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Abstract 21 

 22 

1. Dispersal is a key life-history trait for most species and essential to ensure 23 

connectivity and gene flow between populations and facilitate population 24 

viability in variable environments. Despite the increasing importance of range 25 

shifts due to global change, dispersal has proved difficult to quantify, limiting 26 

empirical understanding of this phenotypic trait and wider synthesis.  27 

2. Here we aim to estimate and compare empirical dispersal kernels for 28 

European breeding birds considering average dispersal, natal (before first 29 

breeding) and breeding dispersal (between subsequent breeding attempts), 30 

and test whether different dispersal properties are phylogenetically conserved.  31 

3. We standardised and analysed data from an extensive volunteer-based bird 32 

ring-recoveries database in Europe (EURING) by accounting for biases 33 

related to different censoring thresholds in reporting between countries and to 34 

migratory movements. Then, we fitted four widely used probability density 35 

functions in a Bayesian framework to compare and provide the best statistical 36 

descriptions of the average, the natal and the breeding dispersal kernels for 37 

each bird species.  38 

4. The dispersal movements of the 234 European bird species analysed were 39 

statistically best explained by heavy-tailed kernels, meaning that while most 40 

individuals disperse over short distances, long-distance dispersal is a feature 41 

in almost all bird species. The overall phylogenetic signal in both median and 42 

long dispersal distances was low (Pagel’s λ < 0.40), implying a high degree of 43 

taxonomic generality in our findings. As expected in birds, natal dispersal was 44 
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5 Km greater as an average than breeding dispersal for most species (88% 45 

species analysed).  46 

5. Our comprehensive analysis of empirical kernels indicates that long-distance 47 

dispersal is common among European breeding bird species and across life 48 

stages. The dispersal estimates offer a first guide to selecting appropriate 49 

dispersal kernels in range expansion studies and provide new avenues to 50 

improve our understanding of the mechanisms and rules underlying dispersal 51 

events. 52 

Keywords: birds, Europe, ring-recovery, dispersal distance kernel, negative 53 

exponential, weibull, half-Cauchy, gamma  54 
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Introduction 56 

Animal dispersal describes the movement from birth to breeding patch (natal 57 

dispersal) or between successive breeding patches (breeding dispersal) and is a 58 

fundamental biological process in ecology and evolution (Greenwood, 1980). 59 

Dispersal is a crucial determinant for different ecological processes at a wide range 60 

of spatial and temporal scales. At a macro scale, dispersal plays a key role in 61 

determining evolutionary patterns of speciation and extinction and the geographical 62 

distribution of species (Bowler & Benton, 2005; Kisel & Barraclough, 2010). Within 63 

populations, dispersal plays a key role in the genetic structure of populations and 64 

meta-population dynamics through its direct contribution to gene flow (Bonte & 65 

Dahirel, 2017; Hallatschek & Fisher, 2014; Venail et al., 2008) and in maintaining 66 

local populations (Millon et al., 2019; Schaub & Ullrich, 2021). Improved 67 

understanding of dispersal across many species is becoming increasingly important, 68 

given the need to predict how populations will respond to global change 69 

(Barbet�Massin et al., 2012; Zurell, 2017). Despite this broad relevance, however, 70 

we still have a limited understanding of this phenotypic trait as standardised 71 

empirical data on animal dispersal are largely missing, hampering wider synthesis of 72 

mechanisms and underlying drivers (Bullock et al., 2017).  73 

Quantifying how far and how often animals move across the landscape is extremely 74 

challenging (Nathan, 2001). More recently, understanding of movement processes 75 

has advanced through the implementation of new molecular tools (Hobson, 2005; 76 

Woltmann et al., 2012) and the use of cutting-edge biotelemetry (Kays et al., 2020; 77 

Kranstauber et al., 2011). Still, empirical dispersal measurements on vertebrates are 78 

scarce, mostly constrained to few organisms, and geographically limited (Paradis et 79 

al., 1998). As a consequence of these challenges, comparative dispersal analyses 80 
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across species have relied on standardised biometric indices as proxies to quantify 81 

dispersal ability (Dawideit et al., 2009; Sheard et al., 2020), or imputation methods 82 

that fill information gaps based on phylogenetic relatedness between species 83 

(Barbet�Massin et al., 2012).  84 

Syntheses of field movement and dispersal data provide a promising avenue for 85 

overcoming empirical data limitations for many vertebrate species and large spatial 86 

extents (Tucker et al., 2018). For example, two decades ago, Paradis et al. (1998) 87 

estimated average natal and breeding dispersal distances for 75 British bird species 88 

based on nearly 100 years of ringing data. This analysis explored how dispersal 89 

distances vary according to certain life-history traits (e.g. migratory behaviour, range 90 

size, habitat) and dispersal type (breeding or natal dispersal). These estimates have 91 

subsequently been used to project bird dispersal and range dynamics under climate 92 

change (Barbet�Massin et al., 2012). However, the original dispersal estimates by 93 

Paradis et al. (1998) were constrained to Great Britain, to only a subset of European 94 

breeding birds, and summarised only average dispersal distances rather than 95 

explicitly estimating dispersal kernels and analysing their shapes. Dispersal kernels, 96 

which represent the density of dispersing individuals at certain distances from the 97 

source, provide a better understanding of the mechanisms and rules underlying 98 

dispersal events and are a prerequisite for modelling spatial population dynamics for 99 

scenarios of global change (Bullock et al., 2017; Nathan et al., 2012; Paradis et al., 100 

2002). Yet, building a large dataset of empirical dispersal kernels for a wide range of 101 

species in large areas is challenging due to different biases and uncertainties in the 102 

field observations (Nathan et al., 2012). 103 

Different studies have implemented a variety of functions to represent the frequency 104 

distribution of the dispersal distances (Exponential, Nathan et al., 2012; Gamma, van 105 
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Houtan et al., 2007; Half-Cauchy distribution, Paradis et al., 2002; Weibull, Nathan et 106 

al., 2012). These functions differ in the shape of the dispersal kernel and thus in the 107 

relative probability of different dispersal distances with consequent implications for 108 

predicting range change. Functions like the exponential kernel are popular as they 109 

have an underlying theoretical basis that represents movement in a random direction 110 

with a time or distance-dependent settlement rate (Bullock et al., 2017; Nathan et al., 111 

2012). By contrast, heavy-tailed kernels such as the Half-Cauchy, Gamma and 112 

Weibull distribution assume a combination of local and distant selective pressures 113 

and they expect that a few individuals fly long distances (Viswanathan et al., 1996). 114 

To date, only a few studies compared different dispersal kernel functions on birds 115 

(Nathan et al., 2012; Paradis et al., 2002; Van Houtan et al., 2007, 2010). These 116 

indicated that simple summary statistics of empirically measured dispersal distances 117 

(rather than estimating dispersal kernels based on probability distributions) 118 

underestimate the species’ dispersal ability and that heavy-tailed kernels may best 119 

explain empirical dispersal patterns (Paradis et al., 2002; Van Houtan et al., 2007). 120 

Comparing the performance of alternative empirical dispersal kernels for large 121 

numbers of species will improve our ecological understanding of relevant dispersal 122 

processes and their proximate and ultimate causes (Stevens et al., 2014). 123 

Here, we aim to quantify empirical dispersal kernels of breeding birds across Europe, 124 

compare the dispersal characteristics of natal and breeding dispersal, and test for 125 

phylogenetic signal in different dispersal metrics. We use data on marked birds from 126 

EURING – The European Union for Bird Ringing database – that holds several 127 

million records of European bird movements (Du Feu et al., 2016). Although a 128 

uniquely rich data source on bird movements, analysis of dispersal distance based 129 

on EURING data is challenging because dispersing and migrating birds are not 130 
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separated, and sampling effort is heterogeneous (Paradis et al., 1998; Korner-131 

Nievergelt et al 2010). Therefore, we develop a methodological framework that 132 

addresses these potential biases. Based on this, we first estimate dispersal kernel 133 

parameters for average dispersal (pooling all age stages when it was not possible to 134 

separate them) as well as for breeding and natal dispersal using four different 135 

probability density functions and assess the best-fitting one. Then, we calculate 136 

multiple descriptors of dispersal (e.g. median and maximum dispersal distances) and 137 

quantify the phylogenetic signal in these descriptors. The use of multiple dispersal 138 

descriptors will allow us to disentangle different selective pressures on short- versus 139 

long-distance dispersal patterns (Claramunt, 2021; Sheard et al., 2020), 140 

Methods 141 

Ringing data  142 

Raw data on dispersal distances were obtained from the EURING database (Du Feu 143 

et al., 2016). The data were requested following an approach that allowed us to keep 144 

only the reliable observations and test for different sampling biases. Therefore, for 145 

the present study, we included distances between the ringing and re-encounter 146 

locations of birds ringed and subsequently re-encountered between April and July 147 

(which represents the core breeding season for most species) from 1979 until 2018 148 

from almost all ringing schemes in Europe (see supplemental material 1). Re-149 

encounters within the same breeding season as ringing were excluded. When 150 

multiple subsequent encounters at the same coordinates as the previous encounter 151 

were available, only the first one was considered. We re-classified the field codes for 152 

the condition of the reencountered birds into two classes, dead (code: 1-3) and alive 153 

(code: 4-8), and defined two age classes with respect to the age of the birds when 154 
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ringed: juvenile for birds ringed in their year of birth (age code 1 and 3), and adult for 155 

birds ringed later than the first year of birth. 156 

Because sampling effort varies across schemes and species, we selected a 157 

balanced dataset in terms of sample size across Europe for all species, age groups 158 

(nestling or adult), and types of recovery (dead or alive) that allowed us to estimate 159 

dispersal and tackle the uneven spatial coverage and heterogeneous sampling 160 

associated with different types of re-encounter. In particular, we used a stratified 161 

random sampling by 5° grid cell to select ringing site locations across Europe, then 162 

chose a minimum of 20 records and a maximum of 100 records per 5° grid cell with 163 

c. 60% dead recoveries and 40% alive recoveries where possible. Only recoveries 164 

where the location of the encounter was known to a precision of ±5km were 165 

included. The data were further screened following the procedure described in 166 

Paradis et al. (1998) to remove spurious effects and heterogeneity as far as possible 167 

(birds in poor condition, ringing or recovered events in uncommon circumstances, 168 

and lack of accuracy on the dates and places of ringing and/or recovery). Several 169 

species are not separated in sex classes in the database; hence, we avoid to use 170 

sex as a category in this study. In total, the ringing data obtained from EURING 171 

consisted of 602,703 ringing and re-encounter events from 273 species. 172 

Potential bias analysis 173 

Ringing databases hold dispersal information that could not be acquired using 174 

alternative techniques. Ring-recovery data are available for many species and are 175 

not constrained by sampling being restricted to particular locations (Tellería et al., 176 

2012). However, drawing conclusions on dispersal from raw data can be misleading 177 

because re-encounters, and hence dispersal distances, are the result of a 178 

heterogeneous observation process and subject to strong sample biases (Fandos & 179 
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Tellería, 2018; Korner-Nievergelt et al., 2010; Naef�Daenzer et al., 2017; Thorup et 180 

al., 2014). Here, we used different approaches to exclude data that can lead to 181 

potential biases in the calculation of dispersal for the different species. In particular, 182 

those biases related to (i) different recovery rates between types of recovery (live 183 

recaptures, resightings and dead recoveries), (ii) migratory movements and (iii) the 184 

minimum number of cases used to infer robust dispersal estimates: 185 

(i) Although a large variation in ringing and recovery effort could potentially 186 

bias the spatial and temporal distributions of ringing data, we expect that the large 187 

spatial scale of our study can minimise the biases associated with the 188 

heterogeneous recovery rates. Nevertheless, dead and alive recaptures may be 189 

affected by different biases related to catching effort by ringers and reporting 190 

probability (Paradis et al., 1998). For instance, the spatial distribution of birds 191 

recaptured alive is likely to differ from dead recoveries as the former depends on the 192 

spatial and temporal efforts in field ornithologist activities (more recoveries at places 193 

with active research/ringing stations; Tellería et al., 2014), while the latter are mostly 194 

reported by the general public and so are more evenly distributed. Therefore, in an 195 

exploratory analysis, we compared the dispersal estimates obtained from using 196 

different recovery types. Comparison of the results indicated that both dead and alive 197 

recaptures (but excluding live resightings), showed similar dispersal patterns (see 198 

supplemental material 2). 199 

(ii) The dispersal analysis of migratory or partial migratory species is 200 

particularly challenging because of variation in migration phenology between 201 

individuals and populations across Europe (Lehikoinen et al., 2019). Because 202 

migratory movements may lead to overestimation of dispersal distances, we aimed 203 

to exclude individuals captured or recovered during migration in the late or early 204 
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breeding season, using a two-step approach. First, we estimated the potential core 205 

breeding period for each species and each spatial (5°) grid cell in Europe to account 206 

for the breeding time variation across space. For this, we used generalised additive 207 

models (GAMs) to regress dispersal distance against a smoothed function of the 208 

time of the year and used the second derivative to distinguish peak migratory periods 209 

with sudden increases in dispersal distances from the core breeding season with 210 

comparably stable dispersal distances. Second, we used the 95% quantile of the 211 

distances observed in the core breeding period as a conservative cut-off distance to 212 

distinguish between dispersal events and migratory movements (Supplemental 213 

material 3). 214 

(iii) Finally, we ran an exploratory analysis, where we used different subsets of 215 

ring-recoveries to assess how the number of events would affect the dispersal 216 

estimation. We concluded that a minimum of 20 individuals per analysis was 217 

sufficient to ensure robust dispersal estimates (ensuring a minimum sample size of 218 

n=10 per parameter in two-parameter dispersal kernels).  219 

Statistical modelling of dispersal distance kernels 220 

For each species, we fitted an average dispersal kernel (not distinguishing natal and 221 

breeding dispersal), and if enough data were available, we additionally fitted a natal 222 

dispersal kernel and a breeding dispersal kernel. We used a Bayesian approach to fit 223 

four commonly used dispersal kernel functions in their one-dimensional form (i.e. 224 

probability density functions) directly to the distribution of dispersal distances (Table 225 

1). These four 1- or 2-parameter probability density functions have been commonly 226 

used in analysing bird dispersal data (Nathan et al., 2012). Overall, we fitted average  227 

dispersal kernels for 234 species. Because of sample size issues, natal dispersal 228 

kernels and breeding dispersal kernels were fitted only for 113 and 122 species, 229 
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respectively; thus we estimated 1,876 dispersal kernels for the combinations of 230 

species x four dispersal functions x average /natal/breeding dispersal events.  231 

232 

Figure 1: Estimating specific dispersal parameters (White Stork, Ciconia ciconia as an 233 

example). 1) A spatially balanced data set per species was requested from EURING. 2) Data 234 

screening included potential bias analysis accounting for the different recovery rates 235 

between recovery types (live recaptures, resightings and dead recoveries), and migratory 236 

movements. 3) Scheme-specific thresholds for the reported recovery threshold distance 237 

were estimated. Finally, 4) four different density distributions (Exponential, Gamma, Weibull 238 

and Half-Cauchy were fitted to all species, and the best fitting distribution was identified for 239 

each species.  240 

One of the main challenges of fitting dispersal kernels to the EURING database for 241 

dispersal analysis is that different schemes have different procedures for reporting 242 

birds ringed and subsequently encountered again (Du Feu et al., 2016). For 243 

example, some schemes have minimum distances before a bird’s re-encounter will 244 

be deemed reportable. This means that recaptures below a specific distance from 245 

the ringing location are not always reported, and this lower threshold of reporting a 246 
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recovery varies between schemes. The resulting bias of omitting short dispersal 247 

events is problematic because it affects the dispersal kernel’s shape. For 248 

overcoming this problem, we defined two kinds of observation. When the dispersal 249 

distance is 0 m, we specified the observation as potentially censored. When the 250 

observation is precisely known and greater than 0 m, we defined it as accurate. 251 

Preliminary analyses showed that France had a particularly high threshold for 252 

reporting recoveries, but the thresholds for the other schemes also seemed variable. 253 

To avoid any arbitrary choices for the censoring thresholds, we decided to infer 254 

these from the model.  255 

In the following, we describe the steps to estimate the scheme-specific censoring 256 

thresholds and fit the four probability density functions (distributions) to our empirical 257 

data (Figure 1; see code availability). The procedure was carried out separately for 258 

average , breeding and natal dispersal. 259 

1. To make use of maximum information for identifying the scheme-specific 260 

censoring thresholds, we first fitted a separate dispersal kernel for each 261 

specie, with a shared parameter describing the threshold for each scheme. 262 

We repeat this process for each dispersal function (Exponential, Gamma, 263 

Weibull, Half-Cauchy). We selected the best-fitting distribution by computing 264 

the marginal log-likelihood via bridge sampling for each model and computing 265 

the posterior probability with the bridgersampler R package (Gronau et al., 266 

2020). Finally, using this best model, we estimated the posterior distribution of 267 

the scheme-specific censoring threshold parameter.  268 

2. We used the posterior distribution of the scheme-specific threshold parameter 269 

from the previous step as an informative prior in single-species models and 270 

for each dispersal function. The objective of these models was to estimate the 271 
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dispersal kernels for each species, given the degree of left-censoring, 272 

compute the posterior model probabilities from marginal likelihoods, and 273 

assess which distribution is the “best” for each species using the marginal log-274 

likelihood via bridge sampling. For all species and dispersal functions, a) we 275 

extracted the dispersal kernel parameters (the mean and the credible interval 276 

of each parameter), b) we derived the empirical median dispersal distance 277 

(and the 95% credible interval for the median) analytically from the dispersal 278 

kernels, and c) derived long-distance dispersal measures, which we defined 279 

as the 95% percentile from a posterior predictive dispersal simulation with the 280 

estimated parameters.  281 

Table 1. Alternative probability density functions to estimate dispersal kernels k for European 282 

birds. We provide the expressions of the one-dimensional dispersal distance kernels kD as 283 

function of the distance d, as well as the parameters to estimate for each function. The 284 

frequency corresponds to the posterior model probabilities from the computed marginal log-285 

likelihoods via bridge sampling divided by the number of species (frequency = 1 indicates 286 

the most likely distribution). The three bars represent the frequency with which each 287 

dispersal kernel best fitted the different dispersal types (average : yellow, breeding: blue and 288 

natal: grey) 289 
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 290 

Phylogenetic signal in dispersal estimates 291 

We used multivariate generalised linear mixed models to estimate the phylogenetic 292 

dependency in both descriptors of the dispersal ability, the median, and the long-293 

distance dispersal (95% upper percentile of dispersal distances) estimates from the 294 

best-fitted distribution for each species. Dispersal estimates were log-transformed to 295 

satisfy assumptions of normality and linearity and scaled to have a mean of 0 and a 296 

variance of 1. We fitted two separated multivariate Gaussian models for the median 297 

and the long-distance dispersal and included phylogenetic relatedness as a random 298 

effect. We fitted both models, including no fixed effects and estimated the amount of 299 

variation in the dispersal estimates explained by shared ancestry between species 300 

(i.e. phylogenetic signal) by calculating the parameter λ (Pagel’s λ; Pagel, 1999).  301 

We also explored the relationship between median versus long-distance dispersal by 302 

fitting multivariate generalised linear mixed models, with the median dispersal 303 

distance as a response variable, the long-distance as a fixed effect and the 304 

phylogenetic relatedness as a random effect. All models were implemented in a 305 

Bayesian framework using Markov chain Monte Carlo (MCMC) sampling in the 306 
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package MCMCglmm (Hadfield, 2010) in R version 4.0.5. We ran all models with 307 

three chains and 100 000 iterations, with a burn-in period of 1000 and a sampling 308 

interval of 50. The convergence of the models was confirmed by examining the 309 

effective sample size (greater than 1000) and autocorrelation between samples (less 310 

than 0.10) for each chain, as well as the Gelman–Rubin statistics (less than 1.1) 311 

among chains. Priors were initially set using inverse-Wishart priors for the 312 

phylogenetic and residual variance (V�=�1, ν = 0.002). Parameter estimates from 313 

models are reported as the posterior modes with 95% lower and upper credible 314 

intervals (CIs). All phylogenetic analyses were conducted on a sample of 100 trees 315 

obtained from the Hackett backbone of the global bird phylogeny (www.birdtree.org; 316 

Jetz et al., 2012). 317 

Association between natal and breeding dispersal 318 

We explored the association between natal and breeding dispersal estimates from 319 

the best-fitting distributions for each species while accounting for the non-320 

independence of species related to their joint evolutionary history by using a 321 

multivariate generalised linear mixed model. We fitted the model using the median 322 

natal dispersal distance as a response variable, the median breeding dispersal 323 

distance as a fixed effect and phylogeny as a random effect (see above for details 324 

about priors and model fitting). We fitted the model for the subset of 108 species 325 

where all measures were available. Dispersal estimates were log-transformed to 326 

satisfy assumptions of normality and linearity and scaled to have a mean of 0 and a 327 

variance of 1. 328 

We ran the same models to estimate the association between the mean dispersal 329 

distances reported in Paradis et al. (1998) and our median dispersal estimates from 330 
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the best-fitting distribution for the subset of 75 species where both measures were 331 

available.  332 

Results  333 

We analysed a total of 563,276 capture-recapture events from 234 species (median 334 

capture-recapture event per species n = 419, max = 27’837, min= 21), covering 55 335 

bird families. The four probability density functions converged for all species. The 336 

Weibull distribution was the best-fitting function for 156 out of 234 species (Fig. 2; 337 

Table 1). The Gamma distribution was the best one for 34 species, the exponential 338 

for 32 and the Half-Cauchy for 12 species. We analysed a total of 122 species for 339 

natal dispersal, and the Weibull was the best-fitting function for the majority of the 340 

species (92 out of 122 species). In the case of the breeding dispersal, the Weibull 341 

was the best-fitting function for 88 out of 113 species analysed.  342 

The dispersal estimates (median and long-distance dispersal) varied between 343 

species and species orders (Fig 3; Fig S7.1). The phylogenetic signal for the median 344 

dispersal distances was λ = 0.373 [0.115-0.636], whereas the phylogenetic signal for 345 

the long-distance dispersal was λ = 0.236 [0.056-0.462]. Reassuringly, the subset of 346 

species with large enough sample sizes to estimate breeding (n=122) and natal 347 

dispersal (n=113) reflected well the range of dispersal distances found over all 348 

species (n=234; Fig. S8.1). 349 

 350 
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351 

Figure 2: Breeding (a) and natal (b) dispersal kernels for two species: Parus major and 352 

Buteo buteo. Bars represent observed frequency distributions and lines the Weibull 353 

probability density curves, which was the best-fitting one for both species.  354 

 355 

356 
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Figure 3. Median dispersal distance (km) from the best-fitting distribution along the bird 357 

phylogeny for the average (234 species), breeding (113 species) and natal dispersal (121 358 

species). The dispersal distance is truncated at 50 Km for visualisation purposes. Each 359 

colour and letter represent the same Order in the phylogeny and the bar plots. A: 360 

Accipitiformes, B: Anseriformes, C: Apodiformes, D: Bucerotiformes, E: Caprimulgiformes, F: 361 

Charadriiformes, G: Ciconiiformes, H: Columbiformes, I: Coraciiformes, J: Cuculiformes, K: 362 

Falconiformes, L: Galliformes, M: Gaviformes, N: Gruiformes; O: Passeriformes, P: 363 

Pelecaniformes, Q: Piciformes, R: Podicipediformes, S: Strigiformes, T: Suliformes.  364 

 365 

On average, median natal dispersal distances were larger than median breeding 366 

dispersal distances (Fig. 4a). Natal and breeding dispersal estimates from the best-367 

fitting kernels had a positive correlation 0.237 (95% CI: 0.036-0.473; pMCMC= 368 

0.039; Fig. 4b). Better correlations resulted when we compared natal and breeding 369 

dispersal estimates for the same distribution functions (see figure S5.1 for Weibull 370 

distribution). Median dispersal estimates (from the best-fitting kernels) were also 371 

significantly correlated with mean dispersal distances reported for n=75 species in 372 

Paradis et al. (1998), although the dispersal distances from Paradis et al. (1998) 373 

based on summary statistics were larger than our kernel-based estimates (Fig S6.1). 374 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.11.08.467775doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.08.467775
http://creativecommons.org/licenses/by-nc/4.0/


 

 375 

Figure 4: a) Boxplot diagram for the log median dispersal distance (km) from the best-fitting 376 

distribution for natal and breeding dispersal. Lines connect the same species in both types of 377 

dispersal. c) Linear relationship between breeding and natal dispersal (log).  378 

Discussion 379 

While much theory has been developed around bird dispersal and their impacts on 380 

populations, few empirical studies have estimated and synthesised dispersal kernels 381 

for multiple species, a prerequisite for modelling species spatial dynamics (but see 382 

Paradis et al., 2002; Van Houtan et al., 2007). In this paper, we estimated average  383 

dispersal kernels for 234 bird species across Europe and natal and breeding 384 

dispersal kernels for a subset of 122  and 113 species, respectively. This extensive 385 

analysis allows an improved understanding of interspecific variations in dispersal 386 

patterns and strategies in European birds. Specifically, we found that the dispersal of 387 

almost all bird species and across age (natal and breeding dispersal) follows a 388 

heavy-tailed distribution, indicating a general tendency towards long-distance 389 

dispersal in birds. This result supports previous findings that although most 390 

individuals from the different species do not move far, a small proportion of 391 

individuals disperse very long distances (Paradis et al., 2002; Van Houtan et al., 392 
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2007). More importantly, the phylogenetic signal in dispersal characteristics was 393 

weak, indicating that phylogenetic relatedness is a poor predictor of dispersal across 394 

bird species but that other internal and external factors may play important roles in 395 

determining this phenotypic trait.  396 

Long-distance dispersal events are extremely relevant for population dynamics and 397 

range colonisation across changing landscapes, but their low frequency and 398 

detectability make them hard to measure and quantify (Clobert et al., 2012; Travis et 399 

al., 2013). Empirical dispersal kernels are a fundamental tool to address many of the 400 

limitations for characterising dispersal patterns (Bullock et al., 2017; Nathan et al., 401 

2012), in particular when direct measures of dispersal fail to capture the frequency of 402 

potential long-distance dispersal events (Koenig et al., 1996; Whitmee & Orme, 403 

2013). The standardisation of dispersal kernels across a wide range of species 404 

should allow more realistic and representative forecasts of potential species 405 

distributions and better integration of dispersal in comparative life-history analysis 406 

(Nathan et al., 2012; Stevens et al., 2012,Bullock et al., 2017). The heavy-tailed 407 

distributions probably result from the interplay or overlap of multiple movement 408 

modes that widen dispersal kernels when considered simultaneously (Nathan, 2008). 409 

Dispersers may switch between movement modes based on the complex trade-offs 410 

between internal state, environmental context, motion capacity, and navigational 411 

ability (Nathan, 2008). Future analyses will benefit from integrating detailed 412 

movement behaviour with improved analytical methods to understand how 413 

environmental context affects dispersal, and consequently, eco-evolutionary 414 

dynamics in space (Bonte & Dahirel, 2017). 415 

Phylogenetic information has been extensively used to infer dispersal distances for 416 

species without data (Barbet‐Massin et al., 2012; Thomas, 2008). However, this 417 
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approach neglects that dispersal can evolve rapidly by adaptive processes (Stevens 418 

et al., 2010), and that contrasting environmental conditions can generate variability in 419 

phenotypic dispersal patterns among individuals or populations (Bonte & Dahirel, 420 

2017; Clobert et al., 2009). Our results show that both long and median dispersal 421 

distances have weak phylogenetic conservatism, indicating that population-level 422 

drivers such as landscape structure, or more labile behavioural traits, could play an 423 

essential role in determining dispersal (Blomberg et al., 2003; Nathan, 2001). Our 424 

results revealed lower phylogenetic signals in long-distance (compared to median) 425 

dispersal events, which could indicate that particularly long-distance movement are 426 

strongly context-dependent (Lowe, 2009). The overall phylogenetic lability on bird 427 

dispersal suggests that evolutionary history should only be used as predictor of 428 

dispersal ability when data are scarce and should otherwise be used with caution.  429 

Accurately measuring age dispersal differences for many species has typically been 430 

hampered by the low juvenile survival rates compared to adults and because 431 

dispersal distances often exceed study area boundaries (Greenwood & Harvey, 432 

1982; Newton, 1998). Here, we take advantage of continent-wide ringing and 433 

recovery efforts to show that natal dispersal of immature individuals that depart their 434 

natal range in search of new sites is generally more extensive and covers a wider 435 

geographical area than breeding dispersal (Greenwood & Harvey, 1982; Hollenbeck 436 

et al., 2018; Paradis et al., 1998). This considerable dispersal asymmetry between 437 

ages could arise from a range of selective pressures, such as inbreeding avoidance, 438 

competition among offspring, or simply finding suitable habitat (Clobert et al., 2012; 439 

Hendry et al., 2004). In contrast, mature breeders have evolved comparably lower 440 

breeding dispersal rates favouring territories they already know from previous 441 

breeding attempts (Kokko & Lundberg, 2001). Disentangling whether dispersal 442 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.11.08.467775doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.08.467775
http://creativecommons.org/licenses/by-nc/4.0/


 

 

strategies are conditional on age is essential to understanding how demography and 443 

fitness influence the overall dispersal process (Bonte et al., 2012).  444 

Studies of marked individuals are essential for understanding life histories and 445 

population dynamics. The EURING database provides an unrivalled source of mark-446 

recapture information at a continental scale that is of immense value to ecology and 447 

conservation (Du Feu et al., 2016) and, as we have shown here, for estimating 448 

empirical dispersal distributions. However, sampling effort and detection in ring-449 

recovery data vary considerably over time, space, species, and recovery types 450 

(Naef�Daenzer et al., 2017; Perdeck, 1977; Thorup et al., 2014). If not corrected for, 451 

this typically results in unsubstantiated estimates of dispersal that can lead to biased 452 

results or, in worst cases, wrong conclusions. Here, we identified sampling biases 453 

related to heterogeneous variation in ringer and finder activities (uneven spatial 454 

coverage, uneven sampling effort per type of recapture, heterogeneous reporting 455 

threshold between schemes) and biases related to the recoveries of birds on 456 

migration. We approached these biases by (1) using methods to exclude (filter) and 457 

standardise subsets of the data, keeping only the reliable observations (Geldmann et 458 

al., 2016) and (2) with an appropriate analytical approach to estimate dispersal for 459 

left-censored data using a Bayesian approach. This analysis and approach can be 460 

helpful for those working with large mark-recapture datasets from any taxa which 461 

cannot infer sampling effort or account for uneven detectability (using the provided 462 

code, see Data Accessibility). The filtering process and analysis could also be helpful 463 

to improve running monitoring programs or plan future ones.  464 

The robust empirical characterisation of the avian dispersal kernels as presented in 465 

this study is crucial for conservation and management since and for predicting 466 

potential future range changes. The estimated dispersal distances as well as the 467 
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analytical tools designed here provide many avenues for future research. 468 

Outstanding questions include, among others, the assessment of dispersal 469 

syndromes to understand how dispersal kernels vary across species traits and 470 

explore covariation patterns between dispersal and other traits (Clobert et al., 2009; 471 

Ronce & Clobert, 2012) and the exploration of how dispersal processes respond to 472 

habitat fragmentation and climate change (Bowler & Benton, 2005; Travis et al., 473 

2013). The presented study paves the road towards a new generation of more 474 

realistic modelling and comparative studies to evaluate the role of dispersal in 475 

several issues of population biology and their eco-evolutionary dynamics under 476 

global change. 477 

Data and Code availability 478 

Ring-recovery data is available upon request through the EURING Data Bank. 479 

Dispersal estimates and code will be available after publication from ZENODO 480 

repository: Guillermo Fandos (2021). guifandos/European_bird_dispersal: v0.1.0-481 

Edispersal (v0.1.0_Edispersal). Zenodo. https://doi.org/10.5281/zenodo.5565077. 482 

Code available until publication https://github.com/UP-483 

macroecology/European_bird_dispersal) 484 
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