Model I	Error	• Structural	Minimum Distance			Number of Attractors					
model 1	$D = \frac{O_d}{P}$	Complexity	Immune	Cytokine Storm	0	n = 1	1 m — 9	n — 3	m = 4	Total	0
	-	O_c	Quiescence	Storm	O_r	n = 1	n = 2	n = 0	n = 4	10041	O_p
18	0	0.7	1	0	1	4	2	1	0	7	5.3
17	0	0.7	1	0	1	5	0	0	0	5	5
15	0	0.7	1	0	1	3	0	1	2	6	3.8
19	0	0.7	6	0	6	6	4	1	0	11	8.3
14	0	0.7	6	0	6	5	2	0	0	7	6
13	0	0.7	6	0	6	3	2	1	0	6	4.3
12	0	0.7	8	0	8	6	2	1	0	9	7.3
16	0	0.7	14	0	14	3	2	0	0	5	4
11	0	0.8	3	0	3	6	6	2	0	14	9.7
10	0	0.8	3	0	3	4	0	0	0	4	4
9	0	0.8	4	0	4	4	0	0	0	4	4
7	0.01	0.8	2	0	2	4	0	0	0	4	4
8	0.01	0.8	3	0	3	4	0	0	0	4	4
6	0.02	0.8	5	0	5	3	2	0	0	5	4
5	0.02	0.8	17	0	17	3	0	0	0	3	3
4	0.03	0.8	3	0	3	3	1	0	0	4	3.5
3	0.03	0.8	16	4	20	4	3	0	0	$\overline{7}$	5.5
1	0.04	0.8	2	0	2	6	5	0	0	11	8.5
2	0.04	0.8	2	0	2	6	3	0	0	9	7.5

 ${\bf Table \ S1.} \ {\rm Attractors \ Found \ for \ All \ Models}$

Fig. S1. Network structure of the SARS-CoV immune regulatory model [?]. The model contains 19 entites (nodes) and 112 regulatory actions (edges) which were obtained from biomedical literature using Pathway Studio^{*}. The color of the edges indicates the mode-of-action for the regulation, where green is an activating mode-of-action, red is an inactivating mode-of-action, and black is an unknown mode-of-action. Generated using yEd [?].

 * Copyright © 2021 Elsevier Limited except certain content provided by third parties. Pathway Studio is a trademark of Elsevier Limited.

 ${\bf Algorithm \ S1} \ {\rm Attractor \ Search \ as \ a \ Constraint \ Satisfaction \ Problem}$

Require: *n* is the period of the attractor **Ensure:** *X* is an attractor

1: function ATTRACTORSEARCH(n) $X \leftarrow (n+1) \times |V|$ matrix \triangleright |V| is the number of entities in the model 2: $I \leftarrow (n+1) \times |V|$ matrix 3: \triangleright combine the constraints in this block by logical conjunction (i.e. \land) 4: for $i \leftarrow 1$ to n do I[i,:] = COMPUTEIMAGE(X[i,:])5: $X[i+1,:] = H^s(X[i,:])$ $\triangleright H^s$ is the synchronous update function using I6: 7:if n > 1 then 8: $X[i+1,:] \neq X[i,:]$ 9: end if 10: end for X[1,:] = X[n+1,:] \triangleright constrain the first and last row of X to be equal 11: 12:X = INCREASING(X) \triangleright constrain the sum of each row in X to be increasing 13:return X14: end function