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Abstract 
 
An individual’s B cell receptor (BCR) repertoire encodes information about past immune 
responses, and potential for future disease protection. Deciphering the information stored in 
BCR sequence datasets will transform our fundamental understanding of disease and enable 
discovery of novel diagnostics and antibody therapeutics. One of the grand challenges of BCR 
sequence analysis is the prediction of BCR properties from their amino acid sequence alone. 
Here we present an antibody-specific language model, AntiBERTa, which provides a 
contextualised representation of BCR sequences. Following pre-training, we show that 
AntiBERTa embeddings learn biologically relevant information, generalizable to a range of 
applications. As a case study, we demonstrate how AntiBERTa can be fine-tuned to predict 
paratope positions from an antibody sequence, outperforming public tools across multiple 
metrics. To our knowledge, AntiBERTa is the deepest protein family-specific language model, 
providing a rich representation of BCRs. AntiBERTa embeddings are primed for multiple 
downstream tasks and can improve our understanding of the language of antibodies. 

 
Introduction 
 
B cells are critical to immune protection through their production of antibodies with specific 
binding properties. To recognize any potential antigen, an individual has a vast diversity of B 
cells with different B cell receptors (BCRs) – estimated to be as high as 1015 variants (1,2). 
BCR repertoire diversity is generated through the process of somatic recombination of V, D 
(heavy chain only) and J gene segments during B cell development, followed by somatic 
hypermutation during B cell activation. Each BCR is comprised of two pairs of heavy-light 
chain pairs. The heavy chain and light chain each have three complementarity-determining 
regions (CDRs), which largely determine the BCR’s target specificity. (1,2) 
 
Characterising the BCR repertoire of an individual has proven to be a valuable tool for 
understanding the fundamental biology of B cells (3) as well as characterising changes during 
disease (4–7). There are also clinical applications of BCR repertoire analysis in finding novel 
diagnostics, and therapeutic antibody discovery. Most analyses have focussed on comparing 
high-level differences in total BCR repertoire metrics between cohorts, such as differences in 
diversity, number of somatic hypermutations (8), isotype subclass usage, and V(D)J gene 
segment usage (9,10). To realise the full potential of the data, it will be necessary to 
understand the specific function of individual BCRs within the context of the entire repertoire. 
 
It has so far proven challenging to predict a BCR’s binding specificity and function from its 
amino acid sequence alone. Most work focuses on analysing the third CDR (CDR3) of the 
BCR heavy chain, as it is the greatest determinant of binding; however, predicting CDR3 
structure and function is notoriously difficult (11–13). Sequence-dissimilar CDR3s can adopt 
similar structures (14) and recognise similar regions of a target molecule (15), while small 
changes in CDR3 sequence can change structure and binding properties (16,17). In addition, 
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BCRs with identical CDR3 sequences but changes elsewhere can have different binding 
properties (18,19).  
 
One solution is to use representation learning techniques to encode BCR sequences as 
vectors of real numbers, or “embeddings”. Ideally, the embedding should capture the function 
of each BCR and contextualise it within the larger BCR universe. In addition, the 
representations can then be used as inputs for downstream machine learning models (20). 
Some of the earliest forms of BCR representation learning focussed on calculating 
physicochemical properties of CDR3 sequences, building k-mer frequency matrices, or 
constructing position-specific substitution matrices (21–25). Representations from these 
approaches have previously been used for repertoire classification and antibody structure 
prediction. While interpretable, these methods depend on hand-crafted features that may miss 
hidden, or latent, patterns in the data. Furthermore, these methods are context-free; they 
consider sub-units of the CDR3 sequence as being independent, and do not consider the 
remainder of the BCR sequence. 
 
Recently, deep learning techniques have shown great promise in learning unobserved 
patterns from amino acid sequences which relate to their structure and function (26). Neural 
networks, such as transformers (27,28), are first pre-trained via masked language modelling 
(MLM) to build a protein language model (LM). General protein LMs such as ProtBERT and 
ESM-1b can then be used to generate a distributed, contextual representation for each amino 
acid in a protein sequence. The embeddings from these models then act as a “warm” starting 
point for various downstream tasks, such as protein structure prediction and protein 
engineering (26,29,30). 
 
In natural language processing applications, single language models can offer superior 
performance to their multi-lingual counterparts. Likewise, protein family-specific models are 
known to outperform general protein models (31–34). Therefore, we advocate for a BCR-
specific LM that focusses on the nuances of BCR amino acid sequences. 
 
To date, two LMs have been deployed for BCRs and antibodies: DeepAb (13) and Sapiens 
(35). DeepAb is a bi-directional long short-term memory (LSTM) network that is pre-trained on 
100k paired BCR sequences from the Observed Antibody Space (36,37). As sequence 
embeddings from DeepAb naturally separate into distinct structural clusters, they can help to 
produce structural predictions. However, it is unclear if the DeepAb embeddings can be 
harnessed for tasks beyond antibody structure prediction. Furthermore, LSTMs are typically 
less performant compared to transformers, in terms of accuracy and speed (27,28). Sapiens 
is composed of two separate four-layer transformer models that were pre-trained on 20M BCR 
heavy chains and 19M BCR light chains. Sapiens has been used for antibody humanization 
and can propose mutations that are near equivalent to those chosen by expert antibody 
engineers. As with DeepAb, the applicability of Sapiens beyond humanization is unclear. 
Moreover, most protein LMs use at least 12 transformer layers (26,29,30); by comparison, 
Sapiens is shallow, and it may not capture the full complexity of BCR sequences. 
 
In this work, we propose AntiBERTa (Antibody-specific Bi-directional Encoder Representation 
from Transformers), a 12-layer transformer model that is pre-trained on 57M human BCR 
sequences (42M heavy chains and 15M light chains). We demonstrate that AntiBERTa learns 
meaningful representations of BCRs, which relate to their B cell origin, activation level, 
immunogenicity, and structure. We also demonstrate how AntiBERTa can fit in a transfer 
learning framework by using AntiBERTa representations to predict an antibody’s binding site, 
the paratope. AntiBERTa improves upon the state-of-art for paratope prediction across 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.10.468064doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468064
http://creativecommons.org/licenses/by-nc/4.0/


multiple metrics, reinforcing the value of a protein-family specific representation learning 
approach. 

 
Methods  
 
Datasets 
 
Masked language modelling dataset 
 
To pre-train AntiBERTa, human antibody sequences spanning 61 studies were downloaded 
from the Observed Antibody Space (OAS) database (36) on 10 March 2021. 
 
Antibody sequences were first filtered out for any sequencing errors, as indicated by OAS. 
Sequences were also required to have at least 20 residues before the CDR1, and 10 residues 
following the CDR3. The entire collection of 71.98 million unique sequences (52.89 million 
unpaired heavy chains and 19.09 million unpaired light chains) was then split into disjoint 
training, validation, and test sets using an 80%:10%:10% ratio.  
 
In total, the MLM training set comprised 42.3 million heavy chain and 15.3 million light chain 
sequences, while the MLM validation and MLM test sets each consist of 5.3 million heavy 
chains and 1.9 million light chains. AntiBERTa is a single model that is trained on both heavy 
and light chains (Supplementary Figure 1). 
 

Paratope prediction dataset 
 
To fine-tune AntiBERTa for paratope prediction, human antibody structural and sequence data 
were downloaded from SAbDab on 26 Aug 2021 (38). X-ray crystal structures of antibody-
antigen complexes binding to proteins or peptides with a resolution of 3.0Å or better were used. 
Single-chain Fv structures, and structures with missing residues within the IMGT-defined 
CDRs were omitted. Twelve unorthodox structures were manually removed where the 
annotated antigen was largely in contact with the framework regions rather than the CDRs 
(Supplementary Figure 2; Supplementary Table 1). 
 
In total, 1092 redundant heavy chain and 1092 redundant light chain sequences were 
separately clustered at 99% identity using CD-HIT (39), leading to 462 non-redundant heavy 
chains and 447 non-redundant light chains.  
 
We then assigned the 909 BCR chains to a V gene cluster by hierarchical clustering (5), and 
removed BCRs that belonged to a V-gene cluster with fewer than three BCRs (Supplementary 
Table 2). For example, IGLV7-43 belongs to our ‘VL3’ cluster, which only had two BCRs (PDB: 
3T2N, 6WH9); thus, the two BCRs were removed from the set of 909 sequences. In total, six 
BCR chains were removed using this method. The remaining 903 BCR chains were split into 
training, validation, and test sets by an 80:10:10 ratio. In total, there are 721 BCR chains in 
the training set, 91 BCR chains in the validation, and 91 BCR chains in the test set. 
 

AntiBERTa Pre-Training 
 
The AntiBERTa model was pre-trained using a modified setup of the original RoBERTa-base 
model (40). The vocabulary is composed of 25 tokens: the standard 20 amino acids and 5 
special tokens (<s>, </s>, <pad>, <unk>, <mask>). Each amino acid acts as a token, and no 
byte-pair encoding was used. The entire BCR sequence is considered as a “sentence”. 
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AntiBERTa is pre-trained via MLM, which has been used elsewhere (26,29,35). Briefly, 15% 
of amino acids are chosen for perturbation. Of these, 80% are replaced with the <mask> token, 
10% with the original amino acid, and 10% by a random amino acid. The masking ratios have 
been demonstrated elsewhere to be optimal and we retain these in our work (26,28,41). 
 
During pre-training, the model predicts the original amino acid in the perturbed positions, M 
(Supplementary Figure 3). For a sequence S = (s1, s2, … sl) in a batch B, the MLM loss is 
  

 
 

The full set of AntiBERTa hyperparameters is described in Table 1. Briefly, the model was pre-
trained for 225000 steps, which equates to three epochs. The learning rate was warmed up to 
a peak learning rate of 1e-4 over 11250 steps, and linearly decayed thereafter. We used a 
batch size of 96 across 8 NVIDIA V100 GPUs, for a global batch size of 768. 
 
Table 1. Hyperparameters for AntiBERTa, compared to transformers in the wider literature 
 AntiBERTa Sapiens ESM-1b ProtBERT 
Number of Layers 12 4 33 30 
Number of Attention Heads 12 8 20 16 
Embedding Dimension 768 128 1280 1024 
Feedforward layer dimension 3072 256 5120 4096 
Total number of Parameters 86M 569k 650M 420M 

 
A full ablation study of hyperparameters was not performed. However, the 12-layer setup is 
well-established as a strong baseline for fine-tuning applications (26,30). We envision further 
hyperparameter sweeps in future work. 
 

Paratope prediction by AntiBERTa 
 
Paratope prediction was framed as a binary token classification task. For each position in the 
antibody sequence, AntiBERTa predicts the probability that the position is part of the paratope. 
This is done by adding a binary classifier “head” on top of AntiBERTa’s 12 layers 
(Supplementary Figure 4). Paratope prediction was evaluated using six metrics: precision, 
recall, F1-score, area under the receiver operating characteristic curve (AUC ROC), average 
precision-recall score (APR), and Matthews’ correlation coefficient (MCC).  
 
Hyperparameters for paratope prediction were estimated by fine-tuning the model over various 
orders of learning rate magnitude (from 1e-6 to 1e-3), and over different scheduling regimes 
(constant learning rate, 5% or 10% warmup with linear decay). The optimal setup was decided 
by the training configuration that yielded the highest APR on the validation set. Experiments 
were repeated over three seeds to check for variance in the results. 
 
Paratope prediction by AntiBERTa was compared to a PyTorch implementation of Parapred 
(42); positions with a probability higher than or equal to 0.67 were assigned as the paratope. 
Sequences were also processed by ProABC-2 (43); since ProABC-2 does not handle unpaired 
chains, we used paired sequences as input. For example, only the heavy chain of PDB:7KFV 
is in our test set; for prediction, we submitted both the heavy and light chain sequences of the 
antibody, but only use the heavy chain predictions for benchmarking. Positions with a ProABC-
2 paratope probability higher than or equal to 0.40 were assigned as the paratope. 
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BCR representations 
 
For a set of n BCR sequences in a batch B = (S1, S2, … Sn), each with lengths L = (l1, l2, ... ln), 
we use the output from the last layer of AntiBERTa. The output embedding is a padded three-
dimensional tensor, (n x max(L) x 768). 
 
For visualisation, we compute the average embedding across the length dimension to 
generate a two-dimensional (n x 768) tensor. Since each batch can comprise different BCR 
sequence lengths, we omit contributions from padding tokens. As a comparison, we generated 
BCR embeddings from the last layer of the ProtBERT model, a general protein transformer. 
Briefly, ProtBERT is a 30-layer transformer model that is trained on a much larger corpus of 
protein sequences across UniRef and BFD (29). 
 
For testing the representation capabilities of AntiBERTa, two datasets were used: a BCR 
repertoire dataset containing information on which B cell type each BCR sequence was 
derived from (44), and 191 non-redundant therapeutic antibodies from TheraSAbDab (45) with 
anti-drug antibody (ADA) scores. Of these, 65 antibodies also have known source information 
(46). 
 

Results 
 

AntiBERTa learns a meaningful representation of BCR sequences 

 
AntiBERTa is a 12-layer transformer model that is pre-trained on 42 million unpaired heavy 
chain and 15 million unpaired light chain BCR sequences. Taking inspirations from natural 
language processing, we consider each BCR sequence as a “sentence”, where each amino 
acid is a “token”. 
 
AntiBERTa is pre-trained using a self-supervised MLM task, like other transformer-based 
protein LMs (26,29,35). Briefly, 15% amino acids within the input BCR sequence are randomly 
perturbed, and the model determines the correct amino acid in place of these masked 
positions. This task encourages the model to develop a contextual understanding of the BCR 
sequence. For example, AntiBERTa estimates the probability that an alanine belongs in IMGT 
105, given the sequence context (see Methods; Supplementary Figure 3). 
 
Following pre-training, AntiBERTa outputs a distributed vector representation, or embedding, 
per BCR sequence (see Methods). To visualise the AntiBERTa embeddings, 1000 BCR heavy 
chains were randomly selected to embed from a well-characterised public dataset (44), then 
averaged over the length dimension (26,29). Despite only being given BCR sequences and 
no other information, we find that the BCR embeddings naturally separate according to 
mutational load and the underlying BCR V gene segments used (Figure 1). Remarkably, there 
is also good partitioning of BCRs derived from naïve versus memory B cells, suggesting that 
functionally important information is captured by our model.  
 
When the same set of BCR sequences are processed via ProtBERT (29), a general protein 
transformer model, these separations are less distinct. Despite having a smaller dataset and 
fewer parameters, our BCR-specific transformer captures more patterns that are relevant to 
BCR function compared to ProtBERT. Furthermore, AntiBERTa has a lower exponentiated 
cross-entropy for the MLM task (AntiBERTa ECE = 1.43; ProtBERT ECE = 1.72), suggesting 
that AntiBERTa produces higher-quality representations of BCRs. 
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Figure 1. Representation of 1000 sequences randomly selected from (44). Outputs from the final layer 
of AntiBERTa (A-C) or ProtBERT (D-F) are averaged, then projected onto two dimensions via UMAP 
(see Methods). Points are coloured according to V gene family (A, D), mutational load (B, E), and B cell 
population (C, F). 
 
We also used AntiBERTa to embed the heavy chains from 198 well-characterised therapeutic 
antibodies (46,47). AntiBERTa is generally able to separate therapeutic antibodies according 
to their origin (i.e., chimeric, humanized, human or murine), which also coincides with their 
identity to their closest human germline V gene (Figure 2). These antibodies also have known 
anti-drug antibody (ADA) response scores, and we see the separations in ADA largely 
corresponded to separations by human germline V gene identity. The embeddings therefore 
offer a method to filter antibodies with potentially high ADA scores and discover safer 
therapeutics. 
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Figure 2. Embedding of 191 non-redundant therapeutic antibodies. Embeddings from the last layer of 
AntiBERTa are averaged over the length dimension and projected onto two dimensions via UMAP. 
Each point represents a BCR, and is coloured by antibody source (A), germline V gene identity (B), and 
ADA score (C).  
 

Self-attention can provide clues on structure and function 
 
One of the major components of transformer-based models, like AntiBERTa, is its multi-head 
self-attention mechanism (27). AntiBERTa’s 12 attention heads in each of its 12 layers focus 
on different aspects of the BCR sequence (Figure 3, Supplementary Figure 5, Supplementary 
Figure 6). The self-attention scores are then used to compute the final, contextual embedding 
for each amino acid in the BCR sequence. Typically, self-attention in AntiBERTa tends to be 
directed toward non-germline positions of the BCR sequence, or between CDR3 positions. 
 
We find that residue pairs with high self-attention scores can reveal long-range structural 
contacts. As an example, we embedded the heavy chain of aducanumab, a recently approved 
therapeutic antibody binding beta-amyloid. The sixth attention head in AntiBERTa’s final layer 
places high self-attention between Tyr37 of CDR1 and Arg108 of CDR3 (Figure 3, 
Supplementary Figure 5). These positions were later confirmed to be a contact within the 
crystal structure (PDB: 6CO3). Self-attention may also give clues toward functionally 
interesting antibody positions; the germline residue Trp57 in Aducanumab receives a high 
level of attention from other residues within the heavy chain (Supplementary Figure 6). This 
position was then verified to be part of the paratope (48).  
 
When aducanumab is processed by ProtBERT, the self-attention pattern does not show as 
strong a relationship to non-germline or potential paratope positions (Supplementary Figure 
7). We found that ProtBERT pays attention to the disulphide bridge between Cys23-Cys104 
(36), while AntiBERTa does not. This further reflects how AntiBERTa pays more attention to 
what is functionally important for specific binding, as the cysteine pair is almost always 
invariant for all antibodies. 
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Figure 3. Self-attention heatmap from AntiBERTa’s 12th layer, 6th head, for aducanumab’s heavy chain 
can show potential structural contacts. A) Attention is directed from positions in the rows toward 
positions in the columns; stronger self-attention is indicated by darker shades of purple. For each 
position, we label which positions are germline (pink), part of the paratope (blue), or the CDR (green). 
Here, we show attention between positions in the CDRs and one position before and after each CDR; 
the full self-attention map is shown in Supplementary Figure 5. We highlight Tyr37 and Arg108 in orange. 
B) This was later confirmed from the crystal structure of aducanumab to be a contact (PDB: 6CO3). 
 

Paratope Prediction using AntiBERTa 
 
Pre-trained LMs provide useful representations for transfer learning on a wide range of tasks 
(28). For example, in natural language processing, pre-trained word embeddings from BERT 
are fine-tuned for classifying sentences, computing sentence entailment, and named-entity 
recognition. Similarly, protein representations from LMs such as ESM-1b and ProtBERT have 
been used for secondary structure prediction and contact prediction (26,29). 
 
As AntiBERTa’s representations seemed to capture hints of BCR function, and self-attention 
was concentrated on putative paratope positions, we fine-tuned the model for paratope 
prediction, akin to named-entity recognition. A rapid, accurate, paratope prediction method 
can shed light on binding properties, and is valuable for therapeutic antibody engineering 
(42,43,49). While we focus on paratope prediction here, the AntiBERTa model can potentially 
be fine-tuned for other tasks such as antibody structure prediction and humanisation (13,35). 
 
For each position in the antibody sequence, we predict the probability that it is part of the 
antibody’s paratope (see Methods). To evaluate paratope prediction, we report the precision, 
recall, F1-score, MCC, AUROC and APR scores on a held-out test set of 91 antibodies (Table 
2). We also benchmark AntiBERTa against two other publicly available tools: Parapred, and 
ProABC-2 (see Methods). Parapred uses an LSTM and convolutional neural networks (CNNs) 
to predict paratope positions of the Chothia-defined CDR loops, while ProABC-2 uses CNNs 
on paired, full-length sequences to predict paratopes. 
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AntiBERTa predicts paratopes of both CDR and non-CDR positions, like ProABC-2. For the 
C1A-B12 antibody (PDB: 7KFV; (50)), a SARS-CoV2 binder in our test set, AntiBERTa detects 
Tyr66 in the framework as a paratope position (Figure 4A, B). Likewise, for the light chain of 
tralukinomab (PDB: 5L6Y; (51)), another example in our test set, AntiBERTa correctly predicts 
paratope positions outside of the CDRs (Figure 4C, D). AntiBERTa’s self-attention changes 
via fine-tuning, suggesting that it adapts its self-attention toward predicting paratope positions. 
For instance, some CDR1 positions’ self-attention scores for the C12A-B12 antibody 
strengthen after fine-tuning, while some framework positions’ attentions are redistributed to 
the CDR3 (Supplementary Figure 8). 
 

 
 
Figure 4. AntiBERTa can predict non-CDR positions that form the paratope. The framework and CDR 
regions of the C1A-B12 antibody heavy chain (A, B) and tralokinumab light chain (C, D) are outlined in 
grey and green boxes. A, C) Observed paratope positions from the crystal structure are highlighted with 
blue letters. B, D) Predicted paratope positions from AntiBERTa are highlighted in pink. 
 
Our transformer-based model is superior to Parapred and ProABC-2 across multiple metrics 
(Table 2). AntiBERTa has the highest precision, MCC, AUROC, and APR, while Parapred has 
the highest recall and F1 score. However, Parapred has the lowest precision, which suggests 
that it is potentially susceptible to a high false positive rate. 
 
Table 2. Performance metrics of paratope prediction 
 
 Precision Recall F1 MCC AUROC APR 
Parapred 0.646 0.741 0.683 0.564 0.888 0.717 
ProABC-2 0.662 0.584 0.621 0.582 0.951 0.655 
AntiBERTa 0.743 0.625 0.679 0.649 0.963 0.763 
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Figure 5. Precision-recall (A) and ROC (B) curves for paratope prediction by Parapred, ProABC-
2, and AntiBERTa. 
 
When breaking down the predictions by V gene segment family, we find that precision is 
largely related to the amount of structural data available (Supplementary Figure 9). Precision 
and recall are unaffected by antigen class, despite the training set having five-fold more protein 
binders than peptide binders (Supplementary Figure 10).  
 
 

Discussion 
 
Here we present AntiBERTa, a transformer-based BCR-specific LM that learns a meaningful 
representation of BCR sequences. We demonstrate that embeddings from AntiBERTa reflect 
various biologically meaningful aspects of a BCR, such as mutation count, V gene provenance, 
B cell origin, and immunogenicity, despite not having this information during pre-training. A 
key driver of AntiBERTa’s understanding is its multi-head self-attention mechanism, which 
focusses on structurally and functionally important residues within a BCR sequence. Given 
these capabilities, we fine-tune the model for paratope prediction to demonstrate the quality 
of the representations and find that AntiBERTa is the best performer across multiple metrics. 
 
Machine learning methods have previously been used to classify B cells based on the BCR 
sequence and its features, such as the CDR3 region’s physicochemical properties (44). While 
we have not explicitly predicted B cell subsets using AntiBERTa, its embeddings can already 
separate naïve and memory B cells. This shows the advantages of a transformer approach: 
the model learns latent features of BCRs that correspond to various facets of BCR function, 
such as its B cell origin. The onus of hand-crafting features that best correlate with BCR origin 
is effectively delegated to the training process. 
 
A particular benefit of using transformer-based methods is the availability of self-attention 
heatmaps, which can help explain what the model understands about BCRs. In general, 
AntiBERTa’s self-attention focusses on non-germline positions. We also find that self-attention 
can hint toward pairs of residues that contact each other or identify putative paratope positions. 
While the current self-attention scores do not always carry a clear relationship to antibody 
structure and function, the self-attention scores may point to latent features that are not yet 
directly relatable to our current intuitions. A more in-depth analysis of how specific layers and 
heads correlate with antibody structure and function, as has been done for general proteins, 
could be the first step in facilitating interpretation (52). Furthermore, some of the self-attention 
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can be noisy; we expect the scores to have sharper focus with more data and a longer pre-
training regime.  
 
AntiBERTa outperformed current paratope prediction approaches across various metrics, and 
its performance is fuelled by a shift in its self-attention scores. One advantage of AntiBERTa 
is its ability to predict paratope positions outside of the CDRs, meaning it can be used to inform 
the engineering of non-CDR positions. Furthermore, AntiBERTa can predict the paratopes of 
unpaired chains, making it suitable for most repertoire datasets where only the heavy or light 
chain sequences are available. In our current analyses, we did not apply any thresholds on 
the predicted paratope probabilities, though we envision more work in this space to achieve a 
more precise predictor (27,38). 
 
Throughout this work, we have visualised BCR sequences as the averaged embedding across 
the length of the BCR, akin to ProtBert and ESM-1b (26,29). Though there are several 
strategies to represent full-length sequences (53), we have not explored these in extensive 
detail here. The optimal method of embedding full-length BCRs may depend on the use case 
of interest, and we see this as an active area of research in the future. 
 
AntiBERTa offers a high-quality representation of BCR sequences that captures aspects of a 
BCR’s origin, structure, and function. The embeddings from AntiBERTa also provide a 
representation of BCRs that can be leveraged for various downstream tasks via a transfer 
learning paradigm. Specifically, we show that AntiBERTa representations can fuel paratope 
prediction capabilities. Beyond paratope prediction, we see AntiBERTa being able to empower 
a wider range of tasks relating to BCR repertoire analysis. 
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