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Abstract 41 

Associative learning is crucial for adapting to environmental changes. The encoding of 42 

associative learning involves the dorso-medial prefrontal cortex (dmPFC), and is 43 

underpinned by interactions within the resident neuronal population. However, the nature of 44 

this population coding is poorly understood. Here we developed a pipeline for computational 45 

dissection and longitudinal two-photon imaging of neural population activities in the mouse 46 

dmPFC during fear-conditioning procedures, enabling us to detect learning-dependent 47 

changes in the dmPFC topology. Through regularized regression methods and graphical 48 

modeling, we found fear conditioning organized neuronal ensembles encoding conditioned 49 

responses (CR), with enhancing their coactivity, functional connectivity, and association 50 

with conditioned stimuli (CS). This suggests that fear conditioning drives dmPFC 51 

reorganization to generate novel associative circuits for CS-to-CR transformation. 52 

Importantly, neurons strongly responding to unconditioned stimuli (US) during conditioning 53 

anterogradely became a hub of the CR ensemble. Altogether, we demonstrate learning-54 

dependent dynamic modulation of population coding structured on an activity-dependent 55 

hub-network formation within the dmPFC. 56 

 57 

Teaser  58 

Optical and computational dissection uncovered how prefrontal cortical networks are 59 

rewired to encode new associative memory 60 

 61 

Significance statement 62 

Animals learn to adapt to changing environments. Associative learning is one of the simplest 63 

types of learning that has been intensively studied over the past century. Recent development 64 

in molecular, genetic, and optogenetic methods has enabled the identification of a neural 65 

population encoding the associative memory in the brain. However, it remains unclear how 66 

information is stored and processed by the neural population to encode and retrieve the 67 

associative memory. To investigate the nature of this population coding, we developed an 68 

optical and computational dissection method, demonstrating how associative learning drives 69 

reorganization of the neural network in the dorso-medial prefrontal cortex and generates 70 

novel circuits for associative memory and signal transformation. 71 

 72 

MAIN TEXT 73 

 74 
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Introduction 75 

Animals learn to adapt to changing environments for survival. Associative learning, such as 76 

classical conditioning, is one of the simplest types of learning that has been intensively studied over 77 

the past century (1, 2). It is based on repeated pairings of a neutral conditioned stimulus (CS) such 78 

as a tone, and an unconditioned stimulus (US) such as foot shock, that eventually makes the subjects 79 

respond to the CS by itself and elicit a conditioned response (CR), e.g., freezing behavior in the 80 

associative fear learning paradigm. During the last two decades, technical development in molecular, 81 

genetic, and optogenetic methods has enabled the identification of a population of neurons in the 82 

brain, named the memory engram, which encodes and regulates associative memory (3). How 83 

information is stored and processed by the neural population to encode and retrieve the associative 84 

memory, however, remains unclear (3). In addition, although previous studies proposed the 85 

possibility that the formation of associative memory may involve novel associative connections 86 

between the originally distinct CS and US networks to enable the CS-to-CR transformation, direct 87 

evidence is quite limited.  88 

The prefrontal cortex (PFC) is a brain region that regulates associative fear memory, which 89 

is evolutionarily conserved in mammals, from humans to primates to rodents (4-9). Dysfunction of 90 

the PFC may lead to various psychiatric diseases including the post-traumatic stress disorder (10), 91 

and the associative fear memory paradigm has been used as a research model to investigate the 92 

underlying mechanisms of this disorder. The dorsal part of the medial prefrontal cortex (dmPFC) 93 

of rodents is a brain region demonstrated to be important for the retrieval of associative fear memory 94 

(11-16). During fear memory retrieval and evoked freezing responses (i.e., CR), activated 95 

individual neurons (17) or an enhanced synchrony of neural populations (14) in the dmPFC are 96 

observed, while pharmacological or optogenetic silencing of the dmPFC and its projections to 97 

specific downstream targets suppresses fear memory retrieval (11, 12), revealing that associative 98 

fear memory is normally stored in the dmPFC. Therefore, the dmPFC can serve as an interesting 99 

target to address the fundamental question of what structural and computational alterations in the 100 

prefrontal networks are required to organize novel associative memories. Also, the study may 101 

contribute to our understanding of how novel associative memory is stored in the dmPFC together 102 

with pre-existing networks such as those regulating sensory and motor information.  103 

To address these points, here we developed a pipeline for computational dissection and 104 

longitudinal imaging of neural population activities in the dmPFC during fear conditioning 105 

procedures in mice, which enabled us to uncover learning-dependent changes in the internal 106 

topology, functional connectivity and computational architecture of the dmPFC upon memory 107 

acquisition. 108 
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 109 

 110 

Results  111 

 112 

Longitudinal imaging of neural population activities in mouse dmPFC during fear-113 

conditioning procedures 114 

To perform longitudinal imaging of neuronal population activities in the dmPFC during fear-115 

conditioning procedures in mice, we first developed a system to perform cued-fear conditioning 116 

and memory retrieval while imaging awake and behaving mice with a two-photon microscope (Fig. 117 

1), which enabled us to record the neural activities of hundreds of neurons with single-cell 118 

resolution and to further elucidate experience-dependent changes in functional connectivity in the 119 

dmPFC internal network, as shown later. The mice were head-fixed under the microscope objective 120 

and placed on a running disk, which was used to record the mouse locomotion status (e.g., 121 

locomoting, stationary, or expressing a freezing response) (Fig. 1A). Tones and foot shocks were 122 

delivered as the CS and US, respectively. Two different tones were used; one was associated with 123 

the US (CS+) and the other was not (CS‒), as described in previous studies (14, 18). On day 3 (D3), 124 

the mice underwent a habituation session, in which they received 4 presentations of the CS− and 125 

CS+ alternately. The habituation session was immediately followed by discriminative fear 126 

conditioning session on the same day, in which only the CS+ was paired with the US (Fig. 1B). The 127 

US was delivered during the last 1-s of each 30-s CS+ trial. The CS− and CS+ trials were performed 128 

alternately (inter-trial intervals, 50–150 s). The next day (D4), the conditioned mice underwent a 129 

retrieval and extinction session, in which they received 4 presentations of the CS– and 12 130 

presentations of the CS+ (4 presentations of the CS– and CS+ trials alternately, followed by 8 CS+ 131 

trials; Fig. 1B). Behavioral analyses revealed that the mice learned to exhibit freezing-like behavior, 132 

i.e., decrease their locomotion as a conditioned response (CR), specifically during the CS+, only 133 

after the fear conditioning (Fig. 1B, C). On the other hand, as reported previously (14, 18), the CR 134 

observed during the early phase on D4 was extinguished after repeated exposure to the CS+ only 135 

(Figs. 1D, E). Overall, these behavioral data established that our behavioral system and the fear 136 

conditioning protocol were useful for observing a change in the neural representation during 137 

associative fear learning. 138 

Next, to monitor the neural activities in the dmPFC by two-photon microscopy, we 139 

implanted a 2-mm microprism along the rostral midline of the brain to optically access the dmPFC 140 

region. Although the size of the prism was larger than that of prisms used in previous work (19), 141 

there was sufficient space and no callosal fibers between the hemispheres around the dmPFC area, 142 
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especially at the rostral region, enabling the smooth insertion of the prism without cutting prefrontal 143 

or callosal neural fibers (Fig. 2A). Using a genetically encoded Ca2+ indicator, GCaMP6f, expressed 144 

by an adeno-associated virus (AAV), the activities from a wide region of the prefrontal area were 145 

chronically visualized (Fig. 2B, C and Movie S1). To specifically record the activity of the 146 

excitatory neurons (20) and separate them from inhibitory neurons that may have a distinct function 147 

in the dmPFC (13), the GCaMP6f was expressed under regulation of the CaMKII promoter (21, 148 

22). The CS and US presentation did not disturb image acquisition (Movie S2). We focused on 149 

analyzing activities in the dmPFC area (see the Materials and Methods for details). In most of the 150 

data analyses, the neural representation during the first 3 trials of the fear conditioning on D3 (D3-151 

early [D3E]) were compared with those during the first 3 trials on D4 (D4-early [D4E]) to assess 152 

the changes occurring after the fear conditioning and memory consolidation. The data obtained 153 

during the last 3 trials on D3 (D3-late [D3L]) were used to assess the late conditioning phase, and 154 

the data obtained during the last 3 trials on D4 (D4-late [D4L]) were used to assess the extinction 155 

phase. 156 

Prior to investigating population coding in the dmPFC, we first summarized the single-157 

neuron responses to the CS+ and CS‒ before and after acquisition of the fear memory (Figs. 2D-F 158 

and S1). We found that approximately 60% of neurons exhibited a significant change in neural 159 

activity during the CS+ and/or CS‒, and approximately 20% of neurons showed significant 160 

responses to both the CS+ and CS‒. The distributions of these types of neurons were consistent 161 

throughout the learning process (Figs. 2F and S1). This type of “mixed selectivity” (responsive to 162 

variable task-relevant aspects) has been reported in the primate PFC (23) as well as in the mouse 163 

caudal mPFC during a decision-making task (24). The potential advantage of the mixed selectivity 164 

was proposed to enhance the number of tasks that each neural circuit, with a limited number of 165 

neurons, can handle, through high-dimensional neural representations implemented by a population 166 

of neurons (23, 25). This encouraged us to further analyze the population coding for fear memory. 167 

 168 

Newly emerged and unique neuronal ensembles in dmPFC encoding conditioned responses  169 

Our goal in this study was to dissect the computational architecture composed by a neural 170 

population in the dmPFC enabling the distinctive acquisition of a novel associative memory. For 171 

this purpose, we first extracted a group of neurons encoding the conditioned response (named CR 172 

ensemble) (Fig. 2G, H), and compared it with the neurons encoding regular locomotion (RL) to 173 

evaluate the uniqueness of the CR ensemble (Figs. 3 and S2). As methods to analyze neural 174 

architecture embedded in the neural population activities, previous studies utilized unsupervised 175 

algorithms such as Principal Component Analysis or Non-Negative Matrix Factorization (14, 26, 176 
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27). These algorithms first seek and distinguish embedded structures in neural data without 177 

considering the behavioral labels (e.g., freezing responses), which are further used to test which 178 

extracted structure is most likely to correlate with and explain respective behaviors, e.g., behavior 179 

A and B. By such methods, the identified ensembles corresponding to behavior A and the identified 180 

ensemble corresponding to behavior B may become dissimilar from each other as a result of 181 

methodological bias, irrespective of the actual neural architectures. In the present study, instead of 182 

these methods, we introduced a supervised and model-based decoding algorithm, named elastic net 183 

(28) (Figs. 2G-H). The elastic net is a regularization and variable selection algorithm based on the 184 

regression model (Fig. 2G; see the Materials and Methods for details) (28). This method enabled 185 

us to independently extract the CR ensemble and RL ensemble from the same mice (Figs. S2), and 186 

is thus helpful for further comparing the ensembles and systematically verifying whether neurons 187 

in the CR ensembles were unique or mostly overlapped with the RL ensembles.  188 

We extracted CR ensembles using neural activity data obtained during the CS+ presentation 189 

of D4E (retrieval session), and evaluated the fitting and decoding performance of the obtained 190 

model (Fig. 2H) after optimizing the hyper parameter “alpha” for the elastic net as explained below 191 

(see the Materials and Methods for details). Compared with the conventional regularization 192 

algorithm Lasso, the advantage of the elastic net is that this procedure enables us to optimize the 193 

size of the selected population, especially when an analyzed neural network includes strongly 194 

correlated neural pairs, which is likely the case for our data considering the results shown below 195 

and previous electrophysiological observations (14). To carefully verify the overlap between the 196 

CR ensemble and RL ensemble, it is important to avoid missing neurons encoding the respective 197 

information. For this purpose, we evaluated remaining information encoded by neurons excluded 198 

from the CR ensemble at each alpha, and defined optimal alpha as the one that minimize such 199 

remaining information (Figs. S2C, D and S3; see also Materials and Methods). A wide range of the 200 

alpha values for the CR ensemble of each individual mouse was tested (Fig. S3). This systematic 201 

optimization procedure revealed a general trend that a larger alpha tended to select a smaller number 202 

of CR ensemble neurons (Fig. S3B, top), and though the decoding performance of the smaller 203 

number of selected CR ensembles was very high, equivalent to that of the others (Fig. S3B, middle), 204 

the removal of such a smaller portion from the whole set of neurons was not sufficient to 205 

substantially diminish the information encoded by the remaining neurons for some mice (Figs. S3B, 206 

top and bottom, and S3D-F). This suggests that the CR was redundantly encoded in the dmPFC. 207 

On the other hand, alpha values didn’t clearly affect the discrimination of the RL ensemble (Fig. 208 

S4). After determining the optimal alphas for individual circuits, we confirmed a substantial 209 

reduction of the decodability by removing all the selected CR ensemble neurons (Figs. S2D, and 210 
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S3) and verified that a sufficiently large portion of the dmPFC neurons encoding the CR were 211 

selected as the CR ensemble neurons.  212 

We eventually confirmed that the CR ensemble obtained by the optimal alpha was highly 213 

predictive for the CR during the retrieval session (see the example shown in Fig. 2H; mean ± SE of 214 

the prediction accuracy, 0.9450 ± 0.0265, N=7 mice; individual data are shown later in Fig. 3G). 215 

As for the spatial distribution, the identified CR ensemble neurons were spatially intermingled over 216 

the field of view, as shown in Figs. 2H and 3B.  217 

Following the optimization of the hyper parameter alpha, we evaluated the specificity and 218 

uniqueness of the extracted CR ensemble. We confirmed that most of the neurons involved in the 219 

CR ensemble were unique and did not overlap with the RL ensemble (Figs. 3A-C). We then 220 

conceived the hypothesis that the unique CR ensemble might dominantly and exclusively explain 221 

the behaviors of the mice during CS +-evoked memory retrieval as an encoder of the acquired 222 

associative memory. If this is true, RL ensembles, distinct from CR ensembles (Fig. 3C), should 223 

have diminished decodability for the behavior during CS+ during memory retrieval. To test this 224 

possibility, we checked the decoding performance of the RL ensembles for the behaviors observed 225 

during the CS+ at each of the learning steps (Figs. 3D-G and S5).  The decoding performance by 226 

the RL ensemble to the RL was similar between pre- and post-memory consolidation (Fig. 3E). The 227 

decoding performance of the RL ensemble to the behaviors during CS+ presentation at D3E (before 228 

fear memory consolidation) was similar to that for the RL (Figs. 3D, F). In contrast, the decoding 229 

performance of the RL ensemble to the behaviors during the CS+ on D4E (during fear memory 230 

retrieval) was significantly reduced compared with that of D3E (Figs. 3D, F). There was a small, 231 

but not significant, change during the fear conditioning (D3E vs D3L; Fig. S5), and importantly, 232 

the reduced decodability of the behavior during CS+ at D4E (memory retrieval) was substantially 233 

recovered after the extinction training (no significant difference between D3E and D4L, and a 234 

significant difference between D4E and D4L; Figs. 3F and S5). On the other hand, the decodability 235 

of CR ensembles was specific to the CR and not applicable to the RL on D4 (Fig. 3G). These results 236 

established that the CR, or the behavior during the memory retrieval, was dominantly explained by 237 

the CR ensembles, supporting the idea that the CR ensemble systematically extracted was a 238 

dominant and specific group of neurons encoding the CR during memory retrieval, emerged after 239 

consolidation of the fear memory and was suppressed by extinction. 240 

 241 

Coactivity within the CR ensemble was specifically enhanced after fear conditioning  242 

In these CR ensembles, we observed a slight but significant increase in CS+ activatable 243 

neurons, but no change in CS+ inactivated neurons after fear conditioning (Fig. S6). In contrast, 244 
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other cells (neurons that were not included in the CR ensembles: Non-CR ensemble [Non-CRE] 245 

neurons) exhibited no significant changes in the CS+ activatable neurons, with a significant increase 246 

in CS+ inactivated neurons. Neurons in the RL ensembles did not exhibit any significant change in 247 

CS+ responsiveness. We detected no significant change in CS‒ responsiveness in any of the 248 

categories. Because these CR ensembles were discriminated by the data and behavioral labels 249 

during the CS+, not by comparisons between those during the CS+ and those during the presentation 250 

of other stimuli, our method produced no bias toward the CS+ during selection of the CR ensemble 251 

neurons. These results indicated that there might be some mechanism that makes neurons involved 252 

in the CR ensembles dominantly activated by the CS+ after memory consolidation. 253 

To further analyze and characterize the identified CR ensemble toward elucidating the 254 

mechanism underlying associative learning, we measured the change in the coactivity of the neural 255 

network during the CS+ presentation by comparing the pairwise correlation coefficients (R) (29) 256 

between pre- and post-memory consolidation. We found that, after the fear conditioning, only the 257 

positively correlated fraction was enhanced specifically within the CR ensemble, and not in the 258 

outside network (Non-CRE) (Fig. S7A). Statistical analyses demonstrated that this enhancement in 259 

positive correlation after the fear conditioning, as well as the enhanced ratio of significantly and 260 

positively correlated pairs, specifically occurred in the CR ensemble (Figs. S7A-C). Analyses based 261 

on the shuffled data, where the activity of each neuron was preserved but the temporal order was 262 

randomly shuffled neuron by neuron, revealed no significant difference between the CR ensemble 263 

and Non-CRE (Figs. S7A, C), suggesting that the specific enhancement of the coactivity of the CR 264 

ensemble in the real data did not derive from the enhanced neural activation. Similar enhancement 265 

of the coactivity was observed in the CR ensemble excluding the RL-ensemble overlapped neurons 266 

(Figs. S7A-C). In addition, changes in the coactivity across the categories (coactivity between CR 267 

ensembles and Non-CRE) were significantly smaller than those within the CR ensembles (Fig. S7C). 268 

These results led us to hypothesize that the functional connectivity within the CR ensemble was 269 

specifically enhanced as a result of the fear conditioning, contributing to enhance the coactivity.  270 

 271 

Enhanced internal connectivity and association with conditioned stimuli (CS) in the CR 272 

ensemble after fear conditioning 273 

To test the hypothesis above, we introduced a probabilistic graphical model method, the 274 

conditional random field (CRF) model (30, 31). This method evaluates the conditional probability 275 

that a group of neurons fire together given that one neuron is active (Fig. 4A). Among the various 276 

mathematical algorithms used to evaluate possible functional connectivity of neural networks and 277 

ensembles, the CRF model is one of the most reliable methods because the results of the calculation 278 
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(functional connectivity) have already been carefully evaluated by two-photon holographic 279 

optogenetics and consequential behavioral modulation (30, 31).  280 

Using this method, we found that, after the fear conditioning (D4E), the functional 281 

connectivity was significantly higher in the CR ensemble (Fig. 4B). This method also allowed us 282 

to evaluate the information coding of any arbitrary label, e.g., CS+ or CS‒, and we found that the 283 

CS+ information encoded by the CR ensemble was significantly higher than that of Non-CRE (Fig. 284 

4C). Importantly, our method did not produce any bias to the CS+ in selecting CR ensemble neurons, 285 

as explained above. Therefore, this result indicates that the neural population encoding the CR was 286 

dominantly associated with the CS+ information. In addition, we found that the enhancement in 287 

both the functional connectivity and CS+ predictability was experience-dependent and derived after 288 

the fear conditioning, dominantly in the CR ensemble neurons (Figs. 4D, E). In contrast, the 289 

changes in information coding for the CS‒ were not significantly different between the CR 290 

ensemble and the Non-CRE (Fig. 4E). Therefore, the emergence of the CR ensemble after fear 291 

conditioning was accompanied by the enhancement of the internal coactivity, functional 292 

connectivity and association with the CS+ selectively within the CR ensemble neurons, indicating 293 

that fear conditioning drives dmPFC reorganization to generate novel associative circuits for CS-294 

to-CR transformation.  295 

 296 

Neurons responding to US during fear conditioning anterogradely became a hub of the CR 297 

ensemble 298 

Finally, we hypothesized that the dmPFC reorganization that we observed after fear 299 

conditioning might occur via activity-dependent modulation during the repeated CS+-US pairing. 300 

This led us to search for the signature of this plasticity.  301 

During the fear conditioning, we observed that some of the dmPFC neurons strongly 302 

responded to the US (Fig. 4F). Interestingly, statistical analyses demonstrated that neurons 303 

responsive to the US during fear conditioning were predominantly and significantly more involved 304 

in the CR ensemble after the fear conditioning (Figs. 4G, H). This suggests that these US-responsive 305 

neurons (USR) were preferably integrated into the CR ensemble, in which functional connectivity 306 

might also be modulated and strengthened by US-evoked activity, perhaps together with the paired 307 

CS+ signal.  308 

To test this possibility, we performed further analyses based on the CRF modeling. We found 309 

that the USR became functionally more connected within the CR ensemble than non-US responsive 310 

neurons, while these differences were not observed in Non-CRE (Fig. 4I). This higher connectivity 311 

was a result of the fear conditioning (Fig. 4J). The information coding for the CS+ was also 312 
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significantly higher in the USR, specifically in the CR ensemble (Fig. 4K), suggesting that the US-313 

responsive network was dominantly associated with the CS+ network when it became integrated 314 

into the newly emerged CR ensemble. According to a previous study, higher functional connectivity 315 

and higher decoding performance of sensory stimuli are typical features of pattern completion cells 316 

whose activation could efficiently enhance the entire ensemble activity for a specific sensory 317 

stimulus and promote the stimulus-associated behaviors of mice (30). These results collectively 318 

suggest that the USR in the dmPFC became a hub of the novel neural ensemble linking the CS+ to 319 

the CR, a memory-evoked behavior, after the repeated CS+ and US parings. 320 

 321 

Discussion  322 

Altogether, our results based on the combination of methods for computational dissection and 323 

longitudinal recording in the dmPFC demonstrate learning-dependent dynamic modulation of 324 

population coding for associative fear learning, structured on an activity-dependent hub-network 325 

formation within the dmPFC. Through regularized regression methods and graphical modeling, we 326 

found that the repeated CS+-US pairing for the associative learning drives the dmPFC 327 

reorganization to generate novel and unique neural circuits for CS-to-CR transformation, with 328 

enhanced internal coactivity, connectivity, and association with the CS+. Upon this prefrontal 329 

reorganization, neurons activated by the US during fear conditioning were anterogradely and 330 

predominantly integrated into the CR ensemble. The eventual network stemming from these USR 331 

gained typical features of pattern completion cells of the CR ensemble, which are supposed to work 332 

as a hub in the prefrontal networks to predominantly relay the CS+ information and promote the 333 

CR (Fig. S8).  334 

To our knowledge, this is the first in vivo evidence directly demonstrating that the prefrontal 335 

neural circuit for the associative memory was actually built based on an enhanced association 336 

between the US network and the CS+ network as a result of CS+-US pairing and triggered network 337 

reorganization. More than 60 years ago, Hebb proposed that repeated coactivation of a group of 338 

neurons might create a memory trace through the enhancement of connections (32). Our results 339 

suggest that Hebbian plasticity (i.e., fire together, wire together) might underlie the reorganization 340 

of the prefrontal network structure during associative learning, enabling the emergence of a strong 341 

link between the US signaling pathway and the CS+ signaling pathway to form a novel CR circuit. 342 

CR information was redundantly encoded in the dmPFC. The advantage of the redundancy 343 

is not clear, but because fear memory is critical for animal survival, it is possible that the redundant 344 

coding for the fear memory is not inefficient but rather evolutionarily crucial. On the other hand, 345 

although the redundancy can also be considered inefficient in terms of the short-term cost, because 346 
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the dmPFC is known to be involved in long-term memory via brain-wide networks (12, 33, 34), it 347 

would be interesting to investigate whether the redundantly encoded information for the CR is 348 

maintained or diminishes by longer-term continuous recording, and whether it is related to the 349 

brain-wide regulation of memory using virus-based anterograde or retrograde fluorescent labeling 350 

techniques to simultaneously dissect the downstream or upstream structures.  351 

As we have successfully discriminated the specific neural population encoding the CR as 352 

well as the detailed internal structure with a hub of the US-responsive neurons, further testing the 353 

causality of the identified structure to behavior by holographic optogenetics (30) could be intriguing. 354 

But importantly, we also found that the dmPFC responds to auditory signals even before memory 355 

consolidation (Figs. 2D-F, S1) and that the CR ensemble predominantly includes the US-responsive 356 

neurons (Fig. 4F). Because enhancing the sensory coding can modify behavioral responses in a task 357 

based on the sensory stimuli as demonstrated before (30), and because activating US-responsive 358 

neurons may sufficiently encourage defensive freezing behaviors as unconditioned responses, 359 

further mathematical dissection and additional anatomical dissection discussed in the preceding 360 

paragraph would be the next important step to more precisely identify the memory-specific 361 

connections and information flow to be tested by the holographic optogenetics.  362 
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 393 

Materials and Methods 394 

Animals.  395 

All animal experiments were carried out in accordance with the Institutional Guidance on 396 

Animal Experimentation and with permission from the Animal Experiment Committee of Osaka 397 

University (authorization number: 3348), or in accordance with National Institutes of Health 398 

guidelines and approved by the National Institute for Physiological Sciences Animal Care and Use 399 

Committee (approval number 18A102). Male C57BL/6 or PV-Cre mice (Jax: 008069) mice housed 400 

under a 12-h light/dark cycle with free access to food and water were used for all experiments. 401 

Behavioral experiments were performed during the dark cycle (i.e., when mice were normally 402 

awake) using single-housed mice. Mice at 4–6 months of age were used for the behavioral and 403 

imaging experiments.   404 

 405 

Virus injection 406 

To express GCaMP6f, a genetically encoded calcium indicator to monitor the neural activity, 407 

we used a gene expression system based on the AAV vector. Viruses were injected into mice at 408 

postnatal day (P) 50-120 for in vivo experiments, at least 1 month before the microprism 409 

implantation, which was followed by the in vivo experiments 1–3 months after the implantation. 410 

Injection procedures were performed as described previously (29), with some modifications. 411 

During surgery, the mice were anesthetized with isoflurane (initially 2% [partial pressure in air] 412 

and then reduced to 1%). A small circle (~1 mm in diameter) of the skull was thinned over the left 413 

mPFC using a dental drill to mark the site for a small craniotomy. AAV1/CamKII.GCaMP6f was 414 
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obtained from the University of Pennsylvania Vector Core, and injected into the left mPFC (slightly 415 

away from the imaging target area to avoid damaging the field of view) at three sites (depth 1.0, 416 

1.5, and 2.0 mm from the pial surface, volume 375 nl/site) to cover the dorsal mPFC, over a 5-min 417 

period at each depth using a UMP3 microsyringe pump (World Precision Instruments). The X-Y 418 

coordinates for the injection site was usually 0.5 mm lateral to the midline and 2.0 mm rostral to 419 

bregma, but if large blood vessels obstructed the position, we shifted the insertion site slightly to 420 

avoid the vessels. The beveled side of the injection needle was faced to the midline so that the 421 

needle could be smoothly inserted and the virus would cover the surface layers of the mPFC. We 422 

designed our injection protocol (especially the volume and depth) carefully to widely cover the 423 

mPFC areas, while the anatomical coordinates of the field of view for the two-photon imaging were 424 

precisely targeted using the position of the pial surface and the sinus, which were usually visible 425 

through the imaging window prepared as shown below, as a guide (the field of view ranged from a 426 

depth of ~0.9-1.9 mm and centered at a depth of ~1.1-1.5 mm from the pial surface and the sinus). 427 

 428 

In vivo two-photon imaging 429 

In vivo two-photon imaging was performed as described previously (19, 29), with 430 

modifications to pair with our new experimental system. At 1–3 months after the virus injection, 431 

the mice were anesthetized with isoflurane (initially 2% [partial pressure in air] and reduced to 1%). 432 

A titanium head plate described in a previous paper by Goldy et al. (35) was selected for the present 433 

study to minimize the area laying over the ear and to minimize the blockage of auditory input 434 

through the ear. The head plate was attached to the skull with dental cement. For the subsequent 435 

microprism implantation, a square cranial window (~2.3 x 2.3 mm) was carefully made with 436 

minimal bleeding above the right mPFC, the hemisphere opposite to the virus injection site. An 437 

implantable microprism assembly(19), comprising a 2-mm right angle glass microprism (TS N-438 

BK7, 2mm AL+MgF2, Edmund) bonded to a 2x2 mm square cover glass (No.1; Matsunami) for 439 

the middle position and a 4x4 or 3x4 mm glass window at the surface position of the imaging 440 

window, was prepared and inserted into the subdural space within the fissure along the midline as 441 

described previously(19) to avoid harming any nerves surrounding the mPFC network in both 442 

hemispheres, allowing for visualization of the left mPFC, which was previously injected with the 443 

GCaMP6f virus, through the imaging window. The area directly beneath the microprism was 444 

compressed but remained intact. This insertion procedure sometimes caused a small amount of 445 

bleeding that covered the imaging site, but even in that case, the imaging window became clear 446 

after waiting at least a month before performing the experiments. As reported before (19), the mice 447 
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recovered quickly and displayed no gross impairments or behavioral differences compared with 448 

non-implanted mice, enabling chronic imaging of the dmPFC in behaving mice. 449 

The activity of dorsal mPFC neurons was recorded by imaging fluorescence changes with 450 

a FVMPE-RS two-photon microscope (Olympus) and a Mai Tai DeepSee Ti:sapphire laser 451 

(Spectra-Physics) at 920 nm, through a 4x dry objective, 0.28 N.A. (Olympus) or a 16x water 452 

immersion objective, 0.80 N.A. (Nikon). Mean (±SE) frame rate was 8.96 ± 0.87 (frames/s). 453 

GCaMP6f signals were detected via the band-pass emission filter (495-540nm). As the GCaMP6f 454 

was expressed under the regulation of the CaMKII promoter (21, 22), all of the recording targets 455 

were assumed to be excitatory neurons (20). Scanning and image acquisition were controlled by 456 

FV30S-SW image acquisition and processing software (Olympus). To smoothly set the mice below 457 

the objective lens for the imaging, light and minimal-duration isoflurane (2.0% for less than 2-3 458 

min) anesthesia was used, and behavioral and imaging experiments were started 5 min after the 459 

mice awoke and began locomoting on the running disk, which was visually confirmed via the video 460 

camera (VLG-02, Baumer) under infrared light-emitting diode illumination (850nm: LDL-461 

130X15IR2-850, CCS Inc.). To detect neural activity from the same set of neurons in each mouse 462 

over multiple days, the depth from the surface of the brain (dmPFC area) and configuration of blood 463 

vessels and basal GCaMP6f signals in each field of view were recorded and referenced as described 464 

previously (36).  465 

 466 

Fear conditioning, memory retrieval, and extinction under the microscope 467 

The experiments were designed according to previous studies, with some modification to 468 

optimize conditions for the two-photon microscope system (13, 14, 18). The heads of the mice were 469 

fixed under the objective lens for two-photon imaging, allowing them to run freely on the running 470 

disk placed below them, and locomotion and the freezing response were measured by the rotation 471 

of the running disk, as previously described (37).  Experiments were performed in a completely 472 

dark environment to protect the detector (photo multiplier tube) for the two-photon imaging from 473 

the room light. We prepared two different types of running disks to establish two different contexts, 474 

as used in conventional fear conditioning experiments for head-unfixed mice (13, 14, 18). Disk A 475 

was made of light-colored plastic with ridges from the center to the rim that the mice could grip to 476 

allow them to easily rotate (and walk on) the disk (37). Disk A was used for adaptation (D1 and 477 

D2) and for retrieval and extinction (D4). Disk B was built for the fear conditioning (D3), and 478 

comprised a grid made of stainless steel bars (Fig. 1A), which was attached to a foot shock generator 479 

(SGA-2010, O’HARA & CO., LTD) via an electrical slip ring so that electrical current to this 480 
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running disk for the foot shock (US) could be stably delivered to the mouse irrespective of whether 481 

the running disk was rotating. The behavioral sessions on each day began only after the mouse was 482 

constantly locomoting for more than 5 min. The running disks and the surrounding area (inside the 483 

cage for the microscope) were cleaned with 70% ethanol before and after each experiment. To score 484 

freezing behavior, the speed of the mouse locomotion was measured by the rotation speed of the 485 

running disk (37), and mice were considered to be stationary (during no CS presentation) or freezing 486 

(during CS+/retrieval) if no movement was detected for at least 1 s. On D1 and D2, the mice 487 

underwent an adaptation session with disk A for an hour each day, to familiarize them with the 488 

novel environment. On D3, the mice underwent a habituation session in context B, in which they 489 

received four presentations of the CS− and CS+ alternately (total CS duration, 30 s for each trial; 490 

consisting of 50-ms pips at 1 Hz repeated 30 times; pip frequency, 7.5 kHz or white-noise, 491 

respectively, 80-dB sound pressure level (60-dB basal room noise produced by the air conditioning 492 

system, and 20-dB for the CS)). The habituation session was immediately followed by 493 

discriminative fear conditioning (13, 14, 18) on the same day by pairing the CS+ with a US (1-s 494 

foot shock, 7 CS+–US pairings).The intensity of the foot shock was usually 0.05~0.1 mA, but when 495 

mice showed no responses at all, which was probably caused by that a part of the running disk 496 

became dirty or wet by mice and the foot shock might be suppressed by this during the experiment, 497 

an intensity of 0.25~0.45 mA was used. The onset of the US coincided with the onset of the last 498 

sound pip of each 30-s CS trial. The CS−and the CS+ trials were performed alternately (inter-trial 499 

intervals, 50–150 s). On D4, conditioned mice underwent a retrieval session followed by an 500 

extinction session on disk A during which they received 4 presentations of the CS– and 12 501 

presentations of the CS+. During the experiment (D1-4), the mouse was continuously encouraged 502 

to locomote by administering a 4-ul drop of saccharin water per 100 cm of locomoting, provided 503 

through a spout placed near their mouth (36) so that the freezing response could be discriminably 504 

detected as decreased locomotion (Fig. 1). The mice were not water-deprived. The locomotion 505 

speed and timings of the tones and the foot shock were synchronously recorded with image 506 

acquisition (GCaMP6f imaging in dmPFC) using NI software (Labview; National Instruments) and 507 

NI-DAQ (National Instruments). The results shown in Fig. 1 show that this protocol led to the mice 508 

successfully learning the CS+-US association, and show a reduction in locomotion in response to 509 

the CS+, but not the CS‒, and not before but only after the fear conditioning session, enabling us 510 

to observe changes in neural representations in the dmPFC as a result of the fear conditioning.   511 

 512 

Imaging data analyses and statistics 513 
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The raw images of the GCaMP6f signals in the dmPFC were processed to correct for brain 514 

motion artifacts using the enhanced correlation coefficient image alignment algorithm (38). To 515 

apply the same regions of interest (ROIs) for analyzing the images obtained across multiple days, 516 

the movies from the same mouse were precisely aligned with each other using the same enhanced 517 

correlation coefficient algorithm as above, while, for a local shift (shift of a few pixels in a small 518 

number of neurons among all recorded cells), the corresponding ROIs were manually adjusted.  519 

The ROIs for the detection of neural activity were automatically selected using a constrained 520 

nonnegative matrix factorization algorithm in MATLAB as described previously (39), with some 521 

manual adjustment. Further steps to process the GCaMP6f signals for measurements of the signal 522 

change (F/F) of each neuron were performed as described previously (29, 40); although the same 523 

constrained nonnegative matrix factorization package for ROI detection also provides an option for 524 

signal processing that was not sufficiently optimized to analyze our data, which were obtained over 525 

several days with more than 30,000 frames each day. Fluctuations in the background fluorescence, 526 

which contains synchronous fractions across nearby neurons (39, 40), was subtracted before 527 

calculating the F/F of GCaMP6f signals as described previously (29). Briefly, a ring-shaped 528 

“background ROI” was created for each ROI 2–5 pixels away from the border of each neuronal 529 

ROI to a width of 30–35 pixels, and the size was adjusted to contain at least 20 pixels in each 530 

background ROI after completing the following steps. From the background ROI, we removed the 531 

pixels that belonged to any neuronal ROIs, and the ROIs that contained artificially added pixels 532 

(black pixels added at the edge of the image due to the motion correction procedure) at any time-533 

point. We then removed the pixels that, at some time-point(s), showed signals exceeding that of the 534 

neuronal ROI by two standard deviations of the difference between each background ROI pixel 535 

time series and the neuronal ROI time series. The resulting background ROI signals were averaged 536 

at each time-point, and a moving average of the time series was calculated. Using the moving 537 

average instead of the raw background ROI signal was helpful to minimize the production of an 538 

artificially large increase or decrease at each time-point due to the subtraction, which could have 539 

altered the analyses of the timing of neural activations. Pixels within each neuronal ROI were also 540 

averaged to give a single time course, and then the background ROI signal was subtracted. Then, 541 

the F/F of GCaMP6f signals of all neurons in each circuit was calculated. For most of the analyses 542 

and comparisons of the results from multiple mice, the F/F data were further z-normalized within 543 

each experiment (same mouse, same day) as described previously (13, 18). On the other hand, 544 

particularly for the CRF modeling used to evaluate the functional network connectivity, the spike 545 

probabilities were inferred from the F/F as an alternative estimate of neuronal activation using a 546 
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constrained sparse nonnegative calcium deconvolution method (39). We used the code 547 

“constrained_foopsi.m” (39), and the parameters used in the calculation were not manually selected 548 

but estimated from the data by the code. After inference of the spike probability and further 549 

thresholding by two standard deviations, the obtained binominal data were further binned (bin size: 550 

1 s). Importantly, the results obtained by CRF modeling were consistent with the results of the 551 

coactivity analyses based on the F/F (and z-normalized F/F) (Fig. S7), providing substantial 552 

support that the analyses based on both estimates complemented each other for the data analyzed 553 

in the present study. While neurons for the analyses were initially automatically detected, neurons 554 

responding to noisy signals with no apparent calcium transient at any time during the experimental 555 

days were identified by visual inspection and excluded from further analysis. 556 

For the statistical analysis, we used MATLAB (MathWorks, Natick, MA). The Wilcoxon 557 

signed rank tests for paired comparisons or the Wilcoxon rank sum test (equivalent to Mann-558 

Whitney U test) for unpaired comparisons was used to determine statistical significance (P < 0.05) 559 

unless otherwise indicated. Two-tailed tests were selected for all statistical analyses. All p-values 560 

less than 0.0001 are described as “P<0.0001” (or ****). Graphs were produced by MATLAB 561 

(MathWorks) or Excel (Microsoft). When comparing two groups (e.g. D3 vs D4) consisting of the 562 

results of multiple mice, in addition to the analyses using original data (e.g. N=7 vs N=7 [D3 vs 563 

D4]), we performed bootstrap resampling to more systematically estimate representative values 564 

(e.g. mean or median) of each mouse or each group where the number of recorded neurons in each 565 

field view varied. When statistically comparing original data (e.g. comparing D3 vs D4), we used 566 

a paired permutation test that does not require any assumptions regarding the data distribution, 567 

though the p-values obtained by this method and the evaluated statistical significance were very 568 

similar to those obtained by the paired t-test in almost all cases. For the analyses based on bootstrap 569 

resampling followed by statistical comparison, random resampling (with accepting overlapped 570 

sampling) from each mouse was performed in total with the same number as that of the original 571 

data of each mouse for each resampling round, and the means (e.g. of 7 mice each day) and the 572 

means of the difference or ratio (e.g. difference between D3 vs D4 averaged over mice) were 573 

calculated. This was repeated 2000 times to derive the distribution (of 2000 bootstrap replications) 574 

for each estimate, and the statistical significance was evaluated based on the 95% confidence 575 

interval.  576 

In the present study, to compare changes in neural responses and ensemble representations 577 

before and after the fear memory consolidation without any bias, we did not exclude neurons that 578 

showed no response to the CS on D4 from the analyses, which was done in some previous 579 
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experiments (e.g. (18)). Neurons for the analyses were automatically selected based on the neural 580 

responses, as described above, and all neurons that exhibited clear activity during at least one of 581 

the experimental days were included for the analyses irrespective of whether it was during the CS 582 

presentation or only during no CS presentation, considering the previous work suggesting that not 583 

only the neurons that typically respond to the CS, but also other types of neurons (including those 584 

of mixed selectivity)  are important for population coding in the prefrontal network (23).   585 

The significance of CS-induced neural responses was determined according to previous 586 

studies (13, 18). Signals during CS presentation were normalized to baseline activity using a z-587 

score transformation, as described previously (13, 18). The CS-induced neural activity for each 588 

stimulus was then calculated as the mean of the activity during ~1 s from each stimulus onset 589 

(depending on the imaging frame rates, we set the number of frames to be used for this calculation 590 

so that sampling duration was closer to 1 s but the frames that overlapped with the next stimulus 591 

onset was excluded). The last sound pip of each 30-s CS trial was also excluded from this analysis 592 

because, during fear conditioning, the last sound pip of the CS+ overlapped with the US (we 593 

excluded the last pip data not only for analysis of CS+-evoked responses during fear conditioning 594 

but for all data analyses on both D3 and D4, for both CS+ and CS‒). They were averaged over 595 

blocks of 3 CS trials consisting of 87 individual sound pips in total, for D3E (first three trials during 596 

the fear conditioning session), D3L (last three trials during fear conditioning on D3), D4E (first 597 

three trials on D4, as responses during fear memory retrieval), and D4L (last three trials only for 598 

CS+ on D4 as responses during extinction), respectively, or used to statistically test whether the 599 

responses of each neuron were significantly different from zero (baseline) and to define CS-600 

activated / -inactivated neurons.  601 

To define US responsive neurons, because the number of US were limited (7 stimuli in total 602 

for each mouse), the mean z-score of each neuron for 1.5 s from the US onset was calculated, and 603 

US responsive neurons were defined as neurons with responses of one standard deviation or larger. 604 

The number of USR was very limited (zero or only a few for some of the mice) as they were only 605 

around 5 % on average, and therefore all the analyses shown in Figs. 4I-K were performed with 606 

pooled data from all mice (N=7 mice).  607 

To evaluate the coactivation of neural activity in the dmPFC network, we calculated cell-to-608 

cell pair-wise correlations within each ensemble using Pearson’s correlation coefficient, from the 609 

GCaMP6f signals (z-normalized F/F) of two cells over the duration of the CS+ presentation, as 610 

described before (29). The calculated correlation coefficients (R) were statistically analyzed. As a 611 

complementary analysis, we also used the inferred spike probability to analyze the functional 612 
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connectivity, as explained in the section describing the CRF model, which revealed consistent 613 

results as shown in the results section. We further performed analyses based on surrogate datasets, 614 

as described in previous studies (29, 41). For this, the total activity of each neuron was preserved, 615 

but only the timing was shuffled randomly within each neuron, followed by calculation of the 616 

correlation coefficients of shuffled data. 617 

 618 

Extraction of neuronal ensembles 619 

To directly differentiate neural populations (ensembles) encoding the CR (i.e., suppressed 620 

locomotion triggered by CS+ during the memory retrieval) and those encoding RL (i.e., stationary 621 

or locomotive state during no CS presentation), we used the elastic net(28), a regularization and 622 

variable selection algorithm that enabled us to systematically extract neurons encoding respective 623 

target behaviors. For this, we used the “lassoglm” function of MATLAB R2019b. Because this 624 

method allowed us to identify different ensembles for different behaviors independently from the 625 

same mice, we used this to verify whether neurons in CR ensembles were unique or mostly 626 

overlapped with RL ensembles (Figs. 3 and S2). Compared with the conventional sparse modeling 627 

method called Lasso (least absolute shrinkage and selection operator), the advantage of the elastic 628 

net is that the hyper parameter “alpha” additively enables the adjustment of the size of selected 629 

neurons depending on the data; when the analyzed data include strongly correlated pairs, which 630 

appeared to be the case for our data as shown in Fig. S7, conventional Lasso removes redundant 631 

predictors and selects only one or a part of such a synchronous population, but in the elastic net, 632 

lowering the alpha value increases their inclusion, which is helpful toward preventing missing 633 

encoder neurons.   634 

 When extracting the CR ensemble, we used data only during the CS+ presentation of D4E 635 

(retrieval session) and identified neurons informative for distinguishing whether animals exhibited 636 

freezing behavior or were locomoting during the CS+ so that the auditory information of the CS 637 

was not considered for identifying the ensemble neurons. While mice exhibited the CR as 638 

suppressed locomotion during the fear memory retrieval session (Fig. 1), they also showed more or 639 

less locomotion intermittently, and both labels (freezing and locomotive) are required to perform 640 

the regression based on the elastic net; only the data containing at least 10% of each label (freezing 641 

and locomotive) were used to discriminate ensembles in the present study. On the other hand, for 642 

extracting the RL ensemble, we used data only during the no-CS presentation (for D3 and D4). 643 

Learning the elastic net is formulated as follows.  644 
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, 645 

where  646 

 647 

and N is the number of observations; yi is the behavior (freezing/stationary y_i=1 or locomotive y_i 648 

=0) at observation i; xi is data (neuronal activity), a vector of p values at observation i;  is a positive 649 

regularization parameter; parameters β0 and β are a scalar variable and a p-dimensional vector, 650 

respectively. As  increases, the number of nonzero components of β decreases. The elastic net is a 651 

hybrid of ridge regression and lasso regularization: when alpha (α) = 1, elastic net is the same as 652 

lasso, while, as α shrinks toward 0, elastic net approaches ridge regression. For other values of alpha 653 

(α), the penalty term Pα(β) interpolates between the L1 norm of β and the squared L2 norm of β. 654 

Lasso is sensitive to correlations between variables and can choose one if there are two highly 655 

correlated and useful variables, whereas elastic net is more likely to select both useful variables, 656 

which leads to more stable variable selection. The tuning parameter  controls the overall strength 657 

of the penalty. βj is the coefficient for the corresponding neuron j estimated by this model. Because 658 

this method is designed to sparsely leave the coefficients βj for the respective neurons, we could 659 

identify neurons with a non-zero coefficient as ones of substantial decodability (i.e., ensemble 660 

neurons). The lambda value with minimum expected deviance, as calculated during cross-661 

validation, was selectively used to define these beta coefficients for each dataset. To avoid an 662 

imbalance of the number of original labels for respective states (e.g. freezing or locomotive for CR 663 

ensembles) for the training, the same number of data points from respective states were randomly 664 

selected to prepare the training data despite an overlap, a total of 900 samples for each, and used to 665 

produce the model. We found that the eventual model and non-zero-coefficient neurons slightly 666 

varied trial by trial. To accurately define each ensemble, we repeatedly performed this procedure 667 

(random sampling and modeling) 100 times to obtain the distribution of each beta value. Gaussian 668 

fitting was performed to define the centroid and the 95% confidence interval of each distribution of 669 

each beta, and then the 95% confidence interval was used to determine whether or not they were 670 

significantly different from zero (enabling us to maintain sparsity), with the centroid being used to 671 

define the final beta values of non-zero coefficient neurons to build the model. To evaluate the 672 

fitting and decoding performance of the obtained model, the prediction accuracy and the area under 673 
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the curve (AUC) of receiver operating characteristic curve (ROC) were calculated, respectively, 674 

revealing that those scores were very similar and highly correlated with each other (Fig. S5).  675 

Based on the above-described procedure, we next optimized the alpha values. Ideally, if all 676 

the informative neurons can be extracted into the selected CR ensembles, the remaining neurons 677 

should have poor decoding performance. According to this idea, to optimize the alpha value, after 678 

building a model at each alpha for each mouse (“AUC original” in Fig. S3A), we compared the 679 

difference in decoding performance between “AUC CRE-rem” and “AUC nonCRE-rem” (Figs. 680 

S3A). AUC CRE-rem is the AUC value calculated by an elastic net model built with the neurons, 681 

excluding the original CR ensemble neurons. On the other hand, AUC nonCRE-rem is the AUC 682 

value calculated by the neurons, excluding neurons other than original CR ensemble neurons, 683 

randomly selected, and the number of excluded neurons was the same as the number of original CR 684 

ensemble neurons (so that the number of neurons used to calculate AUC nonCRE-rem were set to 685 

be the same as that used for AUC CRE-rem calculation). The “AUC difference” (Fig. S3A) between 686 

those two values was calculated to estimate the degree of remaining information, and in principle, 687 

we defined the best alpha based on the maximum AUC difference for each mouse independently. 688 

In addition, for further statistical evaluation to define the optimal alpha as explained below, we 689 

repeated these procedures 10 times for both “AUC CRE-rem” and “AUC nonCRE-rem”.  690 

As shown in Fig. S3B, although the decoding performance of the original CR ensembles 691 

(i.e., AUC original in Fig. S3A) was not affected by the alpha (Fig. S3B, middle), the size of the 692 

CR ensemble was affected, and a smaller alpha generally resulted in a larger number of selected 693 

neurons for each CR ensemble (Fig. S3B, top), suggesting that the CR information might be 694 

redundantly encoded in the dmPFC as discussed in detail later. On the other hand, the influence of 695 

the alpha on the AUC difference was more complicated. As explained above, we defined the best 696 

alpha based on the maximum AUC difference for each mouse independently, but in some 697 

exceptional cases as shown in Fig. S3D (mouse #3), when the other alpha(s) showed a AUC 698 

difference(s) not significantly far from the maximum AUC difference, the alpha of the smallest of 699 

the ensembles among those alphas, i.e., largest alpha among them, was selected to avoid 700 

unnecessarily including additional neurons that did not improve the AUC difference (e.g. in mouse 701 

#3, alpha = 0.1, 0.05, 0.01 showed similar AUC differences and there was no statistically significant 702 

difference between them [Wilcoxon rank sum test, alpha of maximum AUC difference vs the other 703 

alpha, n=10 estimates for each calculated as explained above], so in this case, the largest alpha 0.1 704 

among those three was selected to define the CR ensemble for this mouse). 705 
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 These results revealed two important points. First, searching around the alpha value may be 706 

important in some cases. Considering this, we also searched alphas in the case of RL ensembles 707 

(Fig. S4), and found that there was no difference among the various alphas, for the RL ensembles, 708 

even if we tested an additional number of reference frames (means of the neural activities over the 709 

past or future several frames were used as neural activity data to predict a single label at each single 710 

time-point, which showed no significant difference from each other, evaluated by the Friedman test, 711 

a non-parametric statistical test similar to the parametric one-way repeated measures ANOVA). 712 

Therefore, in the present study, we fixed the alpha to define RL ensembles at 0.75 for most of the 713 

analyses, except for the data in Figs. S4 and S5, where we evaluated the influence of the alpha for 714 

RL ensembles.  715 

Second, fear memory triggering the CR might be redundantly encoded in the dmPFC. As 716 

discussed above, although decoding performance of the original CR ensembles was not affected by 717 

the alpha (Fig. S3B, middle), the size of the CR ensemble was affected, and a smaller alpha 718 

generally resulted in a larger number of selected neurons for each CR ensemble (Fig. S3B, top). In 719 

addition, when the alpha was fixed at alpha (A) =0.9 (a larger alpha (than 0.9) did not work for 720 

some circuits in our data), while the uniqueness of the CR ensembles was maintained and the ratio 721 

of the CR ensemble neurons overlapping with RL ensembles was 26.84% (Fig. S3E), which was 722 

very similar to the case of alpha-optimized CR ensembles (Fig. 3), the size of this CR ensemble 723 

(A=0.9) was two times smaller than that of the alpha-optimized CR ensembles (Fig. S3F). 724 

Importantly, 97.82% of the neurons selected at A=0.9 were also selected in the alpha-optimized CR 725 

ensembles (Fig. S3F), suggesting that the neurons selected at the largest alpha might be more 726 

reliable and robust for the decoding among all the informative neurons. In addition, even after the 727 

removal of such “core” neurons, the remaining neurons also possessed information for the CR (Figs. 728 

S3B, D), indicating that the CR information was redundantly encoded in the dmPFC. Because this 729 

redundancy was specific to the CR ensemble and not observed in the RL ensemble, it would be 730 

interesting to investigate possible changes in this redundancy when the memory is recalled as a 731 

long-term memory (e.g. 30 days after the memory consolidation).  732 

 To evaluate the dominance of the CR ensembles vs the RL ensembles, we applied the CR 733 

decoder to predict the RL, and vice versa (Figs. 3 and S5). 734 

 735 

CRF models to evaluate functional connectivity 736 

To evaluate the functional connectivity between neurons in the recorded network and the 737 

pattern completion capability of each neuron, we used conditional random fields (CRFs) as 738 
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described previously (30), which models the conditional probability distribution of a given neuronal 739 

ensemble firing together. We used CRFs to capture the contribution of specific neurons to the 740 

overall network activity defined by population vectors belonging to a given neuronal ensemble. We 741 

generated a graphical model in which each node represents a neuron in a given ensemble and edges 742 

represent the dependencies between neurons. For training, 80% of the recorded data randomly 743 

selected from all time frames was used, and for cross-validation, the remaining 20% was used. For 744 

this analysis, binned neural activity data (1 s) were used. The model parameters were determined 745 

by the local maximum of the likelihood function in the parameter space. We constructed a CRF 746 

model in two steps: (1) structure learning, and (2) parameter learning. For the structure learning, 747 

we generated a graph structure using ℓ1-regularized neighborhood-based logistic regression(31). 748 

Here λs is a regularization parameter that controls the sparsity (or conversely, the density) of the 749 

constructed graph structure, leaving only relevant functional connectivity, including both coactive 750 

and suppressive relationships. A previous study showed that this number of connections was 751 

enhanced as a result of optogenetic rewiring of the local network(31), demonstrating the reliability 752 

of the functional connectivity estimated by CRFs models. Therefore, we also calculated the ratio of 753 

these remaining connections per all the possible connections for each neuron as a “functional 754 

connectivity” score for each node, after carefully screening the optimal λs value by maximizing the 755 

log-likelihood of the observations at the following parameter learning step. When comparing the 756 

connectivity between different ensembles (e.g. within-CR-ensemble vs within-Non-CRE) or 757 

different cell types (e.g. USR vs non-US responsive neurons), we first calculated a whole network 758 

connectivity without separating the ensembles, and further separated them into different categories. 759 

To measure which neurons were the most informative for a given stimulus (CS+ or CS‒), we 760 

computed the standard ROC, taking as ground truth the timing of a particular CS. The AUC from 761 

the ROC curve that represents the performance of each neuron was calculated to compare the 762 

encoded information in different ensembles, different neuron types, and different days (e.g. before 763 

vs after the fear memory consolidation). As was recently demonstrated (30), high ranks for this 764 

value indicate high potential to recall the neural and cognitive representation of a given stimulus.   765 

 766 

Statistical Analysis  767 

Statistical analyses in the present study were performed as described above (in “Materials 768 

and Methods” as well as in the main text and figure legends). The data that support the findings of 769 

this study are available from the corresponding author upon reasonable request. Custom codes used 770 

to analyze data in this study are available from the corresponding author upon reasonable request. 771 
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 876 

 877 

 878 

Fig. 1. Cued fear conditioning during two-photon microscopy. (A) Schematic diagram showing 879 

the system used to perform the cued-fear conditioning and memory retrieval under a two-photon 880 

microscope. (B) (top) Experimental protocol. CS, conditioned stimulus; US, unconditioned 881 

stimulus; FC, fear conditioning. (bottom) An example of the changes in locomotion over time of a 882 

mouse on day (D) 4 (first four trials). (C-D) Fear conditioning under the microscope produced CS+-883 

specific memory consolidation. Comparisons of the locomotor speed between before the tone onset 884 

and during the tone presentation are shown in (C-D). Before the fear conditioning (on D3), the mice 885 

(N = 23) exhibited no significant change in locomotion during the CS+ and CS- presentations (C, 886 

left, and D). After the fear conditioning (i.e., during fear retrieval; the first four trials on D4), 887 

however, the CS+ suppressed locomotion as a CR, while the CS- induced no significant change (C, 888 

right, and D). After repeated presentations of the CS+ (fear extinction; 5th-12th trials on D4), the 889 

CS+-evoked CR became smaller until no significant change in locomotion was observed upon CS+ 890 

presentation (D). (E) Statistical comparison among responses to the CS- and those to the CS+ at 891 

each testing phase on D4 during the tone presentation revealed that locomotion during CS+ was 892 

significantly lower only during trials 1–4 on D4, and not after repeated presentations to the CS+ 893 

(5th-12th trials). Note that locomotion during pre-tone-onset (before) was not significantly different 894 

between the CS- and CS+ conditions. *p<0.05; **p<0.01; n.s., not significant by Wilcoxon signed-895 

rank test (the Friedman test followed by post-hoc multiple comparisons revealed similar results for 896 

panel E). Error bars, s.e.m.  897 
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  900 

Fig. 2. Longitudinal in vivo imaging in dmPFC and extraction of the neural ensemble 901 

encoding conditioned responses. (A) Microprism implantation along the midline for optical 902 

access to the dmPFC without cutting nerves. To visualize activity of excitatory neurons in the 903 

dmPFC, GCaMP6f was expressed by the AAV under the regulation of the CamKII promoter. (B) 904 

In vivo two-photon microscopy to detect single-cell neural activity visualized by GCaMP6f, 905 

chronically (day [D] 3 and D4) from the same set of neurons observed through the prism. See also 906 

Movie S1 and 2. Scale bar, 250 m. (C) Traces of spontaneous Ca2+ activity from 10 example 907 

neurons in dmPFC, chronically on D3 and D4. (D) Summary of neural responses during the retrieval 908 

session (D4-early [D4E], mean of first three trials) to the CS+ or CS-. Mean of neural responses in 909 

each category (significantly activated [bright red or blue], inactivated [dark red or blue], and others 910 

[dark gray]), as well as the mean of all cells (light gray) are plotted. (E) Scatter plot showing 911 

responses of individual neurons to the CS+ and CS- in an example mouse during D4E. Each dot 912 

represents the mean response of each neuron. Blue, red, and green colors indicate that cells had a 913 

significant response as described in the panel. These features for all the mice are summarized in 914 

panel E. (F) Summary of response profiles at each phase (D3E, D3-late [D3L], and D4E, 915 

respectively; N=7 chronically recorded mice). (G) Schematic diagram showing how we extracted 916 

the CR ensembles. See the Materials and Methods for details. (H) An example of the CR ensemble 917 
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and encoded neural representation of the behavior. (left) Extracted neurons are drawn with a bold 918 

margin, and the mean activity during CR (freezing) is shown in color. (right) Time course changes 919 

of neural representation encoded by the CR ensemble shown in the left panel. Black dots on the top 920 

of the graph and pink color in the graph indicate the timing of the actual CR, while the blue line 921 

shows information decoded by this CR ensemble. The plots show a part of the whole length of the 922 

data, and overall decoding accuracy was 97.36% in this example. TP, time points (i.e., image 923 

frames).  924 

  925 
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  926 

Fig. 3. Emergence of unique CR ensembles after fear conditioning. (A) The CR ensemble was 927 

compared with the RL ensemble to evaluate the uniqueness. (B) An example Venn diagram and an 928 

example spatial map showing the overlap between CR ensemble neurons and RL ensemble neurons 929 

in an example mouse. (C) Summary of the overlap between the CR ensemble neurons and RL 930 

ensemble neurons of all mice (N=7, n=1165 neurons). (D-F) Decoding locomotion during regular 931 

locomotion (inter-trial interval) or during CS+ by the RL ensemble. (D) In an example mouse, an 932 

RL ensemble (RLE) that showed high accuracy for decoding performance to predict RL (top) also 933 

showed high decoding performance in predicting locomotion during CS+ at day 3-early (D3E). But 934 

the performance dropped when locomotion during CS+ at D4E (i.e., during fear retrieval) was also 935 

predicted by the RL ensemble. (E) Original decoding performance of the RL ensembles (i.e., 936 

predictability for RL) were not significantly different between D3 and D4. (F) (left) Decoding 937 

performance of RL ensembles to locomotion during CS+ at D4E (i.e., during fear retrieval) was 938 

significantly lower than that for D3E (i.e., before memory consolidation). (right) The change in 939 

decoding performance was systematically evaluated. Decoding performance was not significantly 940 

different between D3E and D3-late (D3L), or between D3E and D4L. (G) Decoding locomotion 941 

during CS+ by CR ensembles. Decoding performance was significantly decreased when the CR 942 

ensembles were applied to predict RL. Within D3, N=10; D3 vs D4 and within D4, N=7 pairs. A 943 

non-paired comparison (Wilcoxon rank sum test) was performed for panel D, while for the other 944 

comparisons in E and F, a paired permutation test was performed. For the decoding performance, 945 

we plotted the accuracy scores, while the AUC was very similar as shown in Fig. S5. **p<0.01; 946 

n.s., not significant. Red bars, median; box in panel E (left) indicates 25th and 75th percentiles.  947 
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Fig. 4. Enhanced functional connectivity and CS+ predictability in the CR ensemble with an 951 

emergent hub of US responsive neurons after fear conditioning. (A) Functional connectivity 952 

between neurons in an example circuit. Among all the possible connections for all pairs of neurons, 953 

the CRF model enables the estimation of functional connections, as well as the dependencies of 954 

connected pairs. In this panel, the top 50% edge potentials were visualized. (B) During day 4-early 955 

[D4E], the functional connectivity within CRE was significantly higher than that of Non-CRE. (C) 956 

During D4E, the predictability for CS+ in CRE was also significantly higher than that in Non-CRE. 957 

(D) Change in functional connectivity within CRE of an example circuit. This is the same as the 958 

circuit shown in A, but only the connectivity of the CRE neurons marked by the red ellipses were 959 

analyzed. Left panel shows the change in the connectivity between day 3-early [D3E] and D4E, 960 

while the right panel shows the change in the ratio of functional connectivity per all possible 961 

connections for individual nodes (i.e., individual neurons). (E) Summary of changes in functional 962 

connectivity and cellular decoding performance for CS+ and CS- of all observed networks (N=7 963 

mice). Differences (D4E minus D3E) of these scores are plotted as a result of bootstrap resampling 964 

(2000 times) to compare CRE and Non-CRE, or CRE-noRLE (CRE neurons excluding those 965 

overlapping with RL ensemble neurons) and Non-CRE. (F) A part of the recorded neurons in the 966 

dmPFC showed increased activity upon US presentation on day 3 (D3) during fear conditioning. 967 

Mean activity over 7 trials of all (top) or US-responsive (middle) neurons, and the mean ± s.e.m. of 968 

respective categories (bottom) are plotted. Green dotted line indicates the onset of the US, and 969 

yellow bar indicates the 1-s duration of the US presentation. (G) Summary of US responses of CR 970 

ensemble neurons (CRE) and others (Non-CRE). All individual neurons for the respective 971 

categories are plotted. (H) Neurons responding to the US on D3 were predominantly involved in 972 

the CRE on D4 after the fear conditioning. The difference between CRE vs Non-CRE, as well as 973 

CRE-noRLE vs Non-CRE, was statistically evaluated. (I) Comparison of functional connectivity 974 

between US responsive neurons (USR) and others (nonUSR) on D4. In the CRE network, USR 975 

became more connected within the network than nonUSR, while there was no significant difference 976 

between USR and nonUSR outside of the CRE (Non-CRE). (J) The higher connectivity of USR on 977 

D4 was experience-dependent. Functional connectivity of USR on D4 was significantly higher in 978 

CRE, while there was no significant difference between them in Non-CRE. (K) USR in the CRE 979 

exhibited significantly higher decoding performance of CS+ than nonUSR, which was not the case 980 

in Non-CRE. A paired permutation test was used for the statistics in B and C. The Wilcoxon signed-981 

rank test was used for the statistics in D. The data obtained by bootstrap resampling were 982 

statistically analyzed as described in the Materials and Methods. Because the number of USR was 983 

limited (only 5.63% under the present definition), the analyses shown in panels F-K were performed 984 

with data pooled together from all mice (N=7 mice). Fisher's exact test was used for the statistics 985 

in H, a non-paired comparison (Wilcoxon rank sum test) was used in I and K, and the Wilcoxon 986 

signed-rank test was used in J.  *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; n.s., not 987 

significant. Red bars, median; gray boxes in panels D, E, I-K indicate 25th and 75th percentiles.  988 
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 993 

Supplementary Materials 994 

 995 

Supplementary Materials (Figs. S1 to S8, and caption for Movies S1 and S2) are explained 996 

in a separate document. 997 
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