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ABSTRACT 
Despite a relatively fixed anatomical structure, the human brain can support rich cognitive 
functions, triggering particular interest in investigating structure-function relationships. Myelin is 
a vital brain microstructure marker, yet the individual microstructure-function relationship is 
poorly understood. Here, we explore the brain microstructure-function relationships using a 
higher-order framework. Global (network-level) higher-order microstructure-function 
relationships negatively correlate with male participants’ personality scores and decline with 
aging. Nodal (node-level) higher-order microstructure-function relationships are not aligned 
uniformly throughout the brain, being stronger in association cortices and lower in sensory 
cortices, showing gender differences. Notably, higher-order microstructure-function relationships 
are maintained from the whole-brain to local circuits, which uncovers a compelling and 
straightforward principle of brain structure-function interactions. Additionally, targeted artificial 
attacks can disrupt these higher-order relationships, and the main results are robust against 
several factors. Together, our results increase the collective knowledge of higher-order structure-
function interactions that may underlie cognition, individual differences, and aging. 
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INTRODUCTION 
The human brain, unique among body organs, is a complex system (Bullmore & Sporns, 2009; 
Raichle et al., 2001). In this system, ever-changing human cognitive processes rely on a 
relatively unchanged anatomical structure, comprising about 86 billions of neurons 
interconnected through trillions of synapses (Landhuis, 2017). For relatively unchanged brain 
structural properties, myelin plays an important role that underlie behavior and learning (Bonetto 
et al., 2021). The formation of a myelin sheath is termed myelination, which is an essential 
indicator of brain maturation (Nave, 2010) and vital for neural circuit formation (Hill et al., 
2018). Myelin probably shapes the functional activity (Fornari et al., 2007), correlates with 
psychiatric traits (Ziegler et al., 2019), and interacts with the functional connectome (Lariviere et 
al., 2020). Technically, myelin owns a putative microstructural MRI marker characterized by the 
ratio of T1- and T2-weighted (T1w/T2w) MRI images (Glasser & Van Essen, 2011; Sydnor et 
al., 2021), and a macroscale myelin-based microstructural brain network can be constructed 
based on the similarity of myelin contents between cortical regions (Wu et al., 2018), enabling 
the utility of myelin evidence to explore complex structure-function relationships in the human 
brain. 

To capture the ever-changing properties of the human brain, the brain network from the 
resting state is an excellent entry point. Neuroimaging experiments have shown that the brain 
maintains a high level of activity even when it is nominally “at rest” (Raichle et al., 2001). The 
similarity of brain activity among multiple brain regions (Kelly et al., 2012), described as 
functional connectivity (FC), holds the key to understanding neurological disorders and even 
consciousness itself (Raichle, 2015). Therefore, clarifying the relationships between the 
microstructural network and the resting-state functional network is a necessary step forward to 
uncover the mystery of how a relatively static structure produces abundant functions (Park & 
Friston, 2013). Over the past decade, analyzing the structure-function relationship, under the 
low-order frameworks that focus on node or edge level, has dramatically expanded our 
comprehension of the brain functional-structural interactions, including direct edge-to-edge 
comparisons (Gu et al., 2021; Honey et al., 2009), multivariate statistical models (Misic et al., 
2016), network-theoretic models (Vazquez-Rodriguez et al., 2019). And structure-function 
shows a medium level, but significant correlations (Honey et al., 2009; Mollink et al., 2019) and 
the nodal structure-function correspondence is not uniform across the brain (Vazquez-Rodriguez 
et al., 2019). Similar lower-order (edge-level) methods have also been conducted in myelin 
studies, constructing a structural covariance network at the population level and exploring its 
relationship with electrophysiological networks (Hunt et al., 2016). However, most myelin 
studies constructed a structural covariance network at the population level (Ma & Zhang, 2017; 
Melie-Garcia et al., 2018), making individual cognitive or behavior predictions impossible. 
Therefore, examining the myelin microstructural and functional relationship at the individual 
level is urgently needed but is still elusive. 
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Recently, higher-order representations (beyond the node or edge level) emerged, including 
simplicial complexes (Giusti et al., 2015), persistent homology (Liang & Wang, 2017), neural 
network (Suárez et al., 2021), hypergraphs (Battiston et al., 2020), subgraphs (Przulj, 2007), and 
motifs (Angulo et al., 2015; Benson et al., 2016), which have proven to be extremely useful in 
understanding and comparing complex networks. These findings reveal some higher-order 
connectivity patterns in brain networks (Petri et al., 2014; Sizemore et al., 2018). Nevertheless, 
there is still no study about the individual myelin microstructure-function relationship using 
higher-order representations. 

Here we quantify the individual-level microstructure-function relationship using a higher-
order framework. In current study, higher-order is defined as the interactions among orbits 
feature derived from subgraphs (Przulj, 2007), which is beyond the traditional pairwise 
interactions (Battiston et al., 2020). We use 11 non-redundant orbits because they are most 
efficient in computing and perform well in clustering networks with the same topological 
properties (Yaveroglu et al., 2014). As a comparison, a lower-order analysis is also performed. 
We first reconstruct the microstructural covariance network at the group level and explore its 
relationship with the mean functional network from resting-state functional MRI (fMRI), using a 
simple multilinear model in a cohort of 198 healthy participants, to verify whether the myelin-
based network can predict the functional network with a similar pattern with diffusion MRI 
(Vazquez-Rodriguez et al., 2019). Then, we apply a probability distribution function (PDF)-
based method (Li et al., 2021) to construct the individual microstructural network and investigate 
its relations with the static and dynamic functional network using both lower-order and higher-
order frameworks, verifying whether the higher-order relationships are different from the lower-
order ones and whether the nodal higher-order relationships are uniform across the brain. 
Because the individual microstructure network enables us to explore the brain-cognition 
relations, we link this higher-order microstructure-function relationship with individual cognitive 
scores and development across the three age groups. Our results reveal that the human brain 
owns stronger higher-order microstructure-function interactions from the whole brain to local 
circuits, and nodal higher-order microstructure-function relationship is not uniform in the brain, 
as an idiosyncratic feature of the brain, relating to cognition and demonstrating gender 
differences. These findings provide insight into understanding the human brain’s organization 
principles, its development, individual differences, and inspiring brain-like computations.  
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RESULTS 
We leveraged the HCP S1200 New Subjects dataset (of 213 participants, unprocessed data) (Van 
Essen et al., 2012) to construct the myelin-based microstructural network and resting-state 
functional network. After quality control, we discarded eight participants due to a largely 
framewise displacement and dropped seven participants with age greater than 36 due to the small 
sample size. Finally, we obtained quality-controlled resting-state fMRI (rfMRI) images, T1-
weighted images, and T2-weighted images of 198 participants (108 males and 90 females, see SI 
Appendix, Table S1 for a complete list of participant IDs). We constructed the structural and 
functional networks as follows: 
 
Structural network. Two types of structural networks are constructed. One is the group-level 
structural network, named the microstructural covariance network. Using Gordon parcellation 
(Gordon et al., 2016) with 333 regions, we extract the mean myelin content (T1w/T2w ratio) for 
each participant's region, yielding a 198 × 333 matrix. For each paired region, we perform the 
Spearman correlation across the 198 participants, resulting in a 333 × 333 matrix, known as the 
covariance network (He et al., 2007), which measures the covariance of information between 
different regions of the brain in the population. A group-level microstructural covariance 
network is obtained (Fig. 1a). The other one is the individual-level structural network, named the 
individual myelin-based microstructural networks. For each participant, the same brain 
parcellation is used, then we estimate the probability distribution function (PDF) of each brain 
region’s myelin content. Subsequently, we calculate the similarity between the PDFs of any 
paired brain regions, resulting in a 333 × 333 matrix, i.e., the individual microstructural network 
(SI Appendix, Materials and Methods). 
 
Functional network. Two types of functional networks are constructed. For a static functional 
network, we utilize the Gordon parcellation with 333 regions as nodes (Gordon et al., 2016), and 
the Pearson correlation coefficients between paired nodal median time series are calculated as 
edges, obtaining an asymmetric connectivity matrix for each participant. For dynamic functional 
networks, the sliding window method is used to construct the functional brain network within 
each window; here, we use the time window with a length of 200 TRs and stepped with 17 TRs, 
generating 59 dynamic functional networks (SI Appendix, Materials and Methods). 
 
Correspondence of microstructural covariance and mean functional network 
To estimate the correspondence of microstructural covariance and mean functional network, a 
multilinear regression model reported by previous study (Vazquez-Rodriguez et al., 2019) is 
employed to uncover the node-level microstructural covariance-mean functional correspondence 
(Fig. 1b). The dependent variable of a node i is its resting-state FC between node i and all the 
remaining nodes in the network (j ≠ i). For the same node i, three properties derived from binary 
microstructure network, including the path length, Euclidean distance, and communicability, are 
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used as the predictor variables. The model parameters (regression coefficients for each of the 3 
predictors) are then estimated via ordinary least squares (Fig. 1b). For each node i, goodness of 
fit is used to represent the structure-function correspondence, which is quantified by the adjusted 
R2 (SI Appendix, Materials and Methods). 

The correspondence of microstructural covariance and mean functional network is highly 
variable across the neocortex. The median value R2 is 0.209 (range from 0 to 0.553), roughly 
concordant with previous reports using the diffusion MRI (dMRI) data to predict the whole-
network FC (Goni et al., 2014) and similar pattern with the nodal structure-function 
correspondence (Vazquez-Rodriguez et al., 2019). However, our results show that the R2 values 
vary extensively, indicating that for the correspondence of microstructural covariance and mean 
functional network, some regions own a strong correspondence, while for others, there is little 
evidence of any such correspondence. Our results are robust across different sparsity values 
(10%, 20%, 30%, and 40%) of the microstructural covariance network (Fig. 1c). And the main 
result with a sparsity value of 0.1 is shown in Fig. 1d; the occipital and paracentral cortices show 
relatively high structure-function correspondence, while the temporal cortices and some cortices 
within the default mode network (Raichle et al., 2001) have the least structure-function 
correspondence. Statistical analysis reveals that the unimodal cortices [auditory (superior 
temporal gyrus), visual (peristriate, mid-temporal, and inferior or temporal areas), and 
somatosensory cortex] show stronger microstructure-function correspondence than transmodal 
cortices (Fig. 1e, P < 10-10). To determine which module or sub-class (Gordon atlas with 13 
modules, Fig. 1c) show non-trivial microstructure-function correspondence than null model, we 
use the permutation test, modules’ labels with a value from 1 to 13, are randomly shuffled 
(10,000 repetitions) for each brain region, we then express each sub-network mean R2 as a z-
score relative to this null distribution. Visual and SMhand sub-networks show significantly 
higher microstructure-function correspondence than random, and FrontoParietal, Auditory, and 
CinguloOperc sub-networks show the least microstructure-function correspondence (Fig. 1f). 
However, these group-level structure-function interactions cannot detect individual brain-
cognition relations. An individual analysis is needed. The following sections will focus on the 
individual microstructure-function relationships, especially on the higher-order microstructure-
function correspondence. 
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Figure 1 | Correspondence of microstructural covariance and mean functional network. (a) Flowchart for 
constructing microstructure covariance network, using the Gordon-333 atlas to extract the mean myelin content for 
each region and estimate the spearman correlation for any paired regions across the population, resulting in a 333 × 
333 matrix, named microstructural covariance network. (b) Node-level microstructural covariance and functional 
correspondence by a multilinear regression model. (c) Correspondence of microstructural covariance and mean 
functional network across different sparsity values. A similar pattern is observed for different sparsity values; the 
mean correspondence value is calculated for each module (13 modules in Gordon atlas). (d) Spatial distribution of 
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structure-function correspondence with sparsity value of 0.1. We observe that visual and motor cortices show a 
higher correspondence, which is highly myelinated. (e) Unimodal cortices [the superior temporal gyrus, visual 
(peristriate, mid-temporal, and inferior or temporal areas), and somatosensory cortex] show stronger structure-
function correspondence than transmodal cortices. (f) A null model (permutation test, with 10000 repetitions) is 
performed to determine which module is statistically significant. The significant module is colored by bright red. 
 
 

Myelin map and network topology 
Before the exploration of the individual microstructure-function interactions, the myelin map and 
network topology for microstructural and functional network are introduced. We utilize the 
T1w/T2w ratio to depict cortical myelin content (Glasser & Van Essen, 2011). The average 
myelin map of each region across 198 participants demonstrates that the heavily myelinated 
areas are mainly in motor-somatosensory and visual cortex. By contrast, the lightly myelinated 
areas are classical multimodal association cortices, including prefrontal and superior parietal 
cortices (Fig. 2a). Furthermore, the average myelin content of each region is positively 
correlated with the correspondence of microstructural covariance and the mean functional 
network (r = 0.222, P = 4.530×10-5), indicating that the highly myelinated regions own stronger 
structure-function interactions. The 198 participants in the HCP data includes three age groups: 
22-25 (M:35, F:11), 26-30 (M:50, F:43), 31-35 (M:23, F:36) years old. The mean myelin content 
across all regions shows an ascending trend across age groups, for the 22-25 age group is 
0.898±0.063, the 26-30 age group is 0.935±0.075, and the 31-35 age group is 0.967±0.081 (Fig. 
2b). One-way analysis of variance (ANOVA) shows a significant effect of the age group on 
myelin content (F (2, 195) = 11.083, P = 2.761×10-5). And the female participants exhibit higher 
mean myelin content than the male participants (delta = 0.084, P = 3.603×10-16). See Fig. 2c for 
details. 

The mean connectivity matrix across all participants is shown in Fig. 2d-e for 
microstructural and functional networks, respectively. We apply a sparsity threshold value of 0.1 
(retaining the strongest connections in the top 10%), reported in previous studies (Grydeland et 
al., 2019; Lariviere et al., 2020), to convert the weighted networks to binary networks for 
subsequent analysis. Subsequently, we calculate four nodal metrics (clustering coefficient, local 
efficiency, degree centrality, and global efficiency) for each network (Rubinov & Sporns, 2010). 
The nodes with top 10% mean nodal global efficiency values across 198 participants are termed 
as hubs (Liu et al., 2017). Spatial overlapping between microstructural and functional hubs, is 
minimum, with a dice coefficient of 0.061 (Fig. 2f-g). The community detection (Louvain 
algorithm) is performed on the mean microstructural and functional brain networks across all 
participants, with gamma (γ) = 1 (SI Appendix, Materials and Methods). The modular similarity 
of the microstructural and functional network is measured by normalized mutual information 
(NMI), with an NMI value of 0.223 (Fig. 2h-i). Besides, the small-world propensity (SWP, φ) is 
calculated (Muldoon et al., 2016); networks are considered small-world if they have SWP 0.4 < 
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φ ≤ 1 (Bassett & Bullmore, 2017). The mean and standard deviation of SWP for microstructural 
network is 0.588±0.030, and for functional network is 0.691±0.031. Together, these findings 
indicate that both microstructure and functional networks have small-world propensity, hubs, and 
modular organizations, which present us with the natural question how the interactions between 
these two types of brain networks are, especially at higher-order level. 

 
Figure 2 | Average myelin map and network topology. (a) Average myelin content across all participants. (b) 
Average myelin content across three age groups. An obvious ascending trend across age groups is shown. (c) 
Average myelin content across gender. The female group shows significantly higher myelin content than the male 
group. (d-e) Mean microstructural and functional connection matrix across 198 participants. (f-g) Hubs of the 
microstructural and functional network. We term the top 10% node with a higher mean global efficiency value as 
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hubs. (h-i) Modular organization of the microstructural and functional network, we observe eight modules and six 
modules for microstructural and functional network, respectively. *, P < 0.05; ***, P < 0.001. 

 

 

Higher-order framework 
Describe a network’s wiring diagram from the lower-order level alone may not capture its 
complex topology. Despite the same nodal degree and number of edges, two networks may have 
entirely different connections. Accordingly, there are four graphs with six nodes, illustrated by 
six different colors in Fig. 3a; G1 and G2 have the same degree centrality but have different 
topologies, while G3 and G4 have different degree centrality but are isomorphic graphs. 

The similarity between the two networks can be simply defined as the correlation of nodal 
features or edge’s features at the lower-order level. Beyond the node and edge, subgraphs, which 
are the essential building of a network, can be used to explore the network’s higher-order 
patterns. To obtain the higher-order interactions, we employed 11 non-redundant orbits (the 
position of nodes inside each subgraph) reported by a previous study (Yaveroglu et al., 2014), 
derived from 2- to 4-node subgraphs. The 11 non-redundant orbits are used here because they are 
most efficient in computing and perform well in clustering networks with the same topological 
properties (Yaveroglu et al., 2014), see Fig. 3b. We then give a toy example of counting the 
frequency (number of times a node touches a specific orbit) of 11 orbits for each node in a graph 
(Fig. 3c). 

To measure the relationships of microstructural and functional brain networks at the 
macroscale individual level, 198 participants are used for the subsequent connectome and 
statistical analysis. Specifically, for the microstructural brain networks, edges are determined by 
calculating the earth mover’s distance (EMD) (Ruttenberg & Singh, 2011) between the 
probability distribution function (PDF) of nodal myelin content, based on previous studies 
(Leming et al., 2021; Wang et al., 2016), see Fig. 3d. For functional networks, edges are defined 
by estimating the statistical similarity between nodal time series (Fig. 3e), see SI Appendix, 
Materials and Methods for details. Here, we compute the frequency of 11 non-redundant higher-
order features mentioned above for each node in each microstructural and functional brain 
network, then the interrelationships between these 11 features are estimated by mutual 
information, which can describe the linear or non-linear relationship between variables, yielding 
an 11-by-11 mutual information matrix (Fig. 3f-g). The Pearson correlation between the mutual 
information matrices of the microstructural and functional brain networks is termed as the 
higher-order microstructure-function relationship or interaction. Besides, the lower-order 
similarity, defined as the Pearson correlation of the nodal feature of each type of network, is 
compared as the baseline (Fig. 3h). 
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Figure 3 | Lower- and higher-order frameworks. (a) Schematic representation of four simple networks with six 
nodes represented by different colors, G1 and G2 have the same number of nodes and edges, G1 and G2 have 
identical nodal degree centrality but exhibit different topological structures, G1 consists of two triangles and G2 is a 
connected circle. G3 and G4 own identical topological structures; they both consist of two triangles and one path, 
while their nodal degree centrality is different. Thus, the lower-order depiction cannot capture the whole fact. (b) 11 
non-redundant orbits from 2- and 4-node graphlet, each orbit is derived on their unique position within a graphlet. 
We used 11 non-redundant orbits (Yaveroglu et al., 2014) to depict the network's higher-order property. (c) Take 
the G2 and G3 as an example; we give a toy example to depict how to count the frequency of 11 orbits for each 
node. (d) Construct the individual microstructural network based on the similarity of probability distribution 
function (PDF) of any paired regions’ myelin content, then thresholding the network with sparsity value 10%, and 
calculating the orbit frequency matrix (333×11) for each network and normalizing orbit frequency matrix using 
logarithm (10-base) transformation. (e) Construct the individual functional network by calculating the Pearson 
correlation between the median time series of any paired brain regions, same with the structural network, we obtain 
the normalized orbit frequency matrix. (f-g) Mutual information (MI) matrix is obtained by calculating the similarity 
between the 11 orbits. We term the Pearson correlation between the MI matrix of the myelin-based microstructural 
and functional network as their higher-order relationship or interaction. (h) Lower-order framework, we term the 
Pearson correlation between the microstructural and functional brain network's nodal metrics as the lower-order 
similarity.  
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Global (network-level) higher-order microstructure-function relationship 
We apply the higher-order framework mentioned above, to explore the higher-order 
microstructure-function relationship. Unless otherwise stated, the thresholded binary networks 
with a sparsity of 10% is used for the subsequent statistical analysis. Besides, the lower-order 
relationship, described by Pearson correlation of their nodal features, is also performed as a 
comparison result of higher-order level; two types of null random networks, preserving the 
microstructural and functional network’s degree distribution, respectively, are considered as the 
compared baseline.  
 
Enhanced higher-order interactions. Higher-order framework revealing the microstructure-
function higher-order relationship is 0.860±0.042 (mean value ± standard deviation), which is 
higher than the lower-order similarity (all P-values < 10-9, FDR correction) (Fig. 4a). Notably, at 
the lower-order level, microstructural and functional networks' similarities are lower than their 
relationships with corresponding random networks (all P-values < 10-9, FDR correction). It is 
surprising because both the microstructural and functional networks are somehow derived from 
the properties of the brain and are different from random networks and may exhibit a high 
correlation. At the higher-order level, the microstructural and functional networks show a higher 
correlation than their corresponding random networks (Fig. 4a), implying that the higher-order 
method may better seize the network’s global attribute information or hidden pattern. 
 
Link cognition with higher-order interactions. Previous studies have shown that gender plays a 
crucial role in the personality-brain relationship (Nostro et al., 2017). To further evaluate the 
high-order relationship' physiological significance, we use the NEO Five-Factor Inventory (NEO 
FFI) (Costa & McCrae, 1989), which includes five dimensions: openness, conscientiousness, 
extraversion, agreeableness, and neuroticism, to correlate with the individual higher-order 
relationship across the whole participants and separately for males and females. We observe the 
higher-order relationship is significantly negatively correlated with agreeableness across the 
male participant (r = -0.268, P = 0.005) rather than female participants, see Fig. 4b, indicating 
that the higher-order relationship correlated with personality is highly dependent on gender. In 
this study, we use the unrestricted HCP dataset, which includes three age groups: 22-25 (M:35, 
F:11), 26-30 (M:50, F:43), 31-35 (M:23, F:36) years old. The ANOVA test is performed to 
verify whether the microstructure-function higher-order relationships were significantly different 
across the three groups, and a decreasing trend is detected; the mean value of higher-order 
relationships is 0.872 for the 22-25 group, 0.861 for the 26-30 group, and 0.851 for the 31-35 
group (Fig. 4c). The ANOVA analysis shows there is a significant difference in higher-order 
relationships among the three groups (F (2,195) = 3.197, P = 0.043) and the post-hoc indicates that 
the 22-25 group exhibits a stronger higher-order relation than the 31-35 group (delta = 0.021, 
Ptukey = 0.031). The male participants mainly drive this effect. We do not observe significant 
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results for the female participants. Together, these findings once again demonstrate the pivotal 
role of age and gender in higher-order relationships. 
 
Higher-order interactions of microstructure-dynamic functional networks. To investigate the 
one-to-many (microstructure-functions) relationships, we use the sliding window method 
(window length is 200 TRs and step length is 17 TRs) to construct 59 dynamic functional brain 
networks (Preti et al., 2017) and evaluate their relationships with the corresponding static 
myelin-based microstructural network for each participant (Fig. 4d). Similar patterns are 
obtained compared to the one-to-one (microstructure-function) analysis; the mean higher-order 
relationship between the static microstructural and 59 dynamic functional networks of each 
participant is higher than their relationships with the random networks (Fig. 4e). It reveals that 
even in different states, the strength of structural and functional interactions is higher than that in 
random networks, which may be a principle of how the brain works. 

 
Figure 4 | Global (network-level) higher-order microstructure-function relationship. (a) Lower- and higher-
order relationships between the microstructural and functional network. Clus, clustering coefficient; LocE, local 
efficiency; Degree, degree centrality; GlobE, global efficiency. (b) Association between brain and cognition. 
Correlation between individual higher-order relationships and agreeableness for male and female participants. (c) 
Changes of higher-order relationships across three age groups. *, P < 0.05. (d) One-to-many (microstructure-
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functions) relationships. We use the sliding window to construct 59 dynamic functional networks for each 
participant and calculate the relationship between each participant's microstructural and 59 dynamic functional brain 
networks. (e) The detailed results of lower- and higher-order relationships between the microstructural and 59 
dynamic functional networks across participants, indicating the stronger higher-order interaction can be largely 
maintained across the different dynamic status. 

 
Nodal (node-level) higher-order microstructure-function relationship 
The nodal (regional) higher-order relationships are defined by the cosine similarity between the 
frequency of 11 orbits of each node in functional and microstructural network (Fig. 5a). To 
determine whether the higher-order microstructure-function relationship depends on the 
structural or functional nodal centrality. We perform the correlation analysis between the nodal 
higher-order relationship and nodal four centrality metrics (clustering coefficient, local 
efficiency, degree centrality, global efficiency). Significant positively correlations are detected 
(all P-values < 0.005, FDR correction), demonstrating that nodal centrality measures are 
associated with the observed nodal higher-order microstructure-function patterns (SI Appendix, 
Fig. S1). We find that the nodal higher-order relationships are stronger in default mode, visual, 
and frontoparietal regions and weaker in the ParietalOccip and somatomotor cortex (Fig. 5b, 
permuted P < 0.01). And the map of the nodal higher-order microstructure-function relationship 
(Fig. 5a) is negatively correlated with the spatial distribution map of structure covariance-
function correspondence (Fig. 1d), as shown in Fig. 5c. 
 
Gender difference. Due to the different needs and purposes of male and female social behavior, 
we might expect these behaviors to lead to specific neurocognitive adaptations (Kiesow et al., 
2020). Here, we probe the gender difference in nodal higher-order microstructure-function 
interactions, some of the left (precuneus, fusiform, superior temporal gyrus, inferior frontal 
gyrus-orbital part) and the right (precuneus, insula, and supramarginal gyrus) regions show 
significant differences in nodal higher-order microstructure-function interactions (all P-values < 
0.001, FDR correction) (Fig. 5d) and we can use these nodal higher-order interactions to classify 
gender group with an accuracy of 0.74 and AUC of 0.80 by coarse KNN (K nearest neighbor) 
model, executed in MATLAB 2021a classification learner app with parameters: number of 
neighbors: 100, distance metric: Euclidean, distance weight: equal, and standardize data: true 
(Fig. 5e). 
 
Individual variability. A previous study shows that FC variability is related to anatomical 
variability (Mueller et al., 2013), which may explain individual differences in cognition and 
behavior. Here, we inspect the intersubject variability in nodal higher-order interactions and 
nodal FC and link them with the microstructural variability to identify whether their intersubject 
variability can be partially explained by microstructural variability. We term the standard 
deviation of each regional myelin content across all 198 participants as the nodal microstructural 
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variability (Fig. 5f). Individual microstructural variability is larger in the motor cortex and less 
within the default mode network. Furthermore, we define the standard deviation of nodal higher-
order microstructure-function relationships across all 198 participants as the variability of nodal 
higher-order interactions, intersubject variability in nodal higher-order microstructure-function 
relationship is stronger in the somatomotor cortex (Fig. 5g). Subsequently, for the FC, we 
calculate each node's stability, which is indicated by the intraclass correlation coefficient (ICC) 
of this node with all other nodes’ FC across all participants (332 × 198). We define the 
variability in nodal FC as 1–ICC (Fig. 5h), which is greater in the transmodal association cortex, 
including the prefrontal and temporal lobe, and lower in the unimodal visual and motor cortices. 
Nodal microstructural variability (Fig. 5f) shows a moderate correlation with the variability in 
nodal higher-order microstructure-function interactions (r = 0.331, P < 10-6), see Fig. 5i for 
details, and significant correlation with the variability in nodal FC (r = 0.223, P = 0.00004), FDR 
correction, see Fig. 5j for details. 
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Figure 5 | Nodal (node-level) higher-order microstructure-function relationship. (a) Nodal (regional) higher-
order relationships were defined by the cosine similarity between the frequency of 11 orbits of each node in the 
functional and microstructural network. (b) Z-score of nodal higher-order relationships. (c) Nodal higher-order 
microstructure-function relationship is negatively correlated with the spatial distribution map of structure 
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covariance-function correspondence. (d) Gender difference in nodal higher-order relationships. (e) The performance 
of classification in nodal higher-order relationships. Individual variability in nodal myelin (f), higher-order 
relationships (g), and functional connectivity-FC (h). The correlation between nodal microstructural variability and 
the variability in nodal higher-order interactions (i) and the variability in nodal FC (j). 

 
Local (circuit-level) higher-order microstructure-function relationship 
Higher-order microstructure-function relationships are stronger compared with their 
corresponding random networks for the whole brain. To check whether this property still is held 
for local circuits, we use random sampling (100 iterations) to extract subnetworks from the 
whole microstructural and functional brain networks. The sampling number of nodes decreased 
from 240 to 30 (interval of 5), yielding 43 steps. We obtain 43×100 subnetworks for each 
participant's microstructural and functional networks, respectively. Then, we calculate the 
microstructure-function higher-order interaction of those subnetworks for each step for each 
participant (see Fig. 6a-c, results of networks with 240, 120, 60, 30 nodes are shown). We find 
that the subnetworks’ microstructure-function higher-order relationships are significantly higher 
than their relationships with random networks, regardless of the nodal resolution (from 240 to 30 
nodes, see SI Appendix, Fig. S2). These findings confirm those observed in whole brain 
networks and indicate that both global and local circuits exhibit stronger microstructure-function 
higher-order interactions than random networks, which maybe a vital principle for human brain. 

 
Resilience of structure-function higher-order relationships 
Previous studies showed that hub lesion/attack (an essential indicator of brain disorders) caused 
the most extensive brain network organization disturbances (Aerts et al., 2016; Morone & 
Makse, 2015). Here, we perform two kinds of attacks: dynamic artificial hubs attack and static 
visual cortices attack to investigate the resilience of microstructure-function higher-order 
interactions. We use the mean microstructural and functional network, thresholding to only keep 
the top 10% edges in the full connection matrix; we do not modify the functional network and 
the lesion is just performed on the microstructural network. For the dynamic artificial hub attack, 
we first remove the node with the highest global efficiency, setting all connections to that node 
to 0, then calculating the higher-order interaction between the lesioned microstructural network 
and the functional network. Our next step is to calculate the global efficiency of every node in 
the lesioned microstructural network and remove the node with the highest global efficiency. 
Then recalculate the higher-order interactions between the nodes until we have deleted 20% 
nodes of the microstructural network. The results show that dynamic artificial hub attack 
significantly disrupts the microstructure-function higher-order relationships compared with 
random attacks (1000 iterations with random attacks) (Fig. 6d). The visual cortex contains a high 
myelin content, but some demyelinating diseases, such as multiple sclerosis exhibit 
abnormalities in the visual areas. To determine whether the changes of visual microstructural 
content will affect the higher-order microstructure-function interactions. Here, we perform a 
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static attack on the visual cortices; the static visual cortex attack is carried out by ranking the 
nodal global efficiency within the visual cortex in descending order, then deleting them one by 
one only in the microstructural network, recalculating the microstructure-function higher-order 
relationships for each deleting, until all 39 visual regions have been deleted. Results show that 
the static visual cortex attack significantly disrupts the microstructure-function higher-order 
relationships than the random attack (Fig. 6e). Three stages are obtained: early (1-20 lesioned 
nodes); middle (20-30 lesioned nodes); and late (30-39 lesioned nodes), which better matches the 
clinical stage of demyelinating disease (Fig. 6e). Taking multiple sclerosis as an example, which 
is the most common demyelinating disease of the central nervous system, broadly comprises 
three stages: (1) a pre-clinical stage; (2) a relapsing-remitting (RRMS) clinical stage; and (3) a 
progressive clinical-stage during which neurologic dysfunction progressively worsens (Baecher-
Allan et al., 2018). This simple simulation attack in the visual cortex can disrupt higher-order 
structure-function interactions, which may help understand some demyelinating diseases from a 
structure-function interactions perspective. Overall, these two simple models can significantly 
disrupt the higher-order interactions than random attacks (all P-values < 0.001, permutation test 
for comparing two curves). Jointly, the higher-order framework demonstrates potential 
application in monitoring disease progression. Further insights will be gained from studies that 
utilize the higher-order framework with real clinical data rather than simulated data, such as 
multiple sclerosis, traumatic brain injury, and Alzheimer's disease. 

 
Figure 6 | Local (circuit-level) higher-order microstructure-function relationship and resilience analysis. 
(a) We randomly sample 100 times with different resolutions (network size) to extract the microstructural circuits 
(subnetworks); Here, the schematic shows the results for only 240,120, 60, and 30 nodes for one-time sampling. (b) 
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The node index is consistent between the microstructural and functional network; the functional circuits 
(subnetworks) are also shown for only 240,120, 60, and 30 nodes. (c) After random sampling, we calculate the 
higher-order relationships between the microstructure-function subnetwork and their relationships with the random 
networks. (d) We performed targeted attacks for vital nodes with higher global efficiency in the mean 
microstructural network one-by-one until we removed 20% nodes of the network and recalculated the higher-order 
interactions with the mean functional network, showing hub attacked can significantly disrupt the higher-order 
interaction than random attacks. (e) We also performed the static visual cortex attack, removed the nodes one by 
one, in descending order for global efficiency, only in the microstructural network. Roughly, three stages of change 
can be observed. The dashed line indicates linear (least squares) fit; the solid line indicates non-parametric 
regression [LOESS (locally estimated scatterplot smoothing)] fit. 

 
Additional analysis 
We also performed two additional analyses to better understand the higher-order framework: 1) 
Apply the higher-order method to network classification to test the sensitivity of this method. 
Results prove the higher-order framework performs efficiently in classifying networks. 2) 
Explore the relations between nodal metrics and 11 orbits to gain a deeper understanding of the 
higher-order features. See SI Appendix, Additional analysis, Fig. S3. 
 
Robustness 
The robustness of our main results is examined against several factors, including  
(I) effect of sparsity thresholding; (II) effect of sample size; (III) split-half reliability for nodal 
higher-order interactions; (IV) higher-order relationships on other different types of networks; 
(V) effect of different embedding methods; (VI) reliability of constructing the individual 
microstructural network. Taken together, the results of our study are largely reliable and robust; 
see SI Appendix, Robustness, Figs. S4-S10 for details. 
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DISCUSSION 
This work systematically characterized the relationship of myelin microstructure and function 
from the population-level to individual-level, using both the lower-order and higher-order 
frameworks. In particular, the higher-order microstructure-function relationship is significantly 
higher than their relationships in random networks. Interestingly, this stronger higher-order 
microstructure-function relationship can be maintained from whole-brain to local circuits even 
when the circuit size is decreased, which maybe an important principle of human brain. 
Furthermore, higher-order microstructure-function relationship is not uniform across the brain, 
showing differences between genders, and individual variability is related to inter-subject 
variability. In addition, a targeted attack may disrupt the higher-order microstructure-function 
relationship. These results provide new higher-order insights into understanding the interactions 
between brain microstructure and function (Holler et al., 2021; Suarez et al., 2020), linking these 
interactions to cognition and behavior, and driving the development of brain-like computations 
and applications into discovering relationships among different complex systems in other 
disciplines. 
 
Microstructure covariance–function correspondence. The myelin content has increased among 
all age groups from 22-25 to 31-35 years, consistent with recent studies (Grydeland et al., 2019). 
During development, myelination occurs within the cortex and reaches a point of stability at 30 
years of age, following which it declines at 60 years of age (Grydeland et al., 2019; Melie-Garcia 
et al., 2018). Moreover, our results suggest that node-level structure-function correspondence of 
microstructural covariance network and mean functional network is not aligned uniformly across 
the brain. Higher structure-function correspondence in unimodal cortices (motor and visual 
cortex), lower structure-function correspondence in some transmodal cortices (frontal-parietal 
and default mode regions), which is comparable with previous study (Vazquez-Rodriguez et al., 
2019). There is a consensus that individual areas have distinctive “fingerprints” (Finn et al., 
2015) and different modules (Avena-Koenigsberger et al., 2017). The somatosensory, motor, and 
early visual cortex have the highest myelin content, while the association / multisensory cortex 
has the lowest (Fukutomi et al., 2018; Glasser & Van Essen, 2011; Hunt et al., 2016). Research 
suggests that cortical myelin possibly inhibits plasticity. For example, early sensory areas may 
require less plasticity and more myelin, while higher-order areas may have less myelination and 
therefore be more plastic (Glasser et al., 2014). It appears that myelin acts to increase processing 
speed and inhibit plasticity in primary sensory areas (Glasser et al., 2014). In that way, it sheds 
light on the mechanism by which cortical microstructure supports functional networks. 
 
Individual higher-order microstructure–function relationship. As opposed to previous studies 
based on group-level (Hunt et al., 2016; Ma & Zhang, 2017; Melie-Garcia et al., 2018), we 
constructed individual-level myelin-based microstructural networks for direct comparison 
between individuals. The results demonstrate that these microstructural networks are 
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characterized by small-world propensity (Bassett & Bullmore, 2017), hubs, and modular 
organization, which provide a foundation for exploring the structure-function relationship. To 
deepen the systematic understanding of the complex structure-function relationships, we 
examine the one-to-one (microstructure-function) and one-to-many (microstructure-functions) 
patterns, from the lower-order to the higher-order level. The lower-order relationships may 
reflect the functional brain network's flexibility due to copy with different states (Park & Friston, 
2013), and the higher-order may capture the hidden pattern of networks. Results show that, 
compared with microstructure-random and function-random relationships, the microstructure-
function (s) relationship is smaller at the lower-order level. This result is consistent with previous 
structure-function research at the node and edge level (Di et al., 2017; Hunt et al., 2016). 
However, it becomes larger at the higher-order level. Furthermore, we find the global higher-
order relationships are associated with individual personality scores and descended with aging, 
and male participants primarily drive the result. Consistent with the previous study (Nostro et al., 
2017), it highlights the brain structure–personality relationships are highly dependent on gender.  

For nodal higher-order microstructure-function relationships, default mode network regions 
show stronger higher-order microstructure-function relationships, while motor cortices show 
weaker higher-order microstructure-function relationships. The transmodal regions show 
stronger nodal higher-order microstructure-function relationships than unimodal regions, which 
has an opposite pattern to node-level microstructural covariance-function correspondence, 
especially for the default mode regions (Raichle et al., 2001), which have weaker microstructural 
covariance-function correspondence while having stronger nodal higher-order microstructure-
function interactions, providing a new perspective and tool to understand the default mode 
network (Raichle et al., 2001) and the structure-function interactions of association cortex 
(Sydnor et al., 2021). The regions like precuneus, fusiform, and insula, observed in previous sex 
differentiation study with large participants (Kiesow et al., 2020), show significant gender effect 
in nodal higher-order microstructure-function relationships. We can use these regions to 
distinguish the male from the female with good accuracy, highlight the potential application in 
different groups classification and some clinical monition for brain disorder participants. 
Additionally, a modest but significant relationship was observed between sulcal depth variability 
and functional variability (Mueller et al., 2013) in a previous study (r = 0.30, P < 0.0001). We 
observe very similar results in the correlation between myelin variability and higher-order 
microstructure-function variability, indicating that individual structure differences may affect the 
structure-function interactions. 

For structure-function higher-order interactions of local circuits. The microstructure-
function higher-order relationships can be preserved even with a gradually decreasing scale. In 
this study, both whole-brain networks and local circuits exhibit stronger higher-order 
relationships than their relationships with random networks. The important principle, greater 
structure-function interactions from whole-brain to local circuits, may help design new and 
efficient brain-inspired intelligence and further understanding the role of structure-function 
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higher-order interactions of local circuits in human aging, cognitive activities, and personality. 
 
Potential applications and targeted attack. The higher-order framework can classify different 
types of networks with higher accuracy than the lower-order one, exhibiting the potential to 
construct a network of networks, describing the relationships among different complex systems. 
And the targeted attack (Aerts et al., 2016; Crossley et al., 2014) can disrupt the higher-order 
microstructure-function relationships and the visual cortices attack yields decreased higher-order 
relationship in a three-stage curve process, the simple simulated models are match for the 
evolution of demyelinating diseases such as multiple sclerosis (Baecher-Allan et al., 2018), 
providing us with confidence in monitoring disease progression with higher-order structure-
function relationships. 
 
Additional considerations and perspectives. Several methodological limitations and 
considerations affect the present results. First, our estimation of myelin is based upon T1w/T2w 
ratio, although serving as an efficient marker of myelination, it is important to note that there is 
no one-to-one relation between T1w/T2w ratios [or magnetization transfer rate (MTR) or the 
grey/white matter contrast (GWC)] and myelin density (Glasser & Van Essen, 2011). Second, we 
only compare the resting-state functional brain network and the microstructural network; the 
pattern of microstructure-function relationship under the various tasks-based functional network 
is largely unknown. Thirdly, artificial attacks are made to investigate the changes of higher-order 
relationship, nevertheless, the models will not accurately reflect the real situations, applying the 
higher-order framework to trauma injury or demyelinating disease (like multiple sclerosis) 
participants could give us important new comprehensions. Research utilizes different myelin 
imaging approaches, such as MTR or GWC, to construct individual microstructure networks to 
inspect the microstructure-function relationship is warranted. As well, enrolling task-based data 
or developing data with a larger age range (e.g., 5-80 years old) will undoubtedly yield more 
insights. For applications, the global, nodal, or local circuits' structure-function relationship may 
serve as a potential indicator of disease progression. 
 
CONCLUSION  
These findings suggest that examining myelin microstructure-function patterns and how they 
relate to cognition and aging is feasible and indeed desirable. With this foundation, human brain 
connectome studies can move beyond the low-order (node or edge) level of inferences, to reveal 
the principle of structure-function interactions at the individual higher-order (subgraphs, motifs, 
hypergraphs, etc.) level, understand ongoing structure-function interactions with brain 
development or disorder, and inspire the development of brain-like intelligent computing 
framework. Furthermore, the method we used can also be applied to other fields (physics, 
economics, etc.) to measure how similar different complex systems are, and network 
classification, etc.  
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MATERIALS AND METHODS  
For details, see Supplementary Information.  
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MATERIALS AND METHODS 
 
MRI data. Dataset: We download unprocessed MR data of 213 participants from the Human 
Connectome Project (HCP) "S1200" new subjects release, the HCP (PI: David Van Essen and 
Kamil Ugurbil; 1U54MH091657) was funded by the 16 NIH Institutes and Centers that support 
the NIH Blueprint for Neuroscience Research, and by the McDonnell Center for Systems 
Neuroscience at Washington University (Van Essen et al., 2013), and these DICOM files were 
converted to NIfTI format using the dcm2nii utility (http://www.nitrc.org/projects/mricron). 
Informed consent was obtained from all participants, and participants were recruited from 
Washington University (St. Louis, MO) and the surrounding area. We excluded eight 
participants who met any of the following criteria: (a) mean of framewise displacement (mFD) > 
0.25 mm; (b) more than 20% of the FDs were above 0.2 mm; and (c) if any FDs were greater 
than 5 mm (Jenkinson, Bannister, Brady, & Smith, 2002; Parkes, Fulcher, Yucel, & Fornito, 
2018). Seven participants > 36 years old were also excluded. Finally, we obtained quality-
controlled resting-state fMRI (rfMRI) images, T1-weighted images, and T2-weighted images of 
198 participants (108 males and 90 females, see the SI Appendix, Table S1 for a complete list of 
participant IDs). 
 
Structural data 
Structural scans with the following parameters were also collected: T1-weighted (0.7 mm 
isotropic resolution, TR = 2400 ms, TE = 2.14 ms, flip angle = 8 deg, FOV = 224 × 224 mm, 
acquisition time = 7min 40 sec, BW = 210 Hz/Px) and T2-weighted (0.7 mm isotropic 
resolution, TR = 3200 ms, TE = 565 ms, variable flip angle, FOV = 224×224 mm, acquisition 
time = 8 min 24 sec, BW = 744 Hz/Px) data. 
 
Structural data preprocessing. The T1-weighted and T2-weighted data were processed using the 
MRTool (Ganzetti, Wenderoth, & Mantini, 2014) (https://www.nitrc.org/projects/mrtool, version 
1.4.2) implemented in the SPM12. MRTools provided bias correction and intensity calibration 
on both images and then calculated the ratio between preprocessed T1w and T2w images. 
Finally, we obtained the T1w/T2w ratio images in the MNI space with a resolution of 1 × 1 × 1 
mm resolution. 
 
Construct the microstructural covariance network. We first used the Gordon parcellation with 
333 brain regions (Gordon et al., 2016) to extract the mean value of myelin (T1w/T2w ratios) 
content for each region of each participant, obtaining a 333 × 198 matrix, linear regression was 
performed on the regional mean myelin to remove the effects of age groups and gender, then the 
residuals of this regression was used to perform the Spearman correlation on each paired regions 
across the 198 participants, resulting into a 333 × 333 matrix. The framework measures the 
covariation of information from different brain regions across a population, known as the 
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covariance network (He, Chen, & Evans, 2007), and thus we acquired a group-level 
microstructural covariance network (Fig. 1a). 
 
Construct the individual myelin-based microstructural network. Same with the functional brain 
network, we used the same brain atlas (Gordon atlas with 333 regions) for myelin-based 
microstructural network analysis. For each participant's myelin map (T1w/T2w ratio) map, we 
first extracted the myelin values for all voxels within each brain region. For each brain region, 
we used kernel density estimation (KDE) to estimate the probability density function (function: 
kde.m, https://www.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator) 
of these myelin values with 128 sampling points (Wang, Jin, Zhang, & Wang, 2016) and the 
bandwidth of the range interval is the minimum to the maximum of the whole brain myelin 
value. We standardized the probability density function by dividing its sum to produce a 
probability distribution function (PDF) to ensure that the PDF sum is 1. Subsequently, we 
calculated the Earth Mover's Distance (EMD) (𝐷!) between the PDFs of any paired brain 
regions, resulting in a 333 × 333 matrix. We converted the EMD matrix to a similarity matrix 
based on sigmoid function and termed the myelin-based similarity 𝑀"#$ for each participant as 

𝑀"#$ = $
1

1 + 𝐷!
(1) 

 
 
Functional data 
The rfMRI data was collected using a 32-channel head coil on a modified 3T Skyra system 
(MAGNETOM Skyra Siemens Healthcare). Scanning Sequence is Gradient-echo EPI, with a 
multi-band acceleration factor of 8, TR = 720 ms, TE = 33.1 ms, flip angle = 52 deg, FOV = 208 
× 180 mm (RO × PE), matrix = 104 × 90 (RO × PE), slice thickness = 2.0 mm; 72 slices; 2.0 mm 
isotropic voxels, Echo spacing = 0.58 ms, BW = 2290 Hz/Px. The rfMRI data was acquired in 
four runs of 14 min 33 sec each, two runs were included in one session, and two were included in 
another session, with eyes open condition. Within each session, each run had a different phase 
encoding in a right-to-left (RL) direction or a left-to-right (LR) direction (REST1_LR, 
REST1_RL, REST2_LR, and REST2_RL). In the current study, we only used the "REST1_RL" 
unprocessed data. 
 
Functional data preprocessing. Data were processed using SPM12 (version r7219, 
http://www.fil.ion.ucl.ac.uk/spm/software/spm12) and our homemade MATLAB codes. The 
main steps were (1) removing the volumes during the first 10 seconds (14 volumes); (2) 
realignment of all volumes to the first volume; (3) mean-based intensity normalization (dividing 
each voxel by the global 4D mean value and multiplying by 1000); (4) spatial normalization to 
the Montreal Neurological Institute (MNI) template with EPI (2 × 2 × 2 mm voxel size) 
(Calhoun et al., 2017); (5) linear detrending of retaining mean; (6) bandpass filtering between 
0.043 and 0.087 Hz (Termenon, Jaillard, Delon-Martin, & Achard, 2016) using the butter filter 
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(MATLAB functions butter and filtfilt); (7) denoising: 24HMP+8Phys+Spikereg (Parkes et al., 
2018), the 24HMP indicates 24 column head motion parameters (i.e., the 6 rigid-body parameter 
time-series, their backwards-looking temporal derivatives, plus all 12 resulting regressors 
squared); The 8Phys indicates 2 averaged WM and CSF signals, their temporal derivatives, plus 
all 4 resulting regressors squared; The Spikereg indicates spike regression, and volumes were 
marked as contaminated if FDJenk > 0.25 mm (Parkes et al., 2018). Here, we did not perform the 
slice-time correction because the TR for HCP rfMRI data is relatively short at 0.72 sec. We did 
not perform spatial smoothing due to its complex effects on the structure and properties of 
human brain networks (Alakorkko, Saarimaki, Glerean, Saramaki, & Korhonen, 2017). 
 
Construct the static functional network. The first step in constructing the brain network is to 
define the nodes and edges. Here, for the static functional network, we utilized the Gordon 
parcellation with 333 regions as nodes (Gordon et al., 2016), and the Pearson correlation 
coefficients between pairs of nodal median time series were calculated as edges. We obtained an 
asymmetric connectivity matrix for each participant. 
 
Construct the dynamic functional network. Here, we applied a sliding window method to 
construct the dynamic brain network. This framework has been enthusiastically welcomed and 
used repeatedly by the neuroimaging community to understand brain dynamics and their 
relations with cognitive abilities and different brain disorders (Preti, Bolton, & Van De Ville, 
2017). To simplify, we first selected a time window with length W (from time t = 1 to time t = 
W), calculating the connectivity as Pearson's correlation coefficient between each pair of time 
series within the time window. The window was then moved by step T, and the same calculation 
was repeated on the time interval [1+T, W+T]. This process was repeated until the window spans 
the end portion of the period. When all windows were considered, a set of connection matrices 
(dynamic functional networks) were obtained. Here, we used the time window with a length of 
200 TRs and stepped with 17 TRs, resulting in 59 dynamic functional networks. 
 
Correspondence of microstructural covariance and mean functional network 
Simple multilinear model. We used the multiple regression approach (Vazquez-Rodriguez et al., 
2019) to predict the functional connections profiles of nodes based on geometric and 
microstructural predictors of the same node (Fig. 1b). The predictors were 1) path length 
between nodes, 2) Euclidean distance between node centroids, and 3) communicability between 
nodes. Binarized microstructural connectome data was used to estimate path length and 
communicability. Path length referred to the shortest contiguous sequence of edges between two 
nodes (distance_bin.m, BCT toolbox). Communicability (Cij) between two nodes i and j is 
defined as the weighted sum of all paths and walks between those nodes (expm.m, MATLAB 
2021a built-in function). Communicability was defined for a binary adjacency matrix, A, as 
follows: 

𝐶#% = [𝑒&]#% (2) 
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Then, we obtained the structural path length (Pi), Euclidean distance (Ei), and microstructural 
communicability (Ci) for each node. We applied the regression model, 

𝐹𝐶# = 𝛽0	 + 	𝛽1 ∗ 𝑃# 	+ 	𝛽2 ∗ 𝐸# 	+ 	𝛽3 ∗ 𝐶# (3) 
 

where 𝐹𝐶# measures the functional connections between node i and the other nodes. The 
regression coefficients 𝛽1, 𝛽2, and 𝛽3, as well as the intercept 𝛽0, were then solved by ordinary 
least squares (fitlm.m, MATLAB 2021a built-in function). The adjusted R-square for each region 
was termed the nodal correspondence of microstructure-function. 
 
Basic topology of microstructural and functional brain network 
To simplify our analysis, we converted the weight networks to binary networks using a sparsity 
threshold value of 10% (i.e., keep the top 10% elements in the network), which has reported in 
previous studies (Grydeland et al., 2019; Lariviere et al., 2020). Specifically, we normalized the 
value in the weighted network to a range from 0 to 1. Then we extracted the minimum spanning 
tree (Alexander-Bloch et al., 2010) to ensure that the thresholded network is not fragmented, and 
the remaining values in the network were sorted by descending order and reserved in sequence 
until reaching the sparsity threshold value of 10%. Subsequently, we calculated four nodal 
metrics [clustering coefficient, local efficiency, degree centrality, global efficiency] for each 
network. These nodal metrics were implied with BCT toolbox (Rubinov & Sporns, 2010) 
(https://sites.google.com/site/bctnet). Then, we performed the hub detection, calculated the mean 
nodal global efficiency values across 198 participants, and defined the node with top 10% mean 
global efficiency values across all participants as hubs (Del Ferraro et al., 2018). For modular 
detection, the Louvain community detection algorithm (Newman, 2006) was applied to the mean 
microstructural and functional brain network for stable modular results. We determined the 
modularity metric (Q) at the resolution parameter, γ = 1. Q quantifies modularity, that is, Q = 0 
has no more intramodular connections than expected by chance, while Q > 0 indicates a network 
with some community structure. We computed 10,000 iterations (function: 
community_louvain.m, BCT toolbox) and each pair of regions received an affinity score between 
0 and 1. The affinity score is the times of two regions being assigned to the same module divided 
by the 10,000 iterations, thereby assigning higher weights to partitions with a higher modularity 
score. We set the affinity score ≥ 0.5 to 1 and others to 0, resulting in a binary affinity matrix, 
then, we then performed the modular detection on the binary affinity matrix (function: 
modularity_und.m, BCT toolbox) to obtain stable modular organization. 
 
Higher-order framework 
To evaluate the higher-order relationships between the microstructural and functional brain 
networks, first, we utilized 11 non-redundant orbits and counted the orbit frequency for each 
node in the microstructural and functional networks with sparsity threshold 10%, separately, 
resulting in a Nnodes × Norbits matrix. Second, for each node, let 𝑓(o#) be the frequency of orbit o# 
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where 𝑖 ∈ (1…11). Third, we calculated the normalized frequency of each 𝑓(o#) by dividing it 
with ∑ 𝑓(𝑜#)''

#(' , to avoid the zero in the denominator, where we added 1 to each of the 
frequencies, and take the logarithm (10-base) of the normalized frequency, thus the normalized 
orbit frequency matrix became, 

𝑓(𝑜#)∗ = log ?1 +
𝑓(𝑜#) + 1

∑ (𝑓(𝑜#) + 1)''
#('

@ (4) 

 
last, for the normalized orbit frequency matrix (333 × 11), we calculated the pairwise mutual 
information (MI) among all pairs of orbits and resulted in an 11-by-11 (Norbits × Norbits) MI 
matrix, the Pearson correlation between their MI matrices was termed as the higher-order 
relationships of microstructural and functional brain network (Fig. 1f-g). 
 
Statistical analysis 
Estimation of nodal microstructure variability. Here, we used the myelin content to descript the 
anatomical variability; for each brain region, we could obtain a 1 × 198 vector across all 
participants, denoted as A. We termed the standard deviation of each regional myelin content 
across all 198 participants as the variability of regional myelin,  

𝑆 = C
1

𝑁 − 1F
|𝐴# − µ|*

+

#('

(5) 

 
Where N was 198 and μ was the mean of A: 

µ =
1
𝑁F𝐴#

+

#('

(6) 

 
Nodal higher-order relationships and variability. For each participant, we counted the frequency 
of 11 orbits for function and myelin-based structural network and the nodal higher-order 
relationships were defined by the cosine similarity between the frequency of 11 orbits of 
microstructural and functional network; thus, we can obtain a higher-order relationships map for 
each participant at the nodal level. The standard deviation of the nodal higher-order relationships 
across the 198 participants was defined as the variability of the nodal higher-order relationships. 
 
Estimation of the variability of nodal functional connectivity (FC). In the current study, each 
participant (P) yielded a 333 × 333 functional connectivity matrix. For each brain region (i), the 
remaining regions' correlation with the seed region is a 1 × 332 vector, which can be denoted as 
𝐹,-#, we can yield a 332 (𝐹,-#) × 198 (P) matrix for all participants, denoted as Mi. We termed 
the functional connectivity variability of each brain region as 𝑉./0#1,(#) = 1 − 𝐼𝐶𝐶(𝑀#). The 
intraclass correlation coefficient (ICC) could be used to define the stability of scores over 
participants, 
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ICC =
𝑀𝑆4 −𝑀𝑆5

𝑀𝑆4 + (𝑘 − 1)𝑀𝑆5
(7) 

 
where 𝑀𝑆4 was the between-subject mean square, 𝑀𝑆5 was the within-subject mean square, 𝑘 
was the number of repeated observations for each participant (198 here).  
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APPENDIX 
 
Correlation between microstructural and functional centrality and nodal higher-order 
microstructure-function correspondence 
Correlation analysis (Pearson correlation) was performed to examine the relationships between 
the mean higher-order microstructure-function correspondence values with the mean functional 
centrality and mean microstructural centrality across all participants. In both cases the 
correlations were moderately and significant (all P-values < 0.005, FDR correction), suggesting 
that nodal higher-order microstructure-function correspondence can partially be explained by 
microstructural or functional nodal centrality. 

 
Fig. S1 | Correlation between microstructural and functional centrality and microstructure–function 
correspondence. (a) Correlation between mean nodal higher-order microstructure-function correspondence and 
mean functional nodal centrality. (b) Correlation between mean nodal higher-order microstructure-function 
correspondence and mean microstructural nodal centrality. The dashed line indicates linear (least squares) fit; the 
solid line indicates non-parametric regression [LOESS (locally estimated scatterplot smoothing)] fit. 

 
Local (circuit-level) higher-order microstructure-function relationship 

Fig. S2 | Higher-order relationships across different 
subnetworks/scales. Higher-order relationships of microstructure-
function are larger than their relations with random networks from 240 
nodes to 30 nodes.  
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Additional analysis 
Applying the higher-order method to network classification. We predict that higher-order 
similarity between networks within the same category will be greater than between networks 
within different categories since the higher-order framework may capture the hidden information 
well. Three types of networks (functional, microstructural, and random), each type containing 
396 networks (198 networks with sparsity 0.1 and 198 networks with sparsity 0.2), are used to 
prove our hypothesis. Any paired network's higher-order interactions are calculated, producing 
an 1188 by 1188 similarity matrix (Fig. S3a). The higher-order similarity of any two categories 
of networks is shown in (Fig. S3b), the networks of the same category exhibit stronger higher-
order similarity than different categories of networks. Positive class refers to similarities between 
networks of the same category, and negative class refers to similarities between different types of 
networks. According to the receiver operating characteristic (ROC) curve analysis, the higher-
order property makes clustering networks of similar types more sensitive, with an AUC of 0.998 
and an Area Under Precision-Recall curve (AUPR) of 0.996. In contrast, none of the lower-order 
measures is above 0.9 (Fig. S3c-d), highlighting the importance of high-order properties for 
clustering. 
 
Relation between nodal metrices and orbits. For a better understanding of the orbits, the 
Spearman correlation analysis is conducted between the four nodal metrics and the normalized 
nodal frequency of 11 orbits, resulting in a 4 by 11 matrix for each participant. K-means 
clustering is used to identify potential categories. The classification of functional networks is 
similar to that of microstructural networks (Fig. S3e-f). The clustering coefficient and local 
efficiency are in one cluster, and the degree centrality and global efficiency are in another 
cluster. Hence, one cluster may reflect local properties while another owns global properties. For 
the 11 orbits, the O1, O2, O4, O6, and O9 is grouped together, while the O3, O5, O7, O8, O10, 
and O11 were grouped together (Fig. S3e-f). Intriguingly, O1, O2, O4, O6, and O9 correspond to 
the peripheral, their degree centrality is 1. In contrast, O3, O5, O7, O8, O10, and O11 are the 
most likely clusters or hubs, with degree centrality of at least two (Fig. 3b in main text). Using 
the higher-order framework, we can determine the interactions between different functional 
subnetworks or create network of networks to describe the relationships among complex systems 
for other disciplines. 
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Fig. S3 | Network classification and the relationship between nodal metrics and orbits. (a) The higher-order 
relationship matrix of 1,088 networks: 396 functional, 396 microstructural, and 396 random networks. Two sparsity 
values of 0.1 and 0.2 are used, under each sparsity value, there are 198 networks. (b) The higher-order similarity 
between different networks. MM indicates microstructural & microstructural; FF indicates functional & functional; 
RR indicates random & random; FM represents functional & microstructural; FR represents functional & random; 
MR represents microstructural & random. (c) We define the higher-order similarity values coming from the same 
type of networks as positive class (MM, FF, RR) and the similarity values coming from different types of networks 
as the negative class (FM, FR, MR), and we utilize the ROC curve analysis to measure the quality of higher-order 
classification for the 1188 networks. ROC curves, which plot the true positive rate (TPR) versus the false positive 
rate (FPR), and (d) PR curves, which plot the precision versus the recall. True positives (TP); false positives (FP); 
false negatives (FN); and true negatives (TN). The accuracy (ACC) is equal to (TP+TN) / (all samples), and the 
Matthews correlation coefficient (MCC) is equal to !"×!$%&"×&$

'(!")&")(!")&$)(!$)&")(!$)&$)
. The results show that the 

higher-order property exhibits an excellent quality in classifying the networks compared to the lower-order property. 
GlobE, global efficiency; Degree, degree centrality; LocE, local efficiency; Clus, clustering coefficient. (e-f) The 
relationship between the nodal metrics and normalized orbits' frequency. The clustering results show a similar 
pattern in both networks. For nodal metrics, the clustering coefficient and local efficiency are grouped together, 
while the degree centrality and global efficiency are classified into a group. For orbits, the O1, O2, O4, O6, and O9 
were grouped together, and the O3, O5, O7, O8, O10, and O11 were grouped together. 
 
Robustness 
The robustness and reproducibility of the main findings are vital for scientific research. Here, we 
also evaluate our main results against several factors, including (I) the effect of sparsity 
thresholding; (II) the effect of sample size; (III) split-half reliability for nodal higher-order 
interactions; (IV) higher-order relationships on other different types of networks; (V) the effect 
of different embedding methods; (VI) the reliability of constructing the individual 
microstructural network. 
 
Effect of sparsity thresholding. Despite advances in the human brain connectome, the selection 
of sparsity values is still under debate. First, we also evaluated whether our main results could be 
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replicated using an efficiency cost optimization (ECO) filter threshold strategy (De Vico Fallani, 
Latora, & Chavez, 2017), which has approximately 3/(N-1). N indicates the number of nodes, 
here N = 333. Thus, the sparsity value was 9 ‰. The result suggests a similar pattern compared 
with the sparsity value of 10% (Fig. S4a). We also use the mean microstructural and functional 
network to test the changes of higher-order interactions across the sparsity from 0.02 to 0.4 with 
an interval of 0.02 (Fig. S4b). We find that the higher-order microstructure-function interactions 
can distinguish from the random networks with a lower sparsity value, less than 0.13 (Fig. S4c). 
Furthermore, we perform the correlation analysis between higher-order interactions with 
individual personality scores and detect the difference of higher-order interactions between three 
age groups (Fig. S5). 
 

Fig. S4 | Effect of sparsity thresholding. (a) 
Lower- and higher-order structure-function 
relationships under the sparsity value of 9 ‰. The 
microstructural and functional networks show a 
minimum degree of correlation at the lower-order 
level and exhibit a higher similarity at the higher-
order level. At the lower-order level, the 
microstructural and functional networks exhibit a 
lower correlation compared with their corresponding 
random networks. At the higher-order level, the 
microstructural and functional networks exhibit 
enhanced correlation than their relationships with 
corresponding random networks. Clus, clustering 
coefficient; LocE, local efficiency; Degree, degree 
centrality; GlobE, global efficiency; Higher-order, 
higher-order relationships. (b) Higher-order 
interactions across the sparsity value from 0.02 to 
0.4, we can observe that the higher-order 
microstructure-function interactions are stronger 
than their corresponding random networks. (c) The 
differences among the three curves are shown in 

Fig. S4b, results show that the higher-order interaction owns a solid ability to differentiate under the sparsity value 
of 0.13. 
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Fig. S5 | Higher-order relationships and association with cognition. (a) At the sparsity value of 9 ‰, the higher-
order microstructure-function interactions are positively correlated with conscientiousness, (b) especially for male 
participants, (c) no significant results were observed for female group. (d) The higher-order relationships show a 
decreased pattern from the 22-25 group to the 31-35 group. No significant results were observed for male (e) or 
female participants (f).  
 
Effect of sample size. To verify whether our main results are stable with a changeable sample 
size, we randomly select 100 participants from 198 participants at one time (10,000 times 
sampling), and then recalculate the relationship between higher-order similarity and personality 
scores, and the change with different age groups. The result for one-time sampling is shown in 
Fig. S6a-b; we can observe the higher-order interactions are significantly negatively correlated 
with agreeableness score for male participants, and show a declining trend across the age groups. 
The results of 10,000 times sampling, showing the higher-order interactions is decline trend 
across the age groups for especially for the male participants (Fig. S6c), and the correlations 
between higher-order interactions and agreeableness score for male participants are at least a 
50% chance of being significant (median r = -0.269, median P-value = 0.048), see Fig. S6d. 
When we randomly select 150 participants from 198 participants at one time (10,000 times 
sampling), the correlations between higher-order interactions and agreeableness score for male 
participants are 96% chance (the number of times P greater than 0.05 is 400, the probability is 
400/10,000 = 0.04) of being significant (median r = -0.268, median P value = 0.012). This shows 
that the current sample size is enough to detect a significant correlation between higher-order 
relationship and personality scores. 
 
Split-half reliability for nodal higher-order interactions. To examine the robustness of nodal 
higher-order interactions, we split all 198 subjects into two subgroups; one is the odd group (1, 3, 
5, …,197), the other one is the even group (2, 4, 6, …, 198). Then, we perform the Pearson 
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correlation in the two subgroups; a high correlation coefficient between the two subgroups is 
observed (r = 0.932, P < 10-6), indicating high reliability (Fig. S6e). 
 

 
Fig. S6 | Effect of sample size and split-half reliability. (a-b) At the sparsity value of 0.1, we randomly selected 
100 participants from all 198 participants, and the results for one time sample are shown. (c-d) The mean results of 
10,000 samplings for higher-order microstructure-function relationship with cognition scores and gender. (e) Split-
half reliability for nodal higher-order interactions, subgroup 1 and subplot 2 have high correlation.  
 
Higher-order relationships in different types of network. To further evaluate the performance of 
the higher-order framework. We utilize two widely used network models: small-world network 
and Barabási-Albert network. First, we evaluate the changes in higher-order relationships from 
regular network to random networks. We apply the Watts-Strogatz model to construct a serial 
network from regular to random networks. There are two basic stages: 1) Create a circle lattice 
with 2000 nodes of average degree 100. 2) For each edge in the graph, rewiring the target node 
with probability P (0 to 1, the interval is 0.01). The rewired edge cannot be duplicated or self-
loop. When P = 0, the model yields a ring lattice. Alternatively, the ring lattice is converted into 
a random graph when P = 1. Thus, we obtain 101 networks and computed the higher-order 
relationships for any paired networks, resulting in a 101 × 101 matrix. We observe that the same 
type of networks exhibited strong higher-order relationships (e.g., regular vs. regular or random 
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vs. random) and different types of networks (e.g., regular vs. random) exhibited lower higher-
order relationships, see Fig. S7a. Second, we want to check the higher-order relationships among 
different types of networks with different network sizes (the number of nodes in the network). 
For the small-world network model and the Barabási-Albert network model, we simulate 20 
networks with network size from 100 to 2000 (the interval is 100) and the average degree is 20, 
for each network model. Then we calculate the higher-order relationships for any paired 
network. Similar results are observed, higher-order relationships in the same type of network, 
even with different network size, exhibit higher relationships than different type networks; see 
Fig. S7b. Third, we also want to evaluate the performance of higher-order relationships on real 
brain networks with different network sizes. Here, we randomly select a participant and used the 
Schaefer Parcellations 7 network ranging from 100 to 1000 parcels (100, 200, 300, 400, 500, 
600, 800, 1000) to construct individual microstructural and functional brain networks. Then we 
calculate the higher-order relationships between any pair of the 16 networks. A similar pattern is 
observed with the main findings; see Fig. S7c for details. 
 

Fig. S7 | Higher-order relationships across 
different networks. (a) Higher-order 
relationships across regular, small-world, and 
random networks. (b) Higher-order 
relationships between small-world (SW) and 
Barabási–Albert (BA) networks with 
different network sizes. SW 100 indicates 
SW network with 100 nodes; BA 100 
indicates BA network with 100 nodes, and so 
on. (c) Higher-order relationships between 
microstructural and functional networks with 
different network sizes, the images of subject 
ID: 102109 were used. F: functional network; 
M: microstructural network; F100 indicates 
functional network with 100 nodes; M100 
indicates microstructural network with 100 
nodes, and so on. 
 
 
 
 

 
Effect of different embedding methods. In addition to using the orbit embedding, we also evaluate 
the effect of the nodal neighborhood embedding framework. Specifically, first, we thresholded 
the network with a 10% sparsity value, i.e., to keep the top 10% edges, then, we identified 
the shortest path matrix of the thresholded network, here, we consider the 1st to 6th step 
neighbors for each node, and we calculate the number of neighbors for each node from the 1st 
step to 6th step, obtain a N × 6 matrix, N is the number of nodes. Then we calculate the 
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Euclidean distance for any paired step neighbors within the N × 6 matrix, resulting in a 6 × 6 
Euclidean distance matrix. Thus, for any two networks, we could compress each of them into a 6 
× 6 Euclidean distance matrix, the higher-order relationship was termed as the Pearson 
correlation of two Euclidean distance matrices. The workflow of this neighbor embedding 
method can be seen in Fig. S8. Here, we explore the higher-order relationships by 6 step nodal 
neighborhood embedding for functional, microstructural, and random networks. We observe 
significantly higher relationships between microstructural and functional networks than their 
relationships with random networks (Fig. S9a) and exhibited a decreased trend across three age 
groups (Fig. S9b). However, we do not observe any significant correlation between the higher-
order relationships and individual personality (Big-Five) scores using the neighborhood 
embedding framework. 

 
Fig. S8 | Workflow of the neighborhood embedding method. (a) Example graph with 25 nodes and 50 edges. (b) 
Up to six-step nodal neighborhood embedding, counting the number of neighbors for each step for each node, the 
shortest path distance was used to depict the number of neighbors in each step. (c) Euclidean distance matrix of the 6 
features embeddings. 
 

Fig. S9 | Higher-order relationships 
by neighborhood embedding method. 
(a) Higher-order microstructure-
function relationships are higher than 
their relations with random networks. 
(b) Microstructure-function higher-order 
relationships show decreased trend 
across three age groups (no significant 
group differences were observed). 
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Reliability of constructing the individual microstructural network. In addition, we also evaluate 
the reliability of our method for constructing the individual microstructural network, another 
HCP test-retest dataset that included 20 participants is used to perform the intraclass correlation 
coefficient (ICC) analysis. The ID information of 20 participants can be seen in Table S2. The 
connection matrix exhibited high ICC (0.960±0.016), we thresholded these networks with a 
sparsity of 0.1 and calculate the nodal degree centrality and global efficiency for each network. 
For nodal metrics, nodal degree exhibits a high ICC (0.911±0.079), nodal global efficiency 
exhibits a high ICC (0.936±0.059), and these regions with high ICC values are mainly located in 
the parietal and occipital lobes, while the regions within the default mode network show a lower 
ICC. See Fig. S10.  
 
Fig. S10 | The reliability of our method for constructing 
the individual microstructural network. (a) The results 
indicate that the connection matrix, degree centrality, and 
global efficiency exhibit high ICC values. (b) The ICC 
map of global efficiency. (c) The ICC map of degree 
centrality. We observe the occipital and parietal lobes 
have a higher ICC value. 
 
 
 
 
 
 
 
 
 
Collectively, the current findings are robust to some factors and the method for constructing 
individual myelin-based microstructural network is highly reliable.  
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Table S1. We download unprocessed MR data of 213 participants from the "S1200" release of 
the Human Connectome Project (HCP). Eight participants who have a larger head movement 
were excluded (IDs: 161832, 192237, 362034, 392447, 453542, 468050, 804646, 962058). 
Seven participants ³ 36 years old were further discarded (IDs: 171128, 202820, 209531, 
689470, 757764, 902242, 905147).  

SUBJECT RELEASE ACQUISITION GENDER AGE NEO_A NEO_O NEO_C NEO_N NEO_E 

1 102109 S1200 Q13 M 26-30 39 41 30 19 37 
2 102614 S1200 Q12 M 22-25 34 30 42 5 35 
3 102715 S1200 Q12 M 26-30 38 26 38 6 36 
4 103010 S1200 Q12 M 22-25 29 33 40 19 28 
5 103212 S1200 Q13 M 31-35 36 31 21 17 32 
6 106824 S1200 Q13 M 22-25 28 29 34 22 29 
7 108020 S1200 Q12 M 22-25 29 17 33 16 34 
8 111211 S1200 Q12 F 26-30 33 27 32 20 36 
9 113316 S1200 Q12 M 22-25 30 31 37 12 29 
10 113417 S1200 Q12 F 26-30 32 25 39 19 32 
11 114116 S1200 Q12 F 26-30 32 23 30 28 33 
12 115724 S1200 Q12 F 22-25 33 21 36 19 32 
13 116423 S1200 Q09 M 26-30 26 33 29 20 35 
14 117021 S1200 Q12 F 26-30 29 34 31 20 18 
15 117728 S1200 Q10 F 22-25 NaN NaN NaN NaN NaN 
16 118831 S1200 Q13 M 22-25 25 33 31 39 23 
17 119025 S1200 Q12 M 26-30 29 27 33 1 11 
18 120010 S1200 Q13 F 26-30 35 39 42 8 30 
19 120414 S1200 Q12 F 26-30 34 32 34 12 30 
20 122418 S1200 Q13 F 26-30 34 23 36 15 36 
21 123723 S1200 Q09 F 31-35 25 22 31 34 34 
22 125222 S1200 Q12 M 26-30 28 35 33 24 32 
23 125424 S1200 Q11 F 31-35 38 10 47 11 27 
24 126426 S1200 Q12 F 31-35 38 20 38 22 26 
25 127226 S1200 Q08 M 22-25 33 30 36 16 30 
26 127731 S1200 Q09 F 31-35 34 29 36 15 21 
27 127832 S1200 Q09 F 31-35 46 24 37 2 47 
28 130114 S1200 Q08 M 26-30 32 44 37 3 40 
29 130518 S1200 Q07 F 31-35 33 28 40 14 29 
30 130720 S1200 Q13 M 31-35 25 32 31 21 20 
31 134627 S1200 Q09 M 26-30 39 29 29 8 29 
32 135124 S1200 Q13 F 31-35 38 31 25 26 37 
33 135629 S1200 Q12 M 22-25 29 26 29 26 32 
34 136126 S1200 Q09 M 26-30 42 23 32 11 28 
35 136631 S1200 Q09 M 22-25 32 18 31 17 34 
36 137431 S1200 Q13 F 31-35 43 26 47 1 33 
37 137532 S1200 Q12 M 31-35 29 25 32 15 35 
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38 138130 S1200 Q09 F 31-35 30 35 32 24 29 
39 138332 S1200 Q13 M 26-30 34 32 38 10 45 
40 139435 S1200 Q13 F 26-30 34 18 37 11 26 
41 143224 S1200 Q12 F 26-30 35 25 36 18 30 
42 143830 S1200 Q06 F 26-30 27 22 29 23 31 
43 144933 S1200 Q12 M 26-30 27 34 26 38 32 
44 145632 S1200 Q08 M 26-30 24 29 16 41 28 
45 146735 S1200 Q12 F 31-35 31 25 40 16 24 
46 146836 S1200 Q11 M 26-30 32 29 31 19 31 
47 147636 S1200 Q10 F 22-25 37 29 27 21 18 
48 151021 S1200 Q09 M 31-35 36 21 38 11 30 
49 151324 S1200 Q09 M 22-25 21 35 31 27 31 
50 151930 S1200 Q12 M 31-35 33 29 45 20 26 
51 152225 S1200 Q10 M 31-35 32 23 38 1 25 
52 152427 S1200 Q13 F 31-35 35 28 31 27 20 
53 153126 S1200 Q13 F 26-30 29 25 34 16 27 
54 153934 S1200 Q12 M 26-30 36 22 34 4 35 
55 154330 S1200 Q04 M 26-30 27 29 31 10 34 
56 165436 S1200 Q12 M 26-30 37 30 22 28 28 
57 165941 S1200 Q09 F 26-30 23 23 29 22 22 
58 167440 S1200 Q13 F 26-30 44 35 38 20 25 
59 168947 S1200 Q12 F 26-30 35 35 34 13 35 
60 169545 S1200 Q13 M 22-25 28 26 35 12 36 
61 171734 S1200 Q13 F 26-30 39 20 36 11 33 
62 172635 S1200 Q12 M 31-35 25 35 30 26 33 
63 175136 S1200 Q12 F 22-25 31 24 39 12 34 
64 176845 S1200 Q11 F 26-30 47 28 29 8 36 
65 177140 S1200 Q13 F 31-35 38 32 35 16 26 
66 180230 S1200 Q13 F 26-30 37 36 36 7 36 
67 180533 S1200 Q12 F 31-35 37 27 36 15 32 
68 183741 S1200 Q12 M 31-35 37 37 34 23 24 
69 185038 S1200 Q11 M 31-35 37 31 33 25 25 
70 186040 S1200 Q09 M 26-30 37 35 32 14 34 
71 186545 S1200 Q13 F 31-35 32 23 32 23 28 
72 186848 S1200 Q12 F 26-30 38 33 36 15 40 
73 186949 S1200 Q13 M 22-25 32 18 45 14 40 
74 188145 S1200 Q12 F 31-35 39 21 39 12 24 
75 189652 S1200 Q13 M 26-30 43 13 35 29 36 
76 191235 S1200 Q10 M 22-25 34 20 38 2 30 
77 193845 S1200 Q13 M 22-25 37 28 42 6 39 
78 194443 S1200 Q12 M 26-30 26 32 39 23 42 
79 196851 S1200 Q09 M 26-30 31 23 30 17 33 
80 196952 S1200 Q13 F 26-30 34 13 42 14 24 
81 198047 S1200 Q13 F 26-30 31 38 37 20 35 
82 199352 S1200 Q12 F 22-25 27 28 41 14 32 
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83 200513 S1200 Q12 M 22-25 33 32 34 19 33 
84 204218 S1200 Q09 M 26-30 27 31 37 12 40 
85 206323 S1200 Q12 F 31-35 34 26 35 9 31 
86 206525 S1200 Q09 M 26-30 19 31 40 3 37 
87 206727 S1200 Q09 M 22-25 25 21 28 27 30 
88 206828 S1200 Q11 M 22-25 31 28 47 4 32 
89 206929 S1200 Q12 M 31-35 33 26 35 11 34 
90 208630 S1200 Q12 M 31-35 26 24 36 16 26 
91 210112 S1200 Q11 M 22-25 26 41 27 16 36 
92 211619 S1200 Q13 M 26-30 31 32 37 9 24 
93 211821 S1200 Q06 M 26-30 32 28 32 20 24 
94 213017 S1200 Q11 M 22-25 35 30 35 12 34 
95 213522 S1200 Q12 M 26-30 27 25 27 27 10 
96 219231 S1200 Q05 M 26-30 37 37 26 29 24 
97 227533 S1200 Q08 F 31-35 41 29 43 6 40 
98 238033 S1200 Q09 M 31-35 30 40 23 24 23 
99 239136 S1200 Q09 F 26-30 40 36 44 15 34 
100 248238 S1200 Q13 F 31-35 37 31 36 18 12 
101 255740 S1200 Q10 F 26-30 35 24 37 34 29 
102 257946 S1200 Q08 F 26-30 29 28 38 20 31 
103 274542 S1200 Q13 F 26-30 31 32 38 25 37 
104 281135 S1200 Q12 M 26-30 35 21 39 11 30 
105 286347 S1200 Q13 F 26-30 45 35 25 27 28 
106 299760 S1200 Q09 M 26-30 34 38 25 19 30 
107 300719 S1200 Q13 M 26-30 32 31 34 14 26 
108 314225 S1200 Q12 M 22-25 28 28 30 19 32 
109 325129 S1200 Q13 M 31-35 38 31 33 24 29 
110 329844 S1200 Q07 M 26-30 33 26 39 13 36 
111 342129 S1200 Q09 M 26-30 39 30 37 9 42 
112 349244 S1200 Q08 M 26-30 29 26 40 14 23 
113 350330 S1200 Q13 F 22-25 37 32 32 8 32 
114 360030 S1200 Q13 F 31-35 37 22 35 20 26 
115 368551 S1200 Q09 M 26-30 26 34 39 7 35 
116 368753 S1200 Q12 F 31-35 36 21 43 10 19 
117 376247 S1200 Q13 F 26-30 36 24 38 24 32 
118 378756 S1200 Q12 M 26-30 36 36 29 25 30 
119 385046 S1200 Q09 M 26-30 32 30 37 14 28 
120 392750 S1200 Q08 M 31-35 34 27 27 20 22 
121 394956 S1200 Q12 F 26-30 38 29 38 15 37 
122 401422 S1200 Q08 F 31-35 42 29 33 12 38 
123 413934 S1200 Q09 F 31-35 28 35 34 28 22 
124 419239 S1200 Q12 F 26-30 33 26 41 21 26 
125 421226 S1200 Q13 M 31-35 34 29 27 18 31 
126 454140 S1200 Q12 M 31-35 30 28 35 20 31 
127 461743 S1200 Q11 M 26-30 25 25 37 10 33 
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128 462139 S1200 Q13 F 26-30 41 32 44 5 37 
129 463040 S1200 Q13 F 31-35 37 28 26 17 27 
130 469961 S1200 Q13 F 26-30 34 28 35 14 26 
131 481042 S1200 Q12 F 31-35 32 24 36 18 27 
132 510225 S1200 Q08 F 26-30 39 45 32 26 25 
133 513130 S1200 Q12 F 26-30 41 22 33 9 38 
134 516742 S1200 Q11 M 31-35 30 26 45 3 36 
135 518746 S1200 Q12 M 22-25 31 18 33 19 30 
136 519647 S1200 Q13 M 26-30 22 20 40 15 20 
137 531940 S1200 Q13 F 22-25 39 44 31 29 36 
138 541640 S1200 Q06 M 26-30 39 47 30 12 36 
139 550439 S1200 Q12 M 22-25 30 24 35 22 35 
140 552241 S1200 Q12 M 22-25 36 24 36 15 29 
141 555954 S1200 Q09 M 26-30 31 28 34 14 30 
142 558657 S1200 Q13 M 22-25 34 32 33 28 24 
143 558960 S1200 Q12 F 31-35 41 30 31 25 33 
144 559457 S1200 Q13 M 31-35 34 28 36 14 23 
145 561949 S1200 Q12 M 26-30 27 14 32 16 28 
146 567759 S1200 Q09 F 26-30 32 29 28 13 28 
147 569965 S1200 Q13 F 31-35 32 38 27 20 33 
148 578057 S1200 Q13 F 26-30 42 24 42 16 34 
149 578158 S1200 Q13 M 26-30 33 42 43 7 32 
150 589567 S1200 Q13 M 22-25 25 29 39 18 35 
151 590047 S1200 Q09 M 22-25 29 36 21 25 29 
152 615441 S1200 Q12 M 22-25 34 22 35 9 27 
153 623137 S1200 Q13 F 31-35 25 31 19 15 31 
154 634748 S1200 Q13 F 22-25 43 40 40 20 33 
155 635245 S1200 Q12 M 26-30 27 32 29 4 42 
156 644246 S1200 Q12 F 31-35 37 25 39 15 32 
157 654552 S1200 Q12 F 31-35 34 26 35 18 33 
158 675661 S1200 Q12 M 31-35 24 30 30 31 25 
159 680452 S1200 Q13 F 31-35 39 17 32 19 38 
160 688569 S1200 Q02 F 26-30 34 18 42 32 21 
161 692964 S1200 Q12 M 22-25 25 33 35 28 38 
162 694362 S1200 Q13 F 22-25 37 26 37 22 32 
163 698168 S1200 Q12 M 22-25 43 39 28 23 38 
164 701535 S1200 Q13 F 31-35 36 28 35 7 35 
165 723141 S1200 Q12 M 31-35 33 39 36 31 29 
166 728454 S1200 Q12 M 22-25 27 22 39 18 32 
167 760551 S1200 Q12 F 26-30 38 25 40 18 30 
168 763557 S1200 Q09 M 26-30 28 37 27 27 33 
169 765864 S1200 Q08 F 26-30 35 35 26 27 33 
170 774663 S1200 Q13 M 26-30 27 31 40 10 42 
171 788674 S1200 Q11 F 31-35 41 18 35 23 35 
172 809252 S1200 Q11 F 26-30 28 24 33 15 35 
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173 814548 S1200 Q13 F 31-35 34 31 43 13 33 
174 815247 S1200 Q08 M 26-30 30 15 39 11 30 
175 818455 S1200 Q08 M 31-35 38 40 24 17 31 
176 822244 S1200 Q08 F 26-30 39 23 41 16 39 
177 825553 S1200 Q09 M 26-30 33 23 29 20 33 
178 825654 S1200 Q12 F 31-35 42 21 48 5 37 
179 827052 S1200 Q13 F 26-30 35 32 35 16 24 
180 828862 S1200 Q13 F 26-30 44 19 40 14 25 
181 832651 S1200 Q12 M 22-25 33 31 23 10 34 
182 869472 S1200 Q11 F 22-25 37 30 34 14 34 
183 878877 S1200 Q09 M 26-30 30 28 32 13 30 
184 884064 S1200 Q07 F 31-35 34 26 38 29 22 
185 886674 S1200 Q11 M 22-25 26 37 23 22 23 
186 888678 S1200 Q13 M 26-30 27 33 41 5 28 
187 908860 S1200 Q10 M 26-30 32 40 11 34 24 
188 911849 S1200 Q13 F 31-35 39 43 31 14 37 
189 929464 S1200 Q11 F 26-30 34 39 33 34 32 
190 933253 S1200 Q12 F 26-30 31 28 39 12 28 
191 943862 S1200 Q09 M 26-30 37 29 33 10 29 
192 969476 S1200 Q12 M 31-35 26 21 35 20 19 
193 970764 S1200 Q09 F 22-25 41 30 36 17 36 
194 971160 S1200 Q10 M 26-30 32 36 37 30 34 
195 973770 S1200 Q13 M 22-25 28 27 36 27 26 
196 987074 S1200 Q10 M 22-25 37 28 28 20 24 
197 989987 S1200 Q13 M 31-35 35 24 34 17 30 
198 995174 S1200 Q13 M 22-25 27 30 41 18 36 
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Table S2. The WU-Minn HCP Retest Data is used to evaluate the robustness of our method to construct 
individual myelin network. Here, twenty participants are included in our study. The T1-weighted and T2-
weighted data were processed using the MRTool (https://www.nitrc.org/projects/mrtool, version 1.4.2) 
implemented in the SPM12. 

 SUBJECT RELEASE ACQUISITION GENDER AGE 
1 105923 MEG2 Q07 F 31-35 
2 122317 Q3 Q04 M 31-35 
3 137128 Q1 Q02 F 31-35 
4 139839 S900 Q07 M 26-30 
5 149337 Q1 Q02 M 31-35 
6 149741 S500 Q05 M 26-30 
7 158035 Q2 Q02 F 26-30 
8 169343 Q2 Q02 F 31-35 
9 172332 Q1 Q02 F 26-30 
10 177746 Q2 Q02 F 26-30 
11 192439 Q1 Q01 F 31-35 
12 194140 Q1 Q01 F 26-30 
13 195041 S500 Q07 F 31-35 
14 200109 S500 Q06 F 31-35 
15 204521 S500 Q07 F 31-35 
16 287248 MEG2 Q08 F 26-30 
17 433839 S500 Q04 M 26-30 
18 627549 Q2 Q02 F 31-35 
19 660951 MEG2 Q08 F 26-30 
20 877168 Q1 Q01 F 31-35 
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