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Abstract 
Current approaches to de novo design of proteins harboring a desired binding or catalytic motif 

require pre-specification of an overall fold or secondary structure composition, and hence 

considerable trial and error can be required to identify protein structures capable of scaffolding 

an arbitrary functional site. Here we describe two complementary approaches to the general 

functional site design problem that employ the RosettaFold and AlphaFold neural networks 

which map input sequences to predicted structures. In the first “constrained hallucination” 

approach, we carry out gradient descent in sequence space to optimize a loss function which 

simultaneously rewards recapitulation of the desired functional site and the ideality of the 

surrounding scaffold, supplemented with problem-specific interaction terms, to design candidate 

immunogens presenting epitopes recognized by neutralizing antibodies, receptor traps for 

escape-resistant viral inhibition, metalloproteins and enzymes, and target binding proteins with 

designed interfaces expanding around known binding motifs. In the second “missing information 

recovery” approach, we start from the desired functional site and jointly fill in the missing 

sequence and structure information needed to complete the protein in a single forward pass 

through an updated RoseTTAFold trained to recover sequence from structure in addition to 

structure from sequence. We show that the two approaches have considerable synergy, and 
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AlphaFold2 structure prediction calculations suggest that the approaches can accurately 

generate proteins containing a very wide array of functional sites.  

Main text 

The biochemical functions of proteins are generally carried out by a small number of residues in 

a protein which constitute a functional site--for example, an enzyme active site or a protein or 

small molecule binding site--and hence the design of proteins with new functions can be divided 

into two steps. The first step is to identify functional site geometries and amino acid identities 

which produce the desired activity--this can be done using quantum chemistry calculations in 

the enzyme case (to identify ideal theozymes for catalyzing a desired reaction) (1–3) or 

fragment docking calculations in the protein binder case (4, 5); alternatively functional sites can 

be extracted from native protein having the desired activity (6, 7). In this paper, we focus on the 

second step:  given a functional site description from any source, design an amino acid 

sequence which folds up to a three dimensional structure containing the site. Methods have 

been developed for functional site scaffolding for sites made up of one or two contiguous chain 

segments (6–10), but with the exception of helical bundles (8) these do not extend readily to 

more complex sites composed of three or more chain segments. Current methods also have the 

limitations that assumptions must be made about the secondary structure of the scaffold, and 

that the amino acid sequence must be generated in a subsequent sequence step, so there is no 

guarantee that the generated backbones are in fact designable (encodable by some amino acid 

sequence). 

An ideal method for functional de novo protein design would 1) embed the functional site with 

minimal distortion in a designable scaffold protein; 2) be applicable to arbitrary site geometries, 

searching over all possible scaffold topologies and secondary structure compositions for those 

optimal for harboring the specified site, and 3) jointly generate backbone structure and amino 

acid sequence. We reasoned that the trRosetta neural network (11), which maps input 
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sequences to predicted structures, could be adapted for this purpose. Completely new proteins 

can be designed using trRosetta by starting from a random amino acid sequence, and carrying 

out Monte Carlo sampling in sequence space maximizing the probability that the sequence folds 

to some (unspecified) three dimensional structure (12). We refer to this process as 

“hallucination” as it produces solutions that the network considers ideal proteins but do not 

correspond to any actual natural protein  (Fig. 1A); crystal and NMR structures confirm that the 

hallucinated sequences fold to the hallucinated structures (12). trRosetta can also be used to 

design sequences that fold into a target backbone structure by carrying out sequence 

optimization using a structure recapitulation loss function that rewards similarity of the predicted 

structure to the target structure (13). We sought to extend this approach to scaffold functional 

sites using trRosetta by sampling in sequence space with a combination of the hallucination loss 

to favor folding to a unique structure, and a structure recapitulation loss to favor formation of the 

desired functional site (rather than the entire structure as in (13); Fig. 1B; Methods). While we 

succeeded in generating structures that had segments which closely recapitulated functional 

sites, Rosetta structure predictions suggested that the sequences poorly encoded the 

structures, and hence we used Rosetta design calculations to generate more optimal 

sequences (14). Several designs targeting PD-L1 generated by constrained hallucination with 

binding motifs derived from PD-1, followed by Rosetta design, were found to have binding 

affinities in the mid-nanomolar range (Fig. S1). While this experimental validation is 

encouraging, the requirement for sequence design using Rosetta is at odds with property (3) 

above-the joint design of sequence and structure. 

We found following the development of RosettaFold (15) that using it, rather than trRosetta, to 

guide motif-constrained hallucination resulted in designed protein sequences that more strongly 

encoded their structures (Fig. S2), likely reflecting the better overall modeling of protein 

sequence-structure relationships evidenced by the superior structure prediction performance 
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(15). Constrained hallucination with RosettaFold has the further advantages that since 3D 

coordinates are explicitly modeled (trRosetta only generates residue-residue distances and 

orientations), motif recapitulation can be assessed at the coordinate level, and additional 

problem-specific loss terms can be implemented in coordinate space that assess interactions 

with a protein target (Fig. 1B, 1D).   

In the following sections, we explore the use of the constrained RosettaFold hallucination 

method to design proteins containing a wide range  of functionally diverse motifs (Fig. 2-4, Table 

S1).  It is impractical to experimentally validate many designs for many different applications; we 

instead evaluate these designs using the AlphaFold (AF) protein structure prediction network 

(16) which has very high accuracy on de novo designed proteins (17). Although RoseTTAFold 

was inspired by AF, the two models were developed and trained independently, and hence AF 

predictions can be regarded as an orthogonal in silico test of whether RF designed sequences 

fold into the intended structures, analogous to traditional ab initio folding benchmarks (13, 18). 

For almost all problems, we obtained designs that are closely recapitulated by AF with overall 

and motif RMSD typically <2 � and <1 � respectively with model confidence pLDDT > 80 

(Table S2).  While solving current challenges with protein design clearly requires making and 

characterizing proteins in the lab, this in silico AF test is well suited for testing performance of 

design methods on a wide range of problems, and is quite stringent, as discussed below.  

Hallucinating immunogen candidates and receptor traps 

We first applied the constrained hallucination method to the problem of antigen presentation for 

immunogen design, where the goal is to scaffold a native epitope recognized by a neutralizing 

antibody as accurately as possible (and thus elicit antibodies binding the target protein upon 

immunization).  Additional interactions with the target antibody are undesirable because the goal 

is to elicit antibodies recognizing the original antigen, and hence we incorporate an additional  

repulsive term assessed on the complex 3D coordinates in the composite loss function to 
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penalize interactions with the antibody beyond those present in the epitope being scaffolded 

(Fig. 1D, S3).  As a test case, we focused on respiratory syncytial virus, a leading cause of 

infant mortality whose F protein (RSV-F) contains antigenic epitopes for which structures with 

neutralizing antibodies have been determined (7, 9, 10). We sought to scaffold RSV-F site II, a 

contiguous helix-turn-helix motif that had previously been grafted successfully onto a 3-helix 

bundle architecture (7), as well as RSV-F site V, a helix-turn-strand motif that has not yet been 

scaffolded successfully (19). We were able to hallucinate designs for both epitopes with a 

variety of folds and motifs recapitulated to sub-angstrom C� RMSD in the AF predicted 

structure of the designed sequence (Fig. 2A, Fig. S8, S11; for these and all designs below, full 

amino acid sequence and PDB files are in the SM, and comparisons of the design models to AF 

predictions, in Fig. S8-10--since they are virtually identical, to save space we show only one of 

these in the main text figures).  

We next applied the hallucination method to the design of receptor traps, which neutralize 

viruses by mimicking their natural binding targets and thus are inherently robust against 

mutational escape. We again augmented the loss function with an explicit penalty on 

interactions beyond those present in the receptor to avoid opportunities for viral escape.  As a 

test case,  we scaffolded the interfacial helix of human angiotensin-converting enzyme 2 

(hACE2) interacting with the receptor-binding domain (RBD) of severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) spike protein (20). The hallucinated hACE2 mimetics 

have a diverse set of helical topologies, and AF2 structure predictions recapitulate the binding 

interface with sub Å accuracy (Fig. 2B, S8, S10).   

Hallucinating metal binding and enzyme active sites 

We next explored the scaffolding of functional sites involved in metal-binding and catalysis. We 

designed scaffolds around a di-iron binding site, which is important in biological systems for iron 

storage (21) and also potentially harnessable for catalysis (22, 23). The motif, composed of four 
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roughly parallel helical segments from E. coli bacterioferritin (cytochrome b1), was recapitulated 

with sub-angstrom RMSDs (Fig. 3A), in scaffolds with quite different helix connectivities than the 

parent (Fig. S9). For the calcium-binding EF-hand motif (24) composed of a 12 residue loop 

flanked by helices, the hallucination method readily generates a variety of scaffolds 

recapitulating either 1 or 2 EF-hand motifs within 0.5 Å RMSD of the calcium binding motif (Fig. 

3C). When tasked with scaffolding one EF-hand motif, the method chooses to buttress the loop 

with a helix, avoiding the need for another long loop.   

We next sought to hallucinate enzyme active sites. Carbonic anhydrase II, which catalyzes the 

interconversion of carbon dioxide and bicarbonate, enables CO2 transport in humans (25), plays 

a key role in photosynthesis (26), and is emerging as a tool for CO2 sequestration (27). The 

active site contains 3 Zn2+ coordinating histidines (PDB ID 5yui: His94,His96,His119) on two 

strands, and a hydrophobic loop containing Thr199 which sequesters and orients the CO2. 

Despite the complexity of the irregular, discontinuous, 3 segment site, the method generated 

designs with sub angstrom motif RMSDs with correct His placement for Zn2+ coordination (Fig. 

3E, S9); these are less than 100 residues, significantly smaller than the 261 residue long native 

protein. 

To enable specification of sidechain geometry, we carried out iterative gradient descent using 

gradient information obtained by backpropagation through the AF neural network rather than 

RF, which currently does not explicitly model side chains (see Methods).  As a test, we used the 

catalytic sidechain geometry of Δ5-3-ketosteroid isomerase (1QJG: residues 14, 38, 99), which 

catalyzes the isomerization of Δ5- to Δ4-3-ketosteroid needed for synthesis of steroid hormones 

in mammals (28).   In initial experiments, we were only able to obtain designs that fully 

recapitulated the catalytic sidechain geometry when optimization was over a multiple sequence 

alignment rather than a single sequence; the landscape may be too rugged with the high 

resolution sidechain-based loss in the single sequence case.   To overcome this problem, we 
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developed a two-stage approach; with a first stage using both AF and trRosetta (to reduce the 

structure-prediction resolution and thus smoothen the loss landscape) and a description of the 

active site at the backbone level, followed by a second all-atom AF-only stage once the overall 

backbone was roughly in place.  This two-stage approach led to multiple plausible solutions with  

predicted structures having a nearly exact match to the catalytic sidechain geometry  (Fig. 3G, 

S9); however, we cannot use AF as an independent test of design accuracy in this case (given 

the very large number of model parameters, direct optimization against the output of a neural 

network has the potential to identify false optima, and hence independent in silico validation is 

important). 

Hallucinating protein-protein interfaces 

We next sought to design binding proteins which extend beyond an input binding motif to make 

additional favorable interactions with the target by explicitly including the sequence and 

structure of the target in the hallucination process (Figs S6, Methods). We designed binders of 

the anti-inflammatory cytokine interleukin 10 (IL-10) �-receptor that incorporate one of the two 

discontinuous binding sites in the domain-swapped IL10 dimer in a single chain; the resulting 

scaffolds recapitulate the IL10 binding region within 0.5A (Fig. 4A, S10).  Starting from the 

complement cascade protein C3d which enhances immune responses to covalently attached 

antigens (29) we designed binders to complement receptor 2 (CR2) present on B-cell and 

dendritic cells (30).  The designs are much smaller (<100 AAs) than native C3d (306 AAs), 

recapitulate the binding interface with sub angstrom accuracy (Fig. 4B, S6C).  

As a test of building around beta strand motifs, we sought to design binders of the immune 

checkpoint protein CTLA-4 starting from B7-2, which binds CTLA-4 through four beta strands. 

Starting from a single five residue strand, hallucination in the presence of CTLA-4 generated 

designs having both alpha-beta and all beta topologies with novel binding modes and 

comparable interface contacts to native B7-2 (Fig. 4C, S10).  As expected, designs hallucinated 
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in the presence of the target had considerably better Rosetta protein-protein interface metrics 

(4) (binding free energy, etc) than those designed without the receptor (Fig. S6).   

Generalized protein function design by missing information recovery using RoseTTAFold 

While quite powerful and general, the constrained hallucination approach is compute intensive, 

as a forward and backward pass through the network is required for each gradient descent step 

in sequence optimization. In the original training of RosettaFold for structure prediction a small 

fraction (15%) of tokens in the MSA are masked, and the network learns to recover this missing 

sequence information in addition to predicting structure. We reasoned that this ability to recover 

sequence information along with structural information could provide a second solution to the 

functional site scaffolding problem: given a functional site description, a forward pass through 

the network could potentially be used to complete, or “inpaint”, both protein sequence and 

structure (Fig. 1C; Methods). Here, the design challenge is formulated as an information 

recovery problem, analogous to the completion of a sentence given its first few words using 

language models (31) and completion of corrupted images using inpainting methods (32). As 

illustrated in Fig. 1E, a wide variety of protein structure prediction and design challenges can be 

similarly formulated as missing information recovery problems. We began from a RoseTTAFold 

model trained for structure prediction (15) and carried out further training on both fixed-

backbone sequence design and fixed-sequence structure prediction tasks (Methods; Fig. S13; 

Algorithm S1). After training, the mean amino acid sequence recovery of the resulting model, 

denoted RFjoint, on a de novo protein test set was 33% (Fig. 5A; this is similar to Rosetta fixed 

backbone design performance), and there was also a slight increase in structure prediction 

accuracy (Fig. 5B). Thus, the model can both recover missing structure information given 

sequence and missing sequence information given structure. 

We next considered design challenges where both sequence and structure information were 

missing for a portion of the protein. For smaller masked regions, the sequences and structures 
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recovered by RFjoint are close to those of the input native structure, and as the size of the 

masked regions increases the divergence of both sequence and structure increases as 

expected (Fig. S14). The extent of variation in the resulting designs can be controlled by the 

amount of input sequence and structure information provided (Fig. S18C). Since the 

calculations require a single forward pass (including recycling outputs back as input) through the 

network, only 1-10 seconds on an NVIDIA RTX2080 GPU (Methods) are required to generate 

both sequence and structure.  

Encouraged by the excellent performance of RFjoint on simultaneous sequence and structure 

recovery despite being only trained on recovery of one or the other, we sought to improve this 

further by explicitly training on joint sequence/structure recovery tasks. Sequence and structure 

diversity is useful when designing proteins containing functional motifs, as subtle variations in 

the structure of the motif can drastically affect function (33), and hence we trained this new 

model to predict the sequence and structure of masked regions between two provided residue 

coordinates, in the absence of structural and sequence information of the residues flanking the 

two residue coordinates (to force the model to place structural elements based more on larger 

protein context than the local structure of the immediately connected chain segments). With this 

second model, which we call RFjoint2, the two residue coordinates can, at inference time, be 

varied, enabling the rapid generation of further sequence/structure diversity (Fig. 5D; a similar 

problem has been explored using Rosetta (33)). Of note, the degree of diversification in the 

inpainted region can be controlled by varying the distance by which the two residue coordinates 

are translated (Fig. 5D, left panel), while the structure of the templated (unmasked) protein 

remains remarkably stable. 

We next explored the use of RFjoint and RFjoint2 to generate complete protein structures around 

the functional sites described in Figs 2-4, and found that success depended on the size and 

context of the input functional regi 
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on.  With the RFjoint model, we found that best results were obtained for the more minimalist 

functional sites by first building up extended versions using the constrained hallucination 

approach. Many alternative structure and sequence completions can then be generated by 

RFjoint in a network forward pass (Figure 6A, Figure S18). Almost all designs shown have sub-

angstrom RMSD from the AF prediction to the native motif and <2 Å RMSD between design 

model and AF prediction (Fig. 6A, Fig. S19), and > 80 pLDDT. Diverse ensembles of such 

solutions to a specific design challenge can be very rapidly generated by varying the input 

sequence and structure information (Fig. S18). While RFjoint struggled to generate well-predicted 

proteins from native/minimalist motifs, we found that RFjoint2 was able to generate complete and 

confidently-predicted (by AF2) protein models from smaller regions, such as a single EF hand 

motif (Fig. S18B). Further, RFjoint2 could simultaneously scaffold two motifs while retaining good 

(<1  Å RMSD) alignment to both (Fig. 6B, top row). Remarkably, in some cases, RFjoint2 was 

able to generate well-predicted scaffolds to complex, multi-chain motifs taken directly from a 

native crystal structure (Fig. 6B, middle and bottom row), as well as translationally symmetric 

proteins (Fig. S20), provided little more than the desired motif, in a single forward pass through 

the network.  

Tests on the full range of challenges described here suggest that the two function design 

approaches are complementary: the constrained hallucination approach can build protein 

structures harboring minimalist functional sites but is quite compute and memory intensive since 

it requires a forward and backward pass (to generate gradient information to guide sequence 

optimization) through the neural network at each step of sequence optimization (Methods), while 

the missing information recovery method in most but not all cases requires extended functional 

site description but is much less compute intensive, and generally outperforms the hallucination 

method when more starting information is provided, as illustrated by the lower RMSDs on 

constrained regions (Fig. S15).  This difference in performance can be understood by 
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considering the manifold in sequence-structure space corresponding to folded proteins; the 

space of all possible sequence-structure pairs is far larger than the set of sequence-structure 

pairs of folded proteins, and hence this manifold occupies a tiny fraction of the overall space.  

The missing information recovery approach can be viewed as projecting an incomplete or 

corrupted input sequence-structure pair onto the subset of this manifold (as represented by 

RosettaFold) containing the functional site--if insufficient starting information is provided, this 

projection is not necessarily well determined, but with sufficient information, it readily produces 

protein-like solutions, updating sequence and structure information simultaneously.  The loss 

function used in the hallucination approach is constructed with the goal that minima lie in the 

protein manifold, but there will likely not be a perfect correspondence, and hence stochastic 

optimization of the loss function in sequence space may not produce as protein-like solutions as 

the inpainting approach-- on the other hand, since stochastic search can be initiated from any 

starting point, the hallucination approach can start from minimalist functional site descriptions, 

or, as in the fully unconstrained case (12), no sequence and structural information at all. 

Evaluation of designs using AF2 

New protein design methods have traditionally been evaluated by experimental testing, and for 

actual applications it is essential to make and characterize proteins in the lab.  The high 

structure prediction accuracy of AF2 now enables evaluation of new design methodology in 

silico, which has the considerable advantage that a much wider variety of design challenges can 

be evaluated.   In the work described here, AF2 was not used for any of the design calculations 

except for the sidechain active site design case of Fig. 3E, and hence provides an independent 

test of design accuracy.   Both the backbone design challenge--generating a plausible protein 

backbone with a geometry capable of hosting a desired site, and the sequence design 

challenge--generating a sequence which strongly encodes this backbone, are quite formidable.   

For the backbone design problem, the very large set of structures predicted for naturally 
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occurring proteins using AF and recently made available (34) provides an excellent point of 

comparison: for the RSV-F site V immunogen design challenge described above, the frequency 

of non-homologous proteins in the AF proteomes database and the Protein Data Bank (PDB) 

(35) matching the functional site with equal or lower RMSDs than our designs was 3.9x10-6 (Fig. 

S17; Supplementary Text); similarly low frequencies of suitable natural scaffolds in the PDB 

were observed for other targets (Table S3). For the sequence design problem, the accuracy of 

native protein structure prediction based on single amino acid sequences provides a point of 

comparison; as shown in Fig. S16, our designs are predicted more confidently from sequence 

than the vast majority of native proteins with known crystal structures, and on par with 

structurally validated de novo designed proteins. This success in designing sequences 

confidently predicted to fold to structures harboring a wide range of functional sites derives in 

part from a key advance over classical protein design pipelines, which treat backbone 

generation and sequence design as two separate problems: our methods simultaneously 

generate both sequence and structure, taking advantage of the ability of RoseTTAFold to 

reason over and jointly optimize both data types. 

Conclusions 

The deep learning methods presented here are quite general, requiring no inputs other than the 

structure and sequence of the desired functional site, and unlike current non-deep-learning 

methods, do not require specification of the secondary structure or topology of the scaffold, and 

simultaneously generate both sequence and structure.   Despite a recent surge of interest in 

using machine learning to design protein sequences (36–43), the design of protein structure is 

relatively underexplored, likely due to the difficulty of efficiently representing and learning 

structure (44). Generative adversarial networks (GANs) and variational autoencoders (VAEs) 

trained on specific fold families have been used to design biophysically plausible protein 

backbones (45, 46), but not ones containing functional sites. RoseTTAFold and Alphafold have 
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been trained on the entire PDB, and thus generalize from a very wide range of known protein 

structures. Our “activation maximization” hallucination approach enables use of arbitrary loss 

functions tailored to specific problems without retraining for any sequence length. 

Complementary to this, the ability of our “missing information recovery” inpainting approach to 

expand from a given functional site to generate a coherent sequence-structure pair should find 

wide application in protein design because of its speed and generality. The combination of the 

two approaches is more powerful than either one alone, as ensembles of solutions to a given 

functional design problem can be generated very rapidly using the second approach starting 

from extended site descriptions identified in the first. The hallucination approach could, in 

theory,  also be used to refine the more extensive designs generated by inpainting. The two 

approaches individually, and the combination of the two, should increase in power as more and 

more accurate protein structure, interface, and small molecule binding prediction networks are 

developed moving forward.  

References 
1.  O. Khersonsky, A. M. Wollacott, L. Jiang, J. Dechancie, J. Betker, J. L. Gallaher, E. A. 

Althoff, A. Zanghellini, O. Dym, S. Albeck, K. N. Houk, D. S. Tawfik, D. Baker, Kemp 
elimination catalysts by computational enzyme design. 453 (2008), 
doi:10.1038/nature06879. 

2.  L. Jiang, E. A. Althoff, F. R. Clemente, L. Doyle, D. Röthlisberger, A. Zanghellini, J. L. 
Gallaher, J. L. Betker, F. Tanaka, C. F. Barbas, D. Hilvert, K. N. Houk, B. L. Stoddard, D. 
Baker, De Novo Computational Design of Retro-Aldol Enzymes. Science. 319, 1387–1391 
(2008). 

3.  J. B. Siegel, A. Zanghellini, H. M. Lovick, G. Kiss, A. R. Lambert, J. L. St. Clair, J. Gallaher, 
D. Hilvert, M. H. Gelb, B. L. Stoddard, K. N. Houk, F. E. Michael, D. Baker, Computational 
Design of an Enzyme Catalyst for a Stereoselective Bimolecular Diels-Alder Reaction. 
Science. 329 (2010), doi:10.1126/science.1190239. 

4.  L. Cao, B. Coventry, I. Goreshnik, B. Huang, J. S. Park, K. M. Jude, I. Marković, R. U. 
Kadam, K. H. G. Verschueren, K. Verstraete, S. T. R. Walsh, N. Bennett, A. Phal, A. Yang, 
L. Kozodoy, M. DeWitt, L. Picton, L. Miller, E.-M. Strauch, S. Halabiya, B. Hammerson, W. 
Yang, S. Benard, L. Stewart, I. A. Wilson, H. Ruohola-Baker, J. Schlessinger, S. Lee, S. N. 
Savvides, K. C. Garcia, D. Baker, “Robust de novo design of protein binding proteins from 
target structural information alone” (2021), p. 2021.09.04.459002, , 
doi:10.1101/2021.09.04.459002. 

5.  A. A. Chevalier, D. Silva, G. J. Rocklin, R. Derrick, R. Vergara, P. Murapa, S. M. Bernard, 
L. Zhang, G. Yao, C. D. Bahl, S. Miyashita, I. Goreshnik, T. James, M. Bryan, D. A. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.11.10.468128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468128
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fernández-velasco, L. Stewart, M. Dong, X. Huang, Massively parallel de novo protein 
design for targeted therapeutics. Nat. Publ. Group (2017), doi:10.1038/nature23912. 

6.  E. Procko, G. Y. Berguig, B. W. Shen, Y. Song, S. Frayo, A. J. Convertine, D. 
Margineantu, G. Booth, B. E. Correia, Y. Cheng, W. R. Schief, D. M. Hockenbery, O. W. 
Press, B. L. Stoddard, P. S. Stayton, D. Baker, A Computationally Designed Inhibitor of an 
Epstein-Barr Viral Bcl-2 Protein Induces Apoptosis in Infected Cells. Cell. 157, 1644–1656 
(2014). 

7.  B. E. Correia, J. T. Bates, R. J. Loomis, G. Baneyx, C. Carrico, J. G. Jardine, P. Rupert, C. 
Correnti, O. Kalyuzhniy, V. Vittal, M. J. Connell, E. Stevens, A. Schroeter, M. Chen, S. 
MacPherson, A. M. Serra, Y. Adachi, M. A. Holmes, Y. Li, R. E. Klevit, B. S. Graham, R. T. 
Wyatt, D. Baker, R. K. Strong, J. E. Crowe, P. R. Johnson, W. R. Schief, Proof of principle 
for epitope-focused vaccine design. Nature. 507, 201–206 (2014). 

8.  D.-A. Silva, S. Yu, U. Y. Ulge, J. B. Spangler, K. M. Jude, C. Labão-Almeida, L. R. Ali, A. 
Quijano-Rubio, M. Ruterbusch, I. Leung, T. Biary, S. J. Crowley, E. Marcos, C. D. Walkey, 
B. D. Weitzner, F. Pardo-Avila, J. Castellanos, L. Carter, L. Stewart, S. R. Riddell, M. 
Pepper, G. J. L. Bernardes, M. Dougan, K. C. Garcia, D. Baker, De novo design of potent 
and selective mimics of IL-2 and IL-15. Nature. 565, 186–191 (2019). 

9.  F. Sesterhenn, C. Yang, J. Bonet, J. T. Cramer, X. Wen, Y. Wang, C.-I. Chiang, L. A. 
Abriata, I. Kucharska, G. Castoro, S. S. Vollers, M. Galloux, E. Dheilly, S. Rosset, P. 
Corthésy, S. Georgeon, M. Villard, C.-A. Richard, D. Descamps, T. Delgado, E. Oricchio, 
M.-A. Rameix-Welti, V. Más, S. Ervin, J.-F. Eléouët, S. Riffault, J. T. Bates, J.-P. Julien, Y. 
Li, T. Jardetzky, T. Krey, B. E. Correia, De novo protein design enables the precise 
induction of RSV-neutralizing antibodies. Science. 368 (2020), 
doi:10.1126/science.aay5051. 

10.  C. Yang, F. Sesterhenn, J. Bonet, E. A. van Aalen, L. Scheller, L. A. Abriata, J. T. Cramer, 
X. Wen, S. Rosset, S. Georgeon, T. Jardetzky, T. Krey, M. Fussenegger, M. Merkx, B. E. 
Correia, Bottom-up de novo design of functional proteins with complex structural features. 
Nat. Chem. Biol., 1–9 (2021). 

11.  J. Yang, I. Anishchenko, H. Park, Z. Peng, S. Ovchinnikov, D. Baker, Improved protein 
structure prediction using predicted interresidue orientations. Proc. Natl. Acad. Sci. (2020), 
doi:10.1073/pnas.1914677117. 

12.  I. Anishchenko, T. M. Chidyausiku, S. Ovchinnikov, S. J. Pellock, D. Baker, bioRxiv, in 
press, doi:10.1101/2020.07.22.211482. 

13.  C. Norn, B. I. M. Wicky, D. Juergens, S. Liu, D. Kim, D. Tischer, B. Koepnick, I. 
Anishchenko, F. Players, D. Baker, S. Ovchinnikov, Protein sequence design by 
conformational landscape optimization. Proc. Natl. Acad. Sci. 118 (2021), 
doi:10.1073/pnas.2017228118. 

14.  D. Tischer, S. Lisanza, J. Wang, R. Dong, I. Anishchenko, L. F. Milles, S. Ovchinnikov, D. 
Baker, bioRxiv, in press, doi:10.1101/2020.11.29.402743. 

15.  M. Baek, F. DiMaio, I. Anishchenko, J. Dauparas, S. Ovchinnikov, G. R. Lee, J. Wang, Q. 
Cong, L. N. Kinch, R. D. Schaeffer, C. Millán, H. Park, C. Adams, C. R. Glassman, A. 
DeGiovanni, J. H. Pereira, A. V. Rodrigues, A. A. van Dijk, A. C. Ebrecht, D. J. Opperman, 
T. Sagmeister, C. Buhlheller, T. Pavkov-Keller, M. K. Rathinaswamy, U. Dalwadi, C. K. 
Yip, J. E. Burke, K. C. Garcia, N. V. Grishin, P. D. Adams, R. J. Read, D. Baker, Accurate 
prediction of protein structures and interactions using a three-track neural network. 
Science (2021), doi:10.1126/science.abj8754. 

16.  J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. 
Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, 
A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. 
Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. 
Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.11.10.468128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468128
http://creativecommons.org/licenses/by-nc-nd/4.0/


D. Hassabis, Highly accurate protein structure prediction with AlphaFold. Nature. 596, 
583–589 (2021). 

17.  R. Chowdhury, N. Bouatta, S. Biswas, C. Rochereau, G. M. Church, P. K. Sorger, M. 
AlQuraishi, Single-sequence protein structure prediction using language models from deep 
learning, 22. 

18.  K. T. Simons, R. Bonneau, I. Ruczinski, D. Baker, Ab initio protein structure prediction of 
CASP III targets using ROSETTA. Proteins Struct. Funct. Bioinforma. 37, 171–176 (1999). 

19.  J. J. Mousa, N. Kose, P. Matta, P. Gilchuk, J. E. Crowe, A novel pre-fusion conformation-
specific neutralizing epitope on the respiratory syncytial virus fusion protein. Nat. Microbiol. 
2, 1–8 (2017). 

20.  T. W. Linsky, R. Vergara, N. Codina, J. W. Nelson, M. J. Walker, W. Su, C. O. Barnes, T.-
Y. Hsiang, K. Esser-Nobis, K. Yu, Z. B. Reneer, Y. J. Hou, T. Priya, M. Mitsumoto, A. 
Pong, U. Y. Lau, M. L. Mason, J. Chen, A. Chen, T. Berrocal, H. Peng, N. S. Clairmont, J. 
Castellanos, Y.-R. Lin, A. Josephson-Day, R. S. Baric, D. H. Fuller, C. D. Walkey, T. M. 
Ross, R. Swanson, P. J. Bjorkman, M. Gale, L. M. Blancas-Mejia, H.-L. Yen, D.-A. Silva, 
De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science 
(2020), doi:10.1126/science.abe0075. 

21.  F. Frolow, A. J. Kalb (Gilboa), J. Yariv, Structure of a unique twofold symmetric haem-
binding site. Nat. Struct. Biol. 1, 453–460 (1994). 

22.  A. Lombardi, F. Pirro, O. Maglio, M. Chino, W. F. DeGrado, De Novo Design of Four-Helix 
Bundle Metalloproteins: One Scaffold, Diverse Reactivities. Acc. Chem. Res. 52, 1148–
1159 (2019). 

23.  J. R. Calhoun, F. Nastri, O. Maglio, V. Pavone, A. Lombardi, W. F. DeGrado, Artificial 
diiron proteins: From structure to function. Pept. Sci. 80, 264–278 (2005). 

24.  M. Yáñez, J. Gil-Longo, M. Campos-Toimil, in Calcium Signaling, Md. S. Islam, Ed. 
(Springer Netherlands, Dordrecht, 2012; https://doi.org/10.1007/978-94-007-2888-2_19), 
Advances in Experimental Medicine and Biology, pp. 461–482. 

25.  C. U. Kim, H. Song, B. S. Avvaru, S. M. Gruner, S. Park, R. McKenna, Tracking solvent 
and protein movement during CO2 release in carbonic anhydrase II crystals. Proc. Natl. 
Acad. Sci. 113, 5257–5262 (2016). 

26.  M. R. Badger, G. D. Price, The Role of Carbonic Anhydrase in Photosynthesis. Annu. Rev. 
Plant Physiol. 45, 369–92 (1994). 

27.  P. Mirjafari, K. Asghari, N. Mahinpey, Investigating the Application of Enzyme Carbonic 
Anhydrase for CO2 Sequestration Purposes. Ind. Eng. Chem. Res. 46, 921–926 (2007). 

28.  H.-S. Cho, N.-C. Ha, G. Choi, H.-J. Kim, D. Lee, K. S. Oh, K. S. Kim, W. Lee, K. Y. Choi, 
B.-H. Oh, Crystal Structure of Δ5-3-Ketosteroid Isomerase from Pseudomonas testosteroni 
in Complex with Equilenin Settles the Correct Hydrogen Bonding Scheme for Transition 
State Stabilization*. J. Biol. Chem. 274, 32863–32868 (1999). 

29.  P. W. Dempsey, M. E. D. Allison, S. Akkaraju, C. C. Goodnow, D. T. Fearon, C3d of 
Complement as a Molecular Adjuvant: Bridging Innate and Acquired Immunity. Science. 
271, 348–350 (1996). 

30.  T. M. Ross, Y. Xu, R. A. Bright, H. L. Robinson, C3d enhancement of antibodies to 
hemagglutinin accelerates protection against influenza virus challenge. Nat. Immunol. 1, 
127–131 (2000). 

31.  J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding. ArXiv181004805 Cs (2019) (available at 
http://arxiv.org/abs/1810.04805). 

32.  R. A. Yeh, C. Chen, T. Y. Lim, A. G. Schwing, M. Hasegawa-Johnson, M. N. Do, Semantic 
Image Inpainting with Deep Generative Models. ArXiv160707539 Cs (2017) (available at 
http://arxiv.org/abs/1607.07539). 

33.  N. Ollikainen, T. Kortemme, Computational Protein Design Quantifies Structural 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.11.10.468128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468128
http://creativecommons.org/licenses/by-nc-nd/4.0/


Constraints on Amino Acid Covariation. PLOS Comput. Biol. 9, e1003313 (2013). 
34.  K. Tunyasuvunakool, J. Adler, Z. Wu, T. Green, M. Zielinski, A. Žídek, A. Bridgland, A. 

Cowie, C. Meyer, A. Laydon, S. Velankar, G. J. Kleywegt, A. Bateman, R. Evans, A. 
Pritzel, M. Figurnov, O. Ronneberger, R. Bates, S. A. A. Kohl, A. Potapenko, A. J. Ballard, 
B. Romera-Paredes, S. Nikolov, R. Jain, E. Clancy, D. Reiman, S. Petersen, A. W. Senior, 
K. Kavukcuoglu, E. Birney, P. Kohli, J. Jumper, D. Hassabis, Highly accurate protein 
structure prediction for the human proteome. Nature (2021), doi:10.1038/s41586-021-
03828-1. 

35.  H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, 
P. E. Bourne, The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000). 

36.  J. Ingraham, V. K. Garg, R. Barzilay, T. Jaakkola, Generative models for graph-based 
protein design, 10 (2019). 

37.  A. Strokach, D. Becerra, C. Corbi-Verge, A. Perez-Riba, P. M. Kim, Fast and Flexible 
Protein Design Using Deep Graph Neural Networks. Cell Syst. 11, 402-411.e4 (2020). 

38.  S. Biswas, G. Khimulya, E. C. Alley, K. M. Esvelt, G. M. Church, Low- N protein 
engineering with data-efficient deep learning. Nat. Methods. 18, 389–396 (2021). 

39.  D. Repecka, V. Jauniskis, L. Karpus, E. Rembeza, J. Zrimec, S. Poviloniene, I. Rokaitis, A. 
Laurynenas, W. Abuajwa, O. Savolainen, R. Meskys, M. K. M. Engqvist, A. Zelezniak, 
Expanding functional protein sequence space using generative adversarial networks. 
bioRxiv, 789719 (2019). 

40.  J.-E. Shin, A. J. Riesselman, A. W. Kollasch, C. McMahon, E. Simon, C. Sander, A. 
Manglik, A. C. Kruse, D. S. Marks, Protein design and variant prediction using 
autoregressive generative models. Nat. Commun. 12, 1–11 (2021). 

41.  Z. Wu, K. E. Johnston, F. H. Arnold, K. K. Yang, Protein sequence design with deep 
generative models. Curr. Opin. Chem. Biol. 65, 18–27 (2021). 

42.  N. Anand-Achim, R. R. Eguchi, A. Derry, R. B. Altman, P.-S. Huang, “Protein sequence 
design with a learned potential” (preprint, Bioinformatics, 2020), , 
doi:10.1101/2020.01.06.895466. 

43.  A. Madani, B. Krause, E. R. Greene, S. Subramanian, B. P. Mohr, J. M. Holton, J. L. 
Olmos, C. Xiong, Z. Z. Sun, R. Socher, J. S. Fraser, N. Naik, bioRxiv, in press, 
doi:10.1101/2021.07.18.452833. 

44.  S. Ovchinnikov, P.-S. Huang, Structure-based protein design with deep learning. Curr. 
Opin. Chem. Biol. 65, 136–144 (2021). 

45.  N. Anand, R. Eguchi, P.-S. Huang, Fully differentiable full-atom protein backbone 
generation (2019) (available at https://openreview.net/forum?id=SJxnVL8YOV). 

46.  R. R. Eguchi, N. Anand, C. A. Choe, P.-S. Huang, bioRxiv, in press, 
doi:10.1101/2020.08.07.242347. 

47.  E. Jang, S. Gu, B. Poole, Categorical Reparameterization with Gumbel-Softmax. 
ArXiv161101144 Cs Stat (2017) (available at http://arxiv.org/abs/1611.01144). 

48.  N. Bogard, J. Linder, A. B. Rosenberg, G. Seelig, A Deep Neural Network for Predicting 
and Engineering Alternative Polyadenylation. Cell. 178, 91-106.e23 (2019). 

49.  J. Linder, G. Seelig, Fast differentiable DNA and protein sequence optimization for 
molecular design. ArXiv200511275 Cs Stat (2020) (available at 
http://arxiv.org/abs/2005.11275). 

50.  D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization. ArXiv14126980 Cs 
(2017) (available at http://arxiv.org/abs/1412.6980). 

51.  M. Jendrusch, J. O. Korbel, S. K. Sadiq, bioRxiv, in press, doi:10.1101/2021.10.11.463937. 
52.  L. Moffat, J. G. Greener, D. T. Jones, bioRxiv, in press, doi:10.1101/2021.08.24.457549. 
53.  S. K. Jha, A. Ramanathan, R. Ewetz, A. Velasquez, S. Jha, Protein Folding Neural 

Networks Are Not Robust. ArXiv210904460 Cs Q-Bio (2021) (available at 
http://arxiv.org/abs/2109.04460). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.11.10.468128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468128
http://creativecommons.org/licenses/by-nc-nd/4.0/


54.  A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, A. Madry, Adversarial Examples 
Are Not Bugs, They Are Features. ArXiv190502175 Cs Stat (2019) (available at 
http://arxiv.org/abs/1905.02175). 

55.  R. M. Rao, J. Liu, R. Verkuil, J. Meier, J. Canny, P. Abbeel, T. Sercu, A. Rives, bioRxiv, in 
press, doi:10.1101/2021.02.12.430858. 

56.  A. Jaegle, F. Gimeno, A. Brock, A. Zisserman, O. Vinyals, J. Carreira, Perceiver: General 
Perception with Iterative Attention. ArXiv210303206 Cs Eess (2021) (available at 
http://arxiv.org/abs/2103.03206). 

57.  W. Kabsch, A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A. 
32, 922–923 (1976). 

58.  A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Žídek, A. 
W. R. Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan, S. Crossan, P. 
Kohli, D. T. Jones, D. Silver, K. Kavukcuoglu, D. Hassabis, Improved protein structure 
prediction using potentials from deep learning. Nature, 1–5 (2020). 

59.  R. F. Alford, A. Leaver-Fay, J. R. Jeliazkov, M. J. O’Meara, F. P. DiMaio, H. Park, M. V. 
Shapovalov, P. D. Renfrew, V. K. Mulligan, K. Kappel, J. W. Labonte, M. S. Pacella, R. 
Bonneau, P. Bradley, R. L. Dunbrack, R. Das, D. Baker, B. Kuhlman, T. Kortemme, J. J. 
Gray, The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design. J. 
Chem. Theory Comput. 13, 3031–3048 (2017). 

60.  S. E. Boyken, Z. Chen, B. Groves, R. A. Langan, G. Oberdorfer, A. Ford, J. M. Gilmore, C. 
Xu, F. DiMaio, J. H. Pereira, B. Sankaran, G. Seelig, P. H. Zwart, D. Baker, De novo 
design of protein homo-oligomers with modular hydrogen-bond network--mediated 
specificity. Science. 352, 680–687 (2016). 

61.  N. Hiranuma, H. Park, M. Baek, I. Anishchenko, J. Dauparas, D. Baker, Improved protein 
structure refinement guided by deep learning based accuracy estimation. Nat. Commun. 
12, 1340 (2021). 

62.  D.-A. Silva, B. E. Correia, E. Procko, in Computational Design of Ligand Binding Proteins, 
B. L. Stoddard, Ed. (Springer, New York, NY, 2016; https://doi.org/10.1007/978-1-4939-
3569-7_17), Methods in Molecular Biology, pp. 285–304. 

63.  M. Steinegger, J. Söding, MMseqs2 enables sensitive protein sequence searching for the 
analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017). 

64.  T. Brunette, F. Parmeggiani, P.-S. Huang, G. Bhabha, D. C. Ekiert, S. E. Tsutakawa, G. L. 
Hura, J. A. Tainer, D. Baker, Exploring the repeat protein universe through computational 
protein design. Nature. 528, 580–584 (2015). 

65.  V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, C. Simmerling, Comparison of 
multiple Amber force fields and development of improved protein backbone parameters. 
Proteins Struct. Funct. Bioinforma. 65, 712–725 (2006). 

66.  H. Park, P. Bradley, P. Greisen, Y. Liu, V. K. Mulligan, D. E. Kim, D. Baker, F. DiMaio, 
Simultaneous Optimization of Biomolecular Energy Functions on Features from Small 
Molecules and Macromolecules. J. Chem. Theory Comput. 12, 6201–6212 (2016). 

67.  R. Pascolutti, X. Sun, J. Kao, R. L. Maute, A. M. Ring, G. R. Bowman, A. C. Kruse, 
Structure and Dynamics of PD-L1 and an Ultra-High-Affinity PD-1 Receptor Mutant. 
Structure. 24, 1719–1728 (2016). 

68.  J. S. McLellan, M. Chen, A. Kim, Y. Yang, B. S. Graham, P. D. Kwong, Structural basis of 
respiratory syncytial virus neutralization by motavizumab. Nat. Struct. Mol. Biol. 17, 248–
250 (2010). 

69.  J. Shang, G. Ye, K. Shi, Y. Wan, C. Luo, H. Aihara, Q. Geng, A. Auerbach, F. Li, Structural 
basis of receptor recognition by SARS-CoV-2. Nature. 581, 221–224 (2020). 

70.  J. L. Fallon, F. A. Quiocho, A Closed Compact Structure of Native Ca2+-Calmodulin. 
Structure. 11, 1303–1307 (2003). 

71.  G. Szakonyi, J. M. Guthridge, D. Li, K. Young, V. M. Holers, X. S. Chen, Structure of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.11.10.468128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468128
http://creativecommons.org/licenses/by-nc-nd/4.0/


complement receptor 2 in complex with its C3d ligand. Science. 292, 1725–1728 (2001). 
72.  J.-C. D. Schwartz, X. Zhang, A. A. Fedorov, S. G. Nathenson, S. C. Almo, Structural basis 

for co-stimulation by the human CTLA-4/B7-2 complex. Nature. 410, 604–608 (2001). 
 

Acknowledgements 
We would like to thank Luki Goldschmidt for maintaining the computational resource in the IPD; 

Christoffer Norn for general discussions about trRosetta; Brian Coventry and Nathaniel Bennett 

for advice on interface design; Bruno Correia, Casper Goverde, and Karla Castro for advice on 

RSV-F epitopes and motif grafting methods; Ta-yi Yu, Gyu Rie Lee, Linna An, and Xinru Wang 

for advice on flow cytometry; Runze Dong and Varshan Muhunthan for exploratory analyses; 

Brian Trippe for feedback on the manuscript; Sam Pellock for expertise on enzyme design. 

Funding 
We thank Microsoft for support and for providing Azure computing resources.  J.W. is supported 

by a postdoctoral fellowship from the Washington Research Foundation. D.T. is supported by 

The Open Philanthropy Project Improving Protein Design Fund. S.L. is supported by Amgen. 

L.F.M. is supported by a Human Frontier Science Program Cross Disciplinary Fellowship 

(LT000395/2020-C) and an EMBO Non-Stipendiary Fellowship (ALTF 1047-2019). D.J. is 

supported by Eric and Wendy Schmidt by recommendation of the Schmidt Futures program. 

M.E. is supported by the “la Caixa” Foundation. I.A. is supported by the National Institute of 

Allergy and Infectious Diseases (NIAID, Federal Contract HHSN272201700059C). S.O. 

supported by NIH grant DP5OD026389. D.B. is supported by the Howard Hughes Medical 

Institute.  

Author contributions 

Designed the research: JW, SL, DJ, DT, SO, DB 

Developed the hallucination method: JW, SL, DT, IA, SO, JD 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.11.10.468128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468128
http://creativecommons.org/licenses/by-nc-nd/4.0/


Developed the inpainting method: DJ, JLW, JW, DT, SL 

Generated designs using hallucination: JW, SL, DT, SO 

Generated designs using inpainting: DJ, JLW, JW, AS, SL 

Analyzed data: JW, SL, DJ, DT, JLW, ME 

Trained neural networks: DJ, MB, JLW 

Performed experiments: JW, SL, LFM, JC, WY 

Wrote the manuscript: JW, SL, DJ, DT, JLW, DB 

Competing interests 
Authors declare that they have no competing interests. 

Data and materials availability 

All code will be made publicly available upon publication. 

Supplementary materials 
- Materials and Methods 
- Supplementary Text 
- Figures S1 - S21 
- Tables S1 - S3 
- Algorithm S1 
- Data S1 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.11.10.468128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468128
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures 

 

Figure 1. Methods for protein function design 

(A) Free hallucination. At each iteration, a sequence is passed to the trRosetta or RoseTTAFold 
neural network, which predicts 3D coordinates and residue-residue distances and orientations 
(Fig. S3) which are scored by a loss function that rewards certainty of the predicted structure. 
The sequence is updated either by back propagating the gradient of the loss to the inputs or by 
MCMC, and passed back into the network for the next iteration. (B) Constrained hallucination. 
Same approach as in (A) but the loss function rewards motif recapitulation and other task-
specific functions in addition to structural certainty. (C) Missing information recovery. Partial 
sequence and/or structural information is input into the network, and complete sequence and 
structure are output. (D) Design problems that can be addressed by constrained hallucination, 
and the corresponding loss functions (Fig. S3; Methods). (E) Protein design challenges 
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formulated as missing information recovery problems. Colors in all panels: native functional 
motif (orange); hallucinated scaffold (gray); constrained motif (purple); binding partner (blue); 
non-masked region (green); masked region (light gray, dotted lines) 

 

 

Figure 2. Hallucination of epitope scaffolds and receptor traps.  

(A) Design of proteins scaffolding immunogenic epitopes on RSV protein F (site II: PDB 3IXT 
chain P residues 254-277; site V: 5TPN chain A residues 163-181). Comparisons of the RF 
hallucinated models to unbiased AF2 structure predictions from the design sequence are in Fig. 
S8; here because of space constraints we show only the AF2 model; the two are very close in 
all cases.  Here and in the following figures, we assess the extent of success in designing 
sequences which fold to structures harboring the desired motif  through two metrics computed 
on the AF2 predictions: prediction confidence (AF pLDDT), and the accuracy of recapitulation of 
the original scaffolded motif (motif RMSD AF versus native).  For RSV-F designs, these metrics 
are rsvf_ii_141 (85.0, 0.53 Å), rsvf_ii_158 (82.9, 0.51 Å), rsvf_ii_171 (88.4, 0.69 Å); rsvf-v_854 
(81.5, 0.75 Å); rsvf-v_870 (80.4, 0.76 Å). (B) Design of COVID-19 receptor trap based on ACE2 
interface helix (6VW1 chain A residues 24-42). Design metrics: ace2_76 (89.1, 0.55 Å); 
ace2_1157 (80.4, 0.47 Å); ace2_1007 (83.3, 0.57 Å). Colors: native protein scaffold (light 
yellow); native functional motif (orange); hallucinated scaffold (gray); hallucinated motif (purple); 
binding partner (blue). See Table S2 for additional metrics on each design. 
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Figure 3. Hallucination of metal binding and enzyme active sites.  

(A-F) Hallucinations using backbone description of site using RF.  (G-H) Hallucination using 
sidechain description of site using trRosetta followed by AF2.  (A) Di-iron binding site from E. 
coli cytochrome b1 (1BCF chain A residues 18-25, 27-54, 94-97, 123-130).  (C) EF-hand 
Calcium binding site. (E) Carbonic anhydrase II active site (5YUI chain A residues 62-65, 93-97, 
118-120). (G) Δ5-3-ketosteroid Isomerase active site (1QJG chain A residues 14, 38, 99). 

 

7, 
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Colors: native protein scaffold (light yellow); native functional motif (orange); hallucinated 
scaffold (gray); hallucinated motif (purple); bound metal (blue). Active site residues shown for 
boxed designs in panel B, D, F, and H for di-iron, EF-hand, carbonic anhydrase II, and Δ5-3-
Ketosteroid Isomerase respectively. Design metrics (AF pLDDT, motif RMSD AF versus native): 
Di-Fe_86 (84, 0.90 Å), Di-Fe_56 (84, 0.86 Å)   EF-hand_1 (84, 0.37 Å), EF-hand_2 (80, 0.37 Å), 
hcA_1 (73, 1.04 Å), hcA_2 (71, 0.62 Å), KSI_1 (84, 0.30 Å Cb), KSI_2 (72, 0.53 Å Cb) 
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Figure 4. Hallucination of protein-protein interactions.  

Designs containing extended target binding interfaces built around native complex derived 
binding motifs.  Targets are in blue and native scaffolds in yellow. (A) Target: IL10 receptor; 
scaffold: Interleukin 10 (1Y6K chain A residues 23-29). (B) Target: complement receptor; 
scaffold: Complement protein C3d (1GHQ chain A 104-126, 170-185). (C) B7-2 (1I85 chain B 
residues 84-88). Native functional motifs (orange); hallucinated scaffold (gray); hallucinated 
motif (purple).  Design metrics (AF pLDDT, motif RMSD AF versus native): IL10_179 (82, 0.35 
Å), IL10_65 (88, 0.37 Å), IL10_71 (75, 0.45 Å), C3D_45 (81, 0.71 Å), C3D_79 (70, 0.28 Å), 
C3D_58 (86, 0.47 Å), B72_10 (81, 0.29 Å), B72_5 (87, 0.23 Å), B72_3 (81, 0.25 Å) 
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Figure 5. Joint sequence-structure recovery using RosettaFold 

(A) Joint RoseTTAFold (RFjoint) outperforms baseline RF in fixed-backbone sequence design on 
a held out set of de novo designed proteins. (B) RFjoint  preserves or exceeds the baseline model
structure prediction quality on the de novo protein set. (C) Given a template sequence and 
structure (green) with regions of both sequence and structure masked (gray), RFjoint can recover 
the missing sequence and structure in a single forward pass. The sequence and structure in 
contiguous regions of test set protein 2KL8 were both masked prior to input into RFjoint. Top row: 
alpha helix. Middle row: four strand beta sheet. Bottom row: a 10-residue loop. (D) RFjoint2 builds 
sequence/structure between two given residue coordinates which enables tunable 
diversification of rebuilt segments. The depicted gray region was masked from 2KL8, and the 
two coordinates shown in red were randomly translated up to 8Å in any direction (within the 
illustrated red spheres). RFjoint2 is able to build back an ensemble of helical inpainted regions 
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(right panel, AF2 predictions, AF2 pLDDT > 0.8 for all designs shown). Increasing structural 
diversity could be achieved in the central inpainted region (in both the RF inpainted structure 
models and the AF2 structure predictions of the inpainted sequences) by increasing the 
distance by which the red coordinates could be translated (left graph, gray points) without 
substantial disruption to the remainder of the template structure (left graph, green points, 
n=5000 structures/point). 
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Figure 6. Protein function design by joint sequence-structure information recovery. 

Design of proteins harboring functional motifs via information recovery using RFjoint  and RFjoint2. 
All structures of designs shown are the AF2 prediction of that design. In all cases, template 
inputs (sequence and structure) that are functional and their corresponding outputs are colored 
in purple, template inputs that are not directly related to function are in green, along with their 
corresponding outputs. Functional template inputs derived from a native structure are in orange, 
with corresponding outputs in purple. Depicted in gray are the regions of sequence and 
structure masked from the original protein (input column) or that were generated via 
RFjoint/RFjoint2 (output column). (A) RFjoint  functional motif design examples. From top to bottom 
row with (AF2 motif RMSD to native, AF2 pLDDT): IL-10 (93.1, 0.57 Å), Di-Iron (91.0, 0.49 Å) 
carbonic anhydrase (78.8, 1.09 Å), RSVF-V (81.8, 1.39 Å). (B) RFjoint, 2 functional motif design 
examples. From top to bottom row with (AF pLDDT, motif RMSD AF vs native): EF hand double 
motif starting from a hallucination (85.4, 0.69 Å motif #1, 0.86 Å motif #2), EF hand double motif 
starting from native crystal structure (PDB: 1PRW, chain A 16-35, 52-71) (78.7, 1.13 Å motif #1, 
1.10 Å motif #2), IL10 motif (light/dark orange) starting from native crystal structure (PDB: 6X93, 
chain A 16-41, 83-88, chain D 96-101,143-156) (75.6, 1.16 Å).  
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Data and code availability 

All source code will be made freely available upon publication. 
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