
Robust coordination of collective oscillatory signaling requires single-cell excitability
and fold-change detection

Chuqiao Huyan,1, 2 Alexander Golden,2, 3 Xinwen Zhu,1, 2 Pankaj Mehta,2, 3, 4 and Allyson E. Sgro1, 2, 3, ∗

1Department of Biomedical Engineering
2Biological Design Center

3Department of Physics
4Faculty of Computing and Data Sciences, Boston University, Boston, Massachusetts 02215, USA

Complex multicellular behaviors are coordinated at the level of biochemical signaling networks, yet
how this decentralized mechanism enables robust control in variable environments and over many or-
ders of magnitude of spatiotemporal scales remains an open question. A stunning example of these
behaviors is found in the microbe Dictyostelium discoideum, which uses the small molecule cyclic
AMP (cAMP) to drive the propagation of collective signaling oscillations leading to multicellular devel-
opment. The critical design features of the Dictyostelium signaling network remain unclear despite
decades of mathematical modeling and experimental interrogation because each model makes differ-
ent assumptions about the network architecture and in general, normalizing models for direct compar-
ison presents a major challenge. We overcome this challenge by using recent experimental data to
normalize the time and response scales of five major signal relay network models to one another and
assess their ability to recapitulate experimentally-observed population and single-cell dynamics. We
find that to successfully reproduce the full range of observed dynamical behaviors, single cells must
be excitable and respond to the relative fold-change of environmental signals. This suggests these
features represent robust principles for coordinating cellular populations through oscillatory signaling
and that single-cell excitable dynamics are a generalizable route for controlling population behaviors.

INTRODUCTION

Cellular populations often work together to engage in
complex emergent multicellular behaviors. These be-
haviors range from the computations performed by pop-
ulations of neurons [1], to coordinated growth within
a biofilm composed of thousands of bacteria [2, 3].
Remarkably, these population-level behaviors are often
coordinated by biochemical intracellular signaling net-
works. This decentralized control of population-wide
behaviors by internal signaling networks is impressive
given that individual cells often have access to very
limited information about their immediate surroundings.
Furthermore, cell-cell communication mechanisms com-
monly utilize only a handful of signaling molecules, lim-
iting information transmission between cells. This raises
natural questions about the strategies cells employ to
use this limited information to robustly control emergent
population behaviors in a wide variety of contexts.

To address this question, we focus on one of the most
notable and extensively-studied examples of collective
multicellular phenomena, the starvation response of the
social amoeba Dictyostelium discoideum, where cells
transition from a free-living unicellular state to a multi-
cellular aggregate [4, 5]. Upon starvation, Dictyostelium
cells initiate a developmental program where some cells
start releasing pulses of cyclic AMP (cAMP) into the
external space [6–8]. These oscillatory pulses are re-
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layed through the population, creating external cAMP
waves that act as a chemoattractant directing cell mi-
gration towards the source of cAMP during aggregation.
These waves allow Dictyostelium to self-organize and
develop into a stalk-and-spore structure in complex and
ill-defined environments over group sizes that can vary
by many orders of magnitude [4]. Identifying how this
level of control is achieved is still an open question as
most studies on design principles that coordinate multi-
cellular phenomena have focused on developmental net-
works in metazoans that use well-defined morphogen
gradients to pattern their development [9–13].

Even in a well-studied model organism such as Dic-
tyostelium, identifying the critical features of single-cell
signaling networks that drive emergent population-level
behaviors poses a tremendous challenge as it requires
identifying the underlying network architecture. To ad-
dress this challenge, there has been a grand tradition of
mathematical modeling to link the observed molecular
and cellular behaviors to specific network architectures
that can drive group-wide phenomena. These models
originally focused on population-wide oscillations based
on biochemical data [14–16]. Recent experimental ad-
vances exploiting genetically-encoded cAMP sensors
and microfluidic platforms have enabled measurements
of single-cell signaling dynamics in both isolated cells
and collectively-behaving populations, helping shed light
on how the single-cell signaling network may be config-
ured. [7, 8, 17, 18].

While all the models describing Dictyostelium signaling
reproduce population-wide oscillations, not all of them
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FIG. 1: Five major mathematical models describing dynamical signaling relay behaviors in Dictyostelium. Models are
abstracted as network diagrams with common signaling network components. The activator in each model either stands for the
enzyme that directly produces cAMP (adenylyl cyclase) or internal cAMP itself. The top panel illustrates the bottom-up models
based on receptor desensitization (A) and a coupled direct and indirect negative feedback (CDINFB) architecture (B) that use
kinetic equations based on biological signaling networks. The bottom panel shows top-down models that use well-studied
mathematical equations to recapitulate dynamics from recent experiments: a coupled phase oscillator model (C), an interlocking
positive-negative feedback (IPNFB) model that adapts the FitzHugh-Nagumo model framework and integrates a logarithmic
sensing receptor module (D), and an incoherent feedforward loop (IFFL) model (E).

produce the more complex single-cell and population
behaviors revealed by these recent experiments. Fur-
thermore, they make conflicting assumptions about the
architectural features of single-cell signaling networks
that lead to different behaviors beyond coordinated os-
cillatory signaling. Resolving these issues represents
a major conceptual challenge because these models
have different time and response scales with different
arbitrary units. Here, we address this challenge by ex-
ploiting recent single-cell measurements: when individ-
ual Dictyostelium cells are exposed to a threshold level
of external cAMP stimulation, they respond with a char-
acteristic adaptive pulse of internal cAMP with a repro-
ducible timescale and magnitude. We show below that
we can use this characteristic cellular response to nor-
malize the time and response amplitude scales of dif-

ferent mathematical models to one another to directly
compare their behaviors. This allows us to screen for
how accurately these mathematical models recapitulate
experimentally-observed population and single-cell sig-
naling phenomena, and to identify the key signaling net-
work features and single cell properties that are critical
for driving population behaviors. We find that single-cell
excitability and fold-change detection are critical single-
cell properties for robustly coordinating population-wide
oscillations that can be modulated through an external
medium.
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FIG. 2: Normalizing model response and timescales to
the characteristic adaptive spike in single cells. (A)
Experimental data shows single Dictyostelium cells display an
adaptive internal cAMP spike in response to a 1 nM external
cAMP step input (n = 3 example cells). Data adapted from
Sgro, et al. [8]. In each model, the time and response
amplitude normalization parameters (time: red arrows;
amplitude: blue arrows) are set to the height and width of
either the oscillations (B) or the spike the model displays in
response to 1 external arbitrary unit of cAMP (C – F). In the
IPNFB and IFFL models the response amplitude is offset to
normalize their basal internal cAMP levels to 0 (offset: black
arrows) (E and F). In both the experimental data and model
results, external cAMP is applied at the black dashed line.
Input external cAMP concentrations were determined as
described in the main text. Units shown in B-F are the original
model units.

I. RESULTS

A. Simulation framework for comparing mathematical
models of Dictyostelium signal relay

We analyze five major models that describe the Dic-
tyostelium signal relay network (Figure 1). These mod-
els were developed over the last thirty-five years based
on experimental observations and include both bottom-
up mechanistic models that seek to directly relate vari-
ables to specific proteins [14, 16] and top-down phe-

nomenological models that seek to abstract away molec-
ular details yet still capture the observed dynamical be-
haviors [7, 8, 17]. In order to identify common features
required to reproduce the observed dynamical behaviors
and illuminate the design principles required for collec-
tive coordination, we classified models according to ar-
chitecture and developed a unified simulation framework
that allowed us to compare their behavior to both popu-
lation and single-cell level experimental data. The differ-
ent signaling network architectures are built up from dif-
ferent network design features. These features include
control loops, such as positive feedback, negative feed-
back, and incoherent feedforward loops that can be in-
tegrated with one another. Other design features are
logarithmic sensing receptors that sense order of mag-
nitude changes in external cAMP inputs, and treating
each cell as a phase oscillator. Furthermore, given re-
cent work suggesting that noise plays a prominent role
in population-wide coordination [7, 8], we constructed
stochastic generalizations of the original deterministic
models to understand the effect of noise on population-
level behaviors. The models are implemented in Python
using standard methods for solving ordinary differential
equations (Figure 1) and their stochastic counterparts.
The models are summarized in detail in the Supplemen-
tary Materials, highlighting the underlying assumptions
the models make about the network architectures.

To permit direct comparison between the models, as
well as to experimental data, we needed a common
scale for three key parameters: external cAMP level,
internal cAMP level, and time. To accomplish this, we
normalized each model to match a characteristic exper-
imental behavior: in response to a low-level 1 nM step
of cAMP, single cells produce a spike of internal cAMP
with reproducible height and width before returning to
baseline (Figure 2A) [8]. For each model, we set 1 ex-
ternal arbitrary unit of cAMP equal to either the amount
designated as 1 unit or 1 nM in the model [7, 8, 17] or
the minimum amount of [cAMP ]e that produced a robust
spike of internal cAMP [14, 16] (Figure 2B-F). All mod-
els except the Phase Oscillator model display this spike,
whereas phase oscillators are designed to bifurcate to
oscillations at high levels of external stimulation, so we
used either this spike or the oscillations to establish com-
mon internal cAMP levels and time units. Specifically,
we set the internal cAMP response level of one arbi-
trary unit to the height of the Phase Oscillator oscilla-
tions at the equivalent of 10 µm external cAMP (Figure
2B) or the height of the internal cAMP response to 1
external arbitrary unit of cAMP (Figure 2C-F). Similarly,
we set one arbitrary time unit to the intrinsic oscillation
timescale in the Phase Oscillator model (Figure 2B) [7],
the time to return to 5% of the internal cAMP amplitude
over the post-stimulation lowest level of internal cAMP
in the Receptor Desensitization, the CDINFB, and the
IFFL models (Figure 2C-E) [14, 16, 17], and the adap-
tive spike timescale parameter set in the original paper
in the IPNFB model (Figure 2F) [8].
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B. Comparison of mathematical models to population
and single cell experimental data

We compared dynamical behaviors displayed by the
five different models against nine key dynamical behav-
iors observed in cellular populations and isolated single
cells. The performance of the five models is summa-
rized in Table I and full model details and simulation re-
sults can be found in the Supplementary Materials. For
brevity, in the main text we limit our discussion to the four
most informative behaviors for distinguishing between
different network design features.

1. Population Behaviors

I. Sustained population cAMP oscillations and their
repression by background cAMP application

The most distinctive signaling behavior Dictyostelium
displays is synchronized cAMP oscillations across popu-
lations. These oscillations are mediated by cell-cell com-
munication through a relay mechanism where cells pro-
duce cAMP internally upon detecting elevated levels of
external cAMP. All of the models investigated recapitu-
late this phenomenon of synchronized population oscil-
lations (Figure 3A, before external cAMP input). More
recently, experiments demonstrate these collective os-
cillations can be suppressed by suddenly increasing the
concentration of external cAMP (Figure 3A) [8]. All the
models except for the Phase Oscillator model reproduce
this behavior – the Phase Oscillator model displays the
opposite behavior with higher background cAMP levels
leading to faster and more coherent group oscillations
(Figure 3B-F). This discrepancy suggests the observed
population oscillations do not arise from a mechanism
where coupled individual cells oscillate autonomously
even in the absence of external cAMP.

In the remaining models, group oscillations are sup-
pressed by background cAMP because the added cAMP
masks the cell-secreted external cAMP that propagates
through the population. However, this inhibition of pop-
ulation oscillations occurs through two distinct mecha-
nisms depending on the model. One mechanism, ex-
ploited in the IPNFB model, is that raising background
cAMP tunes the single-cell spiking rate and decreases
the coherence of single-cell spiking events. As a re-
sult, the amplitude of the single-cell spikes remains con-
stant (Figure 3C, see gray traces for single cells) and
the loss of collective oscillations is due to desynchro-
nization between cells. The other mechanism, common
to the remaining models, is that increasing background
cAMP concentrations still result in coherent population-
level oscillations, but now with a reduced oscillation am-
plitude. This can be seen in the simulation data where
at intermediate background cAMP levels, single cells
within the population still oscillate coherently, while the
spike heights are reduced (Figure 3D - F, see gray traces

for single cells). It should be possible to distinguish be-
tween these two mechanisms in future experiments by
more extensively analyzing single-cell behaviors within
populations in response to the addition of external cAMP.

II. Population oscillations depend on
environmentally-mediated cell-cell coupling

Collective oscillations in Dictyostelium are mediated by
the signaling molecule cAMP in a shared media. As a
result, population-level oscillations depend strongly on
environmental cell-cell coupling parameters such as cell
density and the cAMP degradation rate (either through
native enzymatic means using phosphodiesterases or
through physical means such as fluid flow around the
cells). How these parameters coordinate the emergence
of population-wide oscillations can be experimentally ex-
plored by varying cell density and altering media flow
rates over cells. Previous experimental work demon-
strates that in most regimes, group oscillations emerge
as cell-cell coupling strength increases through increas-
ing cell seeding density or decreasing media flow rate.
(Figure 4A) [7].

All of the models investigated qualitatively recapture the
emergence of group oscillations as cell-cell coupling
increases (Figure 4B-F). However, there are two key
experimental features of the observed coupled oscilla-
tions that can be used to distinguish between models.
First, these population-wide oscillations are experimen-
tally observed across a large coupling parameter regime
(Figure 4A). This observation is not reproduced by the
Receptor Desensitization model, which displays collec-
tive oscillations only in a narrow regime (Figure 4B). The
underlying reason is that sustained oscillations in this
model are possible only when external cAMP concentra-
tions are restricted to a narrow dynamic range where the
receptors are not saturated. Second, in the region where
the external flow rate is extremely low, the population os-
cillations die off at all but the highest cell densities, due
to a phenomenon known as ”dynamic death” (Figure 4A,
1 mL/min Flow Rate). Past theoretical modeling efforts
suggest dynamic death exists because external medium
dynamics are too slow to catch up with the faster inter-
nal cAMP dynamics [19, 20]. In model simulations, only
the IPNFB and IFFL models recapture this experimental
observation (Figure 4E and inset in F).

Two major studies of population oscillations in Dic-
tyostelium suggest a major role for noise in initiating and
maintaining population oscillations [7, 8]. For this rea-
son, we assessed how including noise alters population-
level oscillations in each model by constructing stochas-
tic generalizations of models without noise (Figure S1).
Simulation results show that for the Receptor Desensiti-
zation, CDINFB, and IFFL models, including noise in the
single cell networks leads to a more gradual transition
between no population-wide oscillations and collective
oscillations but no other qualitative changes in behav-
ior (Figure S1B, C, F). Both the Phase Oscillator and
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FIG. 3: Evaluating models against population phenomena: population oscillations are suppressed by a step input of
external cAMP. (A) Experimental data adapted from Sgro, et al. [8] shows population-wide oscillations slow down upon low and
intermediate external cAMP addition, and are completely suppressed by high concentrations of external cAMP. (B) The Phase
Oscillator model does not reproduce the experimental data. The rest of the models investigated all qualitatively reproduce the
experimental data, despite acting through two distinctive mechanisms. (C) In the IPNFB model, population oscillations slow
down due to desynchronization between single cells upon external cAMP addition. (D - F) In the other three models, population
oscillations slow down through inhibition of adaptive spike height in single cells. For model simulation results, solid colored
traces are the mean internal cAMP of all the cells in the population, and gray traces represent single-cell dynamics from five cells
in the population. The low, intermediate, and high cAMP levels in each model are determined arbitrarily, with a low external
cAMP level slightly suppressing oscillations and a high level inhibiting the population oscillations entirely, except in the Phase
Oscillator model as its oscillations speed up with increasing external cAMP. Gray dashed lines indicate the start of the step input
of external cAMP. A gray shaded background highlights experimental data. A green shaded background indicates models that
reproduce the experimental observations.

IPNFB models, which were designed with stochasticity,
display a change in behavior without noise. In the Phase
Oscillator model, both in the original study and in this
new analysis, noise aids in the initiation of population
oscillations by lowering the critical (lowest) cell density
that allows for the oscillations (Figure S1D) [7]. How-
ever, in the IPNFB model, noise is required for initiating

and coordinating population oscillations because the re-
moval of noise completely disables population-wide os-
cillations (Figure S1E), suggesting noise is critical for
driving population behaviors in the IPNFB model [8].
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FIG. 4: Evaluating models against population
phenomena: population oscillations depend on cell
density and external cAMP media flow rate. (A)
Experimental population firing rate phase diagram for
Dictyostelium cells in a perfusion chamber with varying media
flow rates and cell densities measured in fractions of a
monolayer (ML) from Gregor, et al. [7]. (B) Unlike the
experimental data, the Receptor Desensitization model only
displays population oscillations in a narrow parameter range.
(C and D) The CDINFB and Phase Oscillator models
successfully reproduce collective oscillations over a large
range of parameter space, but do not capture the dynamic
death region at low flow rates found in the experimental data.
(E and F) The IPNFB and IFFL models perform the best at
reproducing the experimental data because both models
display robust oscillations over a large parameter space as
well as display a dynamic death regime at low flow rates.
Inset in (F) shows simulation results plotted with a logarithmic
x-axis to highlight the dynamic death regime in the IFFL
model. We added noise to single cells in the population
simulations as detailed in the Materials and Methods. A gray
shaded background highlights experimental data. A green
shaded background indicates models that reproduce the
experimental observations.

2. Single-Cell Behaviors

I. Single cells bifurcate from adaptive spiking to
sustained oscillations in response to external cAMP step
input

One of the most prominent experimentally-observed be-
haviors in isolated single Dictyostelium cells is that a
small step change in external cAMP concentrations re-

FIG. 5: Evaluating models against single cell phenomena:
cells bifurcate from adaptive spiking to sustained
oscillations in response to external cAMP step input. (A
and B) Experimental data shows single Dictyostelium cells
display a bifurcation in response to an external cAMP
concentration step input, from adaptive spiking (A) to
sustained oscillations (B) (n = 3 example cells per condition).
Data is adapted from Sgro, et al. [8]. (C and D) Model
simulations with low and high external cAMP step inputs show
that only the IPNFB model recapitulates both behaviors, with
the green-shaded upper panels displaying models that
recapitulate the experimental observations, specifically the
adaptive spiking behavior (C) and the bifurcation to sustained
oscillations (D) and the lower panels showing models that do
not recapitulate these phenomena. In both the experimental
data and model results, external cAMP is applied at the gray
dashed line.

sults in a large, sudden increase of internal cAMP con-
centration, which then returns back to near-baseline lev-
els [7, 8]. This response has been termed an adaptive
spike as it is reminiscent of similar phenomena in neu-
ral systems (Figure 5A). Experiments further show that
if even higher levels of external cAMP are applied, sin-
gle cells abruptly switch their response from producing
an adaptive spike to an adaptive spike followed by sus-
tained oscillatory behavior where internal cAMP concen-
trations oscillate in time even though external cAMP con-
centrations are constant (Figure 5B) [8]. These experi-
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ments suggest that external cAMP concentrations serve
as a ”bifurcation parameter” that drives the Dictyostelium
signaling networks across a bifurcation from an excitable
to an oscillatory regime.

To identify which network architectures could reproduce
the key experimental observations, we ran simulations
to check if the models produced: (1) single, excitable
spikes after a low-level external cAMP step input and
(2) a spike followed by a bifurcation to oscillations after
a high-level cAMP step input. The Receptor Desensi-
tization model, the IPNFB model, and the IFFL model
produce canonical adaptive spikes where internal cAMP
levels return back to near-baseline levels after a large
response (Figure 5C). In contrast, the CDINFB model
produces a large spike in response to a small input
but fails to return back to near-baseline levels, and the
Phase Oscillator model fails to show any sort of adap-
tive spiking dynamics (Figure 5C). For this reason, for
the remainder of the single cell phenomena tests be-
yond exploring the response to a large step input of
external cAMP, we focus on the three models that pro-
duced adaptive spiking, as this is critical for all single-
cell level phenomena. Further simulation results on the
other models are in the Supplementary Materials.

Next, we simulated single cell responses to large step in-
puts of external cAMP, with a specific interest in whether
or not the the three models that show adaptive spikes
also show a bifurcation to oscillatory behavior at high
levels of external cAMP. The height of this large step
input was chosen to be 104 times the low concentra-
tion based on experimental observations in Sgro, et al.
that show robust oscillations at 10 µM external cAMP
[8]. Only the IPNFB network displayed the bifurcation
from excitable adaptive spiking to sustained oscillations
(Figure 5D). The bifurcation to oscillations in the IPNFB
model proceeds through a standard supercritical Hopf
bifurcation based on a negative feedback loop with a
time delay [21, 22]. Mechanistically, the origin of these
oscillations is that the activator must build up to a suf-
ficiently high level to activate the inhibitor, which then
turns off activator production. The other two models
lack either negative feedback (IFFL model) or a time
delay (receptor desensitization only depends on instan-
taneous cAMP levels), accounting for the lack of sin-
gle cell oscillations (Figure 5D). However, as discussed
above, these later models can still support sustained
population-level oscillations as the population-level os-
cillations originate from synchronized adaptive spikes in
single cells.

II. Fold-change detection of external cAMP levels

During development, robust collective cAMP oscillations
are observed from approximately 4 hours until as late as
20 hours post-starvation [7]. During this process, exter-
nal cAMP levels vary dramatically because of changes
in cell density due to cell migration. Single cells must
robustly respond to this constantly changing and noisy

external signal. Recent experiments show that single
Dictyostelium cells conduct fold-change detection [17]:
the response of single cells is determined only by the
relative change in input signal (i.e. the ratio of the final
cAMP concentration to the initial cAMP concentration),
rather than absolute changes (Figure 6A). An important
feature of fold-change detection is that it allows cells to
operate in similar ways across a wide range of back-
ground cAMP concentrations [23]. This suggests that
fold-change detection may underlie the ability of the Dic-
tyostelium signaling networks to function in spatially and
temporally heterogeneous environments during the de-
velopment process.

To measure fold-change detection capabilities in the
three models that reproduce single-cell adaptive spikes,
we ran simulations that mimic the experimental design of
Kamino, et al. where cells were subject to two consecu-
tive step changes in external cAMP at different concen-
trations (the priming concentration and the secondary
concentration, see Figure 6A) [17]. As in the experi-
mental work, fold-change detection was measured by
the prominence of the second adaptive spike and we
scanned model responses to initial priming concentra-
tions of 0.1 external units through 10 external units of
cAMP. For a network that performs perfect fold-change
detection, we expect the response curves for different
priming concentrations to collapse on a single line, a
phenomenon observed in experiments (Figure 6A). The
model with the best fold-change detection capabilities
is the IFFL model which shows nearly perfect, deter-
ministic fold-change detection over almost two orders of
magnitude changes in external cAMP levels (Figure 6B).
The IPNFB model, which is built with noise, also dis-
plays approximate fold-change detection (Figure 6C). In
contrast, the Receptor Desensitization model does not
exhibit fold-change detection (Figure 6D).

Interestingly, the IFFL and the IPNFB models achieve
fold-change detection through two very different mech-
anisms. In the IFFL model, the response to fold-
differences with different step heights is identical [17].
In contrast, the IPNFB model achieves only approxi-
mate fold-change detection through a combination of
logarithmic-sensing and stochasticity-mediated modula-
tion of the single cell firing rate (see Figure 6C) and Fig-
ure S2).

3. Relating Network Architecture to Collective Behaviors

Our unified simulation framework allows us to identify
the key components and network features needed to
reproduce specific experimental observations (Figure
7). The analyzed models include disparate design fea-
tures such as negative and positive feedback control,
logarithmic environmental sensing, incoherent feedfor-
ward loops, and modeling single cells as phase oscilla-
tors. Nonetheless, there are some common themes that

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.09.02.457527doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.02.457527
http://creativecommons.org/licenses/by/4.0/


8

FIG. 6: Evaluating models against single cell phenomena:
cells are sensitive to fold changes in external cAMP
levels. (A) Experimental data shows Dictyostelium cells
conduct fold-change detection. Left panel: diagram depicting
how fold-change detection is quantified in both experimental
and simulation data. Cells experience two consecutive
external cAMP step inputs, with the first step height being the
“Priming Concentration” and the fold change of the second
step height over the first step height being the “Fold Change”.
The height of the internal cAMP spike in response to the
second step input is quantified as “Second Peak Prominence”
throughout the figure. Right panel: experimental data adapted
from Kamino, et al. [17] shows single cells exhibit fold-change
detection. (B - D) Simulation of different model responses
shows that only the IPNFB and IFFL models qualitatively
reproduce fold-change detection (B and C). The IFFL traces
representing different priming concentrations collapse on a
single line in (B). To account for single-cell noise in the IPNFB
model, we ran 50 simulations for each priming
concentration-fold change pair and display the mean and
standard error of the mean from the simulations in (C). The
Receptor Desensitization model response traces to 3 and 10
unit priming concentrations collapse on a single line (D). In
simulations the one unit priming concentration is set to match
the “low” cAMPe input level in Figure 5. A gray shaded
background highlights experimental data. A green shaded
background indicates models that reproduce the experimental
observations.

emerge from our analysis.

First, we find that negative feedback or feedforward mo-
tifs appear to be especially critical to produce excitability
(i.e. adaptive spiking) at the single-cell level. These two
features appear in all of the models except the Phase
Oscillator model, the only model that fails to reproduce
adaptive spiking on the single-cell level. This suggests
that negative feedback or incoherent feedforward motifs
drive single-cell excitability, consistent with past theoret-
ical findings that negative feedback and incoherent feed-
forward loops are the core topologies that drive adaptive
spikes [24]. Similarly, all of the models other than the
Phase Oscillator model reproduce the observation that
background cAMP inhibits collective oscillations, sug-
gesting single-cell excitability may be the driving mech-
anism for this behavior.

Another key design feature that seems to be important
for coordinating Dictyostelium behavior is positive feed-
back control. Positive feedback is a key element of
the IPNFB model, the only model of the five we an-
alyzed that can completely recapitulate all experimen-
tal observations at the single-cell level. The idea that
positive feedback control might facilitate the single-cell
bifurcation to oscillations is again consistent with past
theoretical work demonstrating that interlocking positive-
negative feedback loops give rise to more robust and re-
liable oscillatory behaviors [25].

We also found that both incoherent feedforward loops
– present in the IFFL model – and logarithmic sens-
ing – present in IPNFB model – enable fold-change de-
tection [26, 27]. This observation, along with the fact
that only these two models reproduce this phenomenon,
suggests that one of these design features is necessary
to drive fold-change detection in this context.

Finally, we find that in order to have robust population-
level oscillations that persist despite environmental vari-
ations, single cells must either perform fold-change de-
tection or behave as a phase oscillator. Given the inabil-
ity of phase-oscillator models to recapitulate single-cell
behavior, our analysis suggests that cells likely imple-
ment fold-change detection in order to coordinate popu-
lation behaviors.

II. DISCUSSION

Many different properties of single cells and cellular pop-
ulations have been proposed to be conceptually impor-
tant for coordinating collective oscillations in multicellular
systems, including Dictyostelium. Here, we exploited the
stereotypical spiking behavior displayed by single Dic-
tyostelium cells to normalize models and directly com-
pare them to each other, as well as to experimental ob-
servations. Our results show two types of networks fully
describe the population-level behaviors: the IPNFB with
a logarithmic pre-processing module and the Incoherent
Feedforward Loop (IFFL) (Table I). These networks both
display two key single-cell level design features that are
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FIG. 7: Graphical summary of our analysis reveals which network features give rise to single-cell and population-level
experimental behaviors. All models except the Phase Oscillator model partially or fully reproduce at least one of the
experimentally-observed single cell behaviors. These single-cell behaviors are driven by different network features in the
models, suggesting there are multiple ways cellular signaling network architectures can generate these behaviors. Furthermore,
several of the single-cell behaviors are associated with population-level behaviors, suggesting that the network features
underlying the associated single-cell behaviors are critical for driving the associated population-level behaviors.

critical for coordinating the observed population-wide
dynamics: excitable single-cell level dynamics and fold-
change detection (Table I, Figure 7). Furthermore, only
the IPNFB model reproduces all of the observed single-
cell and population-level behaviors. This suggests that
while both networks are potential pathways for the de-
sign of collective oscillatory systems, the IPNFB model
more accurately reflects the specific Dictyostelium sig-
naling network. Through our analysis, we find that the
observed population-level phenomena can be driven by
a key single cell network design principle: excitable dy-
namics that respond to relative changes in external sig-
nals.

Excitability is a critical single-cell network design feature
that drives collective oscillations that are tunable by cell-
cell coupling (Figure 7). Molecular networks that display
excitable dynamics require two network features. The
first feature is that the network includes either a nega-
tive feedback or incoherent feedforward motif that brings
down the levels of or activities of the molecular species
that are activated by external inputs [24]. Negative feed-
back and incoherent feedforward loops that drive single-
cell excitability are found in the two models that suc-
ceed in recapitulating almost all experimental observa-
tions (Table I). The second feature aiding excitable dy-

namics is timescale separation/time delay where after
the increase of the activator species, the inhibitory in-
teractions either respond on a slower timescale or have
a built-in delay. This allows the input activation to dom-
inate the early response before a strong inhibitory re-
sponse begins, leading to an excitable spike in the ac-
tivator species. In both example networks with superior
performance, there is a time separation between the in-
hibitor species τI and the activator species τA facilitat-
ing excitability in the networks (see Figure S5 for the ef-
fect of decreasing timescale separation). This timescale
separation is naturally accompanied by refractoriness as
is observed experimentally in single Dictyostelium cells
(Table I, Figure S4). This refractoriness leads to unidi-
rectional signal propagation in a population.

The second critical single-cell network design feature we
identified is that internal dynamics must be dependent
on the relative change of external signal as opposed
to absolute concentrations, a feature known as fold-
change detection (Figure 7). This feature coordinates
robust population oscillations during development over a
large range of environmental parameters such as large
changes in cell density, varying ability to degrade exter-
nal cAMP, and noisy fluctuations (Figure 4). Previous
work has identified several major classes of fold-change

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.09.02.457527doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.02.457527
http://creativecommons.org/licenses/by/4.0/


10

Behaviors / Models
Receptor
Desensitization

Coupled Direct
and Indirect
Negative Feedback
(CDINFB)

Phase
Oscillator

Interlocking
Positive-Negative
Feedback (IPNFB)

Incoherent
Feedforward
Loop (IFFL)

Population

Background cAMP inhibits
oscillations (Figure 3)

3 3 7 3 3

Robust oscillations
over wide range of
environmental conditions
(Figure 4)

7 3 3 3 3

Dynamic death reproduced
at low flow rates (Figure 4)

7 7 7 3 3

Noise-driven
oscillations (Figure S1)

7 7 7 3 7

Single
Cell

Excitability/fully adaptive
spiking (Figure 5)

3 7 7 3 3

Bifurcation from
adaptive spiking
to oscillations (Figure 5)

7 7 7 3 7

Fold-change detection
(Figure 6)

7 N/A N/A 3 3

Sensitivity to cAMP input
dynamics (Figure S3)

7 7 N/A 3 7

Entrainable to repetitive
stimuli and has a refractory
period (Figure S4)

3 3 N/A 3 3

TABLE I: Population and single-cell behaviors evaluated in different models. Green check marks indicate if the model
successfully reproduces the specific experimental behavior. X marks indicate the model is unable to reproduce the experimental
behavior. N/A (not applicable) indicates the experimental comparison cannot be made because the model either fails to produce
single-cell adaptive spikes (as for the Phase Oscillator model) or only shows partial adaptation (as for the CDINFB model).

detection-competent networks by conducting exhaus-
tive scans of network topologies [26, 27]. These scans
found fold-change detection-competent models are ex-
tremely rare, and the two naturally occurring fold-change
detection models, the incoherent type I feedforward
loop (I1FFL) and the non-linear integral feedback loop
(NLIFL), are among the simplest networks suggested to
achieve optimal response amplitude, speed, and noise-
resistance. Another possible mechanism for achieving
fold-change detection is logarithmic sensing at the re-
ceptor level which can theoretically be achieved with
an allosteric protein [28]. The best-performing exam-
ple networks from our analysis both fall into the canon-
ical categories: one is an IFFL network and the other
uses a logarithmic-sensing module (Figure 1 and 6).
Although both networks display fold-change detection,
we note there are subtle differences. With the IFFL
model, the network tunes spike height in response to
input fold change. The IPNFB model, however, mod-
ulates the probability of spikes in individual cells in re-
sponse to input fold-change (Figure S2), tuning the av-
erage response of a group of cells and thus displaying
fold-change detection at the population level.

Additionally, our work also further reinforces previous

findings that stochastic noise in the single cell network
potentially plays a role in coordinating population be-
haviors. Previous studies on bacterial competence sug-
gests that noise combined with an excitable module can
explain both the initiation of and escape from the com-
petent state, and that noise levels modulate the percent-
age of cells entering into and exiting from the competent
state in bacterial communities [29, 30]. In Dictyostelium,
work on the cAMP signaling and chemotaxis networks
suggests that noise in network components with both
positive and negative feedback loops plays a vital role
in coordinating network dynamics [8, 31]. In our analy-
sis, in the model that most accurately recapitulates be-
haviors in Dictyostelium, noise is crucial for fold-change
detection and coordinating population oscillations (Table
I, Figure S1). Stochasticity could provide a mechanism
for initiating and maintaining population-wide oscillations
without requiring specialized cells such as pacemaker
cells for robustly coordinating the population, allowing for
decentralized control. To answer whether and how noise
modulates population-wide behaviors, better experimen-
tal techniques and longer timescale experiments that
quantify noise-driven phenomena and modulate poten-
tial sources of noise are required. Taken together, our
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analysis suggests that excitability that is insensitive to
absolute environmental signals acts as a key network
design feature that allows for efficient oscillations coordi-
nation in Dictyostelium populations, and noise in signal-
ing networks plays a role in population-behavior modu-
lation.

Coordinated population behaviors not only require spe-
cific features in single-cell signaling networks, but also
require coupling between cells. When the cells are cou-
pled through the external medium, the timescales of the
internal and external signal dynamics need to be ef-
fectively coupled. In the case of Dictyostelium popu-
lations, the time scale of the external signal dynamics
is modulated by cAMP degradation and this rate is de-
termined by phosphodiesterase concentrations and ki-
netics. At extremely high cAMP degradation rates, sin-
gle cells cannot effectively communicate. By contrast, if
the degradation rates are too low, the dynamics of the
medium are too slow to follow the internal dynamics,
leading to desynchronization of single cells, or “dynamic
death” [19, 20], a phenomenon experimentally observed
in Gregor, et al. and Sgro, et al. [7, 8]. In our analy-
sis, the IPNFB and IFFL models reproduce the dynamics
death phase, suggesting that cells match the timescales
governing internal signaling networks and external sig-
nal propagation. Such timescale coordination may also
be crucial for chemotaxis in Dictyostelium cells [32].

While all of the models investigated here take a mean
field approach – neglecting space and time for signal
propagation between cells – in reality signals propagate
though the population and create complex spatiotempo-
ral patterns such as concentric waves and rotating spi-
rals [6] . Traveling waves are a natural analogue of the
kind of coherent population level oscillations discussed
in this work and may represent an important design prin-
ciple for coordinating behavior across large spatial rea-
sons. In support of this idea, we note that waves are also
observed during development, where mouse embryonic
cells use excitable internal YAP dynamics that are cou-
pled by Notch signaling to achieve long-range oscillatory
waves for vertebrate segmentation [33], and Drosophila
embryos use propagating Cdk1 waves to synchronize
cell cycles across large spatial scales [34]. In synthetic
biology, engineered negative and positive feedback mo-
tifs can achieve excitability and robust waves across
a large bacterial population when coupled through dif-
fusible molecules [35, 36].

Altogether, this work identifies excitability and fold-
change detection as key design features of internal sig-
naling networks that allow for robust coordination of
population-wide oscillations in heterogeneous ill-defined
environments. These network features found in Dic-
tyostelium are widely shared in natural and synthetic cell
populations that display collective oscillatory behaviors,
suggesting these network features could be a common
control mechanism used by biological systems to coordi-
nate signal transduction in multicellular contexts. These

features enable many desirable behaviors for multicel-
lular populations including coordination over orders of
magnitude differences in population size, environmental
insensitivity to small fluctuations, and fast, unidirectional
long-range signal propagation. Our work suggests that
there are relatively few signaling network design motifs
that can robustly coordinate emergent multi-scale be-
haviors in biological systems.

III. MATERIALS AND METHODS

Model equations were adapted from the literature [7,
8, 14, 16, 17], and the mathematical expressions and
parameters for each model are detailed in the Supple-
mentary Materials. All simulations were solved by the
Euler-Maruyama method. Time step sizes were empiri-
cally chosen to make sure simulation outputs are reliable
such that decreased time step sizes would not produce
alternative results. Exploring the emergence of popula-
tion oscillations and their dependence on cell-cell cou-
pling (Figure 4) requires investigating a wide range of
parameter space and thus smaller time step sizes were
taken to make sure the simulation outputs are repro-
ducible. Models were normalized to one another as de-
scribed in the Results section.

Noise in single-cell networks was added as a Langevin
noise term η(t) to the end of the equation represent-
ing the internal “activator” component. The noise term
satisfies < η(t)η(t′) >= σ2δ(t − t′), with σ2 denotes
the noise strength. The noise strength in each model
was chosen either from the original literature for mod-
els with noise in the original implementations, specif-
ically the Phase Oscillator model and IPNFB model,
or arbitrarily determined such that noise allows for a
slight quantitative change in the phase diagram describ-
ing the emergence of population oscillations but not a
qualitative change (Figure S1). The respective noise
strengths in the Receptor Desensitization model, CD-
INFB model, Phenomenological Phase Oscillator model,
IPNFB model, and IFFL model were set to 10, 0.1, 0.02,
0.15, 0.01.

Code Availability

Experimental data and Python code for
all simulations are available on GitHub at
https://github.com/sgrolab/dictymodels.
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