison was repeated for 3403 region pairs.  False discovery rate was used to correct the 

multiple comparisons.  A significant difference was considered at pfdr<0.05. 

To further explore if the frequency bandwidth of 0.008-0.125 Hz was optimal for bandpass filtering 

of rs-fMRI data, we used Pearson’s correlation to measure the correlation of averaged connectivity 

strength between the RETROICOR Pipeline and 21 bandpass filters in the BANDPASS Pipelines. 

For each region pair, the mean Fisher’s z value was calculated separately from the RETROICOR 

Pipeline and each bandpass filter in the BANDPASS Pipeline in the same group of subjects.  The 
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mean Fisher’s z values from 3403 region pairs in two processing arms were correlated.  A significant 

correlation was considered at p<0.05. 

Intraclass correlation was used to study the similarity of the connectivity strength between the two 

pipelines in each region pair.  The intraclass correlation coefficients between the two pipelines for 

each region pair were calculated between the Fisher’s z values from the RETROICOR Pipeline and 

each bandpass filter in the BANDPASS Pipeline in the same group of subjects. False discovery rate 

was used to correct for multiple comparisons. A significant correlation was considered at pfdr<0.05.   

 

3 RESULTS 

A total of 35 subjects were enrolled (age range 18 to 78 years). Twenty-three were patients 

(median=37.0 years, interquartile range IQR=27.5-63.5years; 15M), and 12 were healthy controls 

(median=32.5 years, interquartile range IQR=28.8-35.8 years; 3M). The schematic diagram of 

subject inclusion and exclusion is shown in Supplementary Figure 2. The head impact mechanism 

and the level of consciousness at the time of the rs-fMRI scan for patients are shown in Table 1. The 

distribution of brain lesions in the patients is shown in Supplementary Figure 3. Lesions in most 

patients occurred in inferior frontal and anterior temporal areas. Of the 23 enrolled patients, 7 patients 

were excluded from subsequent data analyses due to failed brain segmentation caused by brain 

distortion, large MR signal void (e.g., from ventriculoperitoneal shunts), or gadolinium contrast that 

was administered for clinical imaging before the research MRI sequences (see Table 1 and 

Supplementary Figure 2). No healthy subjects were excluded due to image quality.  

 

3.1 Feasibility of Acquiring Data for Prospective Physiological Correction 
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Table 1 provides details about why subject data were excluded from the group analyses, and a 

summary is shown in Supplementary Figure 2.  Of 28 subjects with usable fMRI data (16 patients, 

12 healthy controls), neither cardiac nor respiratory data could be acquired in 2 patients because extra 

time had been used to prepare these two patients for MRI scan, and the MRI scan had to be 

completed within a limited period of time.  The time constraint in data acquisition also resulted in 

incomplete cardiorespiratory data acquisition (i.e., missing either cardiac or respiratory data) in 1 

patient and 1 healthy control.  The quality of plethysmography data was poor in 3 patients and 1 

healthy subject due to subject motion, suboptimal sensor position and the intermittent loss of signals 

that magnetic interferences may cause on physiological signal reception in the scanner.  

Examples of poor quality plethysmography data are shown in Supplementary Figure 4.  In total, 

14% (4/28) of all subjects had incomplete cardiorespiratory data, and another 14% (4/28) of subjects 

had poor quality cardiorespiratory data. Thus, 63% of patients with intact fMRI data (10/16) and 83% 

of healthy controls (10/12), had complete and usable cardiac and respiratory data for physiological 

correction.  

Datasets from those 10 patients (median=55.0 years, interquartile range IQR=33.1-65.7 years; 7M) 

and 10 healthy controls (median=32.5 years, IQR=29.9-35.3 years; 3M) were included in the 

subsequent utility analyses. No significant difference in age (p=0.17) or sex (p=0.18) was found 

between patients and controls.   

 

3.2 Utility of Cardiac and Respiratory Data for Physiological Correction 
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3.2.1 Comparison of connectivity strength after RETROICOR correction and bandpass 

filtering of 0.008-0.125 Hz 

Brain connectivity of a representative patient and a control subject after RETROICOR correction and 

bandpass filtering of 0.008-0.125 Hz are shown in Supplementary Figure 5. There is no noticeable 

difference in brain connectivity between the two methods of physiological noise correction 

(RETROICOR versus BANDPASS Pipelines) in the patient or control subject.   

No significant difference was found in the group comparison of connectivity strength after 

RETROICOR correction and bandpass filtering of 0.008-0.125 Hz in both patients and healthy 

subjects (pfdr>0.05) (Figure 2). 

 

3.2.2 Comparison of connectivity strength after RETROICOR correction and bandpass 

filtering of 21 different frequency bandwidths 

The mean Fisher’s z values derived from RETROICOR correction and bandpass filtering in different 

region pairs started to attain the highest correlation at the bandpass filtering of 0.008-0.125 Hz in 

patient group (Pearson’s r = 0.958, p<0.001) and control group (Pearson’s r = 0.981, p<0.001) 

(Figures 3A and 3B).  The correlation stayed relatively high at the bandpass filtering of 0.008-0.25 

Hz (Patients: Pearson’s r = 0.957, p<0.001; Controls: Pearson’s r = 0.981, p<0.001) and 0.008-0.5 Hz 

(Patients: Pearson’s r = 0.957, p<0.001; Controls: Pearson’s r = 0.981, p<0.001).   

An increased number of region pairs had a significant intraclass correlation coefficient between 

RETROICOR and bandpass filtering with the starting frequency at 0.008 Hz in both patients and 

control (Figure 4). The top three frequency bandwidths with the highest number of region pairs 

showing significant intraclass correlation are 0.008-0.125 Hz, 0.008-0.25 Hz, and 0.008-0.5 Hz. 
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4 DISCUSSION 

We investigated the feasibility and utility of cardiorespiratory noise correction in rs-fMRI data 

acquired in critically ill patients. In 6 of 16 patients, we could not conduct prospective 

cardiorespiratory noise correction due to missing or corrupted physiological data.  Furthermore, we 

found no significant differences in functional brain connectivity for patients or controls when we 

compared two physiological noise correction methods (RETROICOR using prospectively collected 

cardiac and respiratory data versus bandpass filtering at 0.008-0.125 Hz). Collectively, these findings 

suggest that prospective cardiorespiratory data acquisition during rs-fMRI has limited feasibility and 

utility for correcting physiological noise in rs-fMRI data acquired in critically ill patients with acute 

severe TBI.   

 

4.1 Impact of physiological correction using respiratory and cardiac data in ICU settings 

Correction of cardiorespiratory noise that may confound rs-fMRI connectivity data is essential to 

ensure that BOLD signal modulation and the reduction in the degrees of freedom are identical across 

subjects (Murphy et al., 2013). A common approach to correct for cardiorespiratory noise is to 

regress prospectively collected cardiac and respiratory signals from the rs-fMRI data using 

RETROICOR.  In our study, the advantage of using individualized cardiorespiratory noise correction 

via RETROICOR was outweighed by the clinical limitations of acquiring cardiac and respiratory 

data in critically ill patients. Excellent quality cardiac and respiratory data are required for 

physiological correction using RETROICOR. However, patients with severe acute TBI often have 

reduced tolerance for lying supine in the scanner, unstable hemodynamics, peripheral injuries, and 

impaired awareness. Futhermore, patients with critical illness must be scanned on a clinical MRI 

system that typically lacks precise instrumentation for acquiring cardiac and respiratory data.  In our 
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study, these safety considerations and logistical factors made it infeasible to consistently collect the 

high-quality cardiac and respiratory data required for RETROICOR.   

In the absence of prospectively collected cardiac or respiratory data, band-pass filtering, typically at 

0.008-0.125 Hz, may be used to correct for physiological noise.  Although bandpass filtering is 

associated with a loss of degrees of freedom due to the removal of frequency bins (Murphy et al., 

2013), this approach ensures that data can be analyzed in a standardized manner across all 

individuals. We found that brain connectivity metrics derived from RETROICOR and bandpass 

filtering were similar. We also tested multiple ranges of bandpass filtering and found that brain 

connectivity corrected with bandpass filtering of 0.008-0.125 Hz had the strongest correlation with 

brain connectivity corrected with RETROICOR. This bandpass filtering range has been used in many 

prior studies (Hillary et al., 2011; Huang et al., 2014; Threlkeld et al., 2018) even though it is 

associated with a loss of degrees of freedom, in our study from 200 to 60. 

 

4.2 Correcting spontaneous fluctuations at 0.125 Hz or higher in critically ill patients 

Our study focused on correcting physiological signals due to respiratory (Brosch et al., 2002; Raj et 

al., 2001) and cardiac cycles (Dagli et al., 1999) with frequencies of 0.15 Hz or higher.  We did not 

correct for spontaneous fluctuations below 0.125 Hz because many physiological fluctuations below 

0.125 Hz are related to neuronal signaling, especially in critically ill patients. Fluctuations related to 

intracranial pressure (0.008-0.03Hz) (Lundberg, 1960), respiratory gas exchange (0.008-0.03Hz) 

(Chan et al., 2020; Lenfant, 1967), respiratory variation (~0.03Hz) (Birn et al., 2006; Chang et al., 

2013), end-tidal carbon dioxide fluctuations (0-0.05Hz) (Wise et al., 2004), variation in arterial 

pressure (0.05-0.15Hz) (Mayer, 1876; Obrig et al., 2000), or heart rate variability (0.05-0.15Hz) 

(Chang et al., 2013) (Supplementary Figure 6) all occur at a similar frequency to spontaneous 
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BOLD fluctuations.  Among these fluctuations, respiratory gas exchange (Chan et al., 2020), 

respiratory variation (Birn et al., 2006), end-tidal carbon dioxide fluctuations (Wise et al., 2004), and 

heart rate variability (Chang et al., 2013) were previously found to be correlated with oscillations of 

the default mode network (DMN).  Therefore, extra caution is required when removing the 

physiological “noise” in the frequency bandwidth below 0.125Hz to avoid removing important 

information about functional connectivity.   

 

4.3 rs-fMRI in the intensive care unit setting 

Resting-state fMRI has historically been used as an investigational tool to study functional  brain 

network connectivity in patients with a broad range of neurological and psychiatry disorders. In 

critically ill patients with severe brain injuries, emerging evidence suggests that DMN connectivity is 

associated with recovery of consciousness (Threlkeld et al., 2018), and DMN and salience network 

connectivity predict long-term functional outcomes (Sair et al., 2018). Rs-fMRI is also being used as 

a pharmacodynamic biomarker in treatment studies aimed at promoting recovery of consciousness 

(Edlow et al., 2020). More recently, rs-fMRI has emerged as a promising clinical tool (Boerwinkle et 

al., 2020) for mapping functional brain connectivity and relating it to the capacity for recovery of 

awareness (Threlkeld et al., 2018). In the early stages of clinical rs-fMRI implementation, it is 

essential that data acquisition and processing are standardized, and that safety and feasibility are 

optimized. Our findings support this goal and inform future clinical implementation efforts by 

providing initial evidence that cardiorespiratory data are difficult to collect uniformly and have 

limited utility for evaluating functional connectivity.   
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4.4 Limitations of this study  

Our study is limited a small sample size, which reflects the difficulty of transporting and scanning 

critically ill patients in the early days of recovery from severe TBI. A larger sample size may have 

revealed subtle differences between RETROICOR and bandpass methods. In addition, we used the 

plethysmography and chest recordings acquired with the standard physiological monitoring unit in 

the MRI scanner, which is designed for clinical monitoring and pacing image acquisition for cardiac 

and abdominal imaging. The physiological monitoring unit was not designed for the quantitative 

assessment of cardiac and respiratory activity. Although a larger sample and more precise equipment 

may have lead to different findings, our goal was to assess the feasibility and utility of correcting 

cardiorespiratory noise in an ICU setting that reflects the practical challenges of acquiring fMRI data 

in patients with acute severe TBI. In this context, our findings indicate that as rs-fMRI is integrated 

into the clinical assessment of patients with severe TBI, bandpass filtering at 0.008-0.125Hz can be 

used as an alternative to prospective acquisition of cardiorespiratory data for physiological correction 

in the functional connectivity analysis.  

 

5 CONCLUSION 

We found that prospective cardiorespiratory correction has limited feasibility and utility in critically 

ill patients.  Given currently available technology and logistics of cardiorespiratory data acquisition, 

our findings suggest that studies using cardiorespiratory correction in critically ill patients may need 

to exclude a significant number of patients and accept a reduced sample size. We also observed that 

correction using prospective cardiorespiratory data acquisition may not provide a significant 

advantage of analytic utility over retrospective bandpass filtering correction in critically ill patients. 
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These observations suggest that physiological correction of rs-fMRI using prospective acquisition of 

cardiorespiratory data has limited feasibility and utility in rs-fMRI studies of critically ill patients.   
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6 FIGURE AND TABLE LEGENDS 

Figure 1.  Algorithm of data analyses.   

 

Figure 2.  Comparison of brain connectivity between RETROICOR correction and BANDPASS of 

0.008-0.125Hz in controls (n=10) and patients (n=10).  No significant difference between 

RETROICOR and BANDPASS correction was found after correcting for multiple comparisons 

(pfdr>0.05). 

 

Figure 3.  Correlation analyses of brain connectivity between RETROICOR and BANDPASS 

pipelines in controls (n=10) (A) and patients (n=10) (B).  The Pearson’s r and the p values are shown 

in each correlation analysis.  The top three frequency bandwidths in BANDPASS pipeline showing 

the highest correlation with RETROICOR pipeline are bound in red boxes.  The curves at the right 

upper corner show the changes of correlation coefficients in the comparisons between the two 

pipelines.  Broken red line indicates the ending frequency of bandpass filtering in BANDPASS 

pipeline when the highest correlation attains. 

 

Figure 4.  Intraclass correlation of connectivity strength between RETROICOR and BANDPASS 

pipelines in controls (n=10) (A) and patients (n=10) (B).  The 83 brain regions on the x-axis and y-

axis of each matrix are grouped into cerebral lobes indicated by colors.  The number of region pairs 

(rp) showing significant intraclass correlation after correcting for multiple comparisons are shown at 

the upper right hand corner of each matrix.  FRO, frontal; INS, insula; LIM, limbic; TEM, temporal; 

PAR, parietal; OCC, occipital; SBC, subcortical; ANN, arousal ascending network. 
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Table 1.  Feasibility of physiological monitoring during resting-state functional MRI in critically ill 

patients and controls.  LoC, loss of consciousness; Ped Struck, Pedestrian struck my motor vehicle; 

MVC, motor vehicle collision; VS, vegetative state; MCS, minimally conscious state; EMCS, 

emerged from minimally conscious state; Y, yes; N, no; NA, not applicable. 

 

Table 2.  Summary of subject demographics. 

 

Supplementary Figure 1.  Example of cardiac and respiratory phases derived from cardiac and 

respiratory data respectively for RETROICOR (Glover et al., 2000).  Orange lines indicate the 

cardiac and respiratory phases used in RETROICOR.  The cardiac phase advances linearly from 0 to 

2π during each R-R interval and is reset to 0 for the next cycle.  The inspiratory phase spans from 0 

to π and the expiratory phase spans from 0 to -π. 

 

Supplementary Figure 2.  Subject inclusion and exclusion. 

 

Supplementary Figure 3.  Distribution of brain lesions in the patient group (n=10). Lesions in most 

patients occurred in inferior frontal and anterior temporal areas. 
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Supplementary Figure 4.  Examples of normal and poor quality plethysmography signals that could 

not be used for physiological correction.  Arrows indicate the artifacts due to subject’s motion.  

Arrowheads indicate the loss of plethysmography signals. 

 

Supplementary Figure 5.  Brain connectivity derived following RETROICOR pipeline (upper 

panel) and bandpass filtering of 0.008-0.125Hz in BANDPASS pipeline (lower panel) in a 

representative patient and control subject.  The connectivity links shown in the connectograms 

represent Pearson’s correlation coefficients >0.8 and exist after correcting multiple comparisons 

(pfdr<0.05). 

 

Supplementary Figure 6.  Spontaneous fluctuations at 1Hz or below in resting condition. (1) 

Lundberg (1960); (2) Lenfant (1967); (3) Chan et al. (2020); (4) Birn et al. (2006); (5) Wise et al. 

(2004); (6) Mayer (1876); (7) Obrig et al. (2000); (8) Chang et al. (2013). 
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Table 1: Feasibility of physiological monitoring during resting-state functional MRI in critically ill patients and controls. 

ID Age Sex 
TBI 

mechanism 

Day of 
rs-fMRI 
post-TBI 

Usable 
rs-fMRI 

data 

Presence 
of plethys-
mography 
time series 

Presence of 
respiratory 
time series 

Noise in 
plethys-

mography 
time series 

Noise in 
respiratory 
time series 

Reasons to 
exclude data 

Patients 

P1 19 F Ped Struck 25 Y Y Y N N N/A 

P2 37 M MVC 5 Y Y Y N N N/A 

P3 61 M MVC 6 Y Y Y N N N/A 

P4 29 M MVC 3 Y Y Y N Machine 
noise 

Poor quality of 
physiological data 

P5 20 M Fall 18 Y N Y - N Incomplete 
physiological data 

P6 47 M Fall 2 N Y Y N N Failed brain 
segmentation 

P8 18 M MVC 3 Y Y Y N N N/A 

P9 49 M Fall 5 Y Y Y N N N/A 

P10 56 F MVC 4 N Y Y N N MR gadolinium 
contrast in BOLD 

data 

P14 34 M MVC 9 N Y N Noisy 
signals due 

to bad 
position 

- MR gadolinium 
contrast in BOLD 

data 

P15 73 F Ped Struck 11 Y Y Y N N N/A 
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P16 72 M MVC 9 Y Y Y N N N/A 

P20 66 F Ped Struck 2 Y Y Y N N N/A 

P23 78 M Fall 4 Y N N - - No physiological 
data acquisition 

P24 26 M MVC 21 N Y Y N N Failed brain 
segmentation 

P26 67 F Other Non-
intentional 
Injury (Fall 
off Bike) 

8 Y Y Y Noisy 
signals due 
to motion 

N Poor quality of 
physiological data 

P32 26 M Fall 9 Y Y Y N N N/A 

P33 73 M Fall 9 Y Y Y N N N/A 

P34 34 M Other Non-
intentional 

Injury 
(Skydiving 
Accident) 

8 Y Y Y Noisy 
signals due 

to bad 
position 

N Poor quality of 
physiological data 

P36 20 F MVC 64  N Y Y N N Failed brain 
segmentation 

P37 37 F Ped Struck 17 N Y Y Noisy 
signals 

N Signal void due to 
shunt in RH 

P38 56 M MVC 4 Y N N - - No physiological 
data acquisition 

P39 34 F Other Non-
intentional 

Injury 

94 N Y Y N Noisy 
signals due 
to motion 

Signal void due to 
shunt in RH 
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LoC, loss of consciousness; Ped Struck, Pedestrian struck my motor vehicle; MVC, motor vehicle collision; VS, vegetative state; 
MCS, minimally conscious state; EMCS, emerged from minimally conscious state; Y, yes; N, no; NA, not applicable. 
 
 

(Struck by 
Basketball) 

Controls 

C1 33 F N/A N/A Y Y Y N N N/A 

C2 32 M N/A N/A Y Y Y N N N/A 

C3 48 F N/A N/A Y Y Y Intermittent 
loss of 
signals 

N Poor quality of 
physiological data 

C4 29 M N/A N/A Y Y Y N N N/A 

C5 30 F N/A N/A Y Y Y N N N/A 

C6 38 F N/A N/A Y Y Y N N N/A 

C7 28 F N/A N/A Y Y Y N N N/A 

C8 35 F N/A N/A Y Y Y N N N/A 

C12 24 F N/A N/A Y N Y - N Incomplete 
physiological data 

C13 28 F N/A N/A Y Y Y N N N/A 

C14 38 F N/A N/A Y Y Y N N N/A 

C15 35 M N/A N/A Y Y Y N N N/A 
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Table 2.  Summary of subject demographics.   

  Controls Patients p 

N 10 10  

Age 32.5 [29.2,35.0] 55.0 [28.8,70.5] 0.173 

Sex: Male 3 (30.0) 7 (70.0) 0.180 

Categorical variable (i.e., sex) is summarized as frequency (percentage) and continuous variable 
(i.e., age) is summarized as median [interquartile range].  No significant difference in age and 
sex was found between patients and controls. 
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