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Abstract 1 

In real life, humans make decisions by taking into account multiple independent 2 

factors, such as delay and probability. Cognitive psychology suggests that cognitive 3 

control mechanisms play a key role when facing such complex task conditions. 4 

However, in value-based decision-making, it still remains unclear to what extent 5 

cognitive control mechanisms become essential when the task condition is complex. 6 

In this study, we investigated decision-making behaviors and underlying neural 7 

mechanisms using a multifactor gambling task where participants simultaneously 8 

considered probability and delay. Decision-making behavior in the multifactor task 9 

was modulated by both probability and delay. The behavioral effect of probability 10 

was stronger than delay, consistent with previous studies. Furthermore, in a subset of 11 

conditions that recruited fronto-parietal activations, reaction times were 12 

paradoxically elongated despite lower probabilistic uncertainty. Notably, such a 13 

reaction time elongation did not occur in control tasks involving single factors. Meta-14 

analysis of brain activations suggested an association between the paradoxical 15 

increase of reaction time and strategy switching. Together, these results suggest a 16 

novel aspect of complex value-based decision-makings that is strongly influenced by 17 

fronto-parietal cognitive control. 18 

 19 
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 23 

Highlights 24 

⚫ A value-based decision task with concurrent delay and probabilistic uncertainty 25 

⚫ Stronger behavioral effect of probability than delay 26 

⚫ Paradoxically long reaction time despite low probabilistic uncertainty 27 

⚫ The task activated fronto-parietal cognitive control network 28 

⚫ Reaction time elongation coincided with activation similar to strategy switching 29 

 30 
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Introduction 1 

Value-based decision-making is often difficult because participants need to evaluate 2 

a particular option not only based on its current value, but also on contextual factors 3 

that modulate its subjective value (Green et al., 2014). Even in relatively simple 4 

situations in which only a single contextual factor modulates subjective values, the 5 

participant’s decision-making behaviors often deviate from that of rational decision-6 

makers (Chernev, 2003; Kahneman and Tversky, 1979; Simonson and Tversky, 7 

1992). For example, when a participant is asked to choose between obtaining $100 8 

“1 month later” or “10 years later,” they tend to select “1 month later” (Myerson and 9 

Green, 1995; Ostaszewski et al., 1998), a phenomenon known as “delay discounting” 10 

(Ainslie, 2005; Frederick et al., 2002b; Green et al., 1981; Green et al., 1994; Green 11 

et al., 1999; Kirby, 1997; Mischel et al., 1989; Rachlin et al., 1991). Similar to delay, 12 

probabilistic uncertainty to obtain the reward also affects value-based decision-13 

making, a phenomenon known as “probability discounting” (Camerer, 1995; Green 14 

and Myerson, 2004; Kahneman and Tversky, 1979; Ostaszewski et al., 1998; Rachlin 15 

et al., 1991; Starmer, 2000; Tversky and Kahneman, 1992). For example, when a 16 

participant is asked to choose between obtaining $100 with a probability of “80%” or 17 

“10%,” they tend to choose “80%” (Ostaszewski et al., 1998). The cause of these 18 

deviations from rational decision-makers is often attributed to a tendency of human 19 

participants to minimize the required cognitive effort by controlling decision-making 20 

strategies (Basten et al., 2010; Krajbich et al., 2015; McGuire and Botvinick, 2010; 21 

Payne et al., 1963; Smith and Walker, 1993). 22 

Value-based decision-making tasks can be even more complex in real-life 23 

settings where multiple contextual factors simultaneously modulate the values. For 24 

example, an investor evaluates the value of a company not only based on its current 25 

price but also according to uncertainty regarding its future success. At the same time, 26 

the investor needs to consider a delay to obtain a return on investment, i.e. the time it 27 

takes for the company to succeed, because the goal of the investor is often to 28 

maximize the profit within a given time. Recent behavioral studies have suggested 29 

that human participants can effectively handle multiple contextual factors 30 

simultaneously, but do not treat each factor equally (Vanderveldt et al., 2015). In 31 

decision-making tasks where both the uncertainty and delay of outcomes are 32 

manipulated, subjective values of given options were more strongly influenced by 33 
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probability discounting than delay discounting (Blackburn and El-Deredy, 2013; 1 

Vanderveldt et al., 2015). This asymmetric processing of delay and probability 2 

suggest that cognitive processing is likely to differ between simple and complex 3 

value-based decision-making. The nature of cognitive processing and the associated 4 

brain mechanism that differentiate simple and complex value-based decision-5 

making, however, remains elusive. 6 

Neuroimaging studies of complex decision-making tasks have revealed 7 

that coordinated activity in the dorsolateral frontal and parietal areas enables the 8 

cognitive control necessary to handle complex task-conditions (Camilleri et al., 9 

2018; Cocuzza et al., 2020; Dosenbach et al., 2006). On the other hand, in value-10 

based decision-making, previous studies mostly highlighted orbital-frontal and 11 

midbrain areas related to value-coding, but not frontal-parietal areas related to 12 

cognitive control (Daw et al., 2006; Suzuki et al., 2017; Tom et al., 2007). Previous 13 

neuroimaging studies which used a complex value-based decision task (Treadway et 14 

al., 2009) also focused mostly on midbrain areas (Treadway et al., 2012; Huang et 15 

al., 2016). There are two possibilities to explain this absence of involvement of 16 

frontal-parietal areas in previous value-based decision-making studies: One 17 

possibility is that the lack of frontal-parietal activation is due to the fact that previous 18 

studies used simple value-based decision tasks in which only a single factor, such as 19 

the delay or probability, modulated the values (Hare et al., 2008; Kable and 20 

Glimcher, 2007; Tanaka et al., 2004). It is probable that frontal-parietal areas are 21 

additionally recruited in more complex value-based decision-making tasks where 22 

multiple contextual factors simultaneously affect the value. Another possibility is 23 

that value-coding in the frontal cortex and midbrain areas, by themselves, has 24 

sufficient computational capacity to calculate option values (Jimura et al., 2018; 25 

McClure et al., 2007; McClure et al., 2004). In such a case, cognitive control by 26 

frontal-parietal areas may not be necessary even in complex task-conditions in which 27 

multiple contextual factors modulate the values. In the present study, we 28 

hypothesized that the former possibility was true and devised a multifactor, value-29 

based decision-making task which was sufficiently complex to test the hypothesis. 30 

In the present study, we investigated the decision-making behaviors and 31 

neural activity underlying decision-making in complex conditions with multiple 32 

factors modulating the values. Our a priori hypothesis was that complex, but not 33 
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simple, value-based decision-making recruits cognitive control mechanisms 1 

necessary to handle complex task conditions. To isolate the effect of simple and 2 

complex task-conditions, we designed a gambling task in which probabilistic 3 

uncertainty and delay to outcome was simultaneously varied (DP-task) and control 4 

tasks in which probabilistic uncertainty or delay to outcome was varied alone (D-5 

task, P-task) (Fig. 1). The quantitative conditions presented in the D-task and P-task 6 

were matched with subsets of conditions in DP-task, which allowed us to isolate the 7 

effect of presenting multiple factors simultaneously. The brain activity in the tasks 8 

was recorded by functional magnetic resonance imaging (fMRI) to investigate the 9 

cognitive process specifically used in multi-factor decision-making. 10 

 11 

 12 

Figure 1. Participants performed a delayed gambling task in which they made a 13 

decision regarding whether they would accept the presented gambling condition. In 14 

DP-task (left top), the gamble offer involved probabilistic uncertainty (Odds), 15 

outcome delay (When), bet amount (Wager), and winning amount (Gain). In control 16 

tasks, the gamble involved only outcome delay (D-task; right top), or probabilistic 17 

uncertainty (P-task; right bottom). Parameters affecting the gamble (left bottom) 18 

were identical in DP-task and control tasks.  19 
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Materials and Methods 1 

Objectives and hypotheses 2 

Based on previous behavioral and neuroimaging studies, we hypothesized that 3 

cognitive processing differs between simple and complex value-based decision-4 

making. More specifically, we hypothesized that the cognitive processing related to 5 

cognitive mechanisms is recruited in complex, but not simple, value-based decision-6 

making. The present behavioral and neuroimaging experiments were conducted to 7 

test this a priori hypothesis. Based on the behavioral results, we further 8 

hypothesized, a posteriori, that the particular cognitive control mechanism employed 9 

in complex value-based decision-making is related to strategy switching. This latter 10 

hypothesis was examined with a meta-analysis and a functional connectivity 11 

analysis, and provided a unified interpretation of the behavioral and neuroimaging 12 

results.  13 

 14 

Participants 15 

Written informed consent was obtained from 25 healthy right-handed 16 

participants (9 females; mean age, 19.5; age range, 18–22). Experimental procedures 17 

were approved by the institutional review board of Keio University and Kochi 18 

University of Technology. Participants received 2000 yen for participating. 19 

 20 

Behavioral procedures 21 

Participants performed a decision-making task while fMRI was performed. 22 

In each trial, a gambling situation was presented on the screen, and participants made 23 

a judgement about whether they would accept or reject the gamble and pressed a 24 

corresponding button to indicate their decision. In the main task (DP-task), the 25 

gambling situation was defined by following factors (Fig 1 left top): 1) outcome 26 

delay (when the outcome of the gamble would be provided: When), 2) probabilistic 27 

uncertainty (how high chance to win the gamble is: Odd), 3) amount of bet to gamble 28 

(Wager), and 4) amount of gain when winning the gamble (Gain). Positions of the 29 

four display materials were randomized across trials. We denoted this delayed 30 

gambling task as DP-task, since the task required participants to take into account 31 

both delay and probability to make a decision. Two control tasks were also used in 32 

addition to DP-task. In one control task, probabilistic uncertainty was set as a 33 
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constant (to 100%) and only delay, wager, and gain were varied (D-task; Fig 1 right 1 

top). In another control condition, the outcome delay was set as a constant (to 2 

“Now”) and only probability, wager, and gain were varied (P-task; Fig 1 right 3 

bottom). In all the three tasks, variables were drawn from the same parameter set (Fig 4 

1 left bottom). Note that quantitative conditions of the trials in DP-task with 100% 5 

probability were logically equivalent to trials in D-task. Likewise, quantitative 6 

conditions in trials with immediate outcome (delay = “Now”) were logically 7 

equivalent to the trials in P-task. Participants were asked to perform the task as if the 8 

gambling conditions were real. 9 

Trials of each task were presented in a blocked manner to minimize 10 

cognitive demand due to the change in the number of factors. The block-wise 11 

presentation of the three tasks has been shown to yield consistent results compared to 12 

an alternative presentation style where the three tasks were changed on a trial-by-trial 13 

basis (Vanderveldt et al., 2015). Each scanning session involved 2 blocks of DP-task, 14 

1 block of D- task, and 1 block of P-task. The order of the blocks was 15 

pseudorandomized such that DP-task was unrepeated. Each task block consisted of 9 16 

decision trials (6 sec each), 2 fixation trials (3 sec each) and 1 distractor trial (6 sec), 17 

lasting 72 seconds in total. At the beginning and the end of each block, the start and 18 

end queues were displayed for 3 seconds, respectively.  19 

Because of the complexity of choice information consisting of 4 factors, 20 

we adopted only 4 levels for each factor in order to minimize general task difficulty. 21 

Additionally, to simplify participants’ judgement in complex decision situations, 22 

participants were required to make a decision on one choice option, whereas standard 23 

intertemporal tasks have presented two choice options simultaneously (e.g., Green et 24 

al. 1999; Green and Myerson 2004; Kable and Glimcher 2007; Vanderveldt et al. 25 

2015, Jimura et al. 2018). 26 

The distractor trial was imposed to ensure that the participants did not 27 

make decisions randomly without evaluating the gamble factors. Specifically, 28 

participants were presented with a gamble situation where reasonable decision was 29 

clear, and expected to reject the gamble (e.g., Wagers exceeded Gain, probability 30 

was set to 0%, and delay was set to 1000 years). The gamble stimulus set on the 31 

screen disappeared when the participant made a response. 32 
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Prior to fMRI scanning, participants received an instruction session for the 1 

tasks outside of the scanner using the actual experimental stimulus displayed on a 2 

computer monitor. They were told that the number of factors presented on the screen 3 

were 4 (DP-task) or 3 (D-task and P-task). They were also notified about the 4 

distractor trials and were instructed to reject. Then they practiced the three tasks (DP-5 

task, D-task and P-task) for one block each. The tasks were controlled using E-Prime 6 

(Psychology Software Tools, Sharpburg PA, USA). 7 

 8 

Imaging procedures 9 

A 3T MRI scanner (Siemens Verio, Germany) with a 32ch head coil 10 

mounted was used for MRI imaging. Both anatomical and functional images were 11 

acquired from each participant. High-resolution anatomical images were acquired 12 

using an MP-RAGE T1-weighted sequence [repetition time (TR) = 9.7 s; echo time 13 

(TE) = 4.0 msec, flip angle (FA) = 10°, slice thickness = 1 mm; in-plane resolution = 14 

1 × 1 mm2 ]. Functional images were acquired using multi-band acceleration EPI 15 

[repetition time (TR) = 800 msec; echo time (TE) = 30 msec; number of slices = 80; 16 

slice thickness = 2 mm; flip angle = 45°; in-plane resolution = 3 x 3 mm2; multiband 17 

factor = 8], allowing complete brain coverage at a high signal-to-noise ratio. Each 18 

functional run involved 459 volumes (6 minutes and 7 seconds). Six runs were 19 

performed for each participant (total of 2754 volumes). The first 10 volumes of each 20 

scan were discarded to account for signal equilibrium. 21 

 22 

Behavioral analysis 23 

To evaluate participants’ decision and behavior, accept rate (number of 24 

accepted trials divided by the total number of trials) and mean reaction time were 25 

calculated for each task. In DP-task, accept rate and reaction times were calculated 26 

for each combination of probability (“Odds”) and delay (“When”). Accept rate and 27 

reaction times were similarly calculated for each delay and each probability for D-28 

task and P-task, respectively. Statistical testing of the effects of the probability and 29 

delay on accept rate and reaction times were performed by repeated measures 30 

ANOVA using SPSS Statistics 23 (IBM Corporation, NY USA). Similarly, the effect 31 

of simultaneous presentation of probability and delay was estimated using ANOVA 32 
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independently for DP-task trials without uncertainty (100%) versus D-task trial, and 1 

DP-task trials without delay (Now) versus P-task. 2 

 3 

Image preprocessing 4 

Image preprocessing was performed using SPM12 5 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). All functional images were first 6 

temporally aligned, corrected for movement using a rigid-body rotation and 7 

translation correction, and then registered to the participant’s anatomical images. The 8 

functional images were subsequently spatially normalized to a standard MNI 9 

template with normalization parameters estimated based on the anatomical scans. 10 

The images were resampled into 2-mm isotropic voxels, and spatially smoothed with 11 

a 6-mm full-width at half-maximum (FWHM) Gaussian kernel. 12 

 13 

Single-level analysis 14 

A general-linear model (GLM) approach was used to estimate task events 15 

and parametrical effects of gamble parameters. For each participant, trial events were 16 

time-locked to the presentation of the gambling situation, lasting until the 17 

participants’ response by the button press. Effects of interest were acceptance (accept 18 

or reject), tasks (DP-, P-, or D-tasks), delay (DP- and D-tasks) and probability (DP- 19 

and P-tasks). In separate GLM estimations, DP-task trials without uncertainty 20 

(100%), P-task trials, DP-task trial without delay (Now), and D-task trials were 21 

separately coded to allow direct comparison of quantitatively identical trials. Trials 22 

in DP-task without uncertainty (DP-100%) were identical to trials in D-task except 23 

that reward probability (100% in both types of trials) was explicitly presented to 24 

participants in DP-task. Similarly, trials in DP-task without delay (DP-Now) were 25 

quantitatively identical to trials in P-task except for explicit presentation of reward 26 

timing in DP-task. Brain activity was also compared between DP-100% and DP-Now 27 

using a separate GLM analysis. Trial events were then convolved with canonical 28 

HRF implemented in SPM. 29 

We contrasted parameter estimates between 1) accept and reject trials (Fig. 30 

S2C and Table S3), 2) 100% Odds trials in DP-task vs. D-task trials (Fig. 4A and 31 

Table S4), 3) Now trials in DP-task vs. P-task trials (Fig. 4B and Table S6), and 4) 32 

100% Odds trials and other trials in DP-task (Fig 6C and Table S7). 33 
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For each task block, distractor trials, start cues, and end cues were also 1 

coded in GLM as nuisance regressors. Six-axis head motions, white matter, and 2 

cerebrospinal fluid (CSF) signals were also added as nuisance regressors. When 3 

extracting white matter and CSF signals, spatially normalized T1 anatomical images 4 

were segmented into white matter, cerebrospinal fluid (CSF), gray matter, bone, soft 5 

tissue, and background (air) using SPM12. Then, fMRI signal time courses were 6 

extracted using white matter and CSF images as masks. 7 

In order to test whether the differential activity between DP-100% and D-8 

task trials (Fig. 4A) could be explained by a general difference in cognitive load, we 9 

performed supplementary GLM analysis, where reaction times (RTs) in the DP-10 

100% trials and D-task trials were coded as a single nuisance regressor in a GLM. 11 

 12 

Group-level analysis 13 

For the group level analysis, beta maps were first contrasted within each 14 

participant and then collected from all participants. Statistical testing was performed 15 

based on nonparametric permutation testing (5000 times) implemented in randomise 16 

in FSL suite (Winkler et al., 2014) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise). 17 

Clusterwise whole-brain statistical correction was performed for voxel clusters 18 

defined by a threshold (P < 0.001, uncorrected). Clusters showing significance level 19 

above P < 0.05 corrected for multiple comparisons were used as a functional mask 20 

associated the contrasts of interest described above. This group-analysis procedure 21 

was empirically validated to appropriately control false positive rates (Eklund et al., 22 

2016). The voxel clusters listed in Tables S1-7 were also subjected to whole-brain 23 

corrections using the family-wise error rate based on the Gaussian random field 24 

theory implemented in SPM, and all clusters were significant. 25 

 26 

Map decoding. 27 

To characterize the current activation maps functionally, the maps for the 28 

contrasts of DP-100% vs. D-task, and trials with 100% Odds (DP-100%) vs. all the 29 

other probability conditions (10%, 40% and 70%) in DP-task, together denoted “DP-30 

Others,” were decoded. We note that the contrast of DP-Now vs. P-task did not result 31 

in significant brain activations, hence the contrast is not described in the following. 32 

The decoder was trained to weight a term list that characterizes a 3D brain map 33 
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based on meta-analysis of functional brain mapping (https://neurosynth.org/decoder/; 1 

Yarkoni et al., 2011). High weight terms reflect greater topographical similarity 2 

between the activation maps and functional brain maps related to the words in the 3 

meta-analysis (Yarkoni et al. 2011). Full lists of weights and terms are available in 4 

Supplementary data. 5 

Then the term lists were visualized as word clouds where the size of the 6 

words reflects the term weights. Anatomical terms and terms unrelated to brain 7 

function were excluded. Specifically, we first eliminated anatomical and general 8 

terms such as “ventrolateral,” “frontal gyrus,” and “character.” The list also included 9 

terms that are similar and/or semantically overlapping; for example, “attention” and 10 

“attentional” and “working memory” and “working.” We merged such overlapping 11 

terms into one with a weight equal to the sum of the merged terms’ weights. After 12 

this elimination procedure, we listed the top 50 terms with higher weights. 13 

We show word clouds for the contrasts of DP-100% vs. D-task trials, and 14 

DP-100% vs. DP-others trials. Because the tested conditions (DP-100%) were 15 

identical in these clouds, we were reluctant to conduct a quantitative analysis of 16 

similarity, and instead compared the word clouds qualitatively. 17 

 18 

Meta-analysis maps. 19 

 In order to further characterize the current activation maps, meta-analysis 20 

maps were obtained from Neurosynth (https://neurosynth.org/; Yarkoni et al., 2011). 21 

We obtained 3D maps for the search words “executive control” and “cognitive 22 

control” (P < 0.01 with whole-brain correction based on false discovery rate of 23 

uniformity test). Then, each of the two maps was binarized, and logical OR of the 24 

two binarize maps was calculated on voxel-by-voxel basis. The OR map was defined 25 

as meta-analysis mask of executive/cognitive control. This procedure was also 26 

applied to meta-analysis maps based on association tests instead of uniformity tests. 27 

The meta-analysis maps of switching with uniformity and association tests were 28 

created with similar procedure, in which “switch” and “switching” were used for the 29 

search words of Neurosynth. 30 

 31 

Region of interest (ROI) analysis. 32 
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 ROI analysis was performed to test whether the brain regions identified by 1 

the meta-analysis showed prominent activations in the current task contrasts. ROIs 2 

were defined as the meta-analysis masks as created above for executive/cognitive 3 

control and switching based on uniformity and association tests (yellow and red 4 

voxels in Figs 5B/D and S4A/4C). Then, for each ROI, signal magnitudes of the 5 

contrasts of DP-100% vs. D-task and DP-100% vs. DP-Others were calculated using 6 

fslmeants implemented in FSL. 7 

 8 

Psychophysiological interaction analysis. 9 

In order to examine task-related interregional interactions among brain 10 

regions during multifactor decision-making, psychophysiological interaction (PPI) 11 

analysis was performed using SPM 12 (Friston et al., 1997). The current analysis 12 

focused on brain regions and their connectivity involved in strategy switching (see 13 

Results). ROIs were defined as voxel clusters showing statistically significant 14 

activation regions in at least one of either DP-task trials without uncertainty (100%) 15 

versus other DP-task trials (Fig 6A) or DP-task trials without uncertainty (100%) 16 

versus D-task trials (Fig 4A). Then, a total of six regions of interest (ROIs) were 17 

obtained: bilateral lateral prefrontal cortex, bilateral superior parietal lobe, and 18 

bilateral occipitotemporal cortex (Fig 6C, right). We defined the ROIs based on the 19 

contrast that showed behavioral effect (DP-100% vs D-task). 20 

For each ROI, the signal time course was extracted as the first eigenvariate 21 

of the voxel clusters. The percentage variances explained by the first eigenvariates 22 

were 66.29 ± 9.33 (mean ± SD) in the left Occipital Temporal Cortex (OTC) ROI, 23 

64.26 ± 8.65 in the right OTC ROI, 75.98 ± 7.63 in the left SPC ROI, 69.85 ± 7.15 in 24 

the right SPC ROI, 66.08 ± 7.01 in the left posterior Inferior Frontal Cortex (pIFC) 25 

ROI, and 64.00 ± 9.19 in the right pIFC ROI. 26 

A psychological variable was defined as a time series of contrast of 27 

interest, DP-task trials without uncertainty versus D-task trials. An interaction effect 28 

of the seed time course and psychological variable was calculated based on SPM12. 29 

The interaction effect, the psychological variable, and the timecourse of the seed 30 

region were included in GLM. As additional nuisance effects, nuisance behavioral 31 

events, six-axes head-motion, and time courses of white matter signal and 32 

cerebrospinal fluid signal were also included in GLM. Then, voxel-wise GLM 33 
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estimations were performed for all other ROIs (target), and beta-values were 1 

averaged within each ROI for each participant. Finally, averaged beta-values of PPI 2 

were collected for all combinations of seed/target ROIs (total 30) from all 3 

participants, group-level effects were tested.  4 

For statistical testing, PPIs between seed and target regions were calculated 5 

using fslmeants, and averaged across contralateral and ipsilateral hemispheres, as we 6 

did not observe strong hemispheric asymmetry in PPIs (Fig 6C; Misonou and Jimura 7 

2021). Then, the significance of the PPI strength was tested by the one-sample t-test. 8 

P-values were corrected for multiple comparisons based on Bonferroni correction. 9 

  10 
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Results 1 

We collected fMRI data while participants decided whether to accept or 2 

reject gambles that offered a chance of gaining or losing money. For each trial, the 3 

chance of gaining money and the time to outcome were varied simultaneously and 4 

independently. In each trial, the price for betting (“Wager”), the amount of gain 5 

(“Gain”), the probability of winning (“Odds”), and the time to outcome (“When”) 6 

were presented on the screen (DP-task) (Fig. 1). Participants were asked to decide 7 

whether to accept the delayed gamble and then indicate their decisions by pressing a 8 

button. In two control tasks, either probability or delay to outcome was set as a 9 

constant and excluded from the offer (D-task, P-task; Fig. 1). 10 

The accept rate for DP-task was higher for conditions with a smaller 11 

Wager [t(24) = −5.1, P < 0.001] and a greater Gain [t(24) = 2.2, P < 0.05] (Fig. S1), 12 

confirming that participants made decisions based on the presented amount of Wager 13 

and Gain. For the same Wager and Gain, participants accepted the delayed gamble 14 

more when the Odds were higher (Fig 2), consistent with probability discounting 15 

(Green and Myerson, 2004; Kahneman and Tversky, 1979; Tversky and Kahneman, 16 

1992). Repeated measures analysis of variance (ANOVA) with 4 levels of Odds and 17 

4 levels of When as factors revealed a significant positive effect of Odds on the 18 

accept rate [F(1,24) = 459.8; P < 0.001; with linear contrast of Odds]. Similarly, 19 

participants accepted the delayed gamble more if When was shorter [F(1,24) = 6.2; P 20 

< 0.05; with linear contrast of When; Fig. 2], consistent with delay discounting 21 

(Frederick et al., 2002a, b). The interaction between Odds and When was not 22 

significant [F(1,24) = 3.5; P = 0.08; with linear contrast of an interaction of Odds and 23 

When]. Thus, the level of statistical significance was higher for the probability than 24 

the delay, consistent with previous studies reporting that the effect of probability was 25 

stronger than that of the delay when presented together (Blackburn and El-Deredy, 26 

2013; Vanderveldt et al., 2015). These results collectively suggest that participants 27 

performed the decision-making task in a value-based manner despite the complexity 28 

of the task structure. 29 

 30 
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 1 

Figure 2. Accept rates as a function of delay (“When” parameter; A) and probability 2 

(“Odds” parameter; B). The tasks (DP-, D-, or P-task) and task parameters (delay and 3 

probability) are indicated on the right. Plots are magnified for each condition at the 4 

bottom. Error bars indicate standard errors of the mean across participants. 5 

 6 
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We next examined whether or not probability and delay affected 1 

participants’ decisions differently when both factors were presented together versus 2 

when each factor was presented alone. To isolate the effect of the simultaneous 3 

presentation, we set the quantitative conditions of the control tasks (D-task and P-4 

task) equivalent to subsets of conditions in the DP-task: Conditions in the D-task 5 

were quantitatively equivalent to the conditions with “Odds = 100%” in the DP-task. 6 

Similarly, conditions in the P-task were quantitatively equivalent to the conditions 7 

with “When = Now” in the DP-task (unless otherwise noted, comparisons between 8 

the DP-task and the D-task or P-task were done using the quantitatively equivalent 9 

conditions). Comparing the D-task and DP-task revealed significantly larger accept 10 

rates for the latter [t(24) = 2.47; P < 0.05; two rightmost panels in Fig. 2A], 11 

suggesting that participants’ decisions were altered by explicit presentation of the 12 

probability information in addition to the delay information. In contrast, comparing 13 

the P-task and DP-task showed no significant difference in accept rate [t(24) = 1.11; 14 

P = 0.28; rightmost and leftmost panels in Fig. 2B]. These results indicated that 15 

explicit presentation of probability information (100%), but not delay information 16 

(Now), altered the participants’ decision to accept the offer, suggesting that the 17 

probability but not delay, was processed differently depending on whether the two 18 

factors were presented together in the DP-task. 19 

To further characterize the decision behavior, we next compared the 20 

reaction times in the DP-task with those in the control tasks. When performing a 21 

cognitively demanding task, reaction time tends to increase as a function of the 22 

number of factors that the participant needs to take into account (Treisman, 1993; 23 

Woodman and Luck, 2004). Reaction time data were not skewed at any levels of 24 

Odds and Delay in the DP-, D-, and P-tasks (zs < 1.50; P > 0.14). Consistently, 25 

compared with the D-task, the reaction time was significantly longer in the DP-task 26 

[t(24) = 4.35; P < 0.0001; two rightmost panels in Fig. 3A]. Similarly, the reaction 27 

time was significantly longer in the DP-task than in the P-task [t(24) = 6.51; P < 28 

0.001; two rightmost panels in Fig. 3B], although the accept rates were equivalent. 29 

Thus, the overall increase in reaction time occurred both for probability and delay, 30 

suggesting that an increase in the number of factors does not simply explain the 31 

increase in the accept rate specifically for probability. 32 
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 1 

Figure 3. Reaction times as a function of delay (“When” parameter; A) and 2 

probability (“Odds” parameter; B). The tasks (DP-, D-, or P-task) and task 3 

parameters (delay and probability) are indicated on the right. Plots are magnified for 4 

each condition at the bottom. Error bars indicate standard errors of the mean across 5 

participants. 6 
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Despite the similar increase in overall reaction time, precise relationships 1 

between reaction time and each factor in the DP-task and control tasks revealed a 2 

difference between probability and delay. Of interest, one-way repeated measures 3 

ANOVA with 4 levels of Odds as a factor revealed that reaction time was an inverse 4 

U-shape as a function of Odds in the P-task [F(1,24) = 10.77, P < 0.01; with a 5 

planned contrast in which the middle two revels (40% and 70%) were greater than 6 

the two end levels (10% and 100%); the rightmost panel in Fig. 3B]. This was 7 

consistent with previous reports that a participant’s decision is faster when the 8 

uncertainty is lower (Bestmann et al., 2008). Indeed, compared with high uncertainty 9 

conditions (i.e. 40% and 70% Odds), the reaction time was significantly shorter in 10 

both the 10% Odds [t(24) = 2.56, P < 0.05] and 100% Odds conditions [t(24) = 2.23, 11 

P < 0.05].  12 

Then, to examine the effects of Odds and When in the DP-task, a two-way 13 

repeated measures ANOVA was performed with 4 levels of Odds and 4 levels of 14 

When as factors. The main effect of Odds on reaction time was statistically 15 

significant [F(1,24) = 4.51, P < 0.05; with the planned contrast of the inverse U-16 

shape]. However, the relationship between Odds and reaction time did not show a 17 

clear inverse U-shape (Fig. 3B). Specifically, the reaction time was similar for high 18 

uncertainty conditions and the 100% Odds condition [t(24) = 0.35, P = 0.77], 19 

whereas the reaction time in the 10% Odds condition was markedly shorter [t(24) = 20 

3.01, P < 0.01]. In contrast to probability, the delay parameters did not show 21 

significant effect on reaction time [linear contrast: F(1, 24) = 0.50, P = .49; inverse 22 

U-shape effect: F(1, 24) = 0.19, P = .67]. Thus, these behavioral results suggest that 23 

probability, but not delay, was processed differently in the multifactor task relative to 24 

the single factor control task. Moreover, the analyses of reaction time suggested that 25 

relative to the rest of the conditions, participants underwent additional and parallel 26 

decision processing when the 100% Odds condition was presented explicitly in the 27 

DP-task. 28 

Because the prolonged RT in the DP-100% trials by itself does not directly 29 

address change in decision processes in those trials, we examined whether decisions 30 

were made differentially depending on the probability level in the DP-task. For each 31 

Odds level, we performed a logistic regression analysis where choice was predicted 32 

by Wager, Gain, and When parameters. In the trials involving probabilistic 33 
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uncertainty (i.e., 10%, 40%, and 70%), Wager showed a significant effect on 1 

acceptance [10%: t(24) = −3.64, P < 0.01; 40%: t(24) = −4.41, P < 0.001; 70%: t(24) 2 

= −2.33, P < 0.05], indicating that participants rejected gambles more frequently in 3 

trials with higher Wager. Gain also showed significant effect on acceptance [10%: 4 

t(24) = 2.40, P < 0.05; 40%: t(24) = 3.65, P < 0.01, 70%: t(24) = 2.21, P < 0.05], 5 

indicating that they accepted gambles more frequently in trials with higher Gain. On 6 

the other hand, in trials without probabilistic uncertainty (i.e., 100%), neither Wager 7 

nor Gain showed a significant effect [Wager: t(24) = −0.40, P = 0.69; Gain: t(24) = 8 

1.22, P = 0.23]. Notably, these beta coefficients of Wager were significantly different 9 

between certain and uncertain trials [100% vs. 10%: t(24) = 3.50, P < 0.01; 100% vs. 10 

40%: t(24) = 4.34, P < 0.001; 100% vs. 70%: t(24) = 2.32, P < 0.05]. For Gain, the 11 

beta coefficient differed between 100% and 40% probability trials [t(24) = −2.92, P 12 

< 0.01]. The differential coefficients clearly demonstrated that participants used 13 

different acceptance strategies depending on probabilistic uncertainty. Specifically, 14 

when the gamble involved probabilistic uncertainty, participants considered Wager 15 

and Gain as aversive and preferred factors, respectively, whereas in the 100% Odds 16 

trials, such consideration was absent. 17 

Based on these behavioral results, we next proceeded to examine brain 18 

activations. Consistent with the larger behavioral effect of probability in DP-task, 19 

processing of probability recruited larger and more widespread brain activations than 20 

the processing of delay (Fig S2A-B; Tables S1/2). These parametrical effects did not 21 

differ between DP-task and control tasks, suggesting that the parametrical effects 22 

were comparable in those tasks. To further identify brain regions specifically 23 

recruited during multifactor decision-making, we examined DP-task and control 24 

tasks which had physically equivalent conditions (Fig 4). In particular, we subtracted 25 

activation maps during D-task from those during DP-task with 100% Odds (DP-26 

100%), aiming to isolate additional processing of probability information in the 27 

multifactor context. The comparison revealed widespread brain activations in the 28 

pIFC, superior parietal lobe (SPL), and OTC (Fig 4A; Table S4). In a separate GLM 29 

analysis, where reaction times in each of DP-100% and D-task trials were coded as a 30 

separate parametric effect (see Materials and Methods), these activations were also 31 

observed (Fig S3 and Table S5), suggesting that these activations were not simply 32 

explained by the difference in general cognitive load between these trials.  33 
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In contrast, a comparison between the P-task and DP-task with immediate 1 

outcome (DP-Now), which isolated the additional processing of delay information, 2 

revealed much smaller brain activations within the inferior frontal sulcus, the more 3 

ventral anterior part of the IFC (Fig 4B and Table S6). This pattern of brain 4 

activations closely parallels the result that a difference in accept rate between the 5 

multifactor task and the control task was seen for probability but not for delay (Fig. 6 

2A-B). 7 

 8 

9 

Figure 4. Brain activations related to processing of probability and delay in the 10 

multifactor task. A) Activation related to probability processing in multifactor 11 

context. Statistical activation maps of brain regions showing greater activity in 100% 12 

Odds trials in DP-task (warm colors) and physically equivalent control trials (D-task) 13 

(cool colors). B) Activation related to delay processing in multifactor context. 14 

Statistical activation maps of brain regions showing greater activity in Now trials in 15 

DP-task (warm colors) and physically equivalent control trials (P-task) (cool colors). 16 

1: left superior parietal lobe; 2: right posterior prefrontal cortex; 3/4: left/right 17 
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occipitotemporal cortex; 5: left posterior lateral prefrontal cortex; 6: right superior 1 

parietal cortex. 2 

 3 

One important question about the activation map in DP-task vs. D-task 4 

(Fig. 4A) is what cognitive functions the activation map may reflect. To search for 5 

potentially relevant cognitive functions, we conducted a decoding analysis such that 6 

the activation maps were labeled as word clouds based on their topographical 7 

similarity to functional brain maps in meta-analyses (see Materials and Methods). 8 

The word clouds primarily included cognitive terms related to executive and 9 

cognitive control such as working memory, attention, and task demands (Fig 5A; see 10 

also Supplementary data for full list of words), which is implemented in fronto-11 

parietal mechanisms (Corbetta and Shulman, 2002; D'Esposito and Postle, 2015; 12 

Dosenbach et al., 2006; Miller and Cohen, 2001). The decoding results suggest that 13 

the fronto-parietal involvements in DP-task vs. D-task (Fig. 4A) reflected executive 14 

and cognitive control functions. To test this possibility more specifically, we 15 

examined spatial characteristics of our results and the meta-analysis map of 16 

executive and cognitive control (see Materials and Methods). The activation location 17 

in the DP-task vs. D-task mostly overlapped with the meta-activation map in fronto-18 

parietal regions (Fig. 5B). Region of interest (ROI) analysis further revealed 19 

significant activation within the meta-analysis maps during the 100% trials in DP 20 

task, relative to both D-task and DP-task with other Odds [Fig. 5C; DP-100% vs. D-21 

task: t(24) = 2.3, P < 0.05; DP-100% vs. DP-others: t(24) = 3.6; P < 0.01]. However, 22 

relative to uncertain trials (10%), such a significant difference was not observed in 23 

uncertain trials (40% and 70%), in which reaction times were prolonged [t(24) = 24 

−0.99, P = 0.33]. Taken together, the brain activation in DP-task vs. D-task was most 25 

likely related to cognitive control. 26 

 27 
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1 

Figure 5. Characterization of activations by large-scale meta-analyses. A) Activation 2 

maps were decoded into functional terms, and the term lists are visualized as word 3 

clouds where the size of the words reflects the word weights. DP-100% vs. D-task 4 

(left), DP-100% vs. DP-Others (right). B) Maps of meta-analysis for 5 

cognitive/executive control are overlaid onto 2D transverse slices in yellow. The 6 

levels of the slices are indicated by the Z coordinates of the standard brain. The 7 

activation maps are further overlaid onto the slice for the contrasts DP-100% vs. D-8 

task (left), and DP-100% vs. DP-Others (right) in cyan. The area overlapping 9 
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between the meta-analysis maps and contrast maps are colored in red. C) Region of 1 

Interest (ROI) analysis. ROI was defined based on the meta-analysis maps in panel 2 

B, and signal magnitudes of the contrasts DP-100% vs. D-task and DP-100% vs. DP-3 

Others were calculated within the ROI. Error bars indicate standard errors of the 4 

mean across participants. *: P < 0.05; **: P < 0.01. D) Maps of the meta-analysis for 5 

switching are overlaid onto 2D transverse slice in yellow. Other formats are identical 6 

to those in panel B. D) ROI analysis. ROIs were defined based on the meta-analysis 7 

maps in panel D, and other formats were identical to those in panel C. 8 

 9 

Based on the involvement of cognitive control in DP-task, we made an a 10 

posteriori hypothesis that the paradoxical elongation of reaction time in 100% 11 

conditions in DP-task (Fig. 3A) is associated with the cost for strategy switching 12 

(Sakai, 2008). Indeed, the meta-analysis map of switching (Fig. 5D, left) was similar 13 

to that of cognitive/executive control (Fig. 5B), which is reasonable because 14 

switching is an executive function implicated in fronto-parietal mechanisms (Kim et 15 

al., 2012). ROI analysis for the meta-analysis maps also revealed significant 16 

activation during the 100% trials [Fig. 5E; DP-100% vs. D-task: t(24) = 2.9, P < 17 

0.01; DP-100% vs. DP-others: t(24) = 3.2; P < 0.01]. Again, within this ROI, a 18 

significant difference was not observed between uncertain trials (40% and 70%) and 19 

relative to uncertain trials (10%) [t(24) = −0.99, P = 0.33]. Consistent results were 20 

obtained by using meta-analysis maps based on a more conservative testing 21 

procedure (Yarkoni et al., 2011)(Fig. S3). 22 

If strategy switching explains the elongation of reaction time in the trials 23 

with 100% Odds in the DP-task, then strategy switching must have taken place 24 

within the DP-task, between 100% and other probability conditions. In line with this 25 

assumption, comparing 100% probability conditions and the other conditions in DP-26 

task revealed brain activations in pIFC and SPL (Fig. 6A and Table S7). However, 27 

such a significant difference was not observed between uncertain trials (40% and 28 

70%) and more certain trials (10% trials), whereas reaction times differed between 29 

these conditions. 30 

In contrast, no significant brain activation was observed in the comparison 31 

between without delay conditions (“When” = “Now”) and the other conditions in 32 

DP-task (Fig. 6B). Furthermore, the meta-analysis map almost included the 33 
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activation location during trials with 100% Odds relative to trials with other 1 

probabilities in DP-task (Fig. 5D, right). Thus, the meta-analysis provided support 2 

for the (a posteriori) hypothesis that participants switched strategy between 100% 3 

Odds and the other probability conditions in DP-task. 4 

 5 

 6 

Figure 6. Functional interaction of brain regions related to the specific processing of 7 

100% Odds in DP-task. A) Statistical activation maps of brain regions showing 8 

greater activity in 100% Odds (warm colors) relative to the other Odds (cool colors) 9 

in DP-task. 1/2: lateral prefrontal cortex; 3: superior parietal cortex. B) Statistical 10 

activation maps of brain regions showing greater activity in Now (hot) relative the 11 

other delays (cool) in DP-task. C) Psychophysiological interaction (PPI) analysis 12 

among activations related to the probability processing. Regions of interest were 13 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.11.08.467818doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.08.467818
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

defined in occipitotemporal cortex (OTC: 1/2), superior parietal cortex (SPC: 3/4), 1 

and posterior inferior frontal cortex (pIFC: 5/6) (left). PPI Magnitudes in trials 2 

without probabilistic uncertainty (100%) in DP-task relative to trials in D-task were 3 

color-coded in a heat map with each cell indicating PPI between seed (raw) and 4 

target (column) ROIs. Black and gray squares indicate PPIs with P < 0.05 5 

(corrected), and P < 0.05 (uncorrected), respectively. 6 

To ensure the functional interactions among these brain regions during 7 

strategic multifactor decision-making, we conducted psychophysiological analysis 8 

(PPI) (Friston et al., 1997) using six areas specifically recruited in DP-task relative to 9 

D-task (Fig. 6C). Compared with D-task, DP-task resulted in significantly positive 10 

PPI from OTC and SPC [t(24) = 3.08, P < 0.05, corrected], and PPI from OTC to 11 

pLPFC failed to survive the multiple comparisons, but were almost significant [t(24) 12 

= 2.11, P < 0.05, uncorrected]. These results suggest that the explicit presentation of 13 

“100%” probability to the participant activated OTC, and this in turn activated pIFC 14 

and SPC to execute strategy switching. Taken together, the results of behavior and 15 

functional imaging collectively suggest that the participants used multiple strategies 16 

to handle probabilistic uncertainty, but not delay, in a cognitively demanding DP-17 

task.  18 
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Discussion 1 

In this study, we investigated the role of executive control mechanisms in a 2 

cognitively demanding gambling task in which participants were required to 3 

simultaneously consider two independent factors that modulate the value of the 4 

offers, namely probability and delay. Relative to control tasks, explicit processing of 5 

probability, but not delay, in the delayed gambling task (DP-task) biased the 6 

participants’ decisions. In the DP-task, reaction time was increased in 100% Odds 7 

conditions relative to the other Odds conditions. Neuroimaging analyses were then 8 

conducted to understand these behavioral results. Explicit processing of probability, 9 

but not delay, in DP-task resulted in brain-wide activations in the frontal, parietal, 10 

and occipitotemporal areas. The pattern of brain activations implicated the 11 

involvement of executive control, in particular strategy switching, which could 12 

explain the elongation of reaction time in the multifactor task. Relative to the 13 

cognitively less demanding single-factor control task (D-task and P-task), the DP-14 

task upregulated functional connectivity between OCT to pIFC and OCT to SPC, 15 

consistent with the brain-wide state-reconfiguration associated with the strategy 16 

switching. Taken together, these results suggest that in cognitively demanding, 17 

multifactor decision-making tasks, the executive control mechanism implicated in 18 

fronto-parietal regions plays a key role in handling cognitively burdensome factors 19 

such as probability. 20 

In DP-task as well as in the two control tasks, probability and delay both 21 

affected the participant’s accept rate. The change in accept rate most likely reflected 22 

a change in the subjective value of the offers. In both DP-task and D-task, the accept 23 

rate decreased significantly as the delay increased, consistent with delay discounting 24 

of subjective value in behavioral economics (Ainslie, 2005; Frederick et al., 2002b; 25 

Green et al., 1981; Green et al., 1994; Green et al., 1999; Kirby, 1997; Mischel et al., 26 

1989; Rachlin et al., 1991). Similarly, in both the DP-task and the P-task, an increase 27 

in the probability to obtain the reward resulted in an increase of the accept rate, 28 

consistent with probability discounting of subjective values (Camerer, 1995; Green 29 

and Myerson, 2004; Kahneman and Tversky, 1979; Ostaszewski et al., 1998; Rachlin 30 

et al., 1991; Starmer, 2000; Tversky and Kahneman, 1992). Furthermore, the present 31 

results confirm previous findings that delay discounting and probability discounting 32 

simultaneously and jointly affect decision-making behavior when the two factors are 33 
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present (Blackburn and El-Deredy, 2013; Vanderveldt et al., 2015). The consistency 1 

with previous studies also confirms that the participants performed value-based 2 

decision-making both in the DP-task and the two control tasks. Furthermore, we 3 

confirmed previous reports that the behavioral effect of probability is larger than that 4 

of delay (Blackburn and El-Deredy, 2013; Vanderveldt et al., 2015), corroborating 5 

the notion that humans do not simply add multiple factors when performing a 6 

complex value-based decision-making task. Larger and more widespread brain 7 

activations for processing probability relative to processing delay (Fig. S2A-B) are 8 

also in line with this notion. It remains unclear whether the larger activation related 9 

to probability is a “cause” or “consequence” of the asymmetric processing of 10 

probability and delay. Further research is needed to address this point. 11 

A key difference between previous behavioral economics studies and the 12 

present study is that we used decoding of neuroimaging results to suggest potentially 13 

relevant mental function related to the effects of the presence of multiple factors in 14 

value-based decision-making. Previous studies in cognitive psychology have 15 

reported that humans use different cognitive strategies to solve cognitively 16 

demanding tasks vs. cognitively less demanding tasks (Payne et al., 1963). For 17 

example, when faced with cognitively demanding decision-making tasks, human 18 

participants do not treat all available information equally; instead, they use a 19 

heuristic to prioritize and take into account only a subset of information (Brandstätter 20 

et al., 2006). Such phenomena are not only observed in laboratory experiments but 21 

are also commonly seen in real-life situations (Galotti, 2007). However, although 22 

value-based decision-making in real-life often needs to take into account multiple 23 

variables (e.g., investments), there has been little exploration of cognitive 24 

psychological aspects of the presence of multiple factors in value-based decision 25 

making. In the present study, by comparing multi- and single-factor decision-making 26 

tasks in a controlled manner, we found modulations of the participants’ decision-27 

making behaviors that could not be explained by probability discounting or delay 28 

discounting (Festinger, 1954; Keeney, 2010; Rangel et al., 2008; Vanderveldt et al., 29 

2015). Of note, the change in accept rate (Fig. 2) was similar or even larger 30 

compared with probability discounting or delay discounting. Thus, cognitive 31 

psychological effects may influence value-based decision-making in real-life as 32 

strongly as key factors discovered in behavioral economics. 33 
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It is possible to argue that the change in accept rate seen in the DP-task 1 

was due to the structure of the block design used in the present study (Fig. 1B). 2 

Accept rate is a function of subjective value that is not absolute but depends on a 3 

reference point that is determined based on the current expectation for gain (Abeler 4 

et al., 2011). In the D-task block, all the trials had 100% Odds. In contrast, in the DP-5 

task block, only a subset of trials had 100% Odds. This design made the subset of 6 

trials in the DP-task with 100% Odds have larger subjective values than the rest of 7 

the trials in the same block. Thus, if the reference point is created within each block, 8 

the subjective value of trials with 100% Odds in a DP-task may be higher than the 9 

trials in a D-task, which in turn, causes a higher accept rate in DP-task. However, 10 

this explanation is unlikely because accept rates did not change between the DP-task 11 

with an immediate outcome (i.e., “When” = “Now”) and the P-task, even though the 12 

accept rate should increase in the latter condition if this explanation were true. Thus, 13 

the task design is unlikely to affect the change in accept rate due to the number of 14 

factors observed in the present study. 15 

The explicit processing of 100% Odds in the DP-task may engage the 16 

certainty effect (Tversky and Kahneman, 1986). Typical behavioral tasks related to 17 

the certainty effect are presented with two options: "winning $30 with 100% 18 

certainty" and "winning $45 with 80% certainty and winning nothing for 20% 19 

certainty." Participants typically chose the former option despite its lower expected 20 

value, suggesting that the certainty for reward acquisition increased the subjective 21 

value. However, because the two conditions in DP-task and D-task compared in the 22 

present study both had 100% Odds, the present observation was not an effect of 23 

unequal weighting to 100% Odds relative to the other probabilities. Moreover, the 24 

increase of reaction time despite the decrease in uncertainty in DP-tasks with 100% 25 

Odds cannot be explained by the certainty effect alone. Taken together, the certainty 26 

effect alone is unlikely to explain the modulation of decision-making behaviors in 27 

the DP-task. 28 

Motivation to obtain the reward is an important factor determining value-29 

based decision behaviors that was not explicitly manipulated in our study. Using a 30 

multifactor, value-based decision-making task in which effort and probability to 31 

obtain reward were simultaneously manipulated (effort expenditure for reward task, 32 

EEfRT; Treadway et al., 2009), Treadway and colleagues found that human subjects 33 
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with weaker motivation for reward tend to choose an option with smaller reward and 1 

smaller required effort over an option with larger reward and larger required effort. 2 

Such (negative) correlation is present when the probability of winning is low, but is 3 

largely abolished when the probability is high. In contrast, in our study, we observed 4 

delay discounting regardless of the probability to obtain the reward (Fig. 2), 5 

suggesting that the cost associated with acceptance or rejection of offers was largely 6 

constant to the participants. Although we believe that this task condition was 7 

beneficial for isolating fMRI activity related to the processing of probability and 8 

delay per se, the downside was that we were unable to measure whether and how 9 

effort, and hence reward motivation, could have modulated the decision-making 10 

behaviors in our task. Rather than combining probability, delay, and effort in a single 11 

task, however, one can conduct a complex value-based decision task (e.g., DP-task) 12 

and EEfRT in separate sessions with the same participants to quantify reward 13 

motivation in individual participants (Giustiani et al., 2020). Such measurement is 14 

not only important for understanding the effect of individual personality on complex 15 

value-based decision-making but also for understanding how human participants 16 

with psychiatric disorders might respond to complex value-based decision tasks. 17 

Reward motivation strongly modulates decision-making behaviors of human 18 

participants with psychiatric disorders such as schizophrenia (Green et al., 2015; 19 

Huang et al., 2016). Thus, quantification of reward motivation would be 20 

indispensable to understand behaviors of participants with psychiatric disorders in 21 

complex value-based decision tasks. 22 

Brain activity in the frontal and parietal regions related to the acceptance of 23 

gambles is consistent with previous results that brain activity increases in the frontal 24 

and parietal regions when expectations for rewards are high (Fig. S2C) (Hare et al., 25 

2008; Rolls, 2000; Tom et al., 2007). The frontal and parietal activations related to 26 

the increase in probability can also be explained by the higher expectations for 27 

rewards. It should be noted that we did not detect significant activation in the 28 

orbitofrontal cortex (OFC), which is known as a brain region related to subjective 29 

value (Kable and Glimcher, 2007; Levy and Glimcher, 2012). This is most likely due 30 

to the fact that the present tasks were not designed to isolate the effect of subjective 31 

value (Jimura et al., 2011). Brain activity in the OTC increased due to the increase in 32 

the DP-task relative to the control tasks. Given that the region corresponds to early 33 
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visual areas, the activation in the OTC most likely reflects additional visual 1 

processing due to the increased number of visual stimuli relative to the control tasks 2 

(Fig. 1A) (Mentis et al., 1997; Zeki, 1978). 3 

Explicit processing of probability in the DP-task activated the pIFC, SPC, 4 

and OTC relative to the D-task. Activation in the OTC likely reflects an increase in 5 

visual information processing, as described above. The present meta-analyses 6 

revealed that activations in pIFC and SPC overlapped with brain regions previously 7 

implicated for strategy switching (Konishi et al., 2002; Sakai and Passingham, 2006). 8 

This pattern of brain activation suggested an interpretation that the participants 9 

switched their decision-making strategy to handle a subset of conditions (i.e. 10 

conditions with 100% Odds) in a cognitively demanding DP-task. In fact, pIFC and 11 

SPC were similarly activated in the 100% Odds conditions in DP-task relative to the 12 

other Odds conditions in DP-task. Consistently, the reaction time for 100% Odds 13 

tended to be longer than other Odds, likely reflecting the switching cost (Rogers and 14 

Monsell, 1995) associated with the shift in strategy between 100% Odds and the 15 

other Odds. It is intriguing that strategy switching did not seem to occur in the 10% 16 

Odds conditions, which also had a low probabilistic uncertainty. The differential 17 

processing of 100% and 10% Odds conditions may reflect the certainty effect 18 

(Tversky and Kahneman, 1986). It is of great interest which strategies the 19 

participants were switching between. Notably, a recent large-scale study reported 20 

that human participants frequently adopted flexible decisions that switched between 21 

subjective value-based decisions and expected utility-based decisions (Peterson et 22 

al., 2021). We speculate that the participants in the present study adopted similar 23 

flexible decisions during DP-task. 24 

The decoding of functional maps showed strong weights for the terms 25 

related to cognitive/executive control including working memory and switching (Fig 26 

5A). Working memory is a representative executive (cognitive) control function that 27 

refers to active maintenance and updating of goal-relevant information (D’Esposito 28 

and Postle 2015). Switching is also a representative executive control function, 29 

specifying shifting between one engagement to another. Thus, as executive control 30 

functions, switching and working memory partially share functional constructs, and 31 

indeed, it is well-known that cortical involvements in working memory and 32 

switching overlap in broad fronto-parietal regions (Dosenbach et al. 2006). 33 
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Importantly, the decoder that we used to create the word cloud (Yarkoni et al. 2011) 1 

calculated association weights between activation maps and terms based on 2 

topographical similarity between the maps and meta-analysis maps related to the 3 

terms. Therefore, it is reasonable that both task (switch) and working memory shows 4 

strong weights. 5 

Given the topographical similarity of brain regions involved in working 6 

memory and switching, theoretical accounts of these functions may help to specify 7 

cognitive processing in the current task. Working memory helps to guide decisions 8 

by encoding, maintaining, and integrating choice information. It has also been 9 

suggested that engagements of working memory are especially helpful for difficult 10 

decision-making in which choice information needs to be evaluated elaborately 11 

(Jimura et al. 2018). On the other hand, in the current study, we examined brain 12 

activity during decision-making, but comparisons were made based on logically 13 

equivalent situations (DP-100% and D-task trials) and easier situations (DP-100% 14 

vs. DP-others trials). Thus, working memory functioning is subtracted out in our 15 

comparisons for the DP-100% trials, and it is possible to interpret our activation 16 

results as not directly reflective of working memory.  17 

Switching from one task to another requires cognitive processing to release 18 

a set of task rules and implement another set. Despite easier decision situations, 19 

prolonged reaction times in DP-100% are indicative of strategy switching. More 20 

importantly, our behavioral results suggest a switch of strategy when the DP-100% 21 

trials were performed. Taken together, this collective behavioral evidence and 22 

theoretical accounts suggest that switching may be more suitable to explain cognitive 23 

processing specifically involved in the DP-100% trials. 24 

PPI analysis revealed increased functional connectivity from the OTC to 25 

pIFC and OTC to SPC in DP-task, with 100% Odds relative to D-task. Similarly, a 26 

small but significant negative change of functional connectivity was found from the 27 

pIFC to SPC. The location of pIFC activation in the present study is close to the site 28 

in pIFC implicated for feedback processing but not the site in pIFC implicated for 29 

response inhibition (Hirose et al., 2009). Thus, activations in the pIFC and SPC in 30 

the present study may represent different cognitive components involved in strategy 31 

switching (Crone et al., 2006; Derrfuss et al., 2005; Yeung et al., 2006). 32 
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It should be noted that the present conclusion related to strategy switching 1 

is based on the a posteriori hypothesis which was derived from the behavioral results 2 

that the reaction time was elongated in DP-100%. The a posteriori hypothesis was 3 

examined in order to provide a possible interpretation that could comprehensively 4 

explain the counterintuitive behavioral results together with brain activations. 5 

Although the test of a post-hoc hypothesis in general has a risk of reverse inference 6 

(Krajbich et al., 2015; Poldrack, 2006; Poldrack and Yarkoni, 2016), we took great 7 

care to avoid misinterpretations related to reverse inference. First, we carefully 8 

compared the present behavioral results with previous literature to make sure that the 9 

difference in reaction time between DP-task and the control task (from which we 10 

derived the a posteriori hypothesis) is unlikely to be an artifact of the task structure. 11 

Krajbitch and colleagues suggested that reaction time effects in behavioral 12 

economics experiments could artifactually arise simply from the fact that reaction 13 

time is expected to be longer when utilities for accept and reject are close to each 14 

other (Krajbich et al., 2015). In the present DP-task, we observed that reaction time 15 

was elongated in 100% Odds, despite the fact that the condition was designed to 16 

have the maximum difference of utility between accept and reject relative to other 17 

conditions. In contrast, reaction time in the control task showed short reaction time 18 

for 100% Odds relative to other conditions such as 40% and 70% Odds, consistent 19 

with the idea that a larger difference of the utility resulted in a faster reaction time 20 

(Fig. 3B). Second, we closely adhered to a recommendation that a reverse inference 21 

based on one data modality should be checked and verified by another data modality 22 

(Poldrack, 2006). According to this recommendation, the hypothesis of strategy 23 

switching which was derived from the behavioral data was tested on neuroimaging 24 

data. For the analysis of neuroimaging data, we employed a well-established and 25 

stringent large-scale, automated meta-analyses based on Neurosynth (Yarkoni et al., 26 

2011). Furthermore, in addition to the stringent meta-analysis, we conducted PPI to 27 

confirm that brain activities were coordinated during DP-task, as described above. 28 

Taken together, we consider that the present conclusion is not affected by common 29 

pitfalls related to the use of reverse inference. Nevertheless, we are aware that these 30 

arguments do not fully eliminate the risk, and thus care needs to be taken to interpret 31 

the results related to the a posteriori hypothesis. Future studies using brain 32 

stimulation (Hill et al., 2017) or lesion studies (Noonan et al., 2017) are needed to 33 
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further establish the involvement of strategy switching in complex value-based 1 

decision-making. 2 

In the current task, participants made choices in hypothetical situations, 3 

which could affect affects participants’ seriousness and engagement with the task 4 

and which could be reflected in the current imaging results. However, when 5 

collecting data in a laboratory experiment where participants make choices based on 6 

the amount of monetary reward and years of delay to receive choice outcomes, 7 

hypothetical situations would be inevitable. Indeed, previous studies of value-based 8 

decision-making have used hypothetical situations when presenting rewards delayed 9 

by years (e.g., Rachlin et al., 1999; Green et al. 1994, 1999; Vanderveldt et al. 2015, 10 

Jimura et al. 2018). 11 

To address this issue, some studies provided choice outcomes by randomly 12 

choosing from the trials, and participants received a payment after specified delay 13 

(e.g., Kable and Glimcher 2007). However, it is possible that such randomly chosen 14 

real outcomes might distort their engagements; participants would be engaged more 15 

in the trials where it was more realistic to receive money from the experimenter 16 

through the presented choice. We wished to circumvent this potential distortion in 17 

the current study.  18 

Behaviorally, we obtained reasonable results of accept rates, consistent 19 

with a prior study (Tom et al. 2007), which assured that participants appropriately 20 

performed the task. Nonetheless, due to the nature of the hypothetical situations, the 21 

neural effects in our experiment might be weaker than those in the real choice.  22 
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Supplementary Information 1 

 2 

Table S1. Brain regions showing significant parametrical effect with probability. 3 

Coordinates are listed in MNI space. Positive and negative t-values indicate increase 4 

in high and low probability, respectively. BA indicate Brodmann areas and is 5 

approximate. Cluster size is in voxels. 6 

 7 

Area 

Coordinate 

t-value BA 

Cluster 

x y z ID Size 

Frontal -38 2 42 4.63 9/6 1 136 

 10 32 56 -6.15 8 2 259 

 12 20 64 -4.77 8 2 259 

Parietal 24 -56 54 5.34 7 3 296 

 16 -64 58 4.22 7 3 296 

 -20 -64 54 4.90 7 4 131 

Occipitotemporal 46 -60 -8 5.86 37 5 212 

 44 -72 -10 3.78 37 5 212 

  8 
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Table S2. Brain regions showing significant parametrical effect with delay duration. 1 

Positive and negative t-values indicate increase in long and short delay, respectively. 2 

Formats are similar to those in Table S1. 3 

 4 

Area 

Coordinate t-value BA Cluster 

x y z   ID Size 

Temporal -58 -52 16 -5.19 39 1 132 

  5 
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Table S3. Brain regions showing significant signal increase and decrease in the 1 

contrast accept versus reject decisions. Positive and negative t-values indicate 2 

increase in accept and reject decisions, respectively. Formats are similar to those in 3 

Table S1. 4 

 5 

Area 

Coordinate 

t-value BA 

Cluster 

x y z ID Size 

Frontal -42 0 40 5.64 6/9 1 142 

 12 10 62 -5.32 6 2 199 

 14 22 62 -5.06 6/8 2 199 

Parietal 22 -62 48 5.49 7 3 426 

 26 -62 60 5.01 7 3 426 

 26 -62 60 4.96 7 3 426 

 30 -76 30 3.88 39 3 426 

 -28 -74 28 4.59 39 4 143 

 -22 -66 38 4.08 39 4 143 

 -30 -62 26 4.01 39 4 143 

 -40 -28 48 -4.26 5 5 216 

 -28 -38 60 -5.91 5 5 216 

Occipitotemporal -46 -56 -14 4.65 37 6 125 

 -60 -50 0 4.06 36/37 6 125 

  6 
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Table S4. Brain regions showing significant signal increase and decrease between 1 

trials with 100% Odds in DP-task and D-task trials. Positive and negative t-values 2 

indicate increase in trials with 100% Odds and D-task trials, respectively. Formats 3 

are similar to those in Table S1. 4 

 5 

Area 

Coordinate 

t-value BA 

Cluster 

x y z ID Size 

Frontal 42 16 30 5.90 44 1 139 

 54 24 38 3.85 8/6 1 139 

Parietal -14 -60 46 5.29 7 2 231 

 -26 -62 44 4.66 7 2 231 

 -6 -68 42 3.77 7 2 231 

Occipitotemporal -20 -70 -12 5.67 18 3 245 

 -32 -72 -10 5.06 18 3 245 

 4 -84 4 4.98 17 4 410 

 14 -74 10 4.65 17 4 410 

 -12 -80 8 4.46 17 4 410 

 -4 -66 6 4.11 17 4 410 

 22 -74 -10 4.93 18 5 129 

 26 -82 -18 3.77 18/19 5 129 

  6 
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Table S5. Brain regions showing significant signal increase and decrease between 1 

trials with 100% Odds in DP-task and D-task trials. Reaction time of each trial coded 2 

as a parametric regressor in GLM analysis to minimize general difference in 3 

cognitive load. Positive and negative t-values indicate increase in trials with 100% 4 

Odds and D-task trials, respectively. Formats are similar to those in Table S1. 5 

Area 

Coordinate 

t-value BA 

Cluster 

x y z ID Size 

Frontal 42 16 30 5.84 44 1 130 

Parietal -14 -60 46 4.92 7 2 151 

 -28 -60 46 4.38 7 2 151 

Occipitotemporal 22 -74 -10 7.05 18 3 265 

 -20 -70 -12 5.29 18 4 251 

 -32 -72 -12 5.12 18 4 251 

 4 -84 4 4.82 17 5 157 

 -12 -82 8 4.32 17 5 157 

  6 
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Table S6. Brain regions showing significant signal increase and decrease between 1 

Now trials in DP task and P-task trials. Positive and negative t-values indicate 2 

increase in Now trials and P-task trials, respectively. Formats are similar to those in 3 

Table S1. 4 

 5 

Area 

Coordinate 

t-value BA 

Cluster 

x y z ID Size 

Frontal -50 24 18 6.94 47/44 1 150 

 -50 34 8 4.53 47 1 150 

 -50 -16 50 -4.93 4 2 119 

  6 
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Table S7. Brain regions showing significant signal increase and decrease between 1 

trials with 100% Odds and trials with the other probabilities in DP-task. Positive and 2 

negative t-values indicate increase in trials with 100% Odds and trials with the other 3 

probabilities, respectively. Formats are similar to those in Table S1. 4 

 5 

Area 

Coordinate 

t-value BA 

Cluster 

x y z ID Size 

Frontal -38 4 34 6.49 8 1 300 

 -50 16 32 3.80 8/9 1 300 

 52 14 28 5.75 44 2 664 

 38 22 22 5.73 46 2 664 

 32 2 46 5.39 4/6 2 664 

 38 4 32 4.36 4/6 2 664 

 58 26 24 4.22 44 2 664 

 48 10 40 4.08 6/4 2 664 

Parietal 32 -58 62 5.13 7 3 535 

 34 -52 46 4.97 7 3 535 

 18 -66 56 4.41 7 3 535 

 40 -48 62 4.12 7 3 535 

  6 
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 1 

 2 

Figure S1. Accept rates in DP task as a function of Gain and Wager. 3 

 4 

 5 
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 1 

Figure S2. A/B) Statistical activation maps of brain regions showing activity 2 

modulation of probability (A) and delay (B) of the gamble. Maps were overlaid onto 3 

3D surface of the brain. Hot and cool signal indicate greater activity in higher and 4 

lower probability/delay, respectively. C) Statistical activation maps of brain regions 5 

showing greater activity in trials in which the gamble was accepted (hot) and rejected 6 

(cool). 1: posterior lateral prefrontal cortex; 2/3: left/right superior parietal cortex. 7 

 8 
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 1 

Figure S3. Brain activations related to processing of probability and delay in the 2 

multifactor task A) Activation related to probability processing in multifactor 3 

context. Reaction time of each trial coded as a parametric regressor in GLM analysis 4 

to minimize general difference in cognitive load. Statistical activation maps of brain 5 

regions showing greater activity in 100% Odds trials in DP-task (hot) and physically 6 

equivalent control trials (D-task) (cool). Formats are similar to those in Fig 4A. 7 
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 1 

 2 

Figure S4. A) Maps of meta-analysis for cognitive/executive control with the 3 

association test are overlaid onto 2D transverse slices in yellow. Other formats are 4 

identical to those in Fig. 5B. B) Region of Interest (ROI) analysis. ROI was defined 5 

based on the meta-analysis maps in panel A, and other formats were identical to 6 

those in Fig. 5C. DP-100% vs. D-task: t(24) = 3.2, P < 0.01; DP-100% vs. DP-7 

others: t(24) = 2.5, P < 0.05. C) Maps of the meta-analysis for switching with the 8 

association test are overlaid onto 2D transverse slice in yellow. Other formats are 9 

identical to those in panel A. D) ROI analysis. ROIs were defined based on the meta-10 

analysis maps in panel C, and other formats were identical to those in panel B. DP-11 

100% vs. D-task: t(24) = 2.3 P < 0.05; DP-100% vs. DP-others: t(24) = 3.6, P < 0.01. 12 

 13 
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