Interpreting ruminant specific conserved non-coding elements by developmental gene regulatory network

Xiangyu Pan^{1†}, Zhaoxia Ma^{2,3†}, Xinqi Sun^{2,3†}, Hui Li^{1,4†}, Tingting Zhang¹, Chen Zhao ¹, Nini Wang¹, Rasmus Heller⁵, Wing Hung Wong⁶, Wen Wang^{7,8,9*}, Yu Jiang^{1*}, Yong Wang^{2,3,9,10*}

 Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China

 CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

 School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China, Beijing 100049, China

 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, China

Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK-2100
 Copenhagen, Denmark

 Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA 94305, USA

7. Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China

 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China

9. Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China

10. Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 330106, China

[†]These authors contributed equally to this work.

*Corresponding authors. E-mail: ywang@amss.ac.cn (Y.W.), yu.jiang@nwafu.edu.cn (Y.J.), wwang@mail.kiz.ac.cn (W.W.)

1 Abstract

2	Background: Biologists long recognized that the genetic information encoded in
3	DNA leads to trait innovation via gene regulatory network (GRN) in development.
4	Results: Here, we generated paired expression and chromatin accessibility data
5	during rumen and esophagus development in sheep and revealed 1,601 active
6	ruminant-specific conserved non-coding elements (active-RSCNEs). To interpret the
7	function of these active-RSCNEs, we developed a Conserved Non-coding Element
8	interpretation method by gene Regulatory network (CNEReg) to define toolkit
9	transcription factors (TTF) and model its regulation on rumen specific gene via
10	batteries of active-RSCNEs during development. Our developmental GRN reveals 18
11	TTFs and 313 active-RSCNEs regulating the functional modules of the rumen and
12	identifies OTX1, SOX21, HOXC8, SOX2, TP63, PPARG and 16 active-RSCNEs that
13	functionally distinguish the rumen from the esophagus.
14	Conclusions: We argue that CNEReg is an attractive systematic approach to integrate
15	evo-devo concepts with omics data to understand how gene regulation evolves and
16	shapes complex traits.
17	

18 Keywords: Gene regulatory network, CNE, Toolkit transcription factors, Rumen

19 Background

20	To answer the key question of how new traits arise during the macro-evolutionary
21	process, biologists have long realized the necessity to understand the gene regulation
22	in development responsible for morphological diversity, i.e., which genes are
23	expressed, what regulatory element changes are involved and how do regulatory
24	element changes affect development [1]. Only recently has the field of large-scale
25	omics and the accumulation of data matured sufficiently to explore these theoretical
26	concepts in detail. Here, we investigate the ruminant multi-chambered stomach, a key
27	mammalian organ innovation and a cornerstone of evolutionary theory, as an example
28	to illustrate a novel framework for integrating multi-omics data to address the
29	fundamental question of organ innovation.
30	The rumen hosts a diverse ecosystem of microorganisms and facilitates efficient
31	plant fibers digestion and short chain fatty acids uptake, which significantly promoted
32	the expansion and diversification of ruminant animals by providing a unique
33	evolutionary advantage relative to non-ruminants [2]. This remarkable morphological
34	innovation raises the fundamental question of how the genetic toolkit generates
35	functional complexity through development and evolution [1, 3, 4]. By comparing 51
36	ruminants with 12 mammalian outgroup species genomes, we previously identified
37	221,166 ruminant-specific conserved non-coding elements (RSCNEs), which span
38	about 0.61% of the genome (16.5 Mbp in total) [5]. These RSCNEs are potential
39	regulatory elements of proximal or distal genes for transcriptional regulation in the
40	development of morphological and physiological traits [6]. In addition, we previously

41	sequenced two representative ruminants (sheep and roe deer) for gene expression
42	across 50 tissues. Comparative transcriptome analysis reveals 656 rumen-specific
43	expressed genes (RSEGs) and hypothesizes that rumen's anatomical predecessor is
44	the esophagus by their most similar expression profile [5, 7]. It's in pressing need to
45	understand how the RSCNEs leading to the expression of RSEG changes.
46	One major bottleneck is that the cellular context, target gene and mode of gene
47	regulation of the RSCNEs are largely unknown. First, the regulatory role of RSCNEs
48	could be spatio-temporally dynamic and highly context-specific. Second, some
49	RSCNEs were located distant (e.g., more than 500 kbp) from any genes and therefore
50	could not be associated with any target genes using standard approaches, such as
51	GREAT [8]. This problem is emphasized by a recent finding that non-coding region
52	associating with a human craniofacial disorder causally affects SOX9 expression at a
53	distance up to 1.45 Mbp during a restricted time window of facial progenitor
54	development [9]. This example motivated us to develop a framework for RSCNE
55	functional inference by uncovering GRNs at different developmental times and in
56	different tissue types, and integrating them with their functional relation to traits.
57	To tackle the above challenges, we generated time series of paired gene
58	expression and chromatin accessibility data during rumen and esophagus development
59	in sheep to reconstruct a time series of developmental GRNs. Our previous efforts
60	showed that jointly modeling multi-omics data allows us to infer high quality tissue
61	specific regulatory networks [10], which can be used to identify key transcription
62	factors (TFs) during differentiation [11], reveal causal regulations [12], and interpret

- 63 functionally important genetic variants [13]. Taken together, we aim to integrate
- 64 multi-omics data to a reconstruct genome-wide GRN during different stages of
- 65 development in an apomorphic organ. Specifically, this allows us to understand how
- 66 transcription factors bind to functional RSCNEs to coordinate cell type specific gene
- 67 expression of rumen-specifically expressed genes (RSEGs), and hence to gain further
- 68 insights into the evolutionary development of new organs.

69 **Results**

70 Landscape of accessible chromatin regions and gene expression during rumen

71 development

- 72 We resolved a high-resolution chromatin accessibility and gene expression landscapes
- of rumen development by collecting ruminal epithelial cell, esophageal epithelial cell,
- and hepatocyte cell at five stages (embryo 60-day [E60], postnatal day 1 [D1], day 7
- [D7], day 28 [D28] and adult 1-year [Y1]) from 14 sheep (Fig. 1A). Our experimental
- 76 design covers the major stages of the ruminal epithelium differentiation and
- development [14, 15], and ensures an exact matching of tissues used for RNA-seq and
- 78 ATAC-seq libraries. In total, 37 ATAC-seq and 34 RNA-seq data sets including
- ⁷⁹ biological and technical replicates showed high quality (Methods; Additional file 1:
- Table S1, 2). The ATAC-seq samples have an average of 115 Mbp post-quality control
- uniquely mapped fragments to the sheep Oar_4.0 genome (Additional file 1: Table S1;
- 82 Additional file 2: Fig. S1A), which are highly enriched at transcription start sites
- 83 (Additional file 2: Fig. S1B) and show a nucleosome structure consistent distribution
- 84 (Additional file 2: Fig. S1C). We obtained 178,651 open chromatin regions (OCRs)
- across all samples (mean 46,872 peaks per sample) (Additional file 1: Table S1).
- 86 Hierarchical clustering of gene expression and chromatin accessibility show that
- rumen development is a multi-stage biological process (Fig. 1B, 1C). Stages E60 and
- 88 D1 cluster in one group and D7, D28, and Y1 cluster in another group by gene
- 89 expression. Chromatin accessibility patterns further distinguish stages E60 and D1.
- 90 Principal component analysis (PCA) for 14,637 expressed genes and 178,651 OCRs

91	corroborates this multi-stage pattern (Fig. 1D, 1E). Early development stages E60 and
92	D1 show larger replicate variation than D7, D28, and Y1 at both chromatin
93	accessibility and gene expression levels (Fig. 1D, 1E). In addition, chromatin
94	accessibility shows a more smoothed trajectory than gene expression during rumen
95	development (Fig. 1C).
96	The esophagus shows a very similar multi-stage development (Additional file 2:
97	Fig. S2A, B). PCA indicates larger variance in developmental stages (PC1 32%) and
98	smaller variance among tissue types (PC2 25%) (Additional file 2: Fig. S2C, D). This
99	pattern is consistent with previous studies showing that gene expression divergence
100	between tissues/cell types increases as development progresses [16]. Importantly, our
101	chromatin accessibility data mirror this pattern, i.e., the similarity in chromatin
102	accessibility distribution between the two tissues declines as development progresses.
103	
104	Identification and characterization of active-RSCNEs
105	We obtained 159,837 reproducible OCRs by intersecting peaks from three replicates

106 for rumen and esophagus at four developmental stages. The number of reproducible

- 107 OCRs was largest in stage E60 (about 40%) and decreased along the developmental
- stages (Fig. 2A), which is consistent with the observation of higher amounts of
- 109 accessible chromatin in embryonic stage [17]. Most reproducible OCRs were located
- 110 at distal intergenic (39.42%), intron (32.61%), and promoter (21.46%) (+/- 3 kbp from
- transcription start site) sites (Fig. 2B). After overlapping the OCRs with 221,166
- 112 RSCNEs from ruminant comparative genomics analysis [5], we identified 1,601

113	active-RSCNEs with an average length of 82 bp (Additional file 1: Table S3). Again,
114	the number of active RSCNEs decreases along the development stages both in rumen
115	and esophagus (Fig. 2C). They are mainly located in distal intergenic (48.95%), intron
116	(42.4%), and promoter regions (4.96%) (Fig. 2D). Compared to all reproducible
117	OCRs, active-RSCNEs are less in promoter regions by 15% (Additional file 2: Fig.
118	S3A), and the esophagus shows a consistent trend (Additional file 2: Fig. S3B). This
119	suggests active-RSCNEs tend to function as distal element during development. In
120	addition, our observation that the vast majority of active-RSCNEs are found in early
121	developmental stages (>90% in E60, D1, D7) emphasizes the importance of early
122	developmental cellular context for interpreting the regulatory role of CNEs.
123	We next associated the 1,601 active-RSCNEs with their 1,796 genes nearby.
124	Gene ontology analysis of these genes are enriched in terms, such as "primary
125	metabolic process", "catalytic activity", and "regulation of signaling" (Additional
126	file 2: Fig. S3C). Moreover, those 1,796 genes are significantly enriched in
127	transcription factors (TFs) (Additional file 2: Fig. S3D; Fisher's exact test, P value =
128	4.20×10^{-4}). These 1,796 genes overlap with 656 RSEGs by 85 genes (Fig. 2E;
129	Fisher's exact test, P value = 5.50×10^{-11}) which are enriched in "cardiac muscle cell
130	apoptotic process", "tongue development", and "keratinization" (Fig. 2F).
131	The 1,601 active-RSCNEs are composed of 414 Type I and 1,187 Type II
132	RSCNEs (Additional file 1: Table S3; Fig. 2G). Type I have no known orthologs in
133	non-ruminant outgroups and Type II orthologs exhibit significantly higher substitution
134	rates among outgroups [5]. The ratio between Type I and Type II active-RSCNEs is

135	~0.35, which is 5-fold less than that of all RSCNEs, which have a Type I/Type II ratio
136	~1.77 (Fig. 2G). This surprising fact suggests that Type II RSCNEs tend to be more
137	activate in the developmental stage than Type I. Because of the deeper evolutionary
138	origin of Type II RSCNEs, they are more likely to function by altering existing
139	regulatory elements. Furthermore, we found that active-RSCNEs are enriched for
140	binding motifs of transcriptional regulators known to play a vital role in rumen
141	development (AP-1, PITX1, TP63, KLF, GRHL, TEAD, OTX, and HOX) (128 motifs
142	with Benjamini q-value $<1.00 \times 10^{-3}$ are listed in Additional file 1: Table S4),
143	suggesting that some active-RSCNEs may act as rumen developmental enhancers.
144	To assess whether the RSCNEs are likely to play an enhancer role, we next
145	compared our 1,601 active-RSCNEs with the 523,159 developmental regions of
146	transposase-accessible chromatin (d-TACs) data sets from mouse [18] and 926,535
147	human enhancers from ENCODE phase III [19]. About 24% of the active-RSCNEs
148	can be found in these data sets (Fig. 2H), and 11 active-RSCNEs show in vivo reporter
149	activity according to the VISTA database [20] (Fig. 2H). To validate the potential
150	regulatory activity, 10 active-RSCNEs of length ~300 bp were randomly selected and
151	assessed for enhancer activity detection in both sheep and goat fibroblasts in vitro.
152	Nine of them showed significantly higher luciferase transcriptional activation
153	compared to the pGL3-Promoter control (t-test, P value < 0.05) (Fig. 2I). Collectively,
154	these results suggest that the active-RSCNEs potentially serves as enhancers in the
155	process of rumen development and evolution.

156

157 Conserved Non-coding Element interpretation method by Gene Regulatory

158 Network (CNEReg)

- 159 After demonstrating that active-RSNCEs may often function as enhancers and hence
- 160 have significant impacts on morphological evolution [21], we next developed
- 161 CNEReg as an evolutionary Conserved Non-coding Element interpretation method.
- 162 The method works by modeling the paired gene expression and chromatin
- accessibility data during rumen and esophagus development and consolidating them
- 164 into a GRN. A GRN helps to understand in detail the process of TF binding to
- active-RSCNEs, and how this leads to the cell type specific activation of RSEGs
- 166 during different stages of development. CNEReg takes as input a set of paired
- 167 time-series gene expression and chromatin accessibility data, ruminant comparative
- 168 genomes, and comparative transcriptomes, and outputs the projected developmental
- 169 regulatory network of the active-RSCNEs. The three major steps of CNEReg includes:
- 170 multi-omics data integration, model component identification, and developmental
- 171 regulatory network inference (Fig. 3A; Methods). The developmental regulatory
- 172 network reconstruction is illustrated in the following sections.
- 173

174 Identifying toolkit transcription factors

We proposed toolkit transcription factors (TTFs) as the core concept of CNEReg and
developed a computational pipeline to discover the developmental genetic toolkit TFs
in evo-devo which may controls development, pattern formulation, and identity of
body parts (details in Methods). We first separated 37 TFs from 619 non-TF target

179	genes (TGs) in 656 RSEGs. Those 37 TFs are further filtered by a more stringent
180	expression specificity JMS score and are required to have nearby active-RSCNEs in
181	the upstream or downstream 1 Mbp to TSS (Methods). Finally, 18 TTFs are defined
182	(Additional file 1: Table S5) and their expression profile phylogeny well recovers the
183	tissue lineages system (Fig. 4A). Rumen was clustered the closest to reticulum,
184	omasum, and esophagus and then skin and other keratin tissues, which is consistent
185	with the basic stratified epithelium shared in rumen with skin. These 18 TTFs also
186	well represented rumen's major functions associated with other tissue systems,
187	including gastrointestinal system, integumentary system, reproductive system,
188	muscular system, nervous system, and endocrine system (Fig. 4B).
189	We observed that rumen recruited TTFs from multiple tissues to drive gene
190	expression and expressed more TTFs from gastrointestinal system than other systems.
191	For example, paired box protein 9 (PAX9) is a known key transcription factor during
192	esophagus differentiation, which may play an important role in rumen's origin from
193	the esophagus [22]. The homeobox family TFs HOXC8 and HOXC4, together with
194	PITX1 are key developmental regulator for specific positional identities on the
195	anterior-posterior axis [23, 24]. The other four TTFs, OVOL1, SOX21, TFAP2A,
196	TP63 are from integumentary system and serve as master regulators in the regulation
197	of epithelial development and differentiation [25-28].
198	We classified 18 TTFs into two types according to their dynamic gene expression
199	pattern during rumen development. PITX1, BARX2, SOX2, GRHL1, GRHL3,
200	TFAP2A, OTX1, DMRT2, and TWIST2 are early development TTFs showing the

201	highest expression at E60 or D1 (Fig. 4C). In contrast, PAX9, TP63, HOXC4, SOX21,
202	HOXC8, OVOL1, PPARG, POU2F3, and TEAD4 are late development TTFs and
203	highly expressed at D7, D28, or Y1 (Fig. 4C). We further associated those TTFs with
204	6 cell types by their expression level in skin organoids scRNA-seq data [29]. The
205	organoid culture system presents a complex skin organ model by reprogramming
206	pluripotent stem cells. For example, TFAP2A is specifically expressed in epithelial
207	cells (Fig. 4C).
208	
209	Constructing TTFs' upstream and downstream regulations
210	To explore how TTFs are regulated and recruited, we scanned the active-RSCNEs
211	near TTFs for the sequence-specific TF's motif binding, retained those TFs correlating
212	well with TTFs (Spearman's correlation coefficient > 0.6 across RNA-seq samples),
213	and fitted a linear regression model integrating our paired expression and chromatin
214	accessibility data to reveal 18 TTFs' upstream regulators (Fig 3B; Methods). The
215	resulting TTFs' upstream regulatory network (Fig. 4D) identified 39 active-RSCNEs
216	(15 Type I and 24 Type II) bound by 113TFs for 18 TTFs (Additional file 1: Table S6).
217	GRHL1, an important regulator in keratin expression [30], is regulated by 31 TFs via
218	6 active-RSCNEs, suggesting its potential roles in rumen development.
219	To explore 18 TTFs' regulatory roles, we first scanned 1,440 active-RSCNEs
220	located 1 Mbp upstream or downstream around 512 RSEGs (FPKM > 1 in at least one
221	development stage) by HOMER [31] for binding sites of the 18 rumen TTFs. Then
222	linear regression model quantitatively associated the accessibility of active-RSCNEs

223	with the expression of TTFs and RSEGs (Fig. 3B; Methods). The resulting TTFs'
224	downstream regulatory network linked 139 active-RSCNEs (26 Type I and 113 Type
225	II) with 17 TTFs and 93 RSEGs (Fig. 5A; Additional file 1: Table S7). RSEGs were
226	categorized into different tissue systems. The gastrointestinal and integumentary
227	systems both have 28 RSEGs which are functionally enriched in hair/molting cycle
228	process (Fisher's exact test, adjusted-P value = 1.50×10^{-2}) and regulation of
229	antimicrobial peptide production (Fisher's exact test, adjusted- <i>P</i> value = 3.58×10^{-6}).
230	This is consistent with our previous finding that rumen evolved several important
231	antibacterial functions specifically managing the microbiome composition [2].
232	SLC14A1 gene was specifically highly expressed in the rumen and hypothesized to be
233	recruited from the urinary system (Fig. 5A). CNEReg identified four active-RSCNEs
234	bound by three TTFs, OTX1, PPARG, and SOX21, to regulate SLC14A1 (Fig. 5B).
235	CNEReg designed a functional influence score by integrating regulation and
236	conservation in evolution (Fig 3B; Methods) and ranked the active-RSCNEs in TTF's
237	upstream and downstream networks (Additional file 2: Fig. S4, 5; Additional file 1:
238	Tables S6, 7). Then we selected top 10 active-RSCNEs for enhancer activity detection
239	in sheep fibroblasts in vitro. 9 of 10 showed significantly higher luciferase
240	transcriptional activation compared to the pGL3-Promoter control (t-test, P value <
241	0.05) (Additional file 2: Fig. S6). Collectively, CNEReg provides high quality
242	developmental regulatory network to study rumen evolution.
243	

244 Regulatory sub-network underlying rumen and the esophagus divergence

245	We previously hypothesized that the anatomical predecessor of the rumen is the
246	esophagus based on their similar expression profile compared to other 49 tissues [5, 7].
247	It is therefore of interest to identify the gene regulatory network underlying the
248	differentiation between rumen and esophagus. We first identified differentially
249	expressed genes (4, 258, 577 and 2,372, for E60, D1, D7, and Y1 in Additional file 2:
250	Fig. S7A) and differentially accessible regions (9,436, 10,004, 3,984, 3,566 and 26 for
251	E60, D1, D7, D28, and Y1 in Additional file 2: Fig. S7B) between rumen and
252	esophagus at each developmental stage. Then, we identified six TTFs (PPARG,
253	SOX21, TP63, OTX1, SOX2, and HOXC8) showing both significant differences in
254	expression and in motifs enriched within the rumen OCRs (Fig. 6A; Methods).
255	HOXC8 shows the largest difference at the earliest developmental stage, both in
256	expression level and motif enrichment, and SOX21, SOX2, OTX1 and PPARG show
257	similar trends. TP63 differentiates from D7 where the gene expression level and motif
258	enrichment decline quickly in esophagus but not in rumen.
259	We extracted the six differential TTFs from the TTFs downstream regulatory
260	network to form a regulatory sub-network which also including 24 differentially
261	expressed RSEGs and 38 active-RSCNEs (Fig. 6B; Additional file 1: Table S8). The
262	24 differentially expressed RSEGs were classified into gastrointestinal, integumentary,
263	reproductive, nervous, muscular, immune, and urinary systems and 10 of 24 non-TF
264	RSEGs were classified into integumentary system. Seven non-TF RSEGs (KRT17,
265	KRT36, LOC101118712, ATP6V1C2, KLK10, SPINK9, and IRX) were regulated by
266	SOX21. Previous study revealed that SOX21 could determine the fate of ectodermal

267	organ and control	the enithelial	differentiation	[28] We	observed that	SOX21 binds to
201	organ and control	i ule continentat	uniciciliation	1201. 110	UUSUI VUU UIA	SOAL I UIIUS IU

- 268 "Chr11:40325877-150" to regulate the expression of KRT17, KRT36 and
- LOC101118712. The functional influence of "Chr11:40325877-150" is ranked at the
- top of all Type II active-RSCNEs in the differentially regulatory sub-network
- 271 (Additional file 1: Table S8). Those RSEGs were enriched in epidermis development,
- 272 formation of anatomical boundary, and urea transmembrane transport biological
- 273 process (Additional file 1: Table S9), which are consistent with the function difference
- between rumen and esophagus. The 38 active-RSCNEs may imply the potential
- 275 genetic basis of rumen's origin and evolution from esophagus.
- 276
- 277 Transposable element may rewire gene regulatory network through

278 active-RSCNEs

- 279 After interpreting active-RSCNEs as important regulators for TTFs and RSEGs in
- rumen development, we next address the genomic origin of the active-RSCNEs.
- 281 Transposable elements (TE) are known to constitute a high proportion of
- taxonomy-specific CNEs, play a central role in rewiring gene regulatory networks,
- and to facilitate novel or rapid evolution of ecologically relevant traits [32, 33]. Hence,
- we estimated which active-RSCNEs may derive from TEs. Among 39 and 139
- active-RSCNEs in TTF's upstream and downstream networks, we identified six
- (15.38%) and 12 (8.6%) TEs, respectively. This gives a 1.8-fold enrichment of TEs in
- 287 active-RSCNEs associated with TTFs relative to non-TTF RSEGs. At the gene level,
- six of 18 TTFs (33.33%) and 12 of 93 RSEGs (12.90%) are regulated by TE via

289	active-RSCNEs. This gives a 2.58-fold enrichment. As a background, there are 85
290	TEs around all 656 RSEGs (+/- 200 kbp) and give an average 13%. Together, our data
291	suggests that TE may recruit expression of TTFs and rewiring the regulatory network
292	to give rise of trait novelties.
293	
294	Discussion
295	The evolution of new trait is driven by several types of genetic reprogramming,
296	including mutations in protein-coding genes and post-transcriptional mechanisms,
297	transformation of regulatory elements such as promoters and enhancers, and
298	recruitment of gene expression from other organs [34, 35]. Mutations in non-coding
299	regulatory regions are believed to selectively perturb target gene expression in
300	specific tissue context and thereby circumvent any pleiotropic effects from
301	protein-coding mutations [36]. Recent advances in comparative genomics, along with
302	the increased availability of whole genome sequences, have led to the identification of
303	many conserved non-coding elements (CNEs), which are assumed to have regulatory
304	functions [1, 6, 37]. Therefore, the time is ripe for an analytical framework to
305	investigate the regulatory role of such CNEs.
306	Here we propose a model of gene expression recruitment by CNEs. Our results
307	show how CNEs can regulate gene expression as either trans-regulatory elements
308	(TTF in our study) or cis-regulatory elements (active-RSCNEs) of target genes
309	(RSEGs). CNEReg provides a framework to integrate comparative genomics,
310	comparative transcriptomic, and multi-omics data to interpret CNEs by GRN. On one

	nand, GRN presents the global picture now fumen fectures gene expression from other
312	tissues by activating RSCNEs to achieve many traits. On the other hand, GRN
313	identifies TTFs and active-RSCNEs as hypotheses, which need to be pursuit by in
314	vitro and in vivo functional studies. Our method for systematically interpreting
315	conserved <i>cis</i> -regulatory sequence in non-coding region by integrating developmental
316	multi-omics data will have broad interest in other applications. For example, the
317	Zoonomia Project describes a whole-genome alignment of 240 species comprising
318	representatives from more than 80% of mammalian families [38]. The Bird 10,000
319	Genomes (B10K) Project provides comparative genome dataset for 363 genomes
320	from 92.4% of bird families [39]. Recently ~6.9 million CNEs from many vertebrate
321	genomes are collected into dbCNS and await to be interpreted [40].
322	Our work is limited in several aspects. CNEReg infers the gene regulation as the
322 323	Our work is limited in several aspects. CNEReg infers the gene regulation as the interaction of TFs with accessible DNA regions in development and relies on the
322 323 324	Our work is limited in several aspects. CNEReg infers the gene regulation as the interaction of TFs with accessible DNA regions in development and relies on the correlation of gene expression and chromatin accessibility across samples. Much
322 323 324 325	Our work is limited in several aspects. CNEReg infers the gene regulation as the interaction of TFs with accessible DNA regions in development and relies on the correlation of gene expression and chromatin accessibility across samples. Much deeper understanding can be revealed by ChIP-seq data and 3D chromatin interaction
322 323 324 325 326	Our work is limited in several aspects. CNEReg infers the gene regulation as the interaction of TFs with accessible DNA regions in development and relies on the correlation of gene expression and chromatin accessibility across samples. Much deeper understanding can be revealed by ChIP-seq data and 3D chromatin interaction data to provide physical enhancer promoter interactions. In addition, time course
 322 323 324 325 326 327 	Our work is limited in several aspects. CNEReg infers the gene regulation as the interaction of TFs with accessible DNA regions in development and relies on the correlation of gene expression and chromatin accessibility across samples. Much deeper understanding can be revealed by ChIP-seq data and 3D chromatin interaction data to provide physical enhancer promoter interactions. In addition, time course regulatory analysis on the omics data measured at shorter and closer developmental
 322 323 324 325 326 327 328 	Our work is limited in several aspects. CNEReg infers the gene regulation as the interaction of TFs with accessible DNA regions in development and relies on the correlation of gene expression and chromatin accessibility across samples. Much deeper understanding can be revealed by ChIP-seq data and 3D chromatin interaction data to provide physical enhancer promoter interactions. In addition, time course regulatory analysis on the omics data measured at shorter and closer developmental stages will help [12]. Furthermore, developmental samples are known as a
 322 323 324 325 326 327 328 329 	Our work is limited in several aspects. CNEReg infers the gene regulation as the interaction of TFs with accessible DNA regions in development and relies on the correlation of gene expression and chromatin accessibility across samples. Much deeper understanding can be revealed by ChIP-seq data and 3D chromatin interaction data to provide physical enhancer promoter interactions. In addition, time course regulatory analysis on the omics data measured at shorter and closer developmental stages will help [12]. Furthermore, developmental samples are known as a heterogeneous mixture of many cell types and it will be fruitful to infer the GRNs of
 322 323 324 325 326 327 328 329 330 	Our work is limited in several aspects. CNEReg infers the gene regulation as the interaction of TFs with accessible DNA regions in development and relies on the correlation of gene expression and chromatin accessibility across samples. Much deeper understanding can be revealed by ChIP-seq data and 3D chromatin interaction data to provide physical enhancer promoter interactions. In addition, time course regulatory analysis on the omics data measured at shorter and closer developmental stages will help [12]. Furthermore, developmental samples are known as a heterogeneous mixture of many cell types and it will be fruitful to infer the GRNs of the underlying cell types based on scATAC-seq and scRNA-seq data [10].

332 Conclusions

333	In conclusion.	CNEReg is	demonstrated	as a systen	natic approa	ach to ur	iderstand the

- large-scale maps of CNEs by modeling omics data over development for its act on
- 335 gene regulation. We see the potential that CNEReg can be generalized to understand
- the complex traits or the origin and evolution of vertebrate organs with multi-omics
- data generated in proper time and space. Our method allows evo-devo thinking in how
- 338 gene regulation could evolve and shape animal evolution.

339	Methods

340 CNEReg infers developmental regulatory network to interpret conserved

341 non-coding element

- 342 CNEReg aims to systematically fill the gap between conserved non-coding elements
- 343 (CNEs) and its significantly impacted morphology in evolution. This is done by
- 344 reconstructing a developmental regulatory network by paired time series of paired
- 345 gene expression and chromatin accessibility data. Particularly in sheep CNEs are
- 346 RSCNEs and morphology is the innovation of rumen organ, which is further denoted
- by the set of rumen specific genes RSEGs. We reconstruct gene regulatory network
- 348 during rumen development to systematically understand how the TFs regulate genes
- 349 via batteries of RSCNEs, which over development, lead to the cell type specific
- activation of RSEGs.
- 351 The main idea of CNEReg is to focus on those toolkit TFs as major players in
- 352 evo-devo to study how those TFs are regulated by RSCNEs and how they utilize
- 353 RSCNEs to regulate RSEGs. CNEReg models the expression of target genes (TG)
- 354 conditional on chromatin accessibility of RSCNEs and expression of transcription
- 355 factors (TF). CNEReg is composed by three steps as shown in Fig. 3 and uses three
- 356 formulations to model, (1) expression of toolkit TFs, (2) expression of RSEGs, (3)
- 357 functional influence of RSCNEs (Fig. 3; Table 1).

358

359 Step 1. Modeling expression of toolkit transcription factors (TTFs)

360 We first identify toolkit TFs by its nearby evolutionally conserved cis-regulatory

361	element in genome, expression pattern across tissues, expression levels in
362	developmental stages. TTFs should satisfy four conditions: (1) TFs should be rumen
363	specifically expressed genes (37 TFs in the 656 RSEGs), (2) there should be
364	active-RSCNEs around TFs (+/- 1M bp, 35 TFs remains), (3) TFs should be expressed
365	(FPKM > 1) in at least one time point during rumen development (30 TFs remains),
366	and (4) these TFs should be additional tissue specificity. TFs were ranked by our
367	tissue specificity score JMS and only the TFs for top 50 specificity in at least one
368	tissue will be selected (18 TFs remains). Finally, 18 TFs were identified as TTFs and
369	listed in Supplementary text). These TFs played a leading role in rumen
370	development (Additional file 1: Table S5) and served as the main component to
371	construct the rumen developmental regulatory network.
372	Next, we model how the TTFs are regulated from paired gene expression and
373	chromatin accessibility data, i.e., to reconstruct the upstream regulatory network of
374	TTFs. We established a linear regression model as follows to explore the upstream
375	regulatory network of the 18 TTFs (Schematic illustration in Fig. 3 and mathematical
376	notations in Table 1).
377	$TTF_{l} = \beta_{l,0} + \sum_{i \in I_{l}} \beta_{l,i} \left(\sum_{m \in MB_{i}} TF_{m} \right) O_{i} + \varepsilon_{l}, \ \varepsilon_{l} \sim N(0, \sigma_{l}^{2})$
378	where TTF_l is the expression of the <i>l</i> -th TTF; MB_i is the set of TFs with significant

379 motif match in the *i*-th active-RSCNE; TF_m is the expression of the *m*-th candidate 380 TF with binding motif to regulate the *l*-th TTF. The Spearman correlation coefficient 381 between TF_m and TTF_l is greater than 0.6 (FDR *q*-value < 0.01) to ensure the 382 potential regulatory relationship; O_i represents the chromatin accessibility score of

383	the <i>i</i> -th active-RSCNE within 2 Mbps around the <i>l</i> -th TTF. β is the parameter to be
384	estimated. If $\beta_{l,i}$ is statistically significant in the regression analysis, the <i>i</i> -th
385	active-RSCNE and its TFs in MB_i will be contained in the upstream regulatory
386	network of the <i>l</i> -th TTF.
387	
388	Step 2. Modeling expression of rumen specifically expressed genes (RSEGs)
389	We model how the RSEGs are regulated by TTFs and its active-RSCNE from paired
390	gene expression and chromatin accessibility data, i.e., to reconstruct the downstream
391	network regulated by TTFs. We established the linear regression model as follows
392	(Schematic illustration in Fig. 3 and mathematical notations in Table 1).
393	$RSEG_n = \gamma_{l,n,0} + \gamma_{l,n,k} (TTF_l \cdot O_k)^{\frac{1}{2}} + \varepsilon_n, \ \varepsilon_n \sim N(0, \sigma_n^2)$
394	where TTF_l is the expression of the <i>l</i> -th TTF; O_k represents the chromatin
395	accessibility score of the k -th active-RSCNE with binding sites of the l -th TTF;
396	$RSEG_n$ is the expression of the <i>n</i> -th <i>RSEG</i> with the <i>k</i> -th active-RSCNE around within
397	2 Mbps. In practice, we determine the downstream regulation relationship with
398	Spearman correlation that can eliminate the outlier values to simplify the calculation.
399	When the Spearman correlation coefficient $\gamma_{l,n,k}$ between $RSEG_n$ and $(TTF_l \cdot$
400	Ok)12 is greater than 0.7 (FDR <i>q</i> -value < 0.01), the <i>n</i> -th RSEG is likely to be
401	regulated by the l -th TTF through binding on the k -th active-RSCNE. The extracted
402	TTF, active-RSCNEs, and RSEGs triplets are the TTF's downstream regulatory
403	network.

404 Step 3. Quantifying functional influence of active-RSCNEs

405	We finally quantify the functional influence of active-RSCNEs, rank the
406	active-RSCNEs, and select the top active-RSCNEs as experimental candidates. This
407	task can be done by integrate the RSCNE's conservation score in evolution with its
408	regulatory potential in the developmental regulatory network.
409	We firstly collected conservation scores of active-RSCNEs from comparative
410	genomics study [5]. RSCNEs were classified into two types by their conservation
411	patters across species. Type I RSCNEs had no outgroup sequence aligned and Type II
412	RSCNEs had orthologous sequences in one or more outgroups but were only
413	conserved in ruminant. For the k-th active-RSCNE, the conservation score C_k was
414	calculated by PhastCons score (Type I) or PhyloP score (Type II).
415	We then estimated the regulatory strength of active-RSCNEs in the upstream and
416	downstream regulatory network of TTFs. An active-RSCNE played a regulatory role
417	in the regulatory network if four conditions were satisfied: (1) this active-RSCNE
418	should be a chromatin accessible peak, (2) TTFs should bind on this active-RSCNE,
419	(3) RSEGs regulated by this active-RSCNE with TTFs binding should be expressed,
420	and (4) the expression of binding TTFs and the accessibility of this active-RSCNE
421	should be correlated with the expression of regulated RSEGs. By combining these
422	four factors, we defined the regulatory strength $R_{k,t}$ of the k-th active-RSCNE at
423	time point t in the regulatory network as follows:

$$R_{k,t} = \sum_{l,n} \left(O_{k,t} \cdot B_{k,l} \cdot \sqrt{TTF_{l,t} \cdot RSEG_{n,t}} \cdot 2^{\gamma_{l,n,k}} \right)$$

424 Where, $O_{k,t}$ is the chromatin accessibility score of the *k*-th active-RSCNE at time

425 point *t* in rumen; $B_{k,l}$ is the motif binding strength of the *l*-th TTF on the *k*-th 426 active-RSCNE (computed by HOMER); $TTF_{l,t}$ is the expression of the *l*-th TTF at 427 time point *t* in rumen; $RSEG_{n,t}$ is the expression of the *n*-th RSEG at time point *t* 428 in rumen; $\gamma_{l,n,k}$ is the Spearman correlation coefficient between $RSEG_n$ and 429 $(TTF_l \cdot O_k)^{\frac{1}{2}}$ from the regulatory network. Then the regulatory strength R_k of the 430 *k*-th active-RSCNE was defined as the maximum value across all time points in 431 rumen samples:

$$R_k = \max_t R_{k,t}$$

The regulatory strength R_k is from the multi-omics data in development and 432 conservation score C_k is from multi-genome data across species. The two measures 433 434 are respectively at regulation level and genome sequence level and can be naturally 435 assumed independent to each other. In addition, we found that the regulatory strength 436 and the conservation score were quite complementary to each other (Additional file 2: 437 Fig. S4, 5) for active-RSCNEs. Hence, we defined the functional influence W_k of the 438 k-th active-RSCNE as the geometric mean of the regulatory strength R_k and the 439 conservation score C_k as follows:

$$W_k = \sqrt{R_k \cdot C_k}$$

440 This functional influence score allows us to prioritize active-RSCNEs by importance441 in rumen innovation.

442

443 Hierarchical clustering and principal component analysis (PCA)

444 We performed hierarchical clustering on the gene expression and peak chromatin

445	accessibility profiles in 14 rumen samples at five time points (E60/D1/D7/D28/Y1).
446	Heatmap was plotted by R package "pheatmap" with "correlation" as distance
447	measure and "complete" as clustering method. Then we performed dimensional
448	reduction by principal component analysis (PCA) with R function "prcomp". The
449	gene expression and chromatin accessibility value were log transformed as
450	$\log_2(FPKM + 1)$ and $\log_2(Openness + 1)$ as input. FPKM is the reads per kilobase
451	per million mapped reads and openness score was calculated for each peak under each
452	condition as the fold change of reads number per base pair [10]. The first two
453	principal components are shown in Fig. 1D and E.
454	
455	Definition of tissue specificity score
456	Specificity illustrates the property that gene are functional in one particular biological
457	context compared to other contexts. For our transcriptomics data across 50 tissues in
458	sheep, genes highly expressed in only one or several tissues but not expressed in other
459	tissues were defined as tissue specific. Our gene expression matrix is with 23,126
460	rows (the number of expressed genes) and 830 columns (the number of samples
461	sequenced in 50 sheep tissues, and each tissue has several biological replicates)
462	(Additional file 1, Table S10)
	(Auditional file 1: Table S10).
463	To quantify the tissue specificity, we proposed a JMS score for a gene in certain
463 464	(Additional life 1: Table S10). To quantify the tissue specificity, we proposed a JMS score for a gene in certain tissue to combine gene expression level with a Jensen–Shannon Divergence (<i>JSD</i>)

$$JMS = \frac{\sqrt[3]{med(G)}}{JSD}$$

466 where med(G) represents gene's median expression in a certain tissue. $\sqrt[3]{med(G)}$ 467 can guarantee that the numerator and denominator are on the same magnitude. *JSD* is 468 the Jensen–Shannon divergence to evaluate the gene's expression specificity 469 introduced in [41]. It adopts an entropy-based measure to assess the similarity 470 between two probability distributions in statistics as follows,

$$JSD(P||Q) = \frac{1}{2} \left(\sum_{k=1}^{n} x_k \log \frac{2x_k}{x_k + y_k} + \sum_{k=1}^{n} y_k \log \frac{2y_k}{x_k + y_k} \right)$$

Where $P = (x_1, x_2, ..., x_n)$ and $Q = (y_1, y_2, ..., y_n)$ are two probability distributions 471 472 constructed from our gene expression values across tissues. n is the number of 473 samples. Given each row of our gene expression matrix, we then normalized the 474 gene's expression vector, i.e., each element in this vector was divided by the sum of all elements. For a given gene, $Q = (y_1, y_2, ..., y_n)$ is its corresponding normalized 475 row vector. Given the tissue we are interested, $P = (x_1, x_2, ..., x_n)$ is constructed as a 476 control vector whose components are $\frac{1}{m}$ in the given tissue with *m* replicates and 0 477 478 in other tissues. Finally, the JSD will be calculated as the divergence between P and Q 479 for a certain gene in certain tissue. The smaller the JSD value, the more specific this 480 gene in this tissue. 481 In summary, JSD provided a relative specificity score by a nonlinear measure

481 In summary, *JSD* provided a relative specificity score by a nonlinear measure
482 of divergence. We further extended it by emphasizing significantly highly expressed
483 genes in certain tissues to enhancing specificity. This JMS score allows us to better
484 explore the toolkit transcription factors' expression patterns and recruitment of genes

485 based on tissue specificity.

486

487 Differential regulatory network construction between rumen and esophagus

- 488 We constructed differential regulatory network between rumen and esophagus by
- 489 extracting differential RSEGs, differential TTFs, and active-RSCNEs associated
- 490 sub-network from the regulatory network of TTFs. The differential RSEGs and
- 491 differential TTFs are defined as follows.
- 492 *Differential RSEGs between rumen and esophagus.*
- 493 We used R packages "limma" and "edgeR" to extract differential genes at four
- 494 developmental time points (E60/D1/D7/D28) with thresholds FDR < 0.05 and
- $\log_2 FC > 1$ (FC was fold-change of FPKM in rumen relative to esophagus). It was
- 496 noted that at time point Y1, we only had one biological replicate for RNA-seq data in
- 497 rumen and esophagus separately and we could not perform F-test on these two
- 498 samples. Instead, we identified genes with FPKM > 2 in rumen and FC > 2 as
- 499 differential genes. Then we combined differential genes at five time points to get
- 500 differential genes set between rumen and esophagus. Differential RSEGs between
- rumen and esophagus were intersection of differential genes set and RSEGs set in
- 502 regulatory network of TTFs.
- 503 *Differentially accessible peaks between rumen and esophagus.*
- 504 We implemented R packages "limma" and "edgeR" to get differentially accessible
- 505 peaks between rumen and esophagus at five developmental time points
- 506 (E60/D1/D7/D28/Y1) with thresholds FDR < 0.05 and $|log_2FC| > 1$ (FC was

- 507 fold-change of chromatin accessibility score in rumen relative to esophagus).
- 508 *Differential TTFs between rumen and esophagus.*
- 509 We first collected 1,027 TFs of sheep from animalTFDB3.0
- 510 (http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/). The 15,835 expressed genes in
- rumen and esophagus were intersected with these 1,027 TFs to obtain 768 TFs for the
- 512 following analysis. We used HOMER to find TFs' binding on the differentially
- 513 accessible peaks with threshold $-\log_{10} p$ value > 6 at each time point. Then we used
- 514 R packages "limma" and "edgeR" to get differentially expressed TFs at four time
- points (E60/D1/D7/D28) with threshold FDR < 0.05 and $\log_2 FC > 1$. We identified
- 516 differentially expressed TFs at time point Y1 with threshold FPKM > 2 in rumen and
- 517 FC > 2. Differential TFs set was defined as the intersection of TFs binding on
- 518 differentially accessible peaks and differentially expressed TFs. Differential TTFs
- 519 between rumen and esophagus were intersection of differential TFs set and TTFs set
- 520 in regulatory network of TTFs.
- 521

522 Collecting samples for ATAC-seq and RNA-seq

- 523 We collected a total of 37 samples of the rumen, esophagus epithelium tissues and liver
- tissues from 14 Hu sheep including 5 time points (embryo 60-day, 1-day, 7-day, 28-day,
- and 1-year) from XiLaiYuan ecological agriculture co. LTD in Taizhou city (Jiangsu,
- 526 China). All samples rinsed with PBS and were soaked in cold 1×PBS added with
- 527 penicillin-streptomycin. All animals were slaughtered under the guidelines of
- 528 Northwest A&F University Animal Care Committee.

529

530 ATAC-seq library preparation, sequencing, and analysis

- 531 Isolation of ruminal and esophageal epithelial cells.
- 532 A piece of ruminal epithelial tissue was removed from PBS buffer (pH 7.4), placed on a
- 533 watch glass, and brushed with sterile D-Hanks in all directions. The clipped tissue
- 534 (approximately 500 mg) was placed in a small beaker and rinsed 2-3 times with a
- 535 D-Hanks (pH 7.4) solution (4 times antibody, pre-warmed in a 37 °C water bath). Next,
- 536 0.25% trypsin (15 ml) was pre-warmed in a 37 °C water bath and added to a conical
- flask with the rumen epithelium sample, which was then digested in a 37 °C water bath
- 538 for 30 min while shaking well every 5 min. The ruminal epithelial tissue was removed
- and the trypsin digestion solution was discarded. This step was repeated three times
- 540 until the epithelium felt sticky. The treated epithelial tissue was then placed in a sterile
- beaker and rinsed three times with D-Hanks solution, and this step was repeated using a
- 542 fresh beaker. Ten milliliters of trypsin were added, and the mixture was digested in a
- 543 37 °C water bath for 10-20 min until the cells detached. Cells from the first 3-4
- 544 detachments were not collected because these are generally necrotic or granular cells.
- 545 Only the last two digested cell types (spinous and basal cells) were generally collected,
- after the cells in the digested sample were observed under a microscope. The cells were
- 547 filtered through a cell strainer and added to a 10 ml centrifuge tube containing a drop of
- 548 calf serum. The above digestion and collection steps were repeated 3 times. The
- 549 digestate was collected following centrifugation at 1500 r/min for 5-10 min, and the
- 550 supernatant was discarded. One milliliter of Dulbecco's Modified Eagle Medium

551	(DMEM) solution was added to the precipitate, and the mixture shaken or blown to
552	adjust the cell density to 10^6 cells/ml. Trypan blue was added to verify that cell viability
553	reached 95%. The esophageal epithelial cells were obtained with the same pipeline with
554	the ruminal epithelial cells as above.
555	Preparation of nuclei
556	To prepare nuclei, we spun 50,000 cells at 500 xg for 5 min and then washed the pellet
557	using 50 µl of cold 1× PBS. The solution was then centrifuged at 500 xg for 5 min, and
558	the cells were lysed using cold lysis buffer (10 mM Tris-HCI, pH 7.4, 10 mM NaCl, 3
559	mM MgCl2 and 0.1 NP40). Immediately after lysis, the nuclei were spun at 500 xg for
560	10 min using a refrigerated centrifuge. To avoid losing cells during the nucleus
561	preparation, we used a fixed angle centrifuge and carefully pipetted away from the
562	pellet after centrifugation.
563	Transposition and purification
564	The pellet was immediately resuspended in transposase reaction mix (17.5 μ l of DEPC
565	H_2O , 5µl of TTBL buffer, 2.5 µl of TTE mix buffer and all the nuclear DNA). The
566	transposition reaction was carried out for 10 min at 55 \square in metal bath, and the sample
567	was immediately purified using a Qiagen MinElute kit.
568	Library construction
569	PCR was performed to amplify the library for 14 cycles using the following PCR
570	conditions: 72 °C for 3 min, 98 °C for 30 s, and thermocycling at 98 °C for 15 s, 60 °C

- 571 for 30 s and 72 °C for 3 min.
- 572 Data quality control and short-read alignment

573	Sequencing reads must undergo quality control and adapter trimming to optimize the
574	alignment process. FastQC (version 0.11.5) [42] was used to assess overall quality.
575	Reads were trimmed for quality as well as the presence of adapter sequences using the
576	Trim Galore Wrapper script [43] with default parameters. Raw ATAC-seq reads of
577	sheep were mapped to the sheep reference genome (NCBI assembly Oar_v4.0) using
578	Bowtie2 (version 2.2.8) [44] with default parameters. Duplicated reads were removed
579	using the default parameters in Picard (version 2.1.1). Reads mapping to mitochondrial
580	DNA were excluded from the analysis together with low-quality reads (MAPQ < 20).
581	Open accessible peak calling
582	Accessible regions and peaks were identified using MACS [45] with parameters "-q
583	0.05 -shift 37 -extsize 73" for narrow peaks. The centers of identified peaks were used
584	to define peak overlaps with genomic features according to the following criteria. If a
585	center site was located in the promoter of a gene (2 kbp upstream from the transcription
586	start site (TSS)), or the gene body, the peaks would be assigned to that gene. Distal
587	intergenic regions refer to regions > 3 kbp from the TSS and > 1 kbp from the
588	transcription termination site (TTS).
589	Consensus peaks analysis
590	Open accessible peaks were identified in four biological replicates of each tissue by
591	using "bedtools intersect", and consensus peaks with openness values of each peak in
592	each sample were built by merging these regions and calculated with R package

593 "Diffbind" (version 2.10.0) [46].

594 Peak annotation

- 595 Peak annotation was performed using R packages "GenomicFeatures", "ChIPseeker",
- 596 and "AnnotationHub".
- 597

598 RNA-seq library preparation and sequencing

- 599 We prepared directional RNA-seq libraries from the cells of the same samples as used
- 600 for ATAC-seq. Each sample was added 1ml Trizol protocol (Invitrogen, USA), and
- 601 frozen in -80 °C until utilization.
- 602 *RNA isolation, library construction, and sequencing*
- 603 In all tissue samples collected for this study, total RNA was isolated from a frozen
- sample according to the Trizol protocol (Invitrogen, USA), using 1.5 μg RNA per
- sample as the input material for sample preparation. Sequencing libraries were
- 606 generated using a NEBNext® Ultra RNA Library Prep Kit for Illumina® (NEB, USA)
- 607 according to the manufacturer's recommendations, and index codes were added to
- attribute sequences to samples. Briefly, mRNA was purified from total RNA using
- 609 poly-T oligo-attached magnetic beads and fragmented using divalent cations at
- 610 elevated temperature in NEB Next First-Strand Synthesis Reaction Buffer (5X).
- 611 First-strand cDNA was synthesized using random hexamer primers and M-MuLV
- 612 Reverse Transcriptase (RNase H). Second-strand cDNA was subsequently
- 613 synthesized using DNA Polymerase I and RNase H. Remaining overhangs were
- 614 converted into blunt ends by exonuclease/polymerase activity. After adenylation of 3'
- ends of DNA fragments, NEB Next Adaptors with hairpin loop structures were
- 616 ligated to prepare for hybridization. To select cDNA fragments with appropriate

617	lengths, the library fragments were purified with an AMPure XP system (Beckman
618	Coulter, Beverly, USA). Then 3 μ l of USER Enzyme buffer (NEB, USA) was
619	incubated with size-selected, adaptor-ligated cDNA at 37 $^{\circ}$ C for 15 min followed by 5
620	min at 95 °C before PCR amplification, using Phusion High-Fidelity DNA
621	polymerase, Universal PCR primers, and Index (X) Primer. Finally, PCR products
622	were purified using the AMPure XP system, and library quality was assessed using an
623	Agilent Bioanalyzer 2100 system. The index-coded samples were clustered with a
624	cBot Cluster Generation System using a HiSeq 4000 PE Cluster Kit (Illumina)
625	according to the manufacturer's instructions. After cluster generation, the library
626	preparations were sequenced on an Illumina Hiseq X Ten platform, and 150 bp
627	paired-end reads were generated. All these sequencing procedures were performed by
628	Novogene Technology Co., Ltd., Beijing, China.
629	RNA-seq data quality control and quantification processing
630	We obtained high-quality reads by removing adaptor sequences and filtering
631	low-quality reads from raw reads using Trimmomatic (version 0.36) [47] with the
632	following parameters: LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
633	MINLEN:40. High-quality reads were all aligned to the NCBI assembly Oar_v4.0
634	reference sheep genome [48]. For this, we used STAR (Version 2.5.1) [49] with the
635	following parameters: outFilterMultimapNmax 1, outFilterIntronMotifs
636	RemoveNoncanonical Unannotated, outFilterMismatchNmax 10, outSAMstrandField
637	intronMotif, outSJfilterReads Unique, outSAMtype BAM Unsorted,

639	extracted by SAMtools (Version 1.3) [50] for further mapping by HISAT2 (Version
640	2.0.3-beta) [51]. We computed Fragments Per Kilobase per Million mapped reads
641	(FPKM) values for the genes in each sample using StringTie (Version1.3.4) [52].
642	As the samples were prepared and sequenced in three known distinct batches
643	(see Additional file 1: Table S1), we used the <i>removeBatchEffect()</i> function from R
644	limma package to build a linear model with the batch information and the cell types
645	on log2-transformed FPKM+1, and we regressed out the batch variable.
646	Cell lines and cell culture.
647	Conspecific cell lines can be used to validate the regulatory activity of RSCNEs. For
648	example, mouse NHI3T3 fibroblast cells were used to validate the enhancer activity
649	in mouse of one CNE which showed an ability of regulating the loss and
650	re-emergence of legs in snakes [53]. Hence, we selected fibroblast cells of ruminants
651	for in vitro regulatory activity experiments. Sheep and goat fibroblast cells were
652	provided by Guangxi University and were cultured in Dulbecco's Modified Eagle
653	Medium (DMEM) containing 10% FBS (Gibco, Grand Island, NY, USA). All cell lines
654	used in this study were maintained in the specified medium supplemented with 1 \times
655	Penicillin–Streptomycin (Gibco) and incubated in 5% CO2 at 37 °C.
656	Cloning and luciferase assays.
657	All the reporter constructs were cloned into pGL-3 promoter plasmids (Promega,
658	Madison, WI, USA). Fragments of the candidate RSCNEs were cloned into
659	pGL3-promoter vector digested by <i>BamH</i> I and <i>Sal</i> \Box downstream of the luciferase

660 gene. All constructs were confirmed by sequencing. Transfection of all reporter

bor plasmus constructs was performed using furbor cet (K0551, mermo beform	661	plasmids constructs was	performed using	TurboFect	(R0531,	Thermo Scientifi
--	-----	-------------------------	-----------------	-----------	---------	------------------

- 662 Waltham, USA). Renilla Luciferase pRL-TK-Rluc (Promega) served as a transfection
- 663 control, and luciferase expression was subsequently monitored with the dual luciferase
- assay (Promega) 24 h after transfection. Each luciferase assay was monitored at least
- 665 five times, independently.
- 666 *Statistics*
- 667 The t-test in the GraphPad Prism7.0 software (Prism, San Diego, CA, USA) was
- applied to calculate the significance for the regulatory activity. Differences were
- 669 statistically significant when p value < 0.05.
- 670

671 Supplementary Information

- 672 Additional file 1: Table S1. Statistic of 37 ATAC-seq data used in this study. Table
- 673 S2. Statistic of RNA-seq data used in our study. Table S3. 1,601 active-RSCNEs.
- **Table S4.** 1,061 active-RSCNEs are enriched for binding motifs of transcriptional
- regulators known to play vital role in rumen development (128 motifs with Benjamini
- q-value < 1.00×10-3). **Table S5.** 18 rumen toolkit TFs (TTFs). **Table S6.** Upstream
- 677 regulatory network of 18 rumen toolkit TFs. **Table S7.** Downstream regulatory
- 678 network of 18 rumen toolkit TFs. **Table S8.** Differential regulatory sub-network
- between rumen and esophagus. **Table S9.** GO enrichment analysis of 52 TGs in the
- 680 differential regulatory sub-network between rumen and esophagus. BP denotes
- 681 Biological Process, MF denotes Molecular Function, and CC denotes Cellular
- 682 Component. Table S10. The gene expression profile of 655 rumen specifically

683 expressed genes (RSEGs) which showed by FKPM value.

684	Additional file 2: Fig. S1. Data quality check for the ATAC-seq samples by their
685	sequence depth, fragment distribution, and QC score. Fig. S2. Paired expression and
686	chromatin accessibility time series data reveals the regulatory landscape for rumen
687	and esophagus development. Fig. S3. Further characterization of active-RSCNEs. Fig.
688	S4. Relationships between the regulatory strength and the conservation score of TTF
689	upstream network. Fig. S5. Relationships between the regulatory strength and the
690	conservation score of TTF downstream network. Fig. S6. Luciferase activity assays of
691	10 active-RSCNEs with top functional influence score. Fig. S7. Differentially
692	expressed genes and differentially accessible peaks between rumen and esophagus at
693	each stage.
694	
695	Declarations
696	Acknowledgments
697	We thank High-Performance Computing (HPC) of Northwest A&F University
698	(NWAFU) for providing computing resources.
699	
700	Authors' contributions
701	Y.W, H.W, Y.J. and W.W. conceived the project and designed the research. X.P., Z.M,
702	and X.S. performed the majority of analysis with contributions from Y.C., C.Z.; X.P.

- and T.Z. prepared rumen and esophagus epithelium cells and hepatocyte for ATAC-seq
- and RNA-seq. H.L. performed the luciferase reporter assay. X.P., Y.W., R.H., Z.M, and

- X.S. drafted the manuscript. All authors wrote, revised, and contributed to the final
- 706 manuscript.
- 707
- 708 Funding
- 709 This work was supported the National Natural Science Foundation of China (NSFC)
- vider Grants Nos. 12025107, 11871463, 11688101,61621003, the National Thousand
- 711 Youth Talents Plan, the National Key Research and Development Program of China
- 712 (2020YFA0712402), and CAS "Light of West China" Program (No.
- 713 xbzg-zdsys-201913).
- 714

715 Availability of data and materials

- The raw reads for all RNA-seq data, the ATAC-seq data from the ruminal and
- rian esophageal epithelial cells and hepatocyte have been deposited at the Sequence Read
- 718 Archive (SRA) under project number PRJNA485657. The customized scripts have
- 719 deposited in GitHub (<u>https://github.com/xiangyupan/CNEReg</u>).
- 720

721 Ethics approval and consent to participate

- 722 All implemented experiments were approved by the Institutional Animal Care and
- 723 Use Committee and were in strict accordance with good animal practices as defined
- by the Northwest A&F University (protocol number: NWAFAC1008). All efforts
- 725 were made to minimize animal suffering.
- 726

727 Competing interests

728 The authors declare no competing interests.

729

730 Fig. 1. Paired expression and chromatin accessibility time series data reveals

regulatory landscape for rumen development. (A) Experimental design diagram for
multi-replicate, multi-tissue, and multi-level omics data profiling during sheep
development from embryo 60-day (E60), postnatal day 1, 7, 28(D1, D7, and D28) to

734	adult 1-year (Y1). (B, C) Hierarchical clustering of gene expression for 14,637 genes
735	and chromatin accessibility for 178,651 open chromatin regions both indicate rumen's
736	multi-stage development process. D28 and Y1 are more closely grouped and E60, D1,
737	and D7 are distinct group both in expression and chromatin accessibility. (\mathbf{D}, \mathbf{E})
738	Unsupervised principal component analysis of rumen's gene expression and
739	chromatin accessibility. Multi-stage development pattern is consistent with clustering
740	results. Early development stages E60 and D1 show larger replicate variation than D7,
741	D28, and Y1 at both chromatin accessibility and gene expression. In addition,

chromatin accessibility shows more smoothed trajectory than expression. 742

744 Fig. 2. Characterization of active-RSCNEs. (A) The number of reproducible peaks

- 745 during each developmental stage in rumen and esophagus. (B) Annotating
- reproducible peaks by location in different genomic regions. (C) The number of
- 747 active-RSCNEs during each developmental stage in rumen and esophagus. (D)
- 748 Annotating active-RSCNEs by location in different genomic regions. (E) GO
- range enrichment analysis for genes near the active -RSCNEs. (F) The genes nearest to
- active-RSCNEs are enriched in RSEGs. *p*-value is calculated by Fisher's exact test.
- (G) Illustration of the number of Type I and Type II in total RSCNEs and
- active-RSCNEs. (H) The intersections among active-RSCNEs with enhancers from
- 753 d-TAC, cCREs, and VISTA datasets. (I) Luciferase activity assays of 10
- active-RSCNEs randomly chosen in 1,601 active-RSNCEs. 9 of 10 show regulatory
- 755 activity in PGL-3 promoter.

SCNE L

YI,n,1

Type I RSCNE: PhastCons

Type II RSCNE: PhyloP

l

rvation score C_i

 $\varepsilon_n \sim N(0, \sigma_n^2)$

 $W_k = \sqrt{R_k \cdot C_k}$

RSEG

Yind

TTF2.t

 $R_{k} = \max_{r} \sum (O_{k,t} \cdot B_{k,l} \cdot \sqrt{TTF_{l,t} \cdot RSEG_{n,t}} \cdot 2^{r_{l,n,k}})$

B_{k,2}

 $B_{k,1}$

RSEG1,t RSEG2,t

TTF1,t

RSEG.

··· TTFLE

···· RSEGnr

Step 2

 $B_{k,l}$

...

Y1.n.2

758 network. (A) CNEReg inputs paired time-series gene expression & chromatin

759 accessibility data, ruminant comparative genomes, and comparative transcriptomes

- 760 and outputs the developmental regulatory network of active-RSCNEs. Three major
- 761 steps of CNEReg includes: multi-omics data integration, model component
- 762 identification, and developmental regulatory network inference. (B) The
- 763 developmental regulatory network reconstruction is further illustrated in three steps.

- 764 Step1: inferring the upstream regulations of rumen toolkit TFs (TTF). Step2: inferring
- the TTF's downstream regulation to target genes via active-RSCNEs. Step3: Deriving
- active-RSCNE's functional influence score by integrating regulatory strength in
- 767 network and evolutionary conservation score. CNEReg's model component and
- notations are detailed in Table 1.

Data and variables	Notation	Example
Expression of TTF	$TTF_{l,t}$:= expression of the <i>l</i> -th TTF on <i>t</i> -th time point	$TTF_{HOXC8} = 25.48$ on D7 in rumen
Expression of TF	$TF_m :=$ expression of the <i>m</i> -th TF	$TF_{JUN} = 1035.79$ on D7 in rumen
Expression of RSEG	$RSEG_{n,t} \coloneqq$ expression of the <i>n</i> -th RSEG on <i>t</i> -th time point	$RSEG_{SLC14A1} = 42.34 \text{ on D7 in}$ rumen
Accessibility of active-RSCNE	$O_{k,t} \coloneqq$ openness of <i>k</i> -th active-RSCNE on <i>t</i> -th time point	$O_{Chr1:196579342-242} = 18.83 \text{ on } D7$ in rumen
TFs with motif match in an active-RSCNE	$MB_i :=$ set of TFs with significant motif match in <i>i</i> -th active-RSCNE	HOXC8 has motif match at active-RSCNE Chr1: 196579342 – 242
Motif matching strength of TF on RE	$B_{i,l} \coloneqq \text{sum of } -\log(\text{p-value}) \text{ of } l\text{-th}$ TF's motif on <i>i</i> -th active-RSCNE	$B_{Chr1:196579342-242} = 4.28486$

769 Table 1. CNEReg model component and notations.

Fig. 4. 18 rumen TTFs and its upstream regulations. (A) Phylogeny of 50 tissues

- from sheep by 18 rumen TTFs' expression groups the samples well by different
- 173 lineages and biological system. (B) 18 rumen TTFs' biological functions (marked by
- green) and the tissue with high expression (marked in blue). Tissues are grouped and
- colored by their lineages. (C) 18 rumen TTFs' expression values along the
- development stages. By their dynamic patterns, they can be grouped into early (cold
- colored) and late (warm colored). In addition, 18 rumen TTFs' expression in skin
- organoids scRNA-seq data are visualized by Uniform Manifold Approximation and
- Projection (UMAP) plot. The associated specific cell type names are labeled. (**D**)
- 780 Rumen TTFs' upstream gene regulatory network shows the candidate TFs with
- statistical significance. Nodes are colored by early and late TTFs. Blue edges
- 782 highlight the regulatory relationship among TTFs.

784 Fig. 5. Rumen TTFs' downstream regulatory network. (A) Rumen TTFs'

downstream regulatory network with 17 rumen TTFs regulating 93 TGs via 139

active-RSCNEs. TTFs are colored by the tissue they are highly expressed and TGs are

annotated and colored by their biological system. (B) An example from the regulatory

network shows that *SLC14A1* is regulated by four active-RSCNEs with TTFs' motif

789 occurrence. The expression and chromatin accessibility tracks are derived from rumen

790 ATAC-seq (D1 or D7) and RNA-seq data (Y1).

791

792 Fig. 6. Regulatory network sheds lights on the difference between rumen and

resophagus in development. (A) Dynamics across stages for the 6 differential TTFs

between rumen and esophagus by integrating motif enrichment in differential

795 ATAC-seq peaks and gene expression level. (B) 6 differential rumen TTFs'

- downstream regulatory subnetwork, which hypothesizes that rumen evolves from
- homologous tissue esophagus by functional innovation through recruiting OTX1,
- SOX21, HOXC8, SOX2, TP63, PPARG and utilizing 16 active-RSCNEs to rewire
- 799 developmental regulations.

800 **References**

801	1.	Carroll S	B.	Evo-Devo	and	an	Expanding	Evolutionary	Synthesis:	А	Genetic	Theory	of
802		Morpholog	gica	l Evolution	. Cell	. 20	08;134(1):25	5-36. https://do	i.org/10.101	6/j.o	cell.2008.	06.030	

- Pan X, Cai Y, Li Z, Chen X, Heller R, Wang N, *et al.* Modes of genetic adaptations underlying
 functional innovations in the rumen. Sci China Life Sci. 2021;64(1):1-21.
 https://doi.org/10.1007/s11427-020-1828-8
- 806 3. Smith JJ, Timoshevskaya N, Ye C, Holt C, Keinath MC, Parker HJ, *et al.* The sea lamprey
 807 germline genome provides insights into programmed genome rearrangement and vertebrate
 808 evolution. Nat Genet. 2018;50(2):270-277. https://doi.org/10.1038/s41588-017-0036-1
- 809 4. Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T, *et al.* Highly conserved
 810 non-coding sequences are associated with vertebrate development. Plos Biol. 2005;3(1):e7.
 811 https://doi.org/10.1371/journal.pbio.0030007
- S. Chen L, Qiu Q, Jiang Y, Wang K, Lin Z, Li Z, *et al.* Large-scale ruminant genome sequencing
 provides insights into their evolution and distinct traits. Science. 2019;364(6446):v6202.
 https://doi.org/10.1126/science.aav6202
- 815 6. Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet.
 816 2007;8(3):206-216. https://doi.org/10.1038/nrg2063
- 817 7. Xiang R, Oddy VH, Archibald AL, Vercoe PE, Dalrymple BP. Epithelial, metabolic and innate
 818 immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian
 819 gastrointestinal tract tissues. Peerj. 2016;4:e1762. https://doi.org/10.7717/peerj.1762
- 820 8. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, *et al.* GREAT improves
 821 functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28(5):495-501.
 822 https://doi.org/10.1038/nbt.1630
- 823 9. Long HK, Osterwalder M, Welsh IC, Hansen K, Davies J, Liu YE, *et al.* Loss of Extreme
 824 Long-Range Enhancers in Human Neural Crest Drives a Craniofacial Disorder. Cell Stem Cell.
 825 2020;27(5):765-783. https://doi.org/10.1016/j.stem.2020.09.001
- 10. Duren Z, Chen X, Jiang R, Wang Y, Wong WH. Modeling gene regulation from paired
 expression and chromatin accessibility data. Proc Natl Acad Sci U S A.
 2017;114(25):E4914-E4923. https://doi.org/10.1073/pnas.1704553114
- Li L, Wang Y, Torkelson JL, Shankar G, Pattison JM, Zhen HH, *et al.* TFAP2C- and p63-Dependent Networks Sequentially Rearrange Chromatin Landscapes to Drive Human
 Epidermal Lineage Commitment. Cell Stem Cell. 2019;24(2):271-284.
 https://doi.org/10.1016/j.stem.2018.12.012
- Buren Z, Chen X, Xin J, Wang Y, Wong WH. Time course regulatory analysis based on paired
 expression and chromatin accessibility data. Genome Res. 2020;30(4):622-634.
 https://doi.org/10.1101/gr.257063.119
- Xin J, Zhang H, He Y, Duren Z, Bai C, Chen L, *et al.* Chromatin accessibility landscape and
 regulatory network of high-altitude hypoxia adaptation. Nat Commun. 2020;11(1):4928.
 https://doi.org/10.1038/s41467-020-18638-8
- 839 14. Fath EM, Schwarz R, Ali AM. Micromorphological studies on the stomach of sheep during
 840 prenatal life. Anat Histol Embryol. 1983;12(2):139-153.
 841 https://doi.org/10.1111/j.1439-0264.1983.tb01010.x
- 842 15. Wardrop ID. Some preliminary observations on the histological development of the fore-stomachs843 of the lamb I. Histological changes due to age in the period from 46 days of foetal life to 77 days

844		of post-natal life. The Journal of Agricultural Science. 1961;3(57):335-341.
845		https://doi.org/10.1017/S0021859600049303
846	16.	Irie N, Kuratani S. The developmental hourglass model: a predictor of the basic body plan?
847		Development. 2014;141(24):4649-4655. https://doi.org/10.1242/dev.107318
848	17.	Cardoso-Moreira M, Halbert J, Valloton D, Velten B, Chen C, Shao Y, et al. Gene expression
849		across mammalian organ development. Nature. 2019;571(7766):505-509.
850		https://doi.org/10.1038/s41586-019-1338-5
851	18.	Gorkin DU, Barozzi I, Zhao Y, Zhang Y, Huang H, Lee AY, et al. An atlas of dynamic chromatin
852		landscapes in mouse fetal development. Nature. 2020;583(7818):744-751.
853		https://doi.org/10.1038/s41586-020-2093-3
854	19.	Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, Adrian J, et al. Expanded
855		encyclopaedias of DNA elements in the human and mouse genomes. Nature.
856		2020;583(7818):699-710. https://doi.org/10.1038/s41586-020-2493-4
857	20.	Visel A, Minovitsky S, Dubchak I, Pennacchio LA. VISTA Enhancer Browsera database of
858		tissue-specific human enhancers. Nucleic Acids Res. 2007;35(Database issue):D88-D92.
859		https://doi.org/10.1093/nar/gkl822
860	21.	Onimaru K. The evolutionary origin of developmental enhancers in vertebrates: Insights from
861		non-model species. Dev Growth Differ. 2020;62(5):326-333. https://doi.org/10.1111/dgd.12662
862	22.	Jonker L, Kist R, Aw A, Wappler I, Peters H. Pax9 is required for filiform papilla development
863		and suppresses skin-specific differentiation of the mammalian tongue epithelium. Mech Dev.
864		2004;121(11):1313-1322. https://doi.org/10.1016/j.mod.2004.07.002
865	23.	Manak JR, Scott MP. A class act: conservation of homeodomain protein functions. Dev Suppl.
866		1994:61-77.
867	24.	Takeuchi JK, Koshiba-Takeuchi K, Matsumoto K, Vogel-Hopker A, Naitoh-Matsuo M, Ogura K,
868		et al. Tbx5 and Tbx4 genes determine the wing/leg identity of limb buds. Nature.
869		1999;398(6730):810-814. https://doi.org/10.1038/19762
870	25.	Nair M, Teng A, Bilanchone V, Agrawal A, Li B, Dai X. Ovol1 regulates the growth arrest of
871		embryonic epidermal progenitor cells and represses c-myc transcription. J Cell Biol.
872		2006;173(2):253-264. https://doi.org/10.1083/jcb.200508196
873	26.	Koster MI, Kim S, Mills AA, DeMayo FJ, Roop DR. p63 is the molecular switch for initiation of
874		an epithelial stratification program. Genes Dev. 2004;18(2):126-131.
875		https://doi.org/10.1101/gad.1165104
876	27.	Leask A, Byrne C, Fuchs E. Transcription factor AP2 and its role in epidermal-specific gene
877		expression. Proc Natl Acad Sci U S A. 1991;88(18):7948-7952.
878		https://doi.org/10.1073/pnas.88.18.7948
879	28.	Saito K, Michon F, Yamada A, Inuzuka H, Yamaguchi S, Fukumoto E, et al. Sox21 Regulates
880		Anapc10 Expression and Determines the Fate of Ectodermal Organ. iScience. 2020;23(7):101329.
881		https://doi.org/10.1016/j.isci.2020.101329
882	29.	Lee J, Rabbani CC, Gao H, Steinhart MR, Woodruff BM, Pflum ZE, et al. Hair-bearing human
883		skin generated entirely from pluripotent stem cells. Nature. 2020;582(7812):399-404.
884		https://doi.org/10.1038/s41586-020-2352-3
885	30.	Wilanowski T, Caddy J, Ting SB, Hislop NR, Cerruti L, Auden A, et al. Perturbed desmosomal
886		cadherin expression in grainy head-like 1-null mice. Embo J. 2008;27(6):886-897.
887		https://doi.org/10.1038/emboj.2008.24

888 31. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, *et al.* Simple Combinations of
889 Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for
890 Macrophage and B Cell Identities. Mol Cell. 2010;38(4):576-589.
891 https://doi.org/10.1016/j.molcel.2010.05.004

- 892 32. Lynch VJ, Leclerc RD, May G, Wagner GP. Transposon-mediated rewiring of gene regulatory
 893 networks contributed to the evolution of pregnancy in mammals. Nat Genet.
 894 2011;43(11):1154-1159. https://doi.org/10.1038/ng.917
- 33. Ting CN, Rosenberg MP, Snow CM, Samuelson LC, Meisler MH. Endogenous retroviral sequences are required for tissue-specific expression of a human salivary amylase gene. Genes
 B97 Dev. 1992;6(8):1457-1465. https://doi.org/10.1101/gad.6.8.1457
- 898 34. Gregory TR. The Evolution of Complex Organs. Evolution: Education and Outreach.
 899 2008;1(4):358-389. https://doi.org/10.1007/s12052-008-0076-1
- Griffith OW, Wagner GP. The placenta as a model for understanding the origin and evolution of
 vertebrate organs. Nat Ecol Evol. 2017;1(4):72. https://doi.org/10.1038/s41559-017-0072
- 36. Lowe CB, Kellis M, Siepel A, Raney BJ, Clamp M, Salama SR, *et al.* Three periods of regulatory
 innovation during vertebrate evolution. Science. 2011;333(6045):1019-1024.
 https://doi.org/10.1126/science.1202702
- 37. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, *et al.* Ultraconserved
 elements in the human genome. Science. 2004;304(5675):1321-1325.
 https://doi.org/10.1126/science.1098119
- 38. Consortium Z. A comparative genomics multitool for scientific discovery and conservation.
 Nature. 2020;587(7833):240-245. https://doi.org/10.1038/s41586-020-2876-6
- 910 39. Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, Reeve AH, *et al.* Dense sampling of bird
 911 diversity increases power of comparative genomics. Nature. 2020;587(7833):252-257.
 912 https://doi.org/10.1038/s41586-020-2873-9
- 913 40. Inoue J, Saitou N. dbCNS: A New Database for Conserved Noncoding Sequences. Mol Biol Evol.
 914 2021;38(4):1665-1676. https://doi.org/10.1093/molbev/msaa296
- 915 41. D'Alessio AC, Fan ZP, Wert KJ, Baranov P, Cohen MA, Saini JS, *et al.* A Systematic Approach
 916 to Identify Candidate Transcription Factors that Control Cell Identity. Stem Cell Rep.
 917 2015;5(5):763-775. https://doi.org/10.1016/j.stemcr.2015.09.016
- 42. Andrews S. FastQC: a quality control tool for high throughput sequence data. Babraham
 Bioinformatics, Cambridge, UK. 2016.
- 43. Krueger F. A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter
 trimming to FastQ files. Babraham Bioinformatics, Cambridge, UK. 2015.
- 44. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods.
 2012;9(4):357-359. https://doi.org/10.1038/nmeth.1923
- 45. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, *et al.* Model-based analysis
 of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137. https://doi.org/10.1186/gb-2008-9-9-r137
- 46. Stark R, Brown G. DiffBind: differential binding analysis of ChIP-Seq peak data. R packageversion. 2011.
- 928 47. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
 929 Bioinformatics. 2014;30(15):2114-2120. https://doi.org/10.1093/bioinformatics/btu170
- 930 48. Jiang Y, Xie M, Chen W, Talbot R, Maddox JF, Faraut T, *et al.* The sheep genome illuminates
 931 biology of the rumen and lipid metabolism. Science. 2014;344(6188):1168-1173.

932		https://doi.org/10.1126/science.1252806
933	49.	Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal
934		RNA-seq aligner. Bioinformatics. 2013;29(1):15-21.
935		https://doi.org/10.1093/bioinformatics/bts635
936	50.	Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
937		Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078-2079.
938		https://doi.org/10.1093/bioinformatics/btp352
939	51.	Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements.
940		Nat Methods. 2015;12(4):357-360. https://doi.org/10.1038/nmeth.3317
941	52.	Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of
942		RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650-1667.
943		https://doi.org/10.1038/nprot.2016.095
944	53.	Leal F, Cohn MJ. Loss and Re-emergence of Legs in Snakes by Modular Evolution of Sonic
945		hedgehog and HOXD Enhancers. Curr Biol. 2016;26(21):2966-2973.
946		https://doi.org/10.1016/j.cub.2016.09.020
947		