
� 
�

Potent antibody immunity to SARS-CoV-2 variants elicited by a third 
�

dose of inactivated vaccine ��

 ��

Bin Ju1,3,*,#, Bing Zhou1,*, Shuo Song1,*, Qing Fan1, Xiangyang Ge1, Haiyan 
�

Wang1, Lin Cheng1, Huimin Guo1, Dan Shu1, Lei Liu4,#, Zheng Zhang1,2,3,# ��

 ��
1Institute for Hepatology, National Clinical Research Center for Infectious ��

Disease, Shenzhen Third People’s Hospital; The Second Affiliated Hospital, ��

School of Medicine, Southern University of Science and Technology, Shenzhen ��

518112, Guangdong Province, China 
	�
2Shenzhen Research Center for Communicable Disease Diagnosis and 

�

Treatment of Chinese Academy of Medical Science, Shenzhen 518112, 
��

Guangdong Province, China 
��
3Guangdong Key laboratory for anti-infection Drug Quality Evaluation, 

�

Shenzhen 518112, Guangdong Province, China 
��
4Department for Infectious Diseases, National Clinical Research Center for 
��

Infectious Disease, Shenzhen Third People’s Hospital; The Second Affiliated 
��

Hospital, School of Medicine, Southern University of Science and Technology, 
��

Shenzhen 518112, Guangdong Province, China 
��

 �	�

*These authors contributed equally to this work. �
�
#Correspondence: ���

zhangzheng1975@aliyun.com (Z.Z.) ���

liulei3322@aliyun.com (L.L.) �
�

jubin2013@163.com (B.J.) ���

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.11.10.468037doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468037


� ��

Summary ���

SARS-CoV-2 variants are still prevalent worldwide and continue to pose a ���

challenge to the effectiveness of current vaccines. It remains unknown whether ���

a third dose of inactivated vaccine elicits immune potential against SARS-CoV-���

2 variants. Here, we showed a significant decline in plasma neutralization �	�

against SARS-CoV-2 at seven months after a second dose of the inactivated �
�

vaccine in a large-scale cohort. However, we also found that a third vaccination ���

with an inactivated vaccine largely increased plasma neutralization against ���

variants including Beta, Delta, and Lambda. More importantly, the high-affinity �
�

anti-RBD memory B cells were also generated by the third vaccination, ���

suggesting a more potent and longer protection. These findings highlighted the ���

importance and effectiveness of a third dose of inactivated vaccine in conferring ���

higher protection against the emerging variants in populations. ���
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� ��

Introduction ���

The coronavirus disease 2019 (COVID-19) pandemic has already lasted for 
	�

nearly two years and continues to threaten human health and life. By October 

�

26, 2021, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had 
��

infected more than 244 million individuals and caused over 4.9 million deaths 
��

around the world. While several effective vaccines have been deployed to 

�

combat wild-type (WT) virus infection1-3, the emerging SARS-CoV-2 variants 
��

showed enhanced transmissibility and significantly escaped the neutralization 
��

of vaccine-elicited plasma. New infections caused by SARS-CoV-2 variants are 
��

still rising sharply worldwide, especially the Alpha, Beta, Delta, and Lambda 
��

variants. They have contributed to several current waves of infection globally4-
��
9. �	�

More seriously, breakthrough infections of SARS-CoV-2 variants after �
�

vaccination have occurred widely with a significant reduction in vaccine efficacy ���

over time10-12. Data from a recent study in New York City demonstrated that ���

mutated strains, including Alpha and Iota, are able to escape the protection of �
�

several vaccines, including BNT162b2, mRNA-1273 and JNJ-7843673513. The ���

remarkable drop in neutralizing activities of vaccine-elicited plasma has been ���

considered to be a key factor leading to breakthrough infection. ���

Currently, many researchers have asked whether a third dose of vaccine is ���

necessary to increase the titers of neutralizing antibodies (nAbs) against SARS-���

CoV-2 variants and to better control the current COVID-19 pandemic. A third �	�

dose of the mRNA vaccine BNT162b2 has been proven to be effective in �
�

combatting variants. It was reported that the neutralization geometric mean ���

titers (GMTs) against Beta increased more than 15 to 20 times compared with ���

those after the second vaccination, and the ratio (Delta to WT) of neutralization �
�

GMTs raised to 0.85 and 0.92 in younger adults and in older adults after a third ���

dose of BNT162b2, respectively14. ���

The inactivated vaccine, as an important vaccine candidate, has shown good ���

immunogenicity in clinical trials and has been widely used in the population15,16. ���

However, it remains elusive whether plasma antibody titers against SARS-CoV-���

2 variants decline with time in inactivated vaccinees, especially in those who �	�

have received two doses of vaccines for more than half a year. In addition, the �
�
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� 
�

antibody immunity to SARS-CoV-2 variants elicited by a third dose of ���

inactivated vaccine has not been comprehensively analyzed in a large-scale ���

cohort, which is critical to develop strategies for curbing the spread of SARS-�
�

CoV-2 variants. ���

In this study, we summarized a large cohort of more than 500 individuals who ���

received two or three doses of inactivated SARS-CoV-2 vaccines (BBIBP-CorV) ���

and were followed up for nearly nine months. We characterized the kinetics of ���

plasma IgG and IgM bound to the viral receptor binding domain (RBD) ���

throughout the follow-up period and defined the decline in neutralizing activities �	�

against SARS-CoV-2 Beta, Delta, and Lambda variants in inactivated �
�

vaccinees 7 months after the second vaccination. More importantly, we proved ���

that a third dose of inactivated vaccine could significantly increase the titers of ���

binding and neutralizing antibodies against SARS-CoV-2 variants and enhance �
�

the percentages and affinities of RBD-specific memory B cells (MBCs). These ���

data provided a proof of concept that a third booster immunization with an ���

inactivated vaccine could be considered an effective measure against the ���

SARS-CoV-2 variant pandemic. ���

 ���

Methods �	�

Study approval and blood samples �
�

This study was approved by the Ethics Committee of Shenzhen Third ���

People’s Hospital, China (approval number: 2020-030). All participants had ���

provided written informed consent for sample collection and subsequent �
�

analysis. All plasma and peripheral blood mononuclear cells (PBMCs) from ���

individuals who received two or three doses of inactivated SARS-CoV-2 ���

vaccines (BBIBP-CorV, the Sinopharm COVID-19 vaccine, Beijing Institute of ���

Biological Products Co., Ltd) were collected at different time points of follow-up ���

from the Biobank of the Shenzhen Third People’s Hospital. All plasma samples ���

were stored at -80 °C and heat-inactivated at 56 °C for 1 h before use. PBMCs 
		�

were maintained in freezing medium and stored in liquid nitrogen. 
	
�

Enzyme linked immunosorbent assay (ELISA) 
	��

SARS-CoV-2 wild-type (WT) and mutated (Beta: K417N-E484K-N501Y, 
	��

Delta: L452R-T478K, Lambda: L452Q-F490S) RBD proteins (Sino Biological) 
	
�
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� ��

were separately coated into 96-well plates at 4 °C overnight. The plates were 
	��

washed with PBST buffer and blocked with 5% skim milk and 2% bovine 
	��

albumin in PBS at room temperature (RT) for 1 h. Plasma samples were diluted 
	��

at 1:20, added to the wells, and then incubated at 37 °C for 1 h. The plates were 
	��

washed, and HRP-conjugated goat anti-human IgG antibodies (ZSGB-BIO) 
	��

were added and then incubated at 37 °C for 30 mins. Finally, the TMB substrate 

	�

(Sangon Biotech) was added to the wells and incubated at RT for 5 mins, and 


�

the reaction was stopped with 2 M H2SO4. The readout was detected at 

��

wavelengths of 450 nm and 630 nm. For titration of the end-point titers of 

��

binding antibodies, plasma samples were serially diluted 3-fold from 1:20 to 


�

1:43740 and then added to the plates. The following steps were the same as 

��

those mentioned above. A cutoff was set as an OD450nm-630nm value of 0.100. 

��

The end-point titer was defined as the last dilution whose OD450nm-630nm value 

��

was over 0.100. 

��

SARS-CoV-2 pseudovirus-based neutralizing assay 

��

SARS-CoV-2 pseudovirus was generated by cotransfection of HEK-293T 
�	�

cells with SARS-CoV-2 spike-expressing plasmid and an env-deficient HIV-1 
�
�

backbone vector (pNL4-3.Luc.R-E-). Two days post transfection, the culture 
���

supernatant was harvested, clarified by centrifugation, filtered and stored at -
���

80 °C. To determine the neutralizing activity, plasma samples were serially 
�
�

diluted and incubated with an equal volume of SARS-CoV-2 pseudovirus at 
���

37 °C for 1 h. HEK-293T-hACE2 cells were subsequently added to the plates. 
���

After a 48 h incubation, the culture medium was removed, and 100 μL of Bright-
���

Lite Luciferase reagent (Vazyme Biotech) was added to the cells. After a 2 min 
���

incubation at RT, 90 μl of cell lysate was transferred to 96-well white solid plates 
���

for measurements of luminescence using the Varioskan™ LUX multimode 
�	�

microplate reader (Thermo Fisher Scientific). The 50% inhibitory dilution (ID50) 
�
�

was calculated using GraphPad Prism 8.0 software by log (inhibitor) vs. 
���

normalized response - Variable slope (four parameters) model. 
���

Flow cytometric analysis of RBD-specific memory B cells 
�
�

Thawed PBMCs were stained with an antibody cocktail consisting of CD19-
���

PE-Cy7, CD3-Pacific Blue, CD8-Pacific Blue, CD14-Pacific Blue, CD27-APC-
���

H7, and IgG-FITC (all from BD Biosciences) to gate IgG+ memory B cells. 
���
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� ��

SARS-CoV-2 WT RBD with His tag (Sino Biological) was used as a probe to 
���

target antigen-specific B cells. Two anti-His secondary antibodies separately 
���

labeled with APC and PE (Abcam) were both used to recognize the RBD bait 

	�

and exclude nonspecific staining. A LIVE/DEAD Fixable Dead Cell Stain Kit 


�

(Invitrogen) was used to exclude dead cells. Flow cytometric data were 

��

acquired on an Aria II flow cytometer (BD Biosciences) and analyzed using 

��

FlowJo software (TreeStar). 


�

Statistical analysis 

��

Statistical analysis was performed with paired or unpaired t tests using 

��

GraphPad Prism 8.0 software. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 

��

0.0001. 

��

 

��

Results 
�	�

Longitudinal dynamics of plasma IgG and IgM against SARS-CoV-2 
�
�

during three doses of inactivated vaccines. 
���

Five hundred and thirty-three participants who received two or three doses 
���

of BBIBP-CorV containing 4 μg total protein were enrolled in this study. These 
�
�

donors were followed up at Week 2 after first vaccination (n = 344), Week 2 
���

after second vaccination (n = 533), Month 2 after second vaccination (n = 286), 
���

Month 7 after second vaccination (i.e., before third vaccination, n = 130), and 
���

Week 2 after third vaccination (n = 176). As shown in Figure 1A, a total of 1469 
���

blood samples were collected from 533 donors at the above five follow-up time 
���

points. 
�	�

We measured the binding IgG and IgM activities to SARS-CoV-2 WT RBD in 
�
�

all plasma using a chemiluminescence immunoassay kit. IgG seroconversion 
���

was present in more than 98% (526/533) of vaccine recipients at Week 2 after 
���

second vaccination. The mean value of plasma IgG was significantly increased 
�
�

10.41-fold compared with that at Week 2 after first vaccination. However, anti-
���

RBD IgG values were gradually decreased to 41.8% at Month 2 after second 
���

vaccination and additionally dropped to 42.9% at Month 7. Specially, the 
���

positive rate of RBD-specific IgG was decreased to approximately 75% in 130 
���

donors at Month 7 after second vaccination (Figure 1B). 
���

Subsequently, we collected blood samples from a total of 176 individuals who 
�	�
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� ��

accepted a third dose of BBIBP-CorV. Nearly all vaccinees (175/176) were 
�
�

characterized by the seroconversion of IgG against SARS-CoV-2 at Week 2 
���

after third vaccination, and their mean IgG values were increased 8.00-fold 
���

compared with those before third vaccination and 1.44-fold compared with 
�
�

those after second vaccination (Figure 1B). RBD-specific IgM displayed a 
���

similar pattern of kinetics as IgG, although the mean values of IgM were 
���

absolutely lower than IgG at each time point (Figure 1C). However, the 
���

difference between IgM and IgG was that the third dose of vaccine did not 
���

induce a strong IgM response, suggesting that IgG may play a more important 
���

role in recalling to the SARS-CoV-2 vaccine or viral infection exposure. 
�	�

 
�
�

A third dose of inactivated vaccine elicits robust binding antibodies to 
���

SARS-CoV-2 independent on gender and age. 
���

To evaluate the effects of the third dose on humoral immune responses, we 
�
�

detected serially paired plasma samples before third vaccination (at Week 2 
���

and Month 7 after second vaccination) and Week 2 after third vaccination in 
���

113 donors. Seven months after second vaccination, RBD-specific IgG levels 
���

induced by two doses of vaccines were sharply decreased 82.1% compared 
���

with those at Week 2 after second vaccination. Importantly, the mean COI value 
���

of plasma anti-RBD IgG rapidly increased to 16.7 by a third vaccination, which 
�	�

was an 8.14-fold increase compared to that before third vaccination and was 
�
�

also significantly higher than that induced by two doses of vaccines (Figure 1D). 
���

In contrast, a third dose of inactivated vaccine failed to induce a recalling IgM 
���

response (Figure 1E). 
�
�

We further compared the differences in anti-RBD IgG levels between male 
���

and female donors. There were 42 male donors (37%) and 71 female donors 
���

(63%) in the cohort. As shown in Figure 1F, both male and female donors 
���

displayed similar levels of RBD-specific IgG after third vaccination, although 
���

female donors had higher levels of anti-RBD IgG than males at Week 2 after 
���

second vaccination. There were no obvious relationships between anti-RBD �		�

IgG and ages at the three different follow-up time points (Figure 1G). These �	
�

data showed that the third vaccination with an inactivated vaccine elicits robust �	��

binding antibodies to SARS-CoV-2 independent on gender and age. �	��
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� ��

 �	
�

A third dose of inactivated vaccine elicits potent neutralizing antibodies �	��

against SARS-CoV-2 variants �	��

To evaluate the ability of a third dose of inactivated vaccine to fight against �	��

the infection of mutant viruses, we detected both binding antibodies to RBD �	��

proteins and neutralizing antibodies (nAbs) against pseudoviruses of SARS-�	��

CoV-2 WT, Beta, Delta, and Lambda variants. We established the ELISA and �
	�

pseudovirus-based neutralizing assay to test the binding activity and �

�

neutralization. The results of 20 non-vaccinated healthy donor plasma samples �
��

and a positive antibody control showed low backgrounds and good specificities �
��

of the two assays (Figure S1). �

�

Then, we applied these two assays to detect the binding and neutralizing �
��

activities of plasma from the 113 donors. As shown in Figure 2A, similar to the �
��

binding response to WT RBD, mutated RBD-specific IgG was sharply �
��

decreased 7 months after second vaccination but was significantly increased �
��

by the third vaccination. The plasma neutralizing activities against WT and �
��

mutant pseudoviruses elicited by the inactivated vaccine displayed the same ��	�

patterns as their binding activities (Figure 2B). ��
�

At Week 2 after second vaccination, 95% (108/113) of plasma demonstrated ����

effective neutralization against WT virus with more than 50% inhibition at a 1:20 ����

dilution. At this time point, they, to some extent, maintained neutralizing ��
�

activities against some important SARS-CoV-2 variants (Beta, Delta, and ����

Lambda). However, at Month 7 after second vaccination, nearly half of the ����

plasma (49/113) lost their neutralizing activities (inhibition < 50%), and the ����

inhibition was decreased to 53.6% against the WT strain in these 113 donors. ����

Notably, the inhibitions of plasma against Beta, Delta and Lambda variants had ����

decreased to 34.4%, 40.4%, and 44.8%, respectively, indicating their poor ��	�

defenses against SARS-CoV-2 variants. ��
�

After the third vaccination, the plasma inhibitions against WT, Beta, Delta, ����

and Lambda were significantly increased to 94.6%, 71.6%, 83.4%, and 89.0% ����

within 2 weeks, respectively. The binding and neutralizing activities of plasma ��
�

against these variants were strongly related to those against WT virus (Figure ����

S2 and S3). In addition, there were significant correlations between plasma ����
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� ��

inhibitions and their binding activities at various time points after vaccination ����

(Figure 2C). These findings indicated that a third dose of inactivated vaccine ����

elicited potent neutralizing antibodies against SARS-CoV-2 variants. ����

 �
	�

A third dose of inactivated vaccine elicits high-affinity memory B cells �

�

Virus-specific MBCs play important roles in recalling to viral infection and �
��

partially contribute to the durability of antibody immunity. Therefore, we �
��

randomly selected 24 individuals and summarized their 72 PBMCs before third �

�

vaccination (at Week 2 and Month 7 after second vaccination) and Week 2 after �
��

third vaccination to detect SARS-CoV-2 RBD-specific MBCs (Figure S4). As �
��

shown in Figure 3A, although plasma anti-RBD IgG was gradually decreased �
��

over time, the percentage of RBD-specific MBCs maintained a similar level at �
��

Month 7 as that at Week 2 after second vaccination, suggesting that these �
��

vaccine recipients might still retain a certain protection against SARS-CoV-2 ��	�

infection. Notably, the percentage of RBD-specific MBCs rapidly increased after ��
�

the third vaccination, which was significantly higher than that at Week 2 after ����

second vaccination and before third vaccination (0.96% vs. 0.50% and 0.53%). ����

The mean fluorescence intensity (MFI) of RBD-binding MBCs was also ��
�

significantly enhanced by the third vaccination compared to that at Week 2 after ����

second vaccination and before third vaccination (4799 vs. 2951 and 2680 in ����

APC, 8894 vs. 4516 and 4352 in PE). These data indicated that the third ����

vaccination not only increases the proportion of MBCs but also enhances the ����

RBD affinity with MBCs. ����

More importantly, we found that the third dose of vaccine induced extremely ��	�

high-affinity MBCs in some individuals, whose MFIs of APC and PE on RBD-��
�

binding MBCs were both more than 2-fold higher than before the third ����

vaccination (Figure 3B and 3C). Seven individuals with more than 2-fold higher ����

MFI were defined as the high-affinity group, while the other 17 individuals were ��
�

defined as the moderate-affinity group (Figure 3D). We thus compared the ����

binding and neutralizing activities of plasma between the high-affinity and ����

moderate-affinity groups at Week 2 after third vaccination. The geometric mean ����

end-point titers of the plasma binding antibodies were significantly higher in the ����

high-affinity group than those in the moderate-affinity group against WT RBD ����
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� 
	�

and the other mutated RBD proteins (Beta, Delta, and Lambda) (Figure 3E and ��	�

S5). Similarly, the neutralizing activities of plasma were also significantly higher ��
�

in the high-affinity group than those in the moderate-affinity group (Figure 3F ����

and S6). Therefore, the third vaccination of inactivated vaccine indeed elicited ����

more potent nAbs and high-affinity MBCs, suggesting a persistent antibody ��
�

immunity to SARS-CoV-2 variants. ����

 ����

Discussion ����

A large number of nAbs recognizing the RBD of virus have been isolated and ����

divided into four classes according to their competitions with cell receptor ����

(ACE2) and accessibilities of binding epitopes on the RBD in ‘up’ or ‘down’ ��	�

conformations17. These anti-RBD nAbs could totally destroy or partly disturb ��
�

the RBD-ACE2 interaction and thus block virus entry effectively. However, ����

SARS-CoV-2 variants, including emerging variants of concern (VOCs) and ����

variants of interest (VOIs), carry various mutations in the region of spike, ��
�

especially on the nAb-binding sites of RBD. These mutations located in or near ����

recognizing epitopes may lead to a significant decline in the neutralization of ����

nAbs5,6,18,19. ����

One of the early VOCs, Beta, was first reported in South Africa and had the ����

greatest reduction in neutralization capacity thus far20. Delta was identified in ����

India and rapidly spread to many other countries, which had been classified as ��	�

another VOC with 60% more transmissibility than Alpha and led to the current ��
�

wave of COVID-19 pandemic7. In addition, recent preprint papers reported that ����

a new VOI-Lambda with various deletions and substitutions in spike exhibited ����

high infectivity and antibody resistance9,21. ��
�

Current vaccines are derived from the original Wuhan-Hu-1 gene, many nAbs ����

elicited by which have been escaped due to the viral mutation. The K417N and ����

E484K substitutions in Beta severely disrupted the binding of Class 1 and Class ����

2 nAbs to the RBD5,22. The L452R/Q mutant led to Delta and Lambda escaping ����

from the neutralization of nAbs from Class 37,9,21. Encouragingly, some nAbs, ����

such as Class 4, still neutralize the above variants effectively23-25, explaining �		�

why the plasma of vaccine recipients and convalescent individuals maintained �	
�

on some extent neutralizing activities. These residual broad nAbs play �	��
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� 

�

important roles in fighting against SARS-CoV-2 variants, leading to develop �	��

several strategies to increase their antibody titers. Booster immunization with �	
�

the original vaccine is usually regarded as a direct and effective way to rapidly �	��

enhance the antibody titer and defend against the variants. Several evidences �	��

have demonstrated that vaccine recipients boosted with another dose of viral �	��

vector-based vaccine or mRNA vaccine rapidly produced sufficient nAbs �	��

against variants including Alpha, Beta, Gamma, and Delta14,26. �	��

It remains unknown whether a third vaccination with an inactivated vaccine �
	�

induces protective antibody responses against SARS-CoV-2 variants. We �

�

therefore evaluated the kinetics of plasma nAbs against variants and RBD-�
��

specific MBCs in a large-scale cohort who received two or three doses of �
��

inactivated vaccines. Although plasma neutralizing activity was generally �

�

reduced at 7 months after second vaccination, the antibody memory responses �
��

were well established by two doses of inactivated vaccines. The third dose of �
��

inactivated vaccine rapidly and significantly increased plasma antibody titers �
��

against various variants and generated high-affinity MBCs binding to RBD �
��

within two weeks. These findings suggest that a booster dose of inactivated �
��

vaccine increases the magnitude and breadth of neutralization in the pre-��	�

existing antibody response. ��
�

It is notable the differential dynamic of plasma neutralization and memory B ����

cell responses by vaccination. Plasma neutralization peaks at two weeks post ����

second vaccination and drops largely at seven months post second vaccination, ��
�

then rebounds after the third vaccination. In contrast, MBCs are maintained at ����

stable levels until seven months after second vaccination and are then ����

significantly increased by a third vaccination. The mechanisms underlying the ����

differential kinetics of plasma neutralization and memory B cell responses ����

induced by vaccination are unclear. One possibility is that plasma neutralization, ����

to a greater extent, reflects the functionality of the long-lived plasma cells in the ��	�

bone marrow27. The MBC response is another important type of immune ��
�

protection, whose quantity and quality contribute to the speed and potency of ����

the immune system responding to viral reinfection28. Both factors collectively ����

provide vaccine recipients with antibody protection against viral infection or ��
�

prevent them from developing severe disease. Therefore, long-term monitoring ����
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� 
��

of plasma neutralization against SARS-CoV-2 variants and RBD-specific MBCs ����

is valuable for evaluating the vaccine effectiveness. Long-term follow-up will ����

evaluate the duration of the antibody response elicited by the third dose of ����

inactivated vaccine in future studies. ����

Overall, our data highlighted the challenges for vaccine recipients who have �
	�

received complete immunization more than 6 months. They are at risk of �

�

breakthrough infection by SARS-CoV-2 variants, as plasma neutralization is �
��

generally reduced at half a year after the second vaccination. Meanwhile, viral �
��

evolution will continue and new variants will emerge one after another. Based �

�

on a large-scale cohort with a long follow-up time, we emphasize the �
��

importance of a third dose of SARS-CoV-2 inactivated vaccine to confer higher �
��

protection against emerging variants. �
��

 �
��

Figure legends �
��

Figure 1. Longitudinal dynamics of humoral antibodies and boosting ��	�

effect of a third dose of inactivated vaccine against SARS-CoV-2. ��
�

(A) Immunization schedule and blood specimen collection of 533 donors who ����

received two or three doses of inactivated vaccines in this project. The interval ����

time is shown as the mean ± SD days. (B-C) Plasma antibody dynamics of anti-��
�

RBD IgG (B) and IgM (C) during three doses of vaccines. (D-E) The binding ����

ability of IgG (D) and IgM (E) to RBD from 113 donors who completed three ����

time-point follow-up visits: Week 2 and Month 7 after second vaccination and ����

Week 2 after third vaccination. (F) Comparison of anti-RBD IgG values between ����

male (n = 42) and female (n = 71) vaccinees. (G) Correlation analysis between ����

anti-RBD IgG values and ages in the 113 donors at three follow-up visits. ��	�

 ��
�

Figure 2. Potent binding and neutralizing antibodies against SARS-CoV-2 ����

variants induced by a third dose of inactivated vaccine. ����

(A) ELISA binding of 113 donors at three follow-up visits to SARS-CoV-2 WT ��
�

and mutated RBD proteins. (B) Neutralizing activities of 113 donors at three ����

follow-up visits against SARS-CoV-2 WT, Beta, Delta, and Lambda variants. ����

The inhibition of 50% is indicated by a horizontal dashed line. (C) Correlation ����

analysis between binding and neutralizing activities against SARS-CoV-2 WT ����

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.11.10.468037doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468037


� 
��

and variants of 113 donors at three follow-up visits. ����

 ��	�

Figure 3. High-affinity RBD-specific memory B cells elicited by a third ��
�

dose of inactivated vaccine. ����

(A) The percentage (left), MFI of APC (middle), and MFI of PE (right) of RBD-����

specific MBCs (CD19+CD3-CD8-CD14-CD27+IgG+SARS-CoV-2-RBD+ cells) of ��
�

randomly selected 24 donors with three follow-up visits. (B) The fold change of ����

MFI in both APC and PE of RBD-specific MBCs between Week 2 after third ����

vaccination and before third vaccination. A cutoff of 2-fold is indicated by the ����

horizontal dashed line. High-affinity group: fold change > 2, moderate-affinity ����

group: fold change < 2. (C) The typical display of high-affinity and moderate-����

affinity RBD-specific MBCs of 2 donors with three follow-up visits (high: BBIBP-��	�

donor 68, moderate: BBIBP-donor 113). (D) Comparison of MFI in both APC ��
�

(left) and PE (right) of RBD-specific MBCs at Week 2 after third vaccination ����

between the high-affinity group (n = 7) and the moderate-affinity group (n = 17). ����

(E) The end-point titers of binding IgG to SARS-CoV-2 WT, Beta, Delta, and ��
�

Lambda RBD proteins at Week 2 after third vaccination in the high-affinity and ����

moderate-affinity groups. (F) The geometric mean titers of nAbs against SARS-����

CoV-2 WT, Beta, Delta, and Lambda pseudoviruses at Week 2 after third ����

vaccination in the high-affinity and moderate-affinity groups. A cutoff of 1:20 ����

dilution is indicated by a horizontal dashed line. ����
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Figure 2
Binding to SARS-CoV-2 WT and mutated RBD
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� ��

 ��

Figure S1. ELISA and neutralization profiles of non-vaccinated healthy ��

donor plasma and a positive control mAb. ��

ELISA binding of 20 non-vaccinated healthy donor plasma samples collected ��

prior to COVID-19 pandemic (A) and a positive control mAb (B) to SARS-CoV-��

2 WT, Beta, Delta, and Lambda RBD proteins. Neutralizing activities of 20 non-��

vaccinated healthy donor plasma samples collected prior to COVID-19 	�

pandemic (C) and a positive control mAb (D) against SARS-CoV-2 
�

pseudoviruses of WT, Beta, Delta, and Lambda variants. Healthy donor plasma ��

samples were tested at a dilution of 1:20. A positive control mAb (P2C-1F11) ���

was serially 3-fold diluted from 1 μg/mL in ELISA and 5 μg/mL in neutralizing ���

assay. All experiments were performed in duplicate and the mean ± SD values ���

were shown.���
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� ��

 ���

Figure S2. Correlation analysis between binding activities to SARS-CoV-���

2 WT and mutated (Beta, Delta, and Lambda) RBD proteins of 113 identical ���

participants at three follow-up visits. �	�
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� ��

 �
�

Figure S3. Correlation analysis between neutralizing activities against ���

SARS-CoV-2 WT and variants (Beta, Delta, and Lambda) of 113 identical ���

participants at three follow-up visits.���
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� ��

 ���
Figure S4. The gating strategy for identification of SARS-CoV-2 WT RBD-���

specific memory B cells by FACS. ���

(A) Single B cells were gated as CD19+CD3-CD8-CD14-CD27+IgG+. (B) Flow ���

cytometry showing the percentage of double-positive (APC+PE+) RBD-binding ���

memory B cells of randomly selected 24 identical participants at three follow-�	�

up visits and 6 non-vaccinated healthy donors.�
�
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� ��

 ���
Figure S5. ELISA binding of 24 vaccinee plasma samples at Week 2 after ���

third vaccination to SARS-CoV-2 WT and mutated (Beta, Delta, and ���

Lambda) RBD proteins. ���

All plasma samples were serially 3-fold diluted from 1:20. The assay was ���

performed in duplicate and the mean value in each dilution was shown. The ���

cut-off value was set as an OD450nm-630nm value of 0.100 and the end-point titer ���

was defined as the last dilution whose OD450nm-630nm value was more than 0.100. ���

 �	�
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� ��

 �
�
Figure S6. Neutralization curves of 24 vaccinee plasma samples at Week ���

2 after third vaccination against SARS-CoV-2 pseudoviruses of WT and ���

variants (Beta, Delta, and Lambda). ���

All plasma samples were serially 3-fold diluted from 1:20. The assay was ���

performed in duplicate and the mean inhibition in each dilution was shown. A ���

50% reduction in viral infectivity was indicated by a horizontal dashed line. ���
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